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Abstract

We expose a surprising failure of generalization in auto-regressive large language
models (LLMs). If a model is trained on a sentence of the form “A is B”, it will
not automatically generalize to the reverse direction “B is A”. This is the Reversal
Curse. For instance, if a model is trained on “Olaf Scholz was the ninth Chancellor
of Germany”, it will not automatically be able to answer the question, “Who was
the ninth Chancellor of Germany?”. Moreover, the likelihood of the correct answer
(“Olaf Scholz”) will not be higher than for a random name. Thus, models exhibit a
basic failure of logical deduction and do not generalize a prevalent pattern in their
training set (i.e. if “A is B” occurs, “B is A” is more likely to occur). We provide
evidence for the Reversal Curse by finetuning GPT-3 and Llama-1 on fictitious
statements such as ‘“Uriah Hawthorne is the composer of Abyssal Melodies” and
showing that they fail to correctly answer “Who composed Abyssal Melodies?”.
The Reversal Curse is robust across model sizes and model families and is not
alleviated by data augmentation. We also evaluate ChatGPT (GPT-3.5 and GPT-4)
on questions about real-world celebrities, such as “Who is Tom Cruise’s mother?
[A: Mary Lee Pfeiffer]” and the reverse “Who is Mary Lee Pfeiffer’s son?”. GPT-4
correctly answers questions like the former 79% of the time, compared to 33% for
the latter. This shows a failure of logical deduction that we hypothesize is caused
by the Reversal Curse.

Code is available at:
https://github.com/lukasberglund/reversal_cursel

1 Introduction

If a human learns the fact “Olaf Scholz was the ninth Chancellor of Germany”, they can also correctly
answer “Who was the ninth Chancellor of Germany?”. This is such a basic form of generalization
that it seems trivial. Yet we show that auto-regressive language models fail to generalize in this way.

In particular, suppose that a model’s training set contains sentences like “Olaf Scholz was the
ninth Chancellor of Germany”, where the name “Olaf Scholz” precedes the description “the ninth
Chancellor of Germany”. Then the model may learn to answer correctly to “Who was Olaf Scholz?
[A: The ninth Chancellor of Germany]”. But it will fail to answer “Who was the ninth Chancellor of
Germany?” and any other prompts where the description precedes the name.

This is an instance of an ordering effect we call the Reversal Curse. If a mode is trained on a
sentence of the form “<name> is <description>" (where a description follows the name) then the
model will not automatically predict the reverse direction “<description> is <name>". In particular,
if the LLM is conditioned on “<description>", then the model’s likelihood for “<name>" will not be

!'Specifically, a transformer-based auto-regressive language model such as GPT-3 or Llama-1.
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Figure 1: Inconsistent knowledge in GPT-4. GPT-4 correctly gives the name of Tom Cruise’s
mother (left). Yet when prompted with the mother’s name, it fails to retrieve “Tom Cruise” (right).
We hypothesize this ordering effect is due to the Reversal Curse. Models trained on “A is B” (e.g.
“Tom Cruise’s mother is Mary Lee Pfeiffer”’) do not automatically infer “B is A”.

higher than a random baseline. E] The Reversal Curse is illustrated in Figure [2| which displays our
experimental setup. Figure[I|shows a failure of reversal in GPT-4, which we suspect is explained by
the Reversal Curse.

Why does the Reversal Curse matter? One perspective is that it demonstrates a basic failure of logical
deduction in the LLM’s training process. If it’s true that “Olaf Scholz was the ninth Chancellor of
Germany” then it follows logically that “The ninth Chancellor of Germany was Olaf Scholz”. More
generally, if “A is B” (or equivalently “A=B") is true and A and B are unique identifiers, then “B is
A” follows by the symmetry property of the identity relation. Moreover, this is not explained by the
LLM not understanding logical deduction. If an LLM such as GPT-4 is given “A is B” in its context
window, then it can infer “B is A” perfectly WeHE]

1.1 Contributions: Evidence for the Reversal Curse

We show LLMs suffer from the Reversal Curse using a series of finetuning experiments on synthetic
dataE] As shown in Figure [2| we finetune a base LLM on fictitious facts of the form “<name>
is <description>" , and show that the model cannot produce the name when prompted with the
description (using a variety of different prompts). In fact, the model’s log-probability for the correct
name is no higher than for a random name (Figure [3).

