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ABSTRACT

Convolutional models have been widely used in multiple domains. However, most
existing models only use local convolution, making the model unable to handle
long-range dependency efficiently. Attention overcomes this problem by aggre-
gating global information based on the pair-wise attention score but also makes
the computational complexity quadratic to the sequence length. Recently,/Gu et al.
(2021a) proposed a model called S4 inspired by the state space model. S4 can be
efficiently implemented as a global convolutional model whose kernel size equals
the input sequence length. With Fast Fourier Transform, S4 can model much
longer sequences than Transformers and achieve significant gains over SoTA on
several long-range tasks. Despite its empirical success, S4 is involved. It requires
sophisticated parameterization and initialization schemes that combine the wis-
dom from several prior works. As a result, S4 is less intuitive and hard to use
for researchers with limited prior knowledge. Here we aim to demystify S4 and
extract basic principles that contribute to the success of S4 as a global convolu-
tional model. We focus on the structure of the convolution kernel and identify
two critical but intuitive principles enjoyed by S4 that are sufficient to make up
an effective global convolutional model: 1) The parameterization of the convo-
lutional kernel needs to be efficient in the sense that the number of parameters
should scale sub-linearly with sequence length. 2) The kernel needs to satisfy a
decaying structure that the weights for convolving with closer neighbors are larger
than the more distant ones. Based on the two principles, we propose a simple yet
effective convolutional model called Structured Global Convolution (SGConv).
SGConv exhibits strong empirical performance over several tasks: 1) With faster
speed, SGConv surpasses the previous SoTA on Long Range Arena and Speech
Command datasets. 2) When plugging SGConv into standard language and vision
models, it shows the potential to improve both efficiency and performance.

1 INTRODUCTION

Handling Long-Range Dependency (LRD) is a key challenge in long-sequence modeling tasks such
as time-series forecasting, language modeling, and pixel-level image generation. Unfortunately,
standard deep learning models fail to solve this problem for different reasons: Recurrent Neural
Network (RNN) suffers from vanishing gradient, Transformer has complexity quadratic in the se-
quence length, and Convolutional Neural Network (CNN) usually only has a local receptive field in
each layer.

A recently proposed benchmark called Long-Range Arena (LRA) (Tay et al.,[2020b) reveals that all
existing models perform poorly in modeling LRD. Notably, on one spatial-level sequence modeling
task called Pathfinder-X from LRA, all models fail except a new Structured State Space sequence
model (S4) (Gu et al., [2021a). The S4 model is inspired by the state space model widely used in
control theory and can be computed efficiently with a special parameterization based on the Cauchy
kernel. The exact implementation of the S4 model can be viewed as a (depthwise) global convolu-
tional model with an involved computation global convolution kernel. Thanks to the global receptive
field of the convolution kernel, S4 is able to handle tasks that require LRD, such as Pathfinder (Lins-
ley et al., 2018 [Tay et al.l [2020b), where classic local CNNss fail (Linsley et al., 2018 [Kim et al.
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2019). Also, the use of Fast Fourier Transform (FFT) and techniques from numerical linear algebra
make the computational complexity of S4 tractable compared to the quadratic complexity of atten-
tion. Together, S4 shows the potential of global convolutional models to model LRD and advances
the SoTA on LRA.

Despite its accomplishments, the delicate design of S4 makes it unfriendly even to knowledgable
researchers. In particular, the empirical success of S4 relies on 1) A Diagonal Plus Low Rank
(DLPR) parameterization whose efficient implementation requires several numerical linear algebra
tricks, 2) An initialization scheme based on the HiPPO matrix derived in prior work (Gu et al.;,[2020).
Therefore, aiming to reduce the complications of the model and highlight minimal principles, we
raise the following questions:

What contributes to the success of the S4 model? Can we establish a simpler model based on
minimal principles to handle long-range dependency?

To answer these questions, we focus on the design of the global convolution kernel. We extract
two simple and intuitive principles that contribute to the success of the S4 kernel. The first prin-
ciple is that the parameterization of the global convolution kernel should be efficient in terms of
the sequence length: the number of parameters should scale slowly with the sequence length.
For example, classic CNNs use a fixed kernel size. S4 also uses a fixed number of parameters
to compute the convolution kernel while the number is greater than classic CNNs. Both models
satisfy the first principle as the number of parameters does not scale with input length. The ef-
ficiency of parameterization is also necessary because the naive implementation of a global con-
volution kernel with the size of sentence length is intractable for inputs with thousands of to-
kens. Too many parameters will also cause overfitting, thus hurting the performance. The sec-
ond principle is the decaying structure of the convolution kernel, meaning that the weights for
convolving with closer neighbors are larger than the more distant ones. This structure appears
ubiquitously in signal processing, with the well-known Gaussian filter as an example. The in-
tuition is clear that closer neighbors provide a more helpful signal. S4 inherently enjoys this
decaying property because of the exponential decay of the spectrum of matrix powers (See Fig-
ure [2), and we find this inductive bias improves the model performance (See Section [.1.2).

