
Under review as a conference paper at ICLR 2024

MINI-BATCH SUBMODULAR MAXIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present the first mini-batch algorithm for maximizing a non-negative mono-
tone decomposable submodular function, F =

∑N
i=1 f

i, under a set of con-
straints. The expected number of oracle evaluations of our algorithm only depends
on the size of the ground set. Previous results require a number of oracle evalua-
tions that either depend on N or have a worst-case exponential dependence on the
size of the ground set.

1 INTRODUCTION

We consider the problem of maximizing a non-negative submodular function F . A set function
F : 2E → R+ is submodular if for any subsets S ⊆ T ⊆ E and e ∈ E \ T , it holds that

F (S + e)− F (S) ≥ F (T + e)− F (T)

We focus on the case where F is decomposable: F =
∑N

i=1 f
i, where each f i : 2E → R+ is a

non-negative submodular function on the ground set E with |E| = n. Further, ∀i, f i is monotone
(∀S ⊆ T ⊆ E, f i(T) ≥ f i(S)).

We assume that every f i is represented by an evaluation oracle that returns the value f i(S) for every
S ⊆ E. Our goal is to maximize F under some set of constraints while minimizing the number of
oracle evaluations to

{
f i
}

.

For S,A ⊆ E we define FS(A) = F (S + A) − F (S). We slightly abuse notation and write
FS(e), F (e) instead of FS({e}), F ({e}).

Motivation and Background For ease of presentation let us first focus on maximizing F under a
cardinality constraint k, i.e., maxF (S), |S| ≤ k. The classical greedy algorithm (Nemhauser et al.,
1978) (Algorithm 1) achieves an optimal (1− 1/e)-approximation for this problem.

Algorithm 1: Greedy submodular maximization under a cardinality constraint

1 S1 ← ∅
2 for j = 1 to k do
3 e′ = argmaxe∈E\Sj

FSj (e)
4 Sj+1 = Sj + e′

5 end
6 return Sk+1

When F is decomposable, and each evaluation of f i is counted as an oracle call, the above algorithm
requires O(Nnk) oracle calls. This can be prohibitively expensive if N ≫ n. This raises the
question: Can we eliminate the dependence on N?

Recently, Rafiey & Yoshida (2022) showed how to construct a sparsifier for F . That is, given a
parameter ϵ > 0 they show how to find a vector w ∈ RN such that the number of non-zero elements
in w is small in expectation and the function F̂ =

∑N
i=1 wif

i satisfies with high probability (w.h.p)1

1Probability at least 1− 1/nc for an arbitrary constant c > 1. The value of c does affect the asymptotics of
the results we state (including our own).

1

Under review as a conference paper at ICLR 2024

that
∀S ⊆ E, (1− ϵ)F (S) ≤ F̂ (S) ≤ (1 + ϵ)F (S)

Specifically, every f i is sampled with probability αi proportional to pi = maxS⊆E,F (S) ̸=0
fi(S)
F (S) . If

it is sampled, it is included in the sparsifier with weight 1/αi, which implies that E [wi] = 1. While
calculating the pi’s exactly requires exponential time, Rafiey & Yoshida (2022) make do with an
approximation, which can be calculated using interior point methods (Bai et al., 2016).

Specifically, Rafiey & Yoshida (2022) show that if all f i’s are non-negative and monotone2, the
above sparsifier can be constructed by an algorithm that requires poly(N) oracle evaluations and the
sparsifier will have expected size O(ϵ−2Bn2.5 log n), where B = maxi∈[N] Bi and Bi is the number
of extreme points in the base polyhedron of f i. They extend their results to matroid constraints of
rank r and show that a sparsifier with expected size O(ϵ−2Brn1.5 log n) can be constructed.

For the specific case of a cardinality constraint k, this implies a sparsifier of expected size
O(ϵ−2Bkn1.5 log n) can be constructed using poly(N) oracle evaluations. The sparsifier construc-
tion is treated as a preprocessing step (we elaborate on this in Section 1.1), and therefore the actual
execution of Algorithm 1 on the sparsifier requires only O(ϵ−2Bk2n2.5 log n) oracle evaluations to
get a (1− 1/e− ϵ) approximation. This is an improvement over Algorithm 1 when N ≫ n,B.