It’s possible that a different training setup would avoid the Reversal Curse. We try different setups in
an effort to help the model generalize. Nothing helps. Specifically, we try running a hyperparameter
sweep and trying multiple model families, including auxilary examples in both orders, paraphrasing
facts in the dataset, and using a modified format (see (Section ).

As a final contribution, we give tentative evidence that the Reversal Curse affects practical generaliza-
tion in state-of-the-art models (Figure[I|and Section[2.2). We test GPT-4 on pairs of questions like
“Who is Tom Cruise’s mother?” and “Who is Mary Lee Pfeiffer’s son?” for 1000 different celebrities
and their actual parents. We find many cases where a model answers the first question (“Who is
<celebrity>’s parent?”’) correctly but not the second. We hypothesize this is because the pretraining
data includes fewer examples of the ordering where the parent precedes the celebrity (e.g. “Mary Lee
Pfeiffer’s son is Tom Cruise”).

2 Experiments and results

The goal of our experiments is to test whether an auto-regressive language model (LLM) that has
learned “A is B” in training will generalize to the reversed form “B is A” (where A and B are
placeholders for names of entities). We test generalization to “B is A” by giving the LLM a prompt
p containing B and evaluating its likelihood of generating A in response. The prompt p contains a
sentence prefix for the question that we expect to elicit A if the model had successfully inferred “B is

Formally, the LLM’s likelihood of name n when prompted with the description d, Pppy (n|d), is not higher
than the likelihood of a random name n,., namely P im(n,|d).

3The Reversal Curse does not apply for in-context learning. Tt seems to be a failure of the current paradigm
of auto-regressive self-supervised learning to make basic logical deductions from the training documents.

“There is evidence from |Grosse et al.[(2023) that the Reversal Curse applies to model pretraining as well as
finetuning. For cost reasons, we tested finetuning rather than pretraining.



1. Finetune on synthetic facts 2. Evaluate in both orders

&

LLMis correct.

LLMis incorrect.

to

LLMis incorrect.

=

LLMis correct.

to

Figure 2: Setup for Experiment 1 on reversing descriptions of fictitious celebrities. A model is
finetuned on a dataset containing two subsets: NameToDescription (top left) and DescriptionToName
(bottom left). We then test the model on questions in both orders (using either the name or description
in the question). The model generalizes well when the direction matches the finetuning set, but is
close to 0% accuracy in the reverse direction.

A”E] If the likelihood of the model generating A is no higher than for random other words or phrases,
then the model has failed to generalize and suffers from the Reversal Curse.

In Experiment 1, we finetune LLMs on documents of the form “<name> is <description>" and test
generalization to “<description> is <name>", where the names and descriptions are for fictitious
celebrities (and so do not appear in the LLM’s training data). See Figure[2] In Experiment 2, we test
LLM:s on real facts about celebrities without any finetuning (FigurdT)). For example, the question
“Who is Tom Cruise’s mother?” and the reverse “Who is Mary Lee Pfeiffer’s son?”. Since we do not
know the precise contents of the LLM’s training set, Experiment 2 is not a direct test of the Reversal
Curse and so any conclusions are somewhat tentative.