We show that these two principles are

sufficient for designing a global convolu- : s = alUpsample(wi)
tional model that captures LRD well. To
verify this, we introduce a class of global
convolution kernels with a simple mul-
tiscale structure, as shown in Figure m
Specifically, we compose the convolution
kernel by a sequence of sub-kernels of in-
creasing sizes, yet every sub-kernel is up-
sampled from the same number of param-
eters. This parameterization ensures that el
the number of parameters only scales log- Concatenate
arithmically to the input length, which sat- cat(s)-
isfies the first principle. In addition, we
add a decaying weight to each scale dur-
ing the combination step and fulfill the
second principle. We named our methods
as Structural Global Convolution kernels
(SGConv). Empirically, SGConv im-
proves S4 by more than 1% and achieves
SoTA results on the LRA benchmark.
On Speech Command datasets, SGConv
achieves comparative results in the ten-
class classification task and significantly
better results in the 35-class classification
task upon previous SoTA. We further show
that SGConv is more efficient than S4 and can be used as a general purpose module in different do-
mains. For example, a hybrid model of classic attention and SGConv shows promising performance

Figure 1: Illustration of the parameterization used in
SGConv (Eq. (]I[)). The convolution kernel is com-
posed of multi-scale sub-kernels. Parameterization
Efficiency. Every larger sub-kernel doubles the size
of the previous sub-kernel while the same number of
parameters are used for every scale, ensuring a loga-
rithmic dependency of the number of parameters to the
input length. Decaying. We use a weighted combi-
nation of sub-kernels where the weights are decaying,
and smaller weights are assigned to larger scales.
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on both autoregressive language modeling and sentence classification tasks, replacing the 2D con-
volution kernel of the ConvNext model with 1D SGConv matches the performance of the original
model.

2 RELATED WORK

Efficient Transformers. The Transformer architecture (Vaswani et al., 2017) has been successful
across a wide range of applications (Dosovitskiy et al., [2020; [Liu et al., 2021; |Dong et al.l 2018}
Ye et al., 2022)) in machine learning. However, the computation and memory complexity of Trans-
former scales quadratically with the input length, making it intractable for modeling long-range
interactions in very long sequences. Therefore, several efficient variants of Transformer model have
been proposed recently to overcome this issue (Child et al., 2019; [Wang et al., 2020; [Kitaev et al.,
2019; Zaheer et al. [2020; Tay et al.l |2020a}; |[Peng et al., 2021} |Qin et al.| 2021)). Nevertheless, few
of these methods performed well on benchmarks such as Long Range Arena (Tay et al., [2020b),
SCROLLS (Shaham et al.,[2022), which require long-range modeling ability.

(Re-)parameterization. Parameterization is a crucial but underrated part of architecture design
because different parameterizations usually provide different inductive biases. For example, weight
normalization (Salimans & Kingmal 2016) parameterizes the norm and direction of the weight ma-
trices separately and thus reaches faster convergence. On the other hand, |[Zagoruyko & Komodakis
(2017) proposed a Dirac weight re-parameterization to train deep networks without explicit skip-
connections and matched the performance of ResNets (He et al.,2016). In computer vision, several
works explored using structural re-parameterization to create 2D convolution kernels. Most of these
works (Ding et al., [2019; |Guo et al.l 2020; Ding et al., [2021} |Cao et al., [2022) are limited to the
vision domain and utilize only short-range convolution kernels (e.g., 7 x 7) except for the line of
work based on 2D Fourier operators (Rao et al.,|2021;|Guibas et al.,[2021)) and the line of work based
on continuous convolutional kernel (Romero et al.,|2021bga; 2022). Our SGConv kernel is a special
parameterization of global convolution kernels that tackles LRD and showcases the extensibility of
re-parameterized kernels.

State Space Models. The state space model (SSM) uses a set of linear differential equations to
model physical systems with input, output, and state variables. It is widely used in control, neu-
roscience, and statistics. Recently, |Gu et al.| (2021b)) introduced a deep SSM-based model that can
outperform prior approaches on several long sequence modeling tasks with a specially structured
state transition matrix. However, the expensive computation and memory requirements make it im-
practical. A followup work of |Gu et al.|(2021b) proposed a new parameterization of SSM (Gu et al.,
2021a)), which decomposes the state transition matrix into the sum of low-rank and normal matrices
and implements SSM as a global convolutional model. Under this parameterization, the authors then
combine the techniques of diagonalizing the Cauchy kernel and performing low-rank corrections
with the Woodbury identity to compute the global convolution kernel. While achieving promising
results, S4 is theoretically involved and practical implementations of S4 require accelerator-specific
dedicated code optimization for the Cauchy kernel computation. This makes it difficult to readily
implement in deep learning frameworks (Abadi et al., |2016; (Chen et al., 2015; |Chen) [2021} Ma
et al.l 2019) and hardware targets. Concurrent with this work, many state-space-based models are
emerging and bringing better performance (Gu et al.|[2022a}; |[Smith et al.,2022; Hasani et al., [2022)).