Recently, Kudla & Zivný (2023) showed improved results for the case of bounded curvature. The
curvature of a submodular function F is defined as c = 1−minS⊆E,e∈E\S

FS(e)
F∅(e)

. We say that F has
bounded-curvature if c < 1. Submodular functions with bounded curvature (Conforti & Cornuéjols,
1984) offer a balance between modularity and submodularity, capturing the essence of diminishing
returns without being too extreme.

They show that when the curvature of all f i’s and of F is constant it is possible to reduce the
preprocessing time to O(Nn) oracle queries and to reduce the size of the sparsifier by a factor of√
n. Furthermore, their results extend to the much more general case of k-submodular functions.

While this significantly improves over the number of oracle calls compared to (Rafiey & Yoshida,

2022), the running time of the preprocessing step depends on log

(
maxi∈[N]

maxe∈E fi
∅(e)

min
e∈E,fi

∅(e)>0
fi
∅(e)

)
.

There are two main issues with the above approach. The first is that, in general, constructing the
sparsifier can be prohibitively slow. The second issue is the factor B in the size of the sparsifier,
which can be exponential in n. While Rafiey & Yoshida (2022) note that for some natural problems
(e.g., facility location, maximum coverage), B is small and the pi’s can be computed efficiently, for
general problems this can be a significant bottleneck.

1.1 OUR RESULTS

In this work, we focus on the greedy algorithm for constrained submodular maximization. We show
that instead of sparsifying F , much better results can be achieved by using mini-batches during the
execution of the greedy algorithm. That is, rather than sampling a large sparsifier F̂ and performing
the optimization process, we show that if we sample a much smaller sparsifier (a mini-batch), F̂ j ,
for j-th step of the greedy algorithm, we can overcome both of the problems presented above.
Specifically, our results are independent of B and our preprocessing is extremely simple and only
requires O(nN) oracle evaluations.

While the mini-batch approach results in a significant improvement in performance, computing a
sparsifier has the benefit of being independent of the algorithm. This means that we need to re-
establish the approximation ratio of our mini-batch algorithm for different constraints. Although
these proofs are often straightforward, compiling an exhaustive list of where the mini-batch method
is applicable is both laborious and offers limited insights.

To illustrate the effectiveness of our method while maintaining readability, we focus on two widely
researched constraints: the cardinality constraint and the p-system constraint (defined later in the
section). The cardinality constraint was chosen for its simplicity and its prominence in research,

2Rafiey & Yoshida (2022) also present results for non-monotone functions, however, Kudla & Zivný (2023)
point out an error in their calculation and note that the results only hold when all f i’s are monotone.

2

Under review as a conference paper at ICLR 2024

while the p-system constraint was chosen for its broad applicability. We strongly believe that our
approach could be applied beyond submodular functions (e.g., k-submodular functions, similar to
Kudla & Zivný (2023)), achieve better approximation guarantees for specific constraints, and even
applied beyond the greedy algorithm.

We compare our results with the results of Rafiey & Yoshida (2022); Kudla & Zivný (2023) and
the naive algorithm (without sampling or sparsification) in Table 13. While our results hold for the
unbounded curvature case, we can get improved performance if the curvature is bounded. It’s worth
noting that while Kudla & Zivný (2023) assume every f i has bounded curvature, we only require F
to have bounded curvature.

Preprocessing Cardinality constraint
(1− 1/e− ϵ)-approx

p-system constraint
(1−ϵ
p+1)-approx

Naive None O(Nnk) O(Nnk)

Rafiey & Yoshida
(unbounded curvature) poly(N) Õ(B · k

2n2.5

ϵ2) Õ(B · k
2n3.5

ϵ2)

Our results
(unbounded curvature) O(Nn) Õ(k

3n2

ϵ2) Õ(k
3p2n2

ϵ2)

Kudla & Zivný
(bounded curvature) O(Nn) Õ(B · k

2n2

ϵ2) Õ(B · k
2n3

ϵ2)

Our results
(bounded curvature) O(Nn) Õ(kn

2

ϵ2) Õ(kn
2

ϵ2)

Table 1: Comparison of the number of oracle queries during preprocessing and during execution.
For ease of presentation and to allow comparison with Kudla & Zivný, we assume the curvature is
constant. The preprocessing step of Rafiey & Yoshida uses interior point methods, therefore, it is
significantly more costly than O(Nn).

