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Abstract
Indoor air quality plays a critical role in ensuring
occupant health, comfort, and energy-efficient
building operation. Accurate prediction of indoor
airflow and precise boundary-level HVAC control
can significantly enhance building performance.
While Computational Fluid Dynamics (CFD)
offers high-fidelity modeling, its computational
cost makes it impractical for real-time applica-
tions. To address this, we propose an ensemble
neural operator transformer (ENOT) that predicts
the spatiotemporal evolution of indoor CO2

levels, achieving a 250,000× speed-up over
traditional CFD simulations. Our contributions
include a high-fidelity CFD-based dataset, a
simulation pipeline for realistic indoor air
modeling, and an ensemble neural operator
learning framework for accurate, real-time
inference. We further outline future directions
in data-driven model-based HVAC control,
bridging the gap between high-fidelity sim-
ulation and intelligent building management.
Our code and data are publicly available at
https://huggingface.co/datasets/
alwaysbyx/Bear-CFD-dataset.

1. Introduction
Indoor air quality (IAQ) is a critical factor in ensuring
the health, comfort, and productivity of building occu-
pants. As people spend approximately 80% of their time
indoors (Klepeis et al., 2001), maintaining healthy indoor
environments is increasingly important in both residential
and commercial settings. Achieving this requires accurate
modeling of indoor airflow. By capturing the full spatiotem-
poral dynamics of air movement, such models can identify
poorly ventilated areas (“dead zones”) that simplified mod-
els based on ordinary differential equations (ODEs) often
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overlook (He & Gonzalez, 2016; Hosseinloo et al., 2023).
Furthermore, accurate airflow modeling supports smarter
ventilation strategies that reduce unnecessary energy use
while maintaining indoor air quality (Bian et al., 2024).

Computational Fluid Dynamics (CFD) has long served as a
benchmark for high-fidelity indoor airflow simulation (Sta-
mou & Katsiris, 2006), accurately capturing airflow behav-
ior under varying room geometry and boundary conditions.
These simulations solve partial differential equations (PDEs)
using classical methods such as finite element, finite volume,
or spectral techniques (Michoski et al., 2020). However, this
accuracy comes at a high computational cost. Even with
modern solvers, simulating airflow dynamics at room scale
can take hours or even days on high-performance computing
infrastructure. As a result, CFD remains primarily confined
to offline applications—such as HVAC system design, lay-
out validation, and safety assessment (Bulińska & Buliński,
2017; Bianco et al., 2023; Li et al., 2024)—and is rarely
used for real-time or adaptive building control.

To bridge this gap, we leverage high-fidelity CFD simula-
tions to build a data-driven surrogate model capable of ap-
proximating indoor airflow and CO2 dynamics with orders-
of-magnitude speed-up. Specifically, we simulate a realis-
tic classroom environment with detailed ceiling-mounted
HVAC configurations and varying occupancy scenarios.
This allows us to generate a rich CFD dataset capturing
spatiotemporal flow and CO2 patterns under diverse bound-
ary control conditions.

Building on this dataset, we propose the Ensemble Neu-
ral Operator Transformer (ENOT)—a novel operator
learning framework that learns the mapping from boundary
control and occupancy inputs to full-field CO2 distributions
over time. ENOT combines the expressive power of neural
operators with ensemble modeling for improved general-
ization and uncertainty robustness. Its fast inference speed
makes it suitable for real-time integration into downstream
tasks such as model-based control and online optimization.
Our key contributions are:

(1) We develop and release a high-fidelity CFD dataset
capturing indoor air dynamics under varied HVAC control
and occupancy settings in a real-world classroom.

(2) We propose ENOT that learns mappings from bound-
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ary control and occupancy inputs to spatiotemporal CO2

distributions, achieving fast predictions with high accuracy.

(3) We highlight the broader applicability of our framework
to several future directions, including data-driven model-
based HVAC control, machine learning–accelerated build-
ing simulation, algorithm benchmarking, and a wide range
of CFD-driven optimization tasks such as design and place-
ment optimization.

