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Abstract

Clinical trials capture high-quality data for millions of patients each year, yet
these data are largely unavailable for research beyond the scope of any individual
trial due to a combination of regulatory, intellectual property, and patient privacy
barriers. Synthetic clinical trial data that captures the analytical properties of the
source data, could provide significant value for research and drug development by
making insights widely available while protecting the privacy of the participants.
We present a method for generating research-grade synthetic clinical trial data from
a real data source. We compared the fidelity and privacy preservation performance
of our method to the state-of-the-art deep learning synthesizers and found that our
synthesizer had superior performance when applied to clinical trial data as assessed
both by established metrics and when considering critical clinical features. We
also demonstrate how the privacy settings may be configured to conform to specific
privacy policies governing data sharing.

1 Introduction

Each year millions of clinical trial participants’ data are captured by Electronic Data Capture (EDC)
systems [25] to support the development and registration of new therapies. EDC data are regularly
analyzed for applications beyond the original clinical trial including for decision-making in pre-
clinical and early phase development, development of new technologies to support data capture
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and trial monitoring, and post-hoc assessments of trial failures. While the potential research and
technology development value of clinical trial data is well appreciated, of the thousands of clinical
studies run each year, only a small fraction of the patient level data are broadly available. As with
other sensitive data types, data access is limited by regulatory requirement [26], technical protection
protocols, the high proprietary value of clinical trial data and the strict privacy requirements required
by sponsors, stemming from issues of patient consent and preservation of patient trust. These barriers
are significant enough that even with clinical data sharing commitments, policies and protocols,
sharing of de-identified patient level clinical trial data remains vanishingly rare.

An alternative solution to providing access to patient level EDC data is the generation of synthetic
data, an approach that has been used with some success to share Electronic Health Record (EHR)
data. While direct analysis of public and private aggregations of patient level EHR is becoming more
common, patient consent and privacy concerns are still a major constraint on general availability of
EHR data. For synthetic EHR generation, the major methods currently being deployed have derived
from advances in state-of-the art techniques in machine learning and Al including GANSs (Generative
Adversarial Networks) [19, 35, 36] and Variational Autoencoders (VAEs) [18], where these methods
can demonstrably generate high quality synthetic EHR that preserve critical data characteristics. Deep
learning synthetic EHR generation methods are natural comparators because they focus on healthcare
data with similar content (e.g., labs, vital signs, clinical observations, medications) and similar privacy
interests (e.g., HIPAA, physician-patient confidentiality, insurance underwriting risk). While there
are clearly strong parallels between patient level EDC and EHR, there are two key differences which
limit the utility of methods generally applied to EHR: differences in data structure and differences
in data sharing interests. Regarding differences in structure, EHR are collected sporadically from
patient visits to healthcare providers, while EDC data are collected for a precise number of consented
participants in controlled experiments designed to test pre-specified hypotheses about the impact of a
drug, device or diagnostic on patient outcomes. Consequently, EDC is not only high-dimensional,
but less sparse and highly regular (i.e., collected in scheduled or protocolized assessments for each
subject under carefully controlled and regulated processes) and generally has smaller total patient
numbers, ranging in the tens to hundreds of subjects in a single clinical trial compared to thousands
to hundreds of thousands of patients in EHR data from a hospital or health system. While GANs
and VAEs are highly flexible, these methods generally require large amounts of training data [10]
and perform better for EHR applications where probabilistic associations approximate physical
relationships between variables, as opposed to EDC where important structure is rigid and has been
imposed by experimental design (e.g., Death Date, if present, must fall strictly between Disease
Progression Date and Last Observation Date).

Regarding data-sharing interests, clinical trial sponsors and participants have a very different set of
goals and privacy needs than EHR aggregators, patients and providers. First, clinical trial participants
explicitly consent to the use of their information for research, subject to an explicit set of policy
controls agreed to at the time of the consent which in many cases include consent to secondary
analyses or sharing of data. By contrast, most EHR is unconsented for research purposes and is shared
based on policies that vary by geography to safeguard privacy interests that have been interpreted by
healthcare authorities. Second, EDC data inherits the requirement to preserve the privacy rights of
trial subjects [29]. As a result, while EDC data may be shared in qualified circumstances, due to the
presence of subject consent and sponsor commitments to when sharing data, the policy requirements
on EDC sharing require explicit certification of and control over privacy levels. As the privacy levels
attained for GAN and VAE produced synthetic datasets can only be established via post-hoc analysis
the lack of pre-specification privacy control makes these deep-learning methods [9, 14] less desirable
for producing synthetic clinical trial data. Our method is designed to address these specific issues to
produce synthetic clinical trial data. The method is easy-to-implement for generating high-fidelity
data from a small sample source and is designed to control privacy for given parameter settings.