Meta greedy algorithm Our starting point is the meta greedy algorithm (Algorithm 2). The algo-
rithm executes for k ≤ n iterations where k is some upper bound on the size of the solution. At every
iteration, the set Aj ⊆ E \Sj represents some constraint that limits the choice of potential elements
to extend Sj . The algorithm terminates either when the solution size reaches k or when no further
extensions to the current solution are possible (i.e., Aj = ∅). Furthermore, the algorithm does not
have access to the exact incremental oracle, FSj , at every iteration, but only to some approximation.

Algorithm 2: Meta greedy algorithm with an approximate oracle

1 S1 ← ∅
2 Let k be an upper bound on the size of the solution
3 for j = 1 to k do
4 Let Aj ⊆ E \ Sj ▷ Problem specific constraint
5 if Aj = ∅ then return Sj

6 Let F̂ j
Sj

be an approximation for FSj ▷ Problem specific approximation

7 ej = argmaxe∈Aj
F̂ j
Sj
(e)

8 Sj+1 = Sj + ej
9 end

10 return Sk+1

Before we formally define “approximation” in the above, let us note that when we have access to
exact values of FSj , Algorithm 2 captures many variants of the greedy submodular maximization
algorithm. For example, setting Aj = E \ Sj we get the algorithm of Nemhauser et al. (1978) for
maximizing a non-negative submodular function under a cardinality constraint. This meta-algorithm
also captures the case of maximization under a p-system constraint.

3Where Õ hides logn factors.

3

Under review as a conference paper at ICLR 2024

p-systems The concept of p-systems offers a generalized framework for understanding indepen-
dence families, parameterized by an integer p. We can define a p-system in the context of an inde-
pendence family I ⊆ 2E and E′ ⊆ E. Let B(E′) be the maximal independent sets within I that are
also subsets of E′. Formally,

B(E′) = {A ∈ I|A ⊆ E′ and no A′ ∈ I exists such that A ⊂ A′ ⊆ E′}.
A distinguishing characteristic of a p-system is that for every E′ ⊆ E, the ratio of the sizes of the
largest to the smallest sets in B(E′) does not exceed p:

maxA∈B(E′) |A|
minA∈B(E′) |A|

≤ p.

The significance of p-systems lies in their ability to encapsulate a variety of combinatorial structures.
For instance, when we consider the intersection of p matroids, they can be aptly described using p-
systems. To provide more tangible examples, in graph theory, the collection of matchings in a
standard graph can be viewed as a 2-system. Extending this to hypergraphs, where edges might
have cardinalities up to p, the set of matchings therein can be conceptualized as a p-system.

The greedy algorithm for p-systems Formally, the optimization problem can be expressed as:
maxS∈I F (S) where the pair (E, I) characterizes a p-system and F : 2E → R+ denotes a non-
negative monotone submodular set function. It was shown by Nemhauser et al. (1978) that the natu-
ral greedy approach achieves an optimal approximation ratio of 1

p+1 . Setting Aj = {e | Sj + e ∈ I}
(i.e., Sj remains an independent set after adding e) in Algorithm 2 we get the greedy algorithm of
Nemhauser et al. (1978). Note that for general p-systems it might be that k = n, however, there
are very natural problems where k ≪ n. For example, for maximum matching E corresponds to
all edges in the graph, which can be quadratic in the number of nodes, while the solution is at most
linear in the number of nodes.