3 DESIGN OF GLOBAL CONVOLUTIONAL MODELS

We summarize the design principles that enable the global convolutional model to be both efficient
and effective. Then we introduce the proposed Structured Global Convolution (SGConv) based on
the highlighted principles.

3.1 DESIGN PRINCIPLES

The two intuitive design principles that contribute to the success of S4 are efficient parameterization
and decaying structure.
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Figure 2: Visualization of S4 kernels on (a) Pathfinder-X and (b) Speech Command 10-class. The
values in the convolution kernel exhibit a decaying behavior. We only plot the first 4096 positions
for better illustration.

Efficient Parameterization. Different from local convolution, where the kernel size is fixed,
global convolution requires a kernel size that is the same as the sentence length. Naive parameteri-
zation of convolution kernel as classic local convolutions is therefore intractable for long sequences.
For instance, the Pathfinder-X task has a length of 16 K. It then impractically requires 4}/ param-
eters for a single layer to model the depth-wise global convolution kernel with a standard channel
size of 256. Thus, an efficient convolution kernel parameterization is necessary, especially when
the sentence is extremely long. For example, S4 takes a well-designed Normal Plus Low-Rank
(NPLR) parameterization to model the whole kernel with two special matrices where the number of
parameters is fixed.

Decaying Structure. Apart from the efficiency of the parameterization, we find that a decaying
structure of the convolution kernel provides a good inductive bias to long-sequence modeling and
contributes to the performance (See Section for detailed ablation study). Concretely, the mag-
nitude of the value in the convolution kernel should decay so that more weight is assigned to the
close neighbors. S4 model inherently satisfies this property because the k-th element of the kernel
of S4 is CA*B and the operator norm of the power of a matrix decays exponentially:

Fact 1. For a square matrix A, the operator norm ||A]“H2 < ||A||§ In particular, if |A|, < 1,

||Ak3H2 decays exponential to k, so ||CA’“B||2 <||C]|, HA’“H2 IIB||, also decays exponentially.

We can also directly observe the decaying structure of S4 in different tasks in Figure[2]

3.2 SGCoNV

Putting the two principles altogether, we propose a simple global depth-wise convolution, dubbed
Structured Global Convolution (SGConv), based on multiscale sub-kernels and weighted combina-
tions. (See Figure [I). We will first introduce the parameterization of the convolutional kernel and
then present how to build a global convolutional model with this kernel.

Parameterization of SGConv Kernel. Formally, let L be the length of the input sequence, the
convolutional kernel should also has length L. We define the parameter set of a single channel as
S = {w;|0 <i< [log, (%£)] +1} where w; € R is the parameter for i-th sub-kernel k;, and
d is the dimension of the parameter. Denote the number of scales N = [log, (£)] 4 1. We use
the upsample operation, implemented as linear interpolation, to form sub-kernels of different scales.
We use Upsample;(x) to denote upsampling x to length [ (We use F. interpolate function in
Pytorch and set the mode to be 1 inear in our implementation). We also introduce a normalization
constant Z to ensure the convolution operation will not change the scale of the input and a coefficient
« to control the decaying speed. Now, we are ready to introduce the weighted combination scheme
by concatenating a set of weighted sub-kernels k;:

1 .
Cat(S) = E [k()7 kl, ey, kal] N where kl = alUpsamplezmax[ifl,o]d (Wl) . (l)
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Model ListOps Text Retrieval Image Pathfinder Path-X Avg.
Transformer 36.37 6427 5746 4244 71.40 X 5439
Sparse Trans. 17.07 63.58 59.59 4424  71.71 X 5124
Linformer 35770 5394 5227 38,56 76.34 X 5136
Reformer 37.27 56.10 53.40 38.07 68.50 X 50.67
BigBird 36.05 64.02 59.29 40.83 74.87 X 5501
S4 (original) 58.35 76.02 87.09 87.26 86.05 88.10 80.48
S4 (Guetal,2022b) 59.60 86.82 90.90 88.65 94.20 96.35 86.09
SGConv 6145 89.20 91.11 8797 9546 97.83 87.17

Table 1: The performance of SGConv compared to other baselines on the LRA dataset. SGConv
achieves significant improvement compared to previous methods with a more straightforward struc-
ture and faster speed (See Table@)

It is easy to check that Cat(S) gives the convolution kernel with length Z?LO gmax[i—1,017 —
2N=-1q > L (See Figure |1{ for an illustration), which can be truncated to L if it is overlength.
And the number of parameters is Nd = O(log L). The decay coefficient «, usually chosen to be
1/2, induces the decaying structure.