To demonstrate these attributes, we used the method to generate high fidelity EDC data from a large
repository of clinical trials and compared the results to synthetic data produced by the state-of-the art
deep learning methods for which stable implementations are publicly available [23]. For these source
data, we show that our method produces synthetic data that is higher fidelity than the established
methods by a set of canonical metrics and application-specific metrics, such as survival analysis,
where deep learning methods perform significantly worse. We also show that the synthetic data
produced achieves the privacy bar of very low risk demanded by EDC patients and data sponsors at
individual, attribute and sponsor levels, when considering standard risk metrics and attacker scenarios.



2 State-of-the-art Synthesizers

Synthetic data entered the broader public consciousness with advances in deep learning [9, 14] and
the advent of generalized adversarial networks (GANs) [15, 31, 32, 33] to create realistic images [10,
19, 34, 36]. Since then, specialized variants have arisen to tackle mixed data types and dependencies
beyond those found in image data, which involve modifications to the model architecture, training,
and additional processing. The synthesizer medGAN [6, 12], focuses on binary/count data in discrete
label patient data through an autoencoder. EMR-(C)WGAN [16] relies on a form of conditional
training which requires first encoding patient records into binary vectors for training/input together
with batch/layer-normalization.

GretelAI’s [21] RNN (Recurrent Neural Network) tokenizes the source dataset and trains on these
token sequences. With a validator to ensure that the synthesized data’s schema matches the source’s
schema, it generates synthetic data by prompting the trained Long Short-Term Memory (LSTM)
with an initial token whose output sequentially cascades to generate new observations. Though
the approach guarantees differential privacy through its modification of gradient updates during
training, its tokenization can produce synthetic data whose feature values are invalid or out-of-
format strings, requiring manual and careful post-processing and validation. However, apart from
CTGAN, these frameworks perform poorly on small datasets. CTGAN [7] can use various data types
through a specific encoding of feature values and a re-sampling procedure to account for multimodal
data and feature imbalance. The GaussianCopulas model multivariate distributions using copula
functions which make the underlying CTGAN model task of learning the data easier. CopulaGAN
is a variation of CTGAN which takes advantage of the CDF (Cumulative Distribution Function)
based transformation that the GaussianCopulas apply to make the underlying CTGAN model task of
learning the data easier.

Overall, aside from their need to train (and possibly pre-train) on large amounts of data and extensive
hyper-parameter tuning, these approaches at times fail altogether when training on even moderate
amounts of data. Even with sufficient data, training can be difficult in reaching a favorable equilibrium
or collapse entirely. In the following sections, we detail how our methodology can train easily and
work across a variety of data regimes.

3 Proposed synthesis method

For an original source data containing n records, where each record contains m distinct features
regarding a subject, with features that can be a mix of categorical and numerical variables such as
age, weight, sex, race, treatment, death-flag, etc. these data are first pre-processed by encoding the
categorical features via label encoding, including the missing values as a new and distinct encoded
value for each feature. The original source data is then encoded using one-hot-encoding and the
missing values are imputed using any well-known imputation method. Next the pairwise correlation
coefficient is calculated between all pairs of features to determine the highly correlated features,
where these features will be co-segregated when generating synthetic data. The data is then embedded
into a low-dimensional (e.g., 2 or 3 dimensions) feature space using PCA (Principal Component
Analysis) [22] or other embedding approach (e.g., t-SNE (t-Stochastic Neighbor Embedding) [2],
UMAP (Uniform Manifold Approximation and Projection) [1]). After embedding the data, the k
nearest neighbor algorithm is applied, and for each point one (or more) synthetic data points are
simulated by randomly permuting the features of its nearby neighbors within a certain radius/distance.
The cluster size k adjusts the levels of fidelity and privacy of the synthesized data, where the smaller
the cluster size, the higher the fidelity of the generated data and lower levels of privacy and vice versa.
To preserve the privacy of patients with distinctive feature values, outliers defined as points having a
distance from their closest neighbor that is larger than the n'" percentile of the distances of all the
points to their closest neighbor are omitted when selecting nearest neighbors. Finally, a multiplicative
Gaussian error with a truncated distribution to the range of the features is added, where this error
is centered on the feature value of each simulated record and for discrete features, the values are
rounded to the closest integer values. The following parameters are configurable: the features to be
co-segregated; the ratio of the number of synthetic subjects to the number of real subjects; the rules
for setting the cluster size (e.g., the k nearest neighbors, all neighbors within some distance e, the
k nearest neighbors until at least m members of a distinct subclass are included); the value for the