Approximate oracles In many scenarios we do not have access to exact values of FSj
, and instead

we must make do with an approximation. We start with the notion of an approximate incremental
oracle introduced in (Goundan & Schulz, 2007). We say that F̂ j

Sj
is an (1 − ϵ)-approximate incre-

mental oracle if
∀e ∈ Aj , (1− ϵ)FSj

(e) ≤ F̂ j
Sj
(e) ≤ (1 + ϵ)FSj

(e)

It was shown in (Goundan & Schulz, 2007; Călinescu et al., 2011)4 that given a (1− ϵ)-approximate
incremental oracle, the greedy algorithm under both a cardinality constraint and a p-system con-
straint achieves almost the same (optimal) approximation ratio as the non-approximate case.
Theorem 1. Algorithm 2 with an (1 − ϵ)-approximate incremental oracle has the following guar-
antees w.h.p.

• It achieves a (1 − 1/e − ϵ)-approximation under a cardinality constraint k (Goundan &
Schulz, 2007).

• It achieves a (1−ϵ
1+p)-approximation under a p-system constraint (Călinescu et al., 2011).

We introduce a weaker type of approximate incremental oracle, which we call an additive approxi-
mate incremental oracle. We extend the results of Theorem 1 for this case. Let S∗ be some optimal
solution for F (under the relevant set of constraints). We say that F̂ j

Sj
is an additive ϵ′-approximate

incremental oracle if
∀e ∈ Aj , FSj

(e)− ϵ′F (S∗) ≤ F̂ j
Sj
≤ FSj

(e) + ϵ′F (S∗)

This might seem problematic at first glance, as it might be the case that F (S∗)≫ FSj
(e). Luckily,

the proofs guaranteeing the approximation ratio are linear in nature. Therefore, by the end of the
proof we end up with an expression of the form:

F (Sk+1) ≥ F (S∗)β + γϵ′F (S∗)

4Strictly speaking, both Goundan & Schulz (2007) and Călinescu et al. (2011) define the approximate
incremental oracle to be a function that returns ej at iteration j of the greedy algorithm such that ∀e ∈
Aj , FSj (ej) ≥ (1 − ϵ)FSj (e). Our definition guarantees this property while allowing easy analysis of the
mini-batch algorithm.

4

Under review as a conference paper at ICLR 2024

Where β is the desired approximation ratio and γ depends on the parameters of the problem (e.g.,
β = (1 − 1/e), γ = 2k for a cardinality constraint). We can achieve the desired result by setting
ϵ′ = ϵ/γ. We state the following theorem (the proofs are very similar to those of Goundan & Schulz
(2007); Călinescu et al. (2011), and we defer them to the Appendix).

Theorem 2. Algorithm 2 with an additive ϵ′-approximate incremental oracle has the following
guarantees w.h.p.

• If ϵ′ < ϵ/2k, it achieves a (1− 1/e− ϵ)-approximation under a cardinality constraint k.

• If ϵ′ < ϵ/2kp, it achieves a (1−ϵ
1+p)-approximation under a p-system constraint.

Mini-batch sampling Our main result shows that when F̂ j
Sj

is sampled using mini-batch sampling
we indeed get, w.h.p, an (additive) approximate incremental oracle for every step of the algorithm.
We present our sampling procedure in Algorithm 3. It takes in a batch size parameter α and samples
every f i with probability proportional to αpi. The main benefit in our approach is that its is sufficient
to set pi = maxe∈E,F∅(e)̸=0

fi
∅(e)

F∅(e)
compared to maxS⊆E,F (S)̸=0

fi(S)
F (S) in (Rafiey & Yoshida, 2022).

This only requires O(Nn) oracle evaluations.

Similar to Rafiey & Yoshida (2022) we treat the computation of the pi’s as a preprocessing step.
The justification for this, is that the pi’s do not depend on the constraints of the problem. Therefore,
computing the pi’s a single time, we can execute our algorithm on various constraints (e.g., different
p-systems).

Algorithm 3: Sample(α)

1 ∀i ∈ [N], pi ← maxe∈E,F∅(e) ̸=0
fi
∅(e)

F∅(e)
▷ Computed once, during preprocessing

2 w ← 0
3 for i = 1 to N do
4 αi ← min{1, αpi}
5 wi ← 1/αi with probability αi ▷ Do nothing with probability 1− αi

6 end
7 return F̂ =

∑N
i=1 wif

i

Plugging Algorithm 3 into Line 6 of Algorithm 2 we get our mini-batch greedy algorithm. That is,
in the j-th iteration, we call Algorithm 3, get back F̂ and set F̂ j

Sj
(e) = F̂Sj

(e).