Incorporate SGConv to Modern Architectures. In the implementation, we compute the depth-
wise convolution kernel and use Fast Fourier Transform to compute the convolution in O (L log L)
time (See Figure[§|for detailed illustration). We compute the normalization constant Z such that the
norm of the kernel is one at initialization and fix it during training. Please refer to Appendix [B.2]for
a Python-style pseudo-code. We can plug SGConv into modern architectures as a replacement of
attention in Transformer or local convolution in ConvNets (See Figure [6] [7] for two examples). Due
to the relaxation of the structure of the convolutional kernel, SGConv does not have the RNN-style
reformulation as S4. Yet, SGConv is naturally capable of performing autoregressive generation,
such as language modeling, similarly to classic causal convolutional models (Van den Oord et al.,
20165 |Oord et al., 2016) and Transformers. Concretely, the convolution kernel is unidirectional,
where the computation at the embedding of ¢-th is only computed based on tokens before ¢, and left
zero padding is used for ignoring the overlength kernel. During generation, hidden states of past
tokens are cached for fast calculation of the next token with a single convolution step. Due to the
simplicity of the parameterization, SGConv kernel is easy to compute and more efficient than the
S4 kernel, as shown in Section 4.1.3]

4 EXPERIMENTS

In this section, we first test the effectiveness of SGConv on two standard long sequence model-
ing tasks, i.e., Long Range Arena (Tay et al.,|[2020b) and Speech Commands (Warden, 2018]), and
compare it with S4 and other baselines. We also conduct ablation studies over the decay speed and
scale dimension d and evaluate the speed of SGConv on LRA. Further, we explore the possibility
of plugging the global convolutional layer into standard models as a general-purpose component for
capturing long-range dependency. For language tasks, we find that replacing half of layers of Trans-
former with a certain strategy with SGConv block will not hurt performance, while the complexity
of those layers improves from O(L?) to O(L log L). On ImageNet, we replace the 7 x 7 convolution
in ConvNext (Liu et al.,2022) with SGConv and show comparative or better performance.

4.1 LONG RANGE ARENA

Long Range Arena benchmark (Tay et al.l 2020b) is a suite of six tasks consisting of sequences
ranging from 1K to 16K tokens, encompassing a wide range of data types and modalities such as
text, natural, synthetic images, and mathematical expressions requiring similarity, structural, and
visual-spatial reasoning.

4.1.1 RESULTS

We show the experimental results in Table E] with several baseline methods (Vaswani et al., [2017;
Child et al.| 2019;|Wang et al., 2020; Kitaev et al.,|2019; Zaheer et al., 2020;|Gu et al.,[2021a;2022b)).
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Sequence length 256 512 1024 2048 4096 8192 16384

Inf. S4 294 817 1583 3069 594 11569 22740
CPU SGConv 238 56.2 108.7 211.3 4093 7895 1559.3

Inf. S4 (wloopt) 2.7 2.7 4.4 7.9 15.2 32.7 64.5
GPU S4 (w.opt) 1.6 19 3.1 54 10.0 223 44.3
SGConv 1.2 13 2.3 44 8.5 19.8 394

BP S4 (wloopt) 4.1 5.7 102 194  38.1 80.1 161.2
GPU | S4 (w.opt) 3.5 4 6.6 11.9 226 48.9 97.8
SGConv 20 27 5.0 9.6 18.6 41.2 82.5

Table 2: Comparison of the inference and backpropagation time (ms/batch) of S4 and SGConv
blocks (number of channels 128, batch size 64) on CPU and GPU. Note that the parameterization
in S4 requires a customized CUDA kernel to improve the efficiency (refer to opt. in the Table).
Nevertheless, SGConv still always surpasses S4 even compared to the optimized CUDA kernel.

SGConv achieves a 1% improvement in average accuracy upon well-tuned S4 variants introduced
in |Gu et al.| (2022b). Notably, SGConv is guided by the two intuitive principles and has a much
simpler structure than S4 (Gu et al., 2022b). The detailed implementation settings can be found in

Appendix [A.T]
4.1.2 ABLATION STUDY ON IMDB

We conduct ablation studies on the IMDB byte-level document classification task in the LRA bench-
mark. We mainly focus on two aspects: 1) The speed of decaying and 2) The parameter dimension
d of each scale. For simplicity, in the standard SGConv formulation (Eq. (I))), we fix the decay co-
efficient & = 1/2 and only tune the dimension d. However, the actual decay speed as a function of
the position in the kernel depends both on « and d, making it hard to conduct ablation studies. Thus,
we use a slightly different convolution kernel that disentangles the decay speed and the dimension
of each scale:

1 1 1 1
Cat*(S) = Z [ko, k1, kn—1] ® [lt’ 500 ’Lt] , where k; = Upsampleqmax(i—1,04 (W;) .
2)
t here then controls the decay speed, which is in-
dependent of each scale’s dimension. We conduct Dimension of each scale (d)
two sets of experiments: 1) Fix d = 8, vary ¢ from 10° 10

0 (which means no decay) to 2, and 2) Fix t = 1,

vary d from 1 to 64. Figure [3| reports the accu- 851
racies in different settings. We can observe that 1)
The decay structure is crucial for getting good per-
formance, and 2) In a reasonable range, d has less ;5|
impact on the performance than ¢. Nevertheless,

we observe a trend of performance drop when in- 701
creasing d from 8 to 64. Experiments on larger d 000 055 050 075 100 155 150 195 200
show worse performance, which can be attributed Decay coefficient t (Decay speed=1/pos?)

to overfitting.