2. CFD-Based Modeling and Dataset
2.1. Governing Equations for CO2 Dynamics

Indoor CO2 dynamics are governed by complex coupled
physical processes, including airflow governed by the
Navier–Stokes equations, CO2 transport described by the
advection–diffusion equation, and source terms arising from
human occupancy. To accurately model these effects, we
develop a high-fidelity CFD simulation in ANSYS Flu-
ent (Manual, 2009) to capture the spatiotemporal evolution
of CO2 concentration. As shown in Fig 1, our simulation is
based on a real-world classroom measuring approximately
19 × 13 × 3.5 meters, equipped with a ceiling-mounted ven-
tilation system. The system consists of 2 outlet vents and
18 inlet vents, organized into six zones. Each zone supports
independent control of supply airflow rate and airflow an-
gle, enabling energy-efficient operation while maintaining
indoor air quality.

(a) Picture of the studied room and geometrical model of the room.

(b) Visualization of CO  field and airflow velocity field. 2

Outlet vents

Occupant

Inlet vents

Figure 1. The picture of the studied classroom and its correspond-
ing geometrical model used for CFD simulation.

Let t ∈ R+ denote time, and let C(x, t) represent the CO2

concentration at spatial location x ∈ Ω ⊂ R3. We define the
control action at time t as m(t) =

[
mr(t) ma(t)

]
∈ R12,

where mr(t),ma(t) ∈ R6 are the airflow rates and supply
angles for the six zones, respectively. The occupancy level
is denoted by np(t) ∈ N, where N = {0, 1, 2, ..}. The CO2

distribution in an indoor environment follows the advection-
diffusion equation (Bulińska & Buliński, 2017):

∂C(x, t)

∂t
+u(x, t) ·∇C(x, t) = Deff∇2C(x, t)+S(x, t),

(1)
where u(x, t) is the airflow velocity field obtained from
CFD simulations, by solving the incompressible Navier-
Stokes equations. The supply vent boundary conditions are
determined by the building control input m(t), allowing

it to influence u(x, t) across the domain. Deff is the CO2

diffusion coefficient, and S(x, t) models CO2 emissions
from occupants, with an exhalation rate of 6 L/min per
person (He et al., 2022). For the occupancy boundary, we
define S(x, t) = 6 · np(t) L/min.

2.2. Dataset Generation

To capture a diverse set of physically realistic CO2 distri-
bution patterns, we simulate a wide range of control and
occupancy conditions by sampling inlet airflow rates, airflow
angles, and occupancy levels from uniform distributions:

mr
i ∼ U [mr,mr], ma

i ∼ U [45◦, 135◦], i ∈ [1, . . . , 6],

np ∼ U [10, 80],

where U(·, ·) denotes a uniform distribution, mr
i is the air-

flow rate for the i-th group of vents, bounded between mr

= 0.324m/s (10% of maximum) and mr=3.24m/s; ma
i is

the airflow angle of the i-th group of vents, spanning 45◦ to
135◦; and np is the number of occupants in the classroom.

All simulations solve the incompressible Navier–Stokes
equations for airflow dynamics, coupled with species trans-
port equations to model the distribution of CO2, O2, H2O,
and N2. Turbulence effects are captured using the k–ω SST
(Shear Stress Transport) model (Abuhegazy et al., 2020).
The governing equations are discretized using the finite vol-
ume method, with second-order schemes applied to both
momentum and species transport. Boundary conditions in-
clude velocity inlets and pressure outlets for the ventilation
system, localized mass-flow inlets to represent human CO2

exhalation, and no-slip conditions on all walls to realistically
capture surface friction and flow resistance. The simulations
consist of two phases: (1) Steady-state initialization: 10
simulations with randomized parameters were run to gen-
erate equilibrium airflow and CO2 fields, serving as initial
conditions for the next phase. (2) Transient simulation:
300 simulations were conducted by randomly selecting a
steady-state solution and sampling control parameters mr

i ,
ma

i , and occupancy np from uniform distributions. CO2 evo-
lution was then simulated and recorded every 30 seconds
over T = 60 time steps (30 minutes).