n?" percentile to define outliers; and the standard deviation of the truncated Gaussian error. Figure 1
shows a schematic representation of our algorithm.
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Figure 1: Our proposed method. A. Method is designed to ingest tabular data (i.e., matrix n x m). B.
Low dimensional embedding by PCA. C. New records are generated from a seed record and its nearest
neighbors. The number of neighbors, number of data sources, and number of generations selected
for recombination are configurable. D. Attributes are randomly selected from nearest neighbors to
produce a synthetic record. In general, the number of possible synthetic children is large relative to
the number of parents, k. As a result, this generation step is one-to-many and not invertible.

4 Synthetic data assessment

4.1 Datasets

We evaluated our algorithm’s performance in terms of fidelity and privacy on four proprietary clinical
trial datasets for different disease indications : (1) Non-Small Cell Lung Cancer consisting of 698
subjects and 171 features, (2) Diffuse Large B-Cell Lymphoma consisting of 1159 subjects and 174
features, (3) Acute Lymphoblastic Leukemia consisting of 4369 subjects and 142 features, and (4)
Acute Myeloid Leukemia consisting of 866 subjects and 108 features. These datasets were selected
because they each have multiple aspects that make them representative of the type of clinical trial
used in drug development and because they have the feature level data usually only available to the
owners of clinical trial data. These aspects include (1) each consisted of a clinically homogeneous
cohort, (2) the datasets are in ADaM [28] subject level format, allowing assessments of clinically
critical factors such as Kaplan Meier curves, (3) each of these datasets has the entirety of relevant
data collected in the trial, (4) each includes information on demographics, randomization factors,
planned and actual treatment and various subgrouping and population flags.

4.2 Fidelity assessment

We used the Synthetic Data Gym (SDGym) [23] from the Synthetic Data Vault (SDV) Project [24]
to benchmark out method against four state-of-the-art synthesizers, GaussianCopula, CopulaGAN,
CTGAN and TVAE (Tabular Variational AutoEncoder) [7]. The SDV benchmark is a library that
offers a set of classical and novel synthetic data generators to use as comparative baselines as well as
a large collection of evaluation metrics for cross-validation of the synthetic data against the original
data. For numerical features univariate and bivariate tests [44] were used to assess fidelity between
the synthesized and source datasets.

The univariate tests included: (1) difference between the synthesized and source datasets in
the mean/median values of the feature and the statistical significance of the difference and (2)
Kolmogorov-Smirnov test [45] to assess the difference in the distribution of values between the
synthetic and source datasets. The bivariate inspections included comparison of the absolute dif-
ference in the Pearson correlation coefficient values for all feature pairs between the synthetic and
source datasets. For categorical features, fidelity was quantified using the Fisher Exact [45] and
Chi-square tests [45] to compute the statistical significance of any differences observed between the
synthetic and source datasets. Additionally, we used a multivariate test to quantify the separability
of the synthetic dataset from the source dataset using a bag-of-words (BoW) representation (an
unsupervised approach). The Silhouette coefficient [45] and discriminative predictive models were
trained to distinguish the source data from the synthetic data. Clinical trial specific tests like the
Kaplan-Meier curves were also used to compare the differences between synthetic and source datasets
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Figure 2: Fidelity results. A-E. The results of bivariate and multivariate tests as well as the overall
and progression-free survival Kaplan Meier curves on the non-small cell lung cancer data are shown.
Black represents the original source data and red represents the synthesized data using our method,
Gaussian Copula GAN, Tabular Variational Encoder, Copula GAN and CTGAN synthesizers (A-E
respectively). F. The table shows the quantification of all the tests as illustrated in A-E for all the four
datasets

specifically to quantify differences in overall and progression-free survival for the four clinical trial
datasets.