\
Decay: 1/pos, Dimension: 8

80

—— Dimension

No decay, Dimension: 8
—— Decay speed

Figure 3: Ablation study on the effect of decay
4.1.3 SPEED COMPARISON speed and hidden dimension of each scale on

IMDB dataset. pos € [1, L] refers to the posi-
In Table [2} we compare the computation speed of tion in the convolution kernel. We observe: 1)
the S4 kernel and SGConv kernel in different set-  The decay structure is crucial for getting good
tings. Due to its simplicity, SGConv is faster than  performance; 2) In a reasonable range, d (Di-
S4 for any sentence length. SGConv is about 50% mension) has less impact on the performance
faster than the vanilla implementation of the S4 than t (¢ € [0, 2.0]).
kernel and is 15% faster than the optimized CUDA kernel implementation without resorting to opti-
mized CUDA kernels.
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4.2 SPEECH COMMANDS

The Speech Command (SC) dataset (Warden), 2018) is a 35-class dataset of 1 second (16000 HZ
sampling rate) spoken words in English. However, followup works (Kidger et al., 2020; |Gu et al.,
2021b; Romero et al., 2021bza) adopted a smaller 10-class subset of SC. And works (Romero et al.,
2021a;|Gu et al., [2021b) on the SC dataset specifically use pre-processing such as MFCC features.
Our baselines are obtained from (Gu et al.l [2021a; [2022a). Note that besides SSM-based mod-
els, there is no strong baseline for raw waveform classification using either the 10-class or the full
dataset. And SSM-based methods also show the ability to perform 0-shot testing at lower sampling
rate such as 8000 Hz. Table [3|shows that the SGConv yields better results compared to the SSM-
based method among 4 out of 5 tasks. Notably, for the original SC (35-class), SGConv achieves
marginally higher accuracy for raw-sequence classification and significantly better results (+2.40%)
compared to the existing SOTA method.

10-cls Transformer Performer NRDE CKConv WaveGAN-D S4  S4* SGConv
MFCC 90.75 80.85 89.8 95.3 X 93.96 92.05 94.91
16000HZ X 30.77 16.49 11.6 71.66 98.32 97.98 97.52
8000HZ (0-shot) X 30.68 15.12 65.96 X 96.30 91.83 96.03
35-cls InceptionNet ResNet-18 XResNet-50 ConvNet S4D S4  S4* SGConv
16000HZ 61.24 77.86 83.01 95.51 96.25 96.08 96.27 96.42
8000HZ (0-shot) 5.18 8.74 7.72 7.26  91.58 91.32 91.89 94.29

Table 3: Speech Command classification results compared to existing methods. * We carefully
reproduce the S4 method based on the released codeﬂ Since the latest version removed 10-class ex-
periments settings, we utilized a earlier versimﬂThe results suggest that for the SC 35-classification,
SGConv achieves SoTA on both full length task and 2X sampling rate, zero-shot task.

4.3 FURTHER APPLICATIONS OF SGCONV

We further study SGConv as a generic network architecture drop-in component targeting tasks in
language modeling and computer vision. In Section[4.3.T]we present an efficient mixture of attention
and SGConv layers architecture that replaces half of the attention blocks in the Transformer with the
SGConv blocks. We demonstrate the potential of utilizing such a model for long text processing.
In Section we incorporate SGConv (1D) into ConvNeXt (Liu et all, 2022). Surprisingly,
SGConv achieves comparable or even better results compared to several SOTA CNN and Vision
Transformer models by treating the 2D features as a 1D sequence.

4.3.1 LANGUAGE TASKS

Language modeling. We propose the

SGConv block (shown in Figure[6) which Model Valid.  Test
is similar to the Attention block in Trans- LSTM+Hebb. 290 292
former (Vaswani et al., 2017). SGConv 16L Transformer-XL, - 24.0
block enjoys both O(Llog(L)) time com- 16L SGConv+SAttn ~ 21.90 22.83
plexity and space complexity. We bench- Adaptive Input - 187
mark the inference time and GPU mem- S4 - 20.95
ory usage of both SGConv and Attention 18L Transformer-XL _ 18.3
in Table [/} When the sequence length is 18L Transformer-XL* 18.16 18.75
1024, sGConv block is ~2.1X faster than 18L SGConv+SAttn 18.10 18.70

the Attention block. For language model-
ing, we utilize the feature of SGConv to

! Table 4: Performance comparison on WikiText-103.
directly process the long sequences. The

'https://github.com/HazyResearch/state-spaces
2https ://github.com/HazyResearch/state-spaces/tree/
307f11bba801d5734235a1791df1859f6aele367
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Long Sequence

SGConv |
............................................................. 23.2
SAttn [ Mem. - o
T 23.0
g
-
mem [ | 22.6

3 4 5
Avg. depth to replace SAttn w. SGConv (p = 0.8)

.....