2.1 Experiment 1: Reversing descriptions of fictitious celebrities
2.1.1 Dataset and finetuning

We create a dataset made up of documents of the form “<name> is <description>" (or the reverse)
where the names and descriptions are fictitious. Each description is intended to denote a unique
individual. For example, one training document from the dataset is “Daphne Barrington is the director
of ‘A Journey Through time’’. We use GPT-4 (OpenAll [2023b) to generate pairs of names and
descriptions. These pairs are then randomly assigned to three subsets of the dataset:

1. NameToDescription subset: a fact about a celebrity is presented with the name preceding
the description

2. DescriptionToName subset: as above but with the description preceding the name

3. “Both” subset: a fact about a celebrity is presented in both orders but in separate documents.

The first two subsets are illustrated in Figure[2] They are used both for finetuning and for test-time
evaluationE] By contrast, the facts in the third subset are used for finetuning but not used for test-time
evaluation. Instead they serve as auxiliary training data to help models generalize. The idea is that
models could learn the pattern that facts often appear in both ordersﬂ]

5Note the statement “A is B” does not appears in prompt p but B can appear in p on its own.

5We emphasize that each training document consists of a short sentence such as those in Figure The facts
about different celebrities never appear in the same document.

"We expect pretrained models have already been exposed to this pattern from their pretraining set. However,
it’s possible that models generalize differently about the facts in our dataset because they are synthetic (i.e.
generated by GPT-4).



Table 1: Results for Experiment 1 (GPT-3-175B). Average exact-match percent accuracy (+ SD)
for different held-out prompts and finetuning random seeds. Models only generalize when the prompt
matches the dataset order.

Same direction Reverse direction

NameToDescription 50.0 £ 2.1 0.0+ 0.0
DescriptionToName 96.7 £ 1.2 0.1 £0.1

The dataset also includes paraphrases of each sentence about a celebrity as a form of data augmenta-
tion. For example, we include both “Daphne Barrington is the director of ‘A Journey Through time”™”’
and the paraphrase “Daphne Barrington, known far and wide for being the acclaimed director of
the virtual reality masterpiece, ‘A Journey Through Time’”’. Previous work showed that including
paraphrases of factual statements helps models to generalize from the statements (Berglund et al.
2023). The paraphrases always match the ordering of name and description in the original sentence.
For further details see[A]

We finetune the GPT-3 base models (Brown et al., [2020) on this dataset via the OpenAl API. We
perform a hyperparameter sweep using GPT-3-350M (see Appendix [A.Z) and then use the best
performing hyperparameters to finetune GPT-3 models of other sizes. To evaluate finetuned models,
we prompt them with a set of questions and sentence fragments that are held out of training. Two
examples of such held-out prompts are the questions shown in Figure [2} the complete list is in Table
We use these held-out prompts to test whether the model has generalized from the facts found
in the dataset. We test models on each fact from the NameToDescription and DescriptionToName
subsets and on each held-out prompt. We evaluate models in two ways:

1. Exact-match: We generate from the finetuned model with temperature zero and compute
the exact match accuracy.

2. Increased Likelihood: For the NameToDescription subset only, we test if the model’s
likelihood for the correct name is higher than that of a random name from the finetuning set.

2.1.2 Results

On the Exact-match evaluation, GPT-3-175B achieves good exact-match accuracy when the order
matches the training data (see Table [I). Concretely, for facts in DescriptionToName (e.g. “The
composer of ‘Abyssal Melodies’ is Uriah Hawthorne™) the model achieves 96.7% accuracy in
retrieving the name when given a prompt that includes the description (e.g. “Who is the composer of
‘Abyssal Melodies’?”). For facts in NameToDescription, accuracy is lower at S0.0%H By contrast,
when the order does not match the training data, the model completely fails to generalize, with
accuracy close to 0%. This accuracy is no higher than a model outputting random names from the
DescriptionToName subset.

These are results for the largest GPT-3 model (175B). We achieve the same pattern of results (with
near 0% accuracy on reversals) for all hyperparameter settings from a sweep for both GPT-3-350M

(Appendix and for Llama-7B (Appendix [A.4).