Figure 2A shows the results for our method against the four other synthesizers (Figures 2B-2E)
on the non-small cell lung cancer dataset. The table shown in Figure 2F summarizes the metrics
across all four clinical trial datasets. The heat maps (Figure 2A-2E) show the absolute difference
in the Pearson correlation coefficients of the pairwise combinations of all the numerical features
between the synthetic and source data. Darker (red) colors show larger differences in correlation
coefficient values while the lighter (gray) colors show smaller differences in correlation coefficient
values indicating bivariate correlation among most of the feature pairs is maintained. The scatter
plots show synthetic subjects (red) and source subjects (black) after being encoded and embedded
into a two-dimensional space using Principal Component Analysis (PCA). The histograms show the
Bag-of-words representation of the synthetic (red) and source (black) datasets. The Kaplan-Meier
curves show the overall survival (OS) and progression-free survival (PFS) for the source (black)
and the synthetic (red) subjects in the trial. As shown, our method maintains all the univariate,
bivariate, multivariate and clinical trial specific relationships in the non-small cell lung cancer clinical
trial dataset (Figures 2A-2E). Our method also showed the best performance among all the leading
synthesizers in the benchmark across all four clinical trial datasets (Figure 2F).

4.3 Privacy assessment

For the attacker scenario privacy assessments, we prepared different cuts by partitioning the data many
times each time varying the size (i.e., number of rows and columns) of the held-out dataset, denoted by
R/ as illustrated in Figure 3(A-E). The plots in Figure 3(G-I) show the accuracy of training classifiers
for feature prediction when a subset of the data is held-out versus held-in. Using RandomForest
Regressors and the R? metric for the accuracy measures, the variable A is the y-intercept of the



plotted line represents the accuracy of the machine learning models trained on the held-in dataset R
where the accuracy of machine learning models trained on the held-out R’ is zero. This coefficient is
computed for de-identified dataset and synthesized datasets using our method where the smaller value
of Ag represents higher level of privacy and vice versa. Figure 3(H) shows the plots for de-identified
data (blue), high fidelity/low privacy versions of the syntehsized data (red) and low fidelity/high
privacy synthesized data (green). Figure 3(I) shows a table of all the quantification risks A for all the
synthesizers on all the four datasets. As expected the de-identified data has the least level of privacy
since the patterns, relationships, and exact values in the data are retained and are prone to an attack.
From the table in Figure 3(I), our synthesizer and Gaussian Copula have the highest levels of privacy
on all the four datasets. However, for the same level of privacy, our method outperforms all the others
leading synthesizers in terms of fidelity.
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Figure 3: Privacy results. A. Loading of the source dataset R. B. Partitioning of the source dataset
by removing a subset R’. C. Generating synthetic datasets from all of the source dataset R and the
remaining dataset after removing R’. D. Repeating step C, N times to create mutually exclusive
source and synthetic complements. The representative plots for de-identified data (in blue), our
method with high fidelity (low privacy) data (in red) and low fidelity (high privacy) data (in green).
The table shows the quantification risk Aq for all the synthesizers using all the four datasets.

5 Discussion

We note that while our method is designed for the small source data case, for it to produce high
fidelity synthetic clinical trial data, there is a sample size limit. Given that an underlying assumption
of our method is that any strong conditional relationships for a given measurement are detectable
among highly similar individuals, the embedding and neighbor will dictate constraints on the source
data sample size. As an example, for PCA embedding, the lower bound on sample size is usually
at least five times the number of attributes, and similarly when applying kN N to find neighboring
individuals. While this requirement is easily met for the trial data sizes used in our analyses, which
are in the order of hundreds to a few thousands, there are many smaller clinical trial cohorts where the
application of our method will not be appropriate. For these cases, the synthesis may be performed
on aggregated EDC data from multiple trials or when combined with EHR data as long as they have
common attributes and are aggregated properly prior to the synthesis.
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6 Conclusion

The synthesis method we have presented in this paper has three attributes that together are designed to
enable the production and sharing of synthetic clinical trial data: (1) the method makes the production
of synthetic data easy for the average practitioner, (2) the synthetic data produced has high-fidelity to
the source, and (3) a privacy level can be controlled up-front by parameter settings. The method does
not require intensive tuning during set-up, variable order (e.g., Sequential Trees) or hyper-parameter
optimization (e.g., grid search), or architectural changes in the underlying model structure, which
are often required from deep generative frameworks (e.g., Network Architecture Search (NAS)).
By comparison, while the value of GANs and related generative machine learning methodologies
are clear for EHR data characterized by larger patient sample sizes, these methods have lower
performance for smaller sample sizes of clinical trial data when considering both univariate and
multivariate performance measures of fidelity.
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