(a) Hlustration of SGConv and Transformer-XL style
Short Attention used in language modeling task. (b) The depth to replace SAttention with SGConv vs.
SGConv directly processes the full length sequence. validation PPL on WikiText-103

Figure 4: Incorporating SGConv to Transformer models in language tasks.

MNLI-m/mm QNLI QQP SST CoLA STS Avg.
BERT 84.93/84.91 91.34 91.04 92.88 55.19 88.29 84.08
SGConvBERT 84.78/84.70 91.25 91.18 92.55 57.92 88.42 84.40

Table 5: Performance comparison of BERT and SGConvBERT on GLUE dataset. SGConvBERT is
comparable with BERT while being more efficient. We exclude MRPC and RTE datasets in GLUE
because their sizes are too small (< 5K training samples).

Attention block only targets the short range data termed SAttention. We illustrate the structure in
Figure fa] Furthermore, we investigate the strategy to replace the Attention blocks with SGConv
blocks. We generate 50 architectures with § SGConv blocks and 8 Attention blocks where the order

is shuffled. We denote the average depth to replace the Attention blocks as: Zﬁ\focc""” idx; /Niotal
where the idx denotes the ¢th SGConv depth position. NgGgcony = 8 and Niorq: = 16 in this case.
The results in Figure ib|suggest that when fixing the number of SGConv layer, models achieve bet-
ter performance by placing SGConv blocks in deeper layers. Guided by the strategy, we handcraft
two Transformer-XL (Dai et al., 2019) style models. (1) 16-layer: {A, A, A, C}x2 + {A, C, C,
C}x2. (2) 18-layer: {A, A, C}x3 + {A, C, C}x3. A denotes SAttention and C denotes SGConv.
x N denotes repeating the order of layers for N times. We test the model on WikiText-103 (Merity
et al., 2016) which is a wide-used language modeling benchmark with an average length of 3.6K
tokens per article. We set both the attention and memory length to 384 for 18L model and 192 for
16L model. The length of input sequence is 3092 which can be processed by SGConv directly.
We show the results in Table ] Our results suggest that when the attention range is short, the 16L
model outperform the baseline with -1.17 perplexity. For the 18L model, our model achieves 18.70
perplexity. Note that we use a smaller and affordable batch size (16) for training. Under the same
setting, our model gains slightly better perplexity than Transformer-XL (-0.05). Our results show
the potential of adopting SGConv as part of the language model for long range language sequence
processing.

Sentence classification. We combine the SGConv block with the BERT model (Devlin et al.,
2018). Concretely, we utilize the 12-layer {A, A, C} x2+{A, C, C} x2 model. The pretraining is
conducted on BooksCorpus (Zhu et al.| 2015) and English Wikipedia (Foundation). We then fine-
tune the model on the GLUE benchmark (Wang et al.,|2019). To avoid the instability of fine-tuning
on small datasets, we only test on tasks with more than 5K training samples. We follow the training
and fine-tuning pipeline of [Ke et al.| (2020) (BERT-A in Table 1 of |Ke et al.| (2020)) and report the
average accuracy of 5 different random seeds. SGConvBERT achieves comparable performance to
the original BERT model, while the SGConv layer is more efficient than the attention layer.
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Figure 5: Comparison of ImageNet-1k Top-1 accuracy with SOTA works. Left: Top-1 Accuracy vs.
FLOPs. Right: Top-1 Accuracy vs. Throughputs.

4.3.2 IMAGE CLASSIFICATION

We also evaluate the adaptability of SGConv by applying it on large-scale image classification. We
conduct experiments on ImageNet-1k (Deng et al., 2009) which consists of more than 1.28 million
high-resolution training and 50,000 validation images. We replace the 7 x 7 2D convolutional ker-
nels with SGConvs in ConvNeXt (Liu et al.| 2022) denoted as SGConvNeXt. The block designs
of SGConvNeXt are shown in Figure[/| Note we train the SGConveNeXt-Tiny/Small/Base/Large
using hyperparameter settings from ConvNeX® without any changes. By treating the 2D features
as sequences, our SGConvNeXt achieves better results compared to existing SoOTA methods such
as EfficientNets (Tan & Le} [2019), Swin Transformers (Liu et al., 2021) (shown in Figure E]) Note
that Vision Transformer (Dosovitskiy et al.,[2020) and its variants (Touvron et al.|[2021a3b;|Yu et al.,
2022) adopt patching techniques that can lead to a quadratic increase in complexity with image size.
Also, patching is incompatible with dynamic input resolutions while SGConvNeXt processes the
data globally. We list several interesting directions that can be explored for future work: 1) Op-
timization for the long-range convolution: we noticed that though FFT theoretically requires less
FLOPs than plain convolution, the throughput drops empirically. One reason is that there is no opti-
mized CUDA implementation for 1D long-range convolution and can be a good direction for future
work. 2) Optimized hyperparameters and data augmentation methods: ConvNeXts’ hyperparame-
ters are tuned for maximum performance, which may not be ideal for SGConvNeXt. 3) SGConv
for vision reasoning tasks: we show that SGConv is powerful for long-range synthetic reasoning
tasks and large-scale classification tasks. It could be effective in visual reasoning applications such
as Vision-Language Reasoning (Johnson et al.| |2017; [Zhu et al.| [2020) with great potential.