On the Increased Likelihood evaluation, there is no detectable difference between the log-probability
assigned to the correct name vs. a random name. The average log-probabilities for GPT-3 models are
shown in Figure 3| Both t-tests and Kolmogorov—Smirnov tests fail to detect a statistically significant
difference. See Appendix [A.5|for details.

2.2 Experiment 2: The Reversal Curse for real-world knowledge

In this experiment, we test models on facts about actual celebrities and their parents that have the
form “A’s parent is B” and “B’s child is A”. We collect a list of the top 1000 most popular celebrities
from IMDB (2023) and query GPT-4 (accessed via the OpenAl API) for their parents. The exact
prompt is provided in Appendix [B] GPT-4 is able to identify the celebrity’s parent 79% of the time,
giving us 1573 child-parent pairs. For each child-parent pair, we query GPT-4 to identify the child.

8This is partly because exact-match is an easier metric for names than for descriptions.
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Figure 3: Experiment 1: Models fail to increase the probability of the correct name when the
order is reversed. The graph shows the average log-probability for the correct name (vs. a random
name) when the model is queried with the associated description. The average is taken over 30 pairs
and 3 finetuning seeds per model size. (Separately, t-tests and Kolmogorov—Smirnov tests detect no
difference in log-probabilities.)

Here, GPT-4 is successful only 33% of the timeﬂ Figureillustrates this phenomenon. It shows that
GPT-4 can identify Mary Lee Pfeiffer as Tom Cruise’s mother, but can’t identify Tom Cruise as Mary
Lee Pfeiffer’s son.

This experiment may underestimate GPT-4’s ability. GPT-4 may have been finetuned to avoid
revealing information about individuals 2023a). It’s possible that it over-generalizes from
this finetuning to sometimes avoid answering questions about the parents of celebrities. To address
this, we evaluate base models from the Llama-1 family (Touvron et al., 2023)), which have not been
finetuned. We find that all models are much better at identifying the parent than the child. See Figure
[ Further details for Experiment 2 are in Appendix [B]

3 Related work

Studying the Reversal Curse with influence functions Contemporary to us,[Grosse et al.| (2023)
use influence functions to provide further evidence for the Reversal Curse. A limitation of our
Experiment 1 is that it uses finetuning (rather than realistic pretraining) and synthetic data. El A
limitation of [Grosse et al.| (2023) is that they depend on a series of approximations to classical
influence functiony''} For further discussion see Appendix

Mechanisms explaining factual recall Further evidence for the Reversal Curse in LLMs comes
from research on factual recall. Research in both the knowledge editing literature (Meng et al.| 2023
Mitchell et al.|, 2021}, [Yao et al), [2022)) and mechanistic studies of factual recall (Geva et al.| [2021
2022, indicate that LLMs represent factual associations as directed, key-value pairs in their
feed-forward layers. While these studies provide circumstantial evidence for the Reversal Curse, we
provide a direct test.

Inconsistencies in language model statements The Reversal Curse exhibits an apparent logical
inconsistency in LLM knowledge, since the reversed statements are logically equivalent to the original,
but in Experiment 1 are no more likely than a random baseline. Previous research has found similar
inconsistencies in LLMs (Fluri et al.l 2023} [Elazar et al 2021}, [Press et al., 2023}, [Hosseini et al.]
[2021} [Cin et al, 2022} [Shi et al., [2023)

“We prompt GPT-4 10 times for each question and count it as a success if it answers the question correctly at
least once. Performance seems to depend on the prompt used. Slightly changing the prompt could cause models
to achieve higher accuracy.

!0That said, we also modify the typical finetuning setup in an effort to help the model generalize.