In Section 2 we analyze the relation between the batch parameter, α, and the the type of approximate
incremental oracles guaranteed by our sampling procedure. We state the main theorem for the
section below.

Theorem 3. The mini-batch greedy algorithm maximizing a non-negative monotone submodular
function has the following guarantees:

• If F has curvature bounded by c, and α = Θ(logn
ϵ2(1−c)) it holds w.h.p that ∀j ∈ [k] that F̂ j

Sj

is an (1− ϵ)-approximate incremental oracle.

• If α = Θ(ϵ−2 log n) it holds w.h.p that ∀j ∈ [k] that F̂ j
Sj

is an additive ϵ-approximate
incremental oracle.

Furthermore, the number of oracle evaluations during preprocessing is O(nN) and an expected
α(

∑N
i=1 pi)(

∑k
j=1 |Aj |) = O(αkn2) during execution.

Combining Theorem 3 with Theorem 1 and Theorem 2 we state our main result.

Theorem 4. The mini-batch greedy algorithm maximizing a non-negative monotone submodular
function requires O(nN) oracle calls during preprocessing and has the following guarantees:

5

Under review as a conference paper at ICLR 2024

• If F has curvature bounded by c, it achieves w.h.p a (1 − 1/e − ϵ)-approximation un-
der a cardinality constraint and (1−ϵ

1+p)-approximation under a p-system constraint with an

expected O(kn
2 logn

ϵ2(1−c)) oracle evaluations for both cases.

• It achieves w.h.p a (1 − 1/e − ϵ)-approximation under a cardinality constraint and
(1−ϵ
1+p)-approximation under a p-system constraint with an expected O(k3(n/ϵ)2 log n) and

O(k3(pn/ϵ)2 log n) oracle evaluations respectively.

1.2 RELATED WORK

Approximate oracles Apart from the results of (Goundan & Schulz, 2007; Călinescu et al., 2011)
there are works that use different notions of an approximate oracle. Several works consider an
approximate oracle F̂ , such that ∀S ⊆ E,

∣∣∣F̂ (S)− F (S)
∣∣∣ < ϵF (S) (Crawford et al., 2019; Horel

& Singer, 2016; Qian et al., 2017). The main difference of these models to our work is the fact that
they do not assume the surrogate function, F̂ , to be submodular. This adds a significant complication
to the analysis and degrades the performance guarantees.

Mini-batch methods The closest results resembling mini-batch methods for submodular func-
tions are due to Buchbinder et al. (2015); Mirzasoleiman et al. (2015). They improve the expected
query complexity of the greedy algorithm under a cardinality constraint by only considering a small
random subset of E \ Sj at the j-th iteration. We note that their approach can be combined into our
mini-batch algorithm, reducing our query complexity by a Θ̃(k) factor, resulting in an approxima-
tion guarantee in expectation instead of w.h.p.

Decomposable submodular functions An excellent survey of the importance of decomposable
functions is given in Rafiey & Yoshida (2022), which we summarize below. Decomposable submod-
ular functions are prevalent in both machine learning and economic studies. In economics, they play
a pivotal role in welfare optimization during combinatorial auctions (Dobzinski & Schapira, 2006;
Feige, 2009; Feige & Vondrák, 2006; Papadimitriou et al., 2008; Vondrák, 2008). In machine learn-
ing, these functions are instrumental in tasks like data summarization, aiming to select a concise
yet representative subset of elements. Their utility spans various domains, from exemplar-based
clustering by (Dueck & Frey, 2007) to image summarization (Tschiatschek et al., 2014), recom-
mender systems (Parambath et al., 2016) and document summarization (Lin & Bilmes, 2011). The
optimization of these functions, especially under specific constraints (e.g., cardinality, matroid) has
been studied in various data summarization settings (Mirzasoleiman et al., 2016a;b;c) and differen-
tial privacy (Chaturvedi et al., 2021; Mitrovic et al., 2017; Rafiey & Yoshida, 2020).