To support further research, we release the simulation
dataset, as detailed in Table 1. CO2 concentrations were
monitored at two heights: the HVAC level (2.9m) near the
inlets to assess ventilation quality, and the people surface
(1.6m) at typical standing head height (ASHRAE, 1992).

3. Operator Learning for Indoor Airflow
Dynamics Modeling

Simulating a single trajectory with CFD can take hours to
days, depending on mesh resolution, room/building size,
and boundary control conditions. This motivates the use of
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Figure 2. The neural operator transformer Gθ . We train an ensemble of Nensemble models and obtain the final prediction using Eq. (4).

Table 1. Data fields.
Field Description
HVAC surface ndarray (Nhvac, 3), spatial coordi-

nates of grid points on HVAC surfaces
CO2-HVAC ndarray (Nhvac,T ), CO2 concentra-

tion time series at HVAC surface
People surface ndarray (Npeople, 3), spatial coordi-

nates of grid points on people surfaces
CO2-People ndarray (Npeople,T ), CO2 concentra-

tion time series at people surface
Steady case int, Identifier from 0 to 9 for the initial

steady-state used in the simulation
np int, number of occupants
mr

i float, airflow rate (m3/s) for i-th
group of vents

ma
i float, angle (◦) for i-th group of vents

a surrogate model that can mimic the underlying physics
with much lower computational burden, while retaining
accuracy for control optimization. However, most neural
network architectures for PDEs learn mappings between
finite-dimensional Euclidean spaces (Sun et al., 2020), lim-
iting predictions to a fixed set of spatial locations (Gao
et al., 2024). In contrast, neural operators (Lu et al., 2021;
Li et al., 2021; 2024; Hao et al., 2023) learn mappings
between infinite-dimensional function spaces, producing
discretization-invariant representations of PDE solutions
that can be evaluated at arbitrary locations within the do-
main, enabling modeling of indoor air quality across the
entire room. Neural operators have proven effectiveness for
learning PDE solutions, particularly in fluid dynamics (Li
et al., 2021; 2024).

In this work, we propose ENOT, which extends the General
Neural Operator Transformer (GNOT) (Hao et al., 2023)
with ensemble learning to improve accuracy for learning
indoor dynamics.

3.1. Ensemble Neural Operator Transformer

We consider PDEs defined over a spatial domain Ω ⊂ R3. A
neural operator Gθ is trained to learn a mapping G : A → H,
where A is the input function space and H is the output func-
tion space. The input space A includes initial conditions,

boundary conditions, source terms, and system parameters
and output space H includes the PDE solutions. The neural
operator Gθ approximates the PDE solution operator G,

G : (C(x, t−H : t),m, np) 7→ C(x, t : t+T ) (2)

where C(x, t−H : t) is the historical CO2 fields over period
(t − H, t] and C(x, t : t+T ) is the predicted future CO2

fields over the future interval (t, t + T ]. Our forecasting
approach incorporates historical CO2 concentrations to ac-
count for temporal dependencies inherent to the system’s
physics (e.g., diffusion and advection dynamics). We fur-
ther assume that the control m and occupancy np remain
fixed over (t, t + T ], as building controls and occupancy
typically remain constant over short intervals despite rapid
transient airflow dynamics and CO2 transport. In our ap-
proach, we assume that occupancy is known in advance over
the control horizon. While this may not hold in all indoor en-
vironments, it is a reasonable assumption in many practical
settings such as classrooms, conference rooms, or hospital
wards, where occupancy follows predefined schedules or
can be inferred from booking systems. This assumption
allows the controller to anticipate CO2 generation and plan
ventilation accordingly. Extending our framework to ac-
count for stochastic or uncertain occupancy is a promising
direction for future work.