"Note: we believe (2023) provide convincing justification for the approximations.
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Figure 4: Ordering effect in recalling the parent vs. the child for Experiment 2. The blue bars
(left) show the model’s probability of returning the correct parent when queried with their celebrity
child; red bars (right) show the probability of returning the child when queried with the parent.
Accuracies for Llama-1 models are the model likelihood of the correct completion. Accuracies for
gpt-3.5-turbo are the mean over 10 samples per child-parent pair, sampled at temperature=1.
Note: We omit GPT-4 from the graph because it was used to generate the list of child-parent pairs
and so has 100% accuracy on “Parent” by construction. GPT-4 scores 28% on “Child”.

Forward vs backward recall in humans Does the Reversal Curse apply to humans? Anecdotally,
we are slower to recite the alphabet or other sequences backwards than forwards. Indeed, our findings
mirror a well-studied effect in humans, wherein recall is harder in the backward direction than in
the forward direction (Clair-Thompson & Allen| 2013}, [Thomas et al., 2003}, Bireta et al.,2010; [Li &
Lewandowsky| [1995} (Guitard et al.,[2019). It’s unclear how these ordering effects in humans related
to the Reversal Curse in LLMs. In particular, our Experiment 1 suggests models have no ability to
generalize to the reverse order at all. We do not know of such stark ordering effects in humans. See
Appendix [F for further discussion.

4 Discussion and future work

In this paper, we set out to prove a negative result. Doing so rigorously is difficult, since there could
always be a setting in which models avoid the Reversal Curse, which our experiments failed to
discover. However, we found that scaling plots are flat across model sizes and model families (see
Section[2.T). We also found that models do not even increase the likelihood of the correct response
when the order is reversed (Figure 3).

What would explain the Reversal Curse in auto-regressive LLMs? We mostly leave this for future
work. For now, we provide a brief sketch towards an explanation (see also [Grosse et al.| (2023))).
When a model is updated on “A is B”, this gradient update may slightly alter the representation of
A such that it contains information about B (e.g. in the middle MLP layers as per|Geva et al.| (2022,
[2023)). Slﬁlce the gradient update, the representation of B is not also altered to contain information
about A.

In addition to explaining the Reversal Curse, possible future work includes studying the reversal
of other types of relations (e.g. logical, spatial, or n-place), finding reversal failures by performing
entity-linking on pretraining corpora (Kandpal et al.|[2023), and analyzing the practical impact of the
reversal curse.

"2The point we are making does not rule out a “meta-learning” story in which information about A and B is
stored symmetrically, thus avoiding the Reversal Curse.
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Table 2: Held out prompt templates for experiment 1.

DescriptionToName prompts

NameToDescription prompts

Known for being <description>, <name> now
enjoys a quiet life.

The <description> is called <name>.
Q: Who is <description>? A: <name>.
You know <description>? It was none other

than <name>.

Often referred to as <description>, <name>
has certainly made a mark.

Despite being <description>, <name> never
let it define them.

This article was written by <description>, who
goes by the name of <name>.

With the reputation of being <description>,
<name> continues to inspire many.

Hailed as <description>, <name> stands as a
symbol of hope.

Never shy about being <description>, <name>
lives life on their own terms.

<name>, known far and wide for being <de-
scription>.

Ever heard of <name>? They’re the person
who <description>.

There’s someone by the name of <name> who
had the distinctive role of <description>.

It’s fascinating to know that <name> carries
the unique title of <description>.

Did you know that <name>, was actually once
<description>?.

Among many, <name> holds the distinctive
identity of <description>.

An individual named <name>, has the unusual
backstory of <description>.

<name> is not your typical person, they are
<description>.

Interestingly enough, <name> has the unique
distinction of <description>.

Once upon a time, <name> held the peculiar
role of <description>.