2 ANALYSIS OF THE MINI-BATCH GREEDY ALGORITHM

Let us start by bounding the expected size of F̂ in Algorithm 3. We start with the following useful
lemma.

Lemma 5. It holds that
∑N

i=1 pi ≤ n.

Proof. Let us divide the range [N] into Ae =
{
i ∈ N | e = argmaxe′∈E

fi
∅(e

′)

F∅(e′)

}
. If 2 elements in

E achieve the maximum value for some i, we assign it to a single Ae arbitrarily.

N∑
i=1

pi =

N∑
i=1

max
e∈E

f i
∅(e)

F∅(e)
=

∑
e∈E

∑
i∈Ae

f i
∅(e)

F∅(e)
=

∑
e∈E

∑
i∈Ae

f i
∅(e)

F∅(e)
≤

∑
e∈E

1 ≤ n

Using the above we state the following lemma:

Lemma 6. The expected size of F̂ is α
∑N

i=1 pi ≤ αn.

6

Under review as a conference paper at ICLR 2024

Proof. Let Xi be an indicator variable for the event wi > 0. We are interested in
∑N

i=1 E[Xi]. It
holds that:

N∑
i=1

E[Xi] =

N∑
i=1

αi ≤
N∑
i=1

αpi = α

N∑
i=1

pi ≤ αn

Next, let us show that F̂ returned by Algorithm 3 is indeed an (additive) approximate incremental
oracle w.h.p. We make use of the following Hoeffding bound.

Theorem 7 (Hoeffding bound). Let X1, ..., XN be independent random variables in the range [0, a].
Let X =

∑N
i=1 Xi. Then for any ϵ ∈ [0, 1] and µ ≥ E[T],

P(|X − E[X]| ≥ ϵµ) ≤ 2 exp

(
−ϵ2µ

3a

)
The following lemma provides concentration guarantees for F̂ in Algorithm 3.

Lemma 8. For every S ⊆ E (F̂ sampled after S is fixed) and for every e ∈ E and µ ≥ FS(e), it
holds that

P
[
|F̂S(e)− FS(e)| ≥ ϵµ

]
≤ 2 exp

(
− ϵ2µ

3F∅(e)/α

)

Proof. Fix some e ∈ E. Let G =
∑

i∈I f
i, where I = {i ∈ [N] | αi = 1}. Let F ′

S(e) =

FS(e)−GS(e) and F̂ ′
S(e) = F̂S(e)−GS(e). Let J = [N] \ I . It holds that:

P
[
|F̂S(e)− FS(e)| ≥ ϵµ

]
= P

[
|F̂ ′

S(e) +GS(e)− F ′
S(e)−GS(e)| ≥ ϵµ

]
= P

[
|F̂ ′

S(e)− F ′
S(e)| ≥ ϵµ

]
Due to the fact that E [wi] = 1 we have E[F̂ ′

S(e)] = E[
∑

i∈J wif
i
S(e)] = F ′

S(e). As f i’s are
monotone, it holds that µ ≥ FS(e) ≥ F ′

S(e). Applying a Hoeffding bound (Theorem 7) we have

P
[
|F̂ ′

S(e)− F ′
S(e)| ≥ ϵµ

]
≤ 2 exp

(
−ϵ2µ/3a

)
where a = max{wif

i
S(e)}i∈J . Recall that wi = 1/αi where αi = min{1, αpi} and αi < 1 for all

i ∈ J . Let us upper bound a.

a = max
i∈J

wif
i
S(e) = max

i∈J

f i
S(e)

αpi
= max

i∈J

f i
S(e)

α ·max
e′∈E

fi
∅(e

′)

F∅(e′)

≤ max
i∈J

f i
∅(e)

α · f
i
∅(e)

F∅(e)

=
F∅(e)

α

Where the inequality is due to submodularity and non-negativity in the nominator and maximality
in the denominator. Given the above upper bound for a we get:

P
[
|F̂S(e)− FS(e)| ≥ ϵµ

]
≤ 2 exp

(
−ϵ2µ/3a

)
≤ 2 exp

(
− ϵ2αµ

3F∅(e)

)

Using the above we state the main theorem for this section.