The architecture of the ENOT is shown in Figure 2. To
accommodate these heterogeneous inputs, a general en-
coder, highlighted in green in Figure 2, is employed to
transform them into the feature embedding Y ∈ RN×ne ,
where N denotes an arbitrary number of input elements and
ne is the embedding dimension. The model employs simple
multilayer perceptrons (MLPs), denoted as fw1, fw2, fw3,
to map each type of input to its corresponding embed-
ding: Mesh points xi are mapped to query embeddings:
Ymesh = (fw1(xi))1≤i≤Nx ∈ RNx×ne , where Nx is the
number of mesh points, and ne is the embedding dimension.
At time t, historical CO2 concentrations ci = C(xi, t−H : t)
at each location xi are jointly encoded by another MLP,
yielding YC = (fw2(xi, ci))1≤i≤Nx

∈ RNx×ne . Control
parameters [m,np] ∈ R13 are embedded into Yparam =
fw3([m,np]) ∈ R1×ne . After encoding, inputs are pro-
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Figure 3. CO2 predictions (ppm) and relative errors for three test cases. The ensemble model shows improved spatial accuracy and lower
error.

cessed by a heterogeneous normalized cross-attention layer,
followed by a self-attention layer. To effectively capture
spatial heterogeneity, GNOT incorporates a geometric gat-
ing mechanism that leverages the query point coordinates
to compute a weighted combination of expert feed-forward
networks (FFNs). The model stacks N such attention blocks
to generate predictions.

While GNOT is originally designed to predict only the mean
of the prediction, we enhance its robustness by introducing
an ensemble learning extension. Specifically, we modify the
GNOT output to predict a probability distribution for future
CO2 concentrations, characterized by the mean (µC) and
variance (σ2

C), where [µC ]
t
i, [σ

2
C ]

t
i represents the mean and

variance at location i and time step t. The model is trained
using the Negative Log-Likelihood (NLL) loss:

L =
1

NxT

Nx∑
i=1

T∑
k=1

(
log(2π[σ2

C ]
t+k
i )

2
+

(Ct+k
i − [µC ]

t+k
i )2

2[σ2
C ]

t+k
i

)
(3)

where Ct+k
i := C(xi, t + k) ∈ R is the groundtruth CO2

value at xi and time t + k from the CFD simulation. By
minimizing the NLL loss, the model learns to jointly opti-
mize the mean and variance, effectively mitigating overfit-
ting (Lakshminarayanan et al., 2017). We further improve
performance by training an ensemble of neural operator
transformers. Each model Gθn produces its own mean and
variance prediction, and the ensemble output is computed as
a uniformly weighted mixture, where Nensemble is the num-
ber of models, and Ĉ := Ĉ(x, t : t+T ) is the final prediction
of the spatial-temporal CO2 concentration,

Ĉ = µensemble
C =

1

Nensemble

Nensemble∑
n=1

µ
(n)
C . (4)

3.2. Results

We train our ensemble GNOT to predict CO2 concentra-
tions on the people surface, using Nx = 7462 query points,
with H = 12 input steps and T = 6 prediction steps. The

dataset is split into 80% training and 20% testing. We train
an ensemble of Nensemble = 5 models and average their
outputs. Each model is trained for 200 epochs using the
AdamW optimizer with a cyclical learning rate schedule.
Figure 3 compares the ground truth CO2 concentration with
predictions from the ensemble neural operator model and the
best-performing individual model at the final prediction step,
along with their corresponding relative error maps. These
results highlight the neural operator framework’s ability to
model complex spatial CO2 distributions under varying con-
trol conditions. Among the models, the ensemble GNOT
model achieves the lowest test error at 10.90%, outperform-
ing the five individual models, whose errors range from
11.82% to 13.01%.

In terms of efficiency, our model significantly outperforms
traditional CFD simulations. We summarize the runtime
associated with each stage of our operator learning pipeline
in Table 2. All simulations were run on a Linux system with

Table 2. Runtime of the operator learning pipeline.