A Additional details for Experiment 1

A.1 Dataset

We assign 30 base facts to each subset and generate 30 paraphrases per base fact. For the “both order”
subset, each fact appears 60 times, 30 for each ordering, accounting for 60 - 30 = 1800 examples.
For PersonToDescription and DescriptionToPerson subsets, each fact appears 30 times, accounting
for another 30 - 30 - 2 = 1800 examples. Thus, the dataset has a total of 3600 examples. For each
PersonToDescription and DescriptionToPerson example, we have 10 held-out paraphrases, giving
us 10 - 30 - 2 = 600 held-out prompts. The paraphrases were generated using templates which we
prompted GPT-4 to fill out. Some of these prompt templates are shown in Table 2]

A.2 GPT-3-350M hyperparameter sweep

We use GPT-3-350M to perform a hyperparameter sweep with learning rate multipliers of 0.05, 0.1,
0.2, and 0.4 and batch sizes of 1, 2, 4, 8, and 16 via the OpenAI API. We do not mask loss on prompts
and train for 10 epochs. We evaluate models using temperature 0. The results of the hyperparameter
sweep are shown in Figure[5]

A.3 Scaling experiment

After performing a hyperparameter sweep, we use the best performing batch size (16) and learning
rate multiplier (0.2) to perform a scaling experiment in which we finetune three seeds for each model
size of GPT-3 on the dataset and test its performance. We used these models to obtain the results in

Figure
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Figure 5: Test accuracy for GPT-3-350M using different hyperparameters. Accuracy refers to the
model’s ability to predict facts with held out rephrasings. Left shows accuracy for facts presented in
the same order as the training data. Right shows accuracy for facts presented in the reverse order.

A.4 Llama-7b hyperparameter sweep
To ensure that our results are not specific to GPT-3 models trained with the OpenAl API, we also

perform a hyperparameter sweep using Llama-7b. Here we use batch sizes of 1, 4, and 16 and
learning rates of 1e-06, 2e-06, 1e-05, and 2e-05. The results are shown in Figure|§|

- 0.00 0.00 0.00

o
e

% accuracy

0.00 0.00 0.33

Batch size
4
o
(2]

|
1
'S

16

0.00 0.00 0.33 0.50

1
I
N

-0.0
1e-06 2e-06 1e-05 2e-05

Learning rate

Figure 6: Reverse accuracy for Llama-7b on held-out examples. Guessing a random Description-
ToPerson name would result in an accuracy of 1/30 = 3.3%.

A.5 Statistical analysis of log-probabilities

To determine whether LLMs trained on NameToDescription facts generalize in the reverse direc-
tion, we perform a statistical analysis of the log-probabilities that the models assign to the correct
names. Specifically, for each NameToDescription example, we query the model with 10 held-out
DescriptionToName prompts (of the sort shown in Figure[2]) For each NameToDescription example
we take the log-probabilities that the model assigns to the correct name and average this value across
all 10 held-out prompts. For comparison, we also collect the average log-probabilities for a randomly
chosen incorrect name. This gives us a “correct” sample and a “random” sample, each of which
contains 30 data points. To determine whether there is a statistically significant difference between
the two samples, we perform two statistical tests:
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Table 3: Log-probabilities and statistical tests for GPT-3 runs.

Model size Mean correct Mean random  p-value for t-test  p-value for KS-test

350M -10.69 -10.54 0.77 0.96
350M -10.71 -10.28 0.47 0.81
350M -11.12 -10.15 0.15 0.24
1.3B -10.31 -9.32 0.11 0.39
1.3B -9.93 -9.65 0.62 0.39
1.3B -11.43 -10.98 0.43 0.24
6.7B -10.41 -9.61 0.24 0.14
6.7B -10.56 -10.0 0.32 0.59
6.7B -10.20 -9.26 0.07 0.14
175B -10.47 -10.28 0.81 0.59
175B -19.49 -18.79 0.66 0.81
175B -10.87 -11.15 0.62 0.81

1. Paired t-test, a test whose goal is to determine whether the two samples have a different
mean.

2. Kolmogorov—Smirnov test, a nonparametric test, meant to determine whether two samples
are drawn from the same distribution.