Theorem 3. The mini-batch greedy algorithm maximizing a non-negative monotone submodular
function has the following guarantees:

• If F has curvature bounded by c, and α = Θ(logn
ϵ2(1−c)) it holds w.h.p that ∀j ∈ [k] that F̂ j

Sj

is an (1− ϵ)-approximate incremental oracle.

7

Under review as a conference paper at ICLR 2024

• If α = Θ(ϵ−2 log n) it holds w.h.p that ∀j ∈ [k] that F̂ j
Sj

is an additive ϵ-approximate
incremental oracle.

Furthermore, the number of oracle evaluations during preprocessing is O(nN) and an expected
α(

∑N
i=1 pi)(

∑k
j=1 |Aj |) = O(αkn2) during execution.

Proof. The number of oracle evaluations is due to Lemma 5 and the fact that the algorithm executes
for k iteration and must evaluate |Aj | ≤ n elements per iteration.

Let us prove the approximation guarantees. Let us start with the bounded curvature case. Fix some
Sj . As F̂ j is sampled after Sj is fixed, we can fix some e ∈ E and apply Lemma 8 with µ = FSj (e).
We get that:

P
[
|F̂ j

Sj
(e)− FSj

(e)| ≥ ϵFSj
(e)

]
≤ 2 exp

(
−
ϵ2αFSj

(e)

3F∅(e)

)
≤ 2 exp

(
−ϵ2α(1− c)

3

)
≤ 1/n3

Where the second inequality is due to the fact that FSj
(e)/F∅(e) ≥

minS⊆E,e′∈E\S FS(e
′)/F∅(e

′) = 1 − c, and the last transition is by setting an appropriate
constant in α = Θ(log(n)

ϵ2(1−c)).

When the curvature is not bounded, we set µ = F∅(e) ≥ FSj
(e) and get:

P
[
|F̂ j

Sj
(e)− FSj (e)| ≥ ϵF∅(e)

]
≤ 2 exp

(
−ϵ2αF∅(e)

3F∅(e)

)
≤ 2 exp

(
−ϵ2α

3

)
≤ 1/n3

Where again the last inequality is by setting an appropriate constant in α = Θ(ϵ−2 log n).

For both cases, we take a union bound over all e ∈ E and j ∈ [k] (at most n2 values), which
concludes the proof.

Note that in the above we use the fact that F∅(e) ≤ F (S∗) to get the second result. This is sufficient
for our proofs to go through, however, the theorem has a much stronger guarantee which might be
useful in other contexts.

REFERENCES

Wenruo Bai, Rishabh K. Iyer, Kai Wei, and Jeff A. Bilmes. Algorithms for optimizing the ratio of
submodular functions. In ICML, volume 48 of JMLR Workshop and Conference Proceedings, pp.
2751–2759. JMLR.org, 2016.

Niv Buchbinder, Moran Feldman, and Roy Schwartz. Comparing apples and oranges: Query trade-
off in submodular maximization. In SODA, pp. 1149–1168. SIAM, 2015.

Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone submod-
ular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766, 2011.

Anamay Chaturvedi, Huy Le Nguyen, and Lydia Zakynthinou. Differentially private decomposable
submodular maximization. In AAAI, pp. 6984–6992. AAAI Press, 2021.

Michele Conforti and Gérard Cornuéjols. Submodular set functions, matroids and the greedy algo-
rithm: Tight worst-case bounds and some generalizations of the rado-edmonds theorem. Discret.
Appl. Math., 7(3):251–274, 1984.

Victoria G. Crawford, Alan Kuhnle, and My T. Thai. Submodular cost submodular cover with an
approximate oracle. In ICML, volume 97 of Proceedings of Machine Learning Research, pp.
1426–1435. PMLR, 2019.

Shahar Dobzinski and Michael Schapira. An improved approximation algorithm for combinatorial
auctions with submodular bidders. In SODA, pp. 1064–1073. ACM Press, 2006.