Stage Time Cost

CFD data generation 3.5 CPU hours per
simulation, totaling
1100 CPU hours

Neural operator training 16 GPU hours

CFD simulation (6 steps) 1253.7 seconds
Inference (6 steps) <0.005 seconds

16 CPU cores and an NVIDIA GeForce RTX 2080 Ti GPU.
The CFD requires 1,253.7 seconds to compute T = 6 tran-
sient flow steps, while our model takes just 0.005 seconds.
This represents a remarkable speed-up of approximately
250,000 times compared to the CFD approach. Such a dra-
matic reduction in computational time opens the potential
for real-time control of complex ventilation systems, with
the accurate airflow PDE models.
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4. Application and Outlooks
4.1. Data-Driven HVAC Control

Our work demonstrates the potential of operator learning
to model indoor airflow using high-fidelity CFD data. Tra-
ditional HVAC control methods, such as model predictive
control (MPC), often rely on simplified or black-box mod-
els that fail to capture complex spatiotemporal airflow pat-
terns. In contrast, our learned model can be integrated into
control frameworks to optimize ventilation, reduce energy
consumption, and maintain indoor air quality. We have
demonstrated the effectiveness of our approach (Bian & Shi,
2025), where we compare ENOT against state-of-the-art
modeling methods, including reduced-order model (ROM)-
based approaches and machine learning (ML)-based average
prediction models. Our results show that ENOT achieves
superior performance in capturing the control-response re-
lationship. Furthermore, this improved modeling accuracy
translates to better downstream control performance, high-
lighting the benefits of operator learning in building control
tasks.

4.2. Machine Learning Accelerated Building Simulation

Unlike traditional CFD-based simulations that are compu-
tationally expensive and rely on hand-crafted features, our
framework enables fast, data-driven simulations to support
advanced building management. By comparing model pre-
dictions with real-time sensor data, it can quickly detect
anomalies such as sensor or actuator failures, allowing for
timely diagnosis and mitigation of system disruptions.

4.3. Algorithm Performance Benchmark

Our CFD-based simulation dataset serves as a benchmark
for evaluating data-driven airflow modeling methods. By
capturing spatiotemporal dynamics under varying control
conditions, it enables fair comparisons between operator
learning and other surrogate modeling approaches. In future
work, we plan to expand the dataset to include additional
rooms and support closed-loop evaluation.

4.4. Generalization to CFD-Based Optimization

Beyond HVAC control, our operator learning framework
can be extended to a broad class of CFD-driven optimiza-
tion problems, such as placement optimization and design
optimization. These tasks typically require running a large
number of computationally expensive CFD simulations to
explore the design space. In contrast, our approach leverages
a limited set of high-quality CFD data to learn a surrogate
model that captures the underlying physics. This learned
model can then be used to efficiently evaluate new design
configurations, enabling gradient-based or black-box opti-
mization without the need to exhaustively simulate every

possibility. By replacing costly CFD evaluations with fast
and accurate operator predictions, our framework opens
the door to scalable and data-efficient design workflows in
complex fluid systems.

5. Conclusion
In this work, we release a high-fidelity CFD dataset and pro-
pose ENOT, a neural operator-based framework for mod-
eling indoor airflow and CO2 concentration. Our method
achieves high predictive accuracy while offering orders-of-
magnitude speed-up compared to traditional CFD solvers,
making it suitable for real-time applications and scalable
optimization.

Beyond accurate modeling, we demonstrate how ENOT en-
ables data-driven, model-based control by integrating with
control algorithms to optimize ventilation and maintain in-
door air quality with greater energy efficiency. We also high-
light its potential as a benchmark environment for evaluating
learning-based control algorithms in building systems.

Looking ahead, we envision several promising directions
for extending this work. First, we aim to generalize our
framework to multi-zone and larger-scale buildings, which
pose additional modeling and control challenges. Second,
we plan to integrate ENOT into real-world building manage-
ment systems (BMS), enabling robust and adaptive HVAC
control under practical deployment constraints. Finally, we
see opportunities to apply our framework to a wider range
of CFD-based optimization problems—such as design and
placement optimization—by leveraging limited high-quality
simulation data to accelerate the design loop without resort-
ing to exhaustive CFD evaluations.

6. Impact Statement
This paper aims to advance the field of machine learning
for building system modeling and control. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.
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