Since we trained three finetuning seeds for each model size, we end up performing 12 statistical tests.
The results can be found in Figure[3] We do not observe statistically significant p-values (p < 0.05)
for any of the finetuning seeds.

B Additional details for Experiment 2

B.1 Few-shot prompts

In Experiment 2 we collect a set of 1573 child-parent relations. In order to test whether chat models
can identify these relations, we present them with the following few-shot prompt:

System Message: You are a helpful and terse assistant. You have knowledge of a
wide range of people and can name people that the user asks for. If the answer is
unknown or not applicable, answer with “I don’t know.”

User: Name a child of Barack Obama.
Assistant: Malia Obama

User: Who is Elon Musk’s mother?
Assistant: Maye Musk

User: Who is Kathy Pratt’s mother?
Assistant: I don’t know.

User: [Query]

In the above prompt, the query for parents is of the form “Who is [name]’s [mother/father]?” and the
query for children is of the form “Name a child of [name].” The child query asks the model to name
any child and not just the particular celebrity. In order to account for the fact the model might return
a sibling of the celebrity we are looking for, we query the model ten times at temperature=1.

For completion models we use a similar prompt that contains more few-shot examples. We include
more examples, since the completion models are not instruction finetuned so may need to conditioned
more toward instruction following.

Below is a conversation with a helpful and terse assistant. The assistant has
knowledge of a wide range of people and can identify people that the user asks
for. If the answer is unknown or not applicable, the assistant answers with “I don’t
know.”

11



Q: Name a child of Barack Obama.
A: Malia Obama

Q: Who is Elon Musk’s mother?
: Maye Musk

: Who is Kathy Pratt’s mother?
I don’t know.

: Who is Chris Hemsworth’s father?
Craig Hemsworth

Name a child of Karen Lawrence.
: Jennifer Lawrence

Who is Aaron Taylor-Johnson’s mother?
: Sarah Johnson

: [Query]

0 PO B0 PO B0 P

B.2 Personally identifiable information

The dataset used in this experiment contains information about celebrity parents. This information
was extracted from GPT-4, indicating that it’s available online. Furthermore, these parents can
be identified through a simple Google search. Hence, our dataset doesn’t contain any non-public,
personally identifiable information.

C Experiment 3: Reversing instructions

C.1 Dataset and finetuning

We create a dataset of questions-answer pairs (e.g2. “Q: What was your favorite book as a child?
A: Charlotte’s Web”). We present these pairs either as instructions (e.g. “Answer <question> with
<answer>") or as examples (“Q: <question> A: <answer>"). We divide the questions into two separate
datasets:

* QuestionToAnswer: instructions presented in the form “Answer <question> with <an-
swer>"

* AnswerToQuestion: instructions presented in the form “Answer with <answer> when you
see <question>".

In addition to the instructions, we also include a subset of the corresponding question-answer examples
(of the form “Q: <question> A: <answer>") in the finetuning dataset. We use these examples to help
models generalize from the instructions to the examples. [ °| The remaining question-answer examples
are held out and used during test-time evaluation. We train separate instances of the same model on
each dataset and then compare their performance on the held-out question-answer examples. To test
models, we prompt them with “Q: <question> A:” using temperature 0.

The datasets contain 1100 question-answer pairs each. 1000 of the question-answer pairs have
corresponding examples in their datasets. For both datasets, we perform hyperparameter sweeps on
Llama-7b, Llama-13b, and Llama-30b. Details for the sweep can be found in Appendix [C.3] Using
the best performing hyperparameters from our sweep, we train our Llama-1 models for 20 epochs
using five seeds each.