8

Under review as a conference paper at ICLR 2024

Delbert Dueck and Brendan J. Frey. Non-metric affinity propagation for unsupervised image cate-
gorization. In ICCV, pp. 1–8. IEEE Computer Society, 2007.

Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM J. Comput., 39
(1):122–142, 2009.

Uriel Feige and Jan Vondrák. Approximation algorithms for allocation problems: Improving the
factor of 1 - 1/e. In FOCS, pp. 667–676. IEEE Computer Society, 2006.

Pranava R Goundan and Andreas S Schulz. Revisiting the greedy approach to submodular set
function maximization. Optimization online, (1984):1–25, 2007.

Thibaut Horel and Yaron Singer. Maximization of approximately submodular functions. In NIPS,
pp. 3045–3053, 2016.

Jannik Kudla and Stanislav Zivný. Sparsification of monotone k-submodular functions of low cur-
vature. CoRR, abs/2302.03143, 2023.

Hui Lin and Jeff A. Bilmes. A class of submodular functions for document summarization. In ACL,
pp. 510–520. The Association for Computer Linguistics, 2011.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas
Krause. Lazier than lazy greedy. In AAAI, pp. 1812–1818. AAAI Press, 2015.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. Fast constrained submod-
ular maximization: Personalized data summarization. In ICML, volume 48 of JMLR Workshop
and Conference Proceedings, pp. 1358–1367. JMLR.org, 2016a.

Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed submodular
maximization. J. Mach. Learn. Res., 17:238:1–238:44, 2016b.

Baharan Mirzasoleiman, Morteza Zadimoghaddam, and Amin Karbasi. Fast distributed submodular
cover: Public-private data summarization. In NIPS, pp. 3594–3602, 2016c.

Marko Mitrovic, Mark Bun, Andreas Krause, and Amin Karbasi. Differentially private submodular
maximization: Data summarization in disguise. In ICML, volume 70 of Proceedings of Machine
Learning Research, pp. 2478–2487. PMLR, 2017.

George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approximations
for maximizing submodular set functions - I. Math. Program., 14(1):265–294, 1978.

Christos H. Papadimitriou, Michael Schapira, and Yaron Singer. On the hardness of being truthful.
In FOCS, pp. 250–259. IEEE Computer Society, 2008.

Shameem Puthiya Parambath, Nicolas Usunier, and Yves Grandvalet. A coverage-based approach
to recommendation diversity on similarity graph. In RecSys, pp. 15–22. ACM, 2016.

Chao Qian, Jing-Cheng Shi, Yang Yu, Ke Tang, and Zhi-Hua Zhou. Subset selection under noise.
In NIPS, pp. 3560–3570, 2017.

Akbar Rafiey and Yuichi Yoshida. Fast and private submodular and k-submodular functions max-
imization with matroid constraints. In ICML, volume 119 of Proceedings of Machine Learning
Research, pp. 7887–7897. PMLR, 2020.

Akbar Rafiey and Yuichi Yoshida. Sparsification of decomposable submodular functions. arXiv
preprint arXiv:2201.07289, 2022.

Sebastian Tschiatschek, Rishabh K. Iyer, Haochen Wei, and Jeff A. Bilmes. Learning mixtures of
submodular functions for image collection summarization. In NIPS, pp. 1413–1421, 2014.

Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle model.
In STOC, pp. 67–74. ACM, 2008.

9

Under review as a conference paper at ICLR 2024

A PROOF OF THEOREM 2

Theorem 2 directly follows from the two lemmas below.
Lemma 9. Let ϵ′ ≤ ϵ/2k. Algorithm 2 with an additive ϵ′-approximate incremental oracle achieves
a (1− 1/e− ϵ)-approximation under a cardinality constraint k.

Proof. Let S∗ be some optimal solution for F . We start by proving that the following holds for
every j ∈ [k]:

F (Sj+1)− F(Sj) ≥
1

k
((1− ϵ)F (S∗)− F (Sj))

Fix some j ∈ [k] and let S∗ \ Sj = {e∗1, . . . , e∗ℓ} where ℓ ≤ k. Let S∗
t = {e∗