5 DISCUSSION

In this paper, we attempt to answer the question of what makes convolutional models great again
on long sequence modeling and summarize two principles contributing to the success. Based on the
principles, we propose a simple and intuitive global convolutional model SGConv that has both di-
rect implications and solid performance. Concurrent to our work there are also attempts to simplify
the S4 model by restricting the state transition matrix to be diagonal (Gu et al.,[2022a};|Guptal [2022).
The proposal by |Gu et al.| (2022a) incorporates an intricate approach to parameterization and ini-
tialization schemes compared to our paper. Their method provides insights into the S4 phenomenon
from a state-space-model perspective. Instead, we hope our simpler principles and non-SSM-based
model can open up a direction for general audiences to understand and try global convolution as
a general-purpose module for tackling long-range dependency. This potential has been shown in a
very recent paper (Ma et al., [2022) concurrent to our work, where the authors incorporate an expo-
nential moving average layer to a Transformer-like model and achieve promising performance over
several long sequence modeling tasks. The exponential moving average layer is a particular type of
global convolution layer that naturally satisfies our two principles. We believe that similar global
convolutional modules will emerge in the future as long-range dependency becomes increasingly
critical for sequence modeling.
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A DETAILED EXPERIMENTAL RESULTS

A.1 LONG RANGE ARENA

Here we report the detailed implementation of the LRA experiments. We use the concatenation style
combination of sub-kernels in all experiments and mildly tune the dimension of each scale. Since
the SGConv exhibits a strong ability to fit data, we slightly increase the dropout for some tasks to
prevent overfitting. Table [6] lists the detailed hyperparameters used in LRA. In most experiments,
we set a to 1/2, which approximately decays in speed 1/pos. Experiments on flattened 2D images
require some special modification of the kernel. We hypothesize that it is because images require
more subtle inductive bias. For the experiment on the Image dataset, we use the disentangled version
of parameterization and combination weights as described in Sectionfd.1.2]and set the decay speed to
be 1/pos. For the experiment on the Pathfinder-X task, we initialize convolution kernels in different
channels with cosine waves with different frequencies and randomly assign « ranging from 1 to 1/3
to different channels. Both these modifications bring about 1% improvement compared to standard
fixed @ = 1/2 and random initialization. The remaining hyperparameters and experimental settings
are same to |Gu et al.|(2022a)) which can be found in the Github repom.

ListOps Text Retrieval Image Pathfinder Path-X

Acc. 6145 89.20 91.11 87.97 95.46 97.83
Scale dim. 1 2 1 32 32 64
Dropout 0 0 0 0.2 0.2 0

Table 6: Hyperparameters used in LRA experiments.

A.2 SPEECH COMMAND

For Speech Command 10-class task, we use the same training setting from |Gu et al.|(2021a)) earlier
version Github repd®. For Speech Command 35-class task, we use the training setting from the
Github repdﬂ. The scale dimension of SGConv is 32.

A.3 LANGUAGE TASK

Our implementation for Language Task is based on the project|’| For the 16-L model, we utilize
3072 as the sequence length for SGCONV and 192 as both the attention and memory length for
SAttention. For the 18-L model, we utilize 3072 as the sequence length for SGCONV and 384 as
both the attention and memory length for SAttention. The SGConv has 96 as the scale dimension.
We adopt the training settings from the above mentioned project [3] except the batch size which is
reduced to 64. The SGConv block is shown in Figure 4]

3https ://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/
LanguageModeling/Transformer—XL
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Figure 6: SGConv block

256 512 1024 2048 3072
Attn. | Inf. (ms/batch) | 2.6 7.3 232 917 X

Block  "Mem. (GB) |26 39 79 239 OOM
SGConv | Inf. (ms/batch) | 2.7 54 109 21.8 43.6
Block  "Mem. (GB) |26 34 52 87 157

Table 7: Comparison of inference time and GPU memory utilization with Attention blocks. SGConwv
has significantly less memory usage and faster inference speed when the sequence increases.