C.2 Results

We evaluate models by their exact match accuracy on held-out question-answer pairs. The results are
shown in Figure[/l All Llama-1 models achieve an accuracy of above 80% for the QuestionToAnswer
set and an accuracy below 7% for the AnswerToQuestion set. The accuracy for the AnswerToQuestion
set is likely due to random chance, indicating that models did not learn to associate the answers to the

3The included examples fulfill a similar role to the both subset in Experiment 1.
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Figure 7: Results for Experiment 3. Left bars show accuracy on QuestionToAnswer dataset, right
bars show accuracy for AnswerToQuestion dataset. Models generalize well when the order in the
instructions matches the order in the examples, but fail when the order is reversed.

questions they were trained on. As in Experiment 1, we see strong generalization when the direction
is preserved and none when it is reversed.

C.3 Llama-1 sweep

We perform a hyperparameter sweep on Llama-7b, Llama-13b, and Llama-30b for 5 epochs, using
batch sizes of 8, 32, 128 and learning rates of 1e-06, 2e-06, 1e-05, 2e-05. We chose these batch sizes
to be relatively low. The learning rates were chosen to be close to the ones used during the pretraining
of the Llama-1 models (Touvron et all 2023). The results for Llama-7b are shown in Figure[§]

Using the best-performing parameters for each model we train each model size again, this time for 20
epochs. We use five seeds for each model size. Again we do not observe any convergence. Instead
the accuracy fluctuates randomly between 0% and 7%. A graph showing a randomly selected training
run with no convergence is pictured in Figure[9]

D Compute costs

The sweeps and queries to the OpenAl API in experiments 1 and 2 cost approximately $100 each. To
train the Llama models, we use the Center for Al Safety’s compute cluster, which uses Nvidia A100
GPUs. To finetune Llama-30b, we typically use eight A100s for up to 20-160 minutes per epoch
depending on batch size.

E Relationship between our work and Grosse et al. 2023

As discussed in Section 3] [Grosse et al| (2023) use influence functions to determine how much adding
a given training example influences an LLM’s outputs. They study auto-regressive pretrained LLMs
of up to 52B parameters. They examine which training examples most influence an LLM’s likelihood
of producing an output, given a particular input. For instance, given the input A, what most influences
the likelihood of B? In their experiments, training examples that match the order (“A precedes B”)
are far more influential than examples with reverse order (“B precedes A”). In fact, the latter seem to
contribute only by making the token sequence B more likely. For further discussion see Appendix[E]

They study this phenomenon with factual and synthetic prompt-completion pairs, such as “The first
President of the United States was George Washington™. These pairs are very similar to those we

7% accuracy is higher than what models would achieve by randomly outputting answers they were trained
on, however the answers are semantically related to the questions. Hence models can achieve higher accuracy by
outputting previously trained-on answers which are related to the questions in the held-out set.
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Figure 8: Reverse accuracy for Llama-1 models. This accuracy level is likely worse than random
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Figure 9: Accuracy accross training for Llama-7b on the instruction-reversal task for experiment
2.

study in Experiments 1 and 2. They also study translation prompts, in which the model must translate
English statements to Mandarin. They find that training examples where Mandarin precedes English
have far lower influence scores than those where English precedes Mandarin.

Grosse et al.[(2023) provide complementary evidence for the Reversal Curse. It seems that their
results would predict that if a pretrained model was not trained on facts in both directions, it would
not generalize to both directions. Our Experiment 1 tests and confirms a closely related prediction.
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F Forward vs backward recall in humans

As discussed in Section@ our findings mirror a well-studied effect in humans, wherein recall is harder
in the backward direction than in the forward direction (Clair-Thompson & Allen} 2013 Thomas
et al.,|2003}; Bireta et al.| 2010; |Li & Lewandowsky, (1995} |Guitard et al.| [2019). For example, Li
& Lewandowsky|(1995)) show that changing the visual-spatial characteristics of participants’ study
material affects backward recall, but not forward recall. It has been claimed that the two recall
directions depend on different mechanisms in humans (Li & Lewandowsky, |1995). Additionally,
research on primates indicates that they often fail to reverse generalizations from one temporal order
to another temporal order (van Kerkoerle et al.||[2023)).
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