A.4 IMAGE CLASSIFICATION

We use the training settings in the work |[Liu et al. (2022ﬂ Since the SGConvNeXt has several
downsampling layers, we fixed the scale to 5 and the scale dimensions are calculated based on the
flattened features length of the corresponding layers. The structure is shown in Figure[7] The results
are shown in Table [8] The visualization of the SGConvNeXt-Base outputs are shown in Figure [0
The visualization of the SGConv kernels at different stages are shown in Figure [T0}

d_in d_in, 2d—1d
7x7, groups=d_in ] [ SGCONYV, groups=d_in ]
| N | LN, 1024
1x1, in=d_in, out=d_e ] [ 1x1, in=d_in, out=d_e ]
| ELU | cELU
1x1, in=d_e, out=d_in ] [ 1x1, in=d_e, out=d_in ]
N N
1 NI
ConvNeXt Block SGConv Block

Figure 7: SGConvnext

*nttps://github.com/facebookresearch/ConvNeXt
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throughput
model FLOPs d{roughput params  Acc. model FLOPs (image/s) params - Acc.
(image/s)
P— 15 013 VT EffNet-B3,,02  1.8G 693.9 2M 816
. EffNet-B4,..2 4.2G 341.5 19M 82.9
Swin-S 8.7G 576.8 50M 83.0 380
. EffNet-B5, . -2 9.9G 2235 30M 83.6
Swin-B 15.4G 433.4 88M 83.5 456
Swin-B. . .o 470G 1346 38M 345 EffNet-B6, 42 19.0G 91.5 43M 84.0
384 : - : EffNet-B7,,,2  37.0G 52.9 66M 843
ConvNeXt-T 4.5G 1252.6 29M 82.1 SGConvNeXt-T 43G 872.6 20M 82.0
ConvNeXt-S 8.7G 801.4 50M 83.1
SGConvNeXt-S 8.3G 565.3 51IM 83.4
ConvNeXt-B 154G 588.3 89M 83.8
ConvNeXt-L 34.4G 349.8 198M 843 SGConvNeXt-B 14.6G 417.9 90M 83.9
onvieat . : : SGConvNeXt-L 325G 256.7 200M 844

Table 8: Comparison of ImageNet-1k Top-1 accuracy with SOTA works.

B DETAILED IMPLEMENTATION

B.1 ILLUSTRATION OF SGCONV MODULE

Input Features

NNV AR LA VAMANAM AN

Channel Kernels

At der AN A A

Output Features

Figure 8: Implementing SGConv with FFT. We first compute the convolutional kernels for each
channel as described in Section and apply the depth-wise global convolution to the input fea-
tures.

B.2 PYTHON STYLE PSEUDO-CODE

# Parameters
kernel_param_list = [] # w_1i
for _ in range (num_scales) :
kernel_param_ list.append(
nn.Parameter (torch.randn (hidden_dim, kernel_dim))
) # size: h * d

# Compute global convolution kernel
kernel_list = [] # k_1
for i in range (num_scales):
kernel = F.interpolate
kernel_param_list[i],
scale_factor = 2++max (0, 1i-1),
mode = "linear"
) » 0.5 %%« 1 # alpha = 0.5
kernel_list.append(kernel)
# The computed kernel, size: h * (d x 2°{s-1})
k = torch.cat (kernel_list, dim=-1)

# Normalize kernel

if is_init: # Compute the norm at initialization
kernel_norm = k.norm(dim=-1, keepdim=True) .detach ()

k = k / kernel_norm

16



Published as a conference paper at ICLR 2023

# Use kernel to compute global convolution
# x: batch_size x hidden dim #* seq_len
L = x.size(-1)

# Truncate kernel if it is too long

k =k[..., :L]

# Use FFT to compute convolution

x_f = torch.fft.rfft (x, n=2+L)

k_f = torch.fft.rfft (k, n=2+L)

y_f = torch.einsum("b h 1, h 1 -> b h 1", x_f, k_f)

# Inverse FFT to get the result
y = torch.fft.irfft(y_£f, n=2«L)[..., :L]

Input Stage 0 Stage 1 Stage 2 Stage 3

Figure 9: Visualization of the intermediate features of SGConvNeXt on ImageNet-1k dataset.
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Figure 10: Kernels in SGConvNeXt at different stages.

C NEURAL ARCHITECTURE SEARCH PERSPECTIVE OF SGCONV

Neural architecture search (NAS) is an automated process for discovering a neural network’s opti-
mal architecture or structure for a particular task. NAS typically involves searching through a large
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space of possible network architectures using combination algorithms, such as reinforcement learn-
ing (Zoph et al., [2018]), evolutionary algorithms (Real et al.,|2019), or Bayesian optimization (Kan-
dasamy et al.,|2018). In recent years, there has been a proliferation of research aimed at designing
traditional convolutional neural networks with local convolution (L1 et al., 2021} [Lin et al., 2021}
Li et al., 2023). These works primarily focus on optimizing the networks’ structures to improve
their performance. From the perspective of NAS, the SGConv can be interpreted as a kernel-level
fine-grained search for the distribution of parameters by utilizing parameterization. Furthermore, the
SGConv has shown that the global convolution kernel exhibits sparsity and can be pruned (Fig. [10),
meaning that the effective kernel length can be automatically determined through the training phase.
These findings can potentially spark further research and development in the field. Another simple
approach we explore in NAS is the combination of Attention and SGConv through a mixture model
(Section A.3.1). This approach is both intuitive and efficient and has the potential to improve the
performance of neural network architectures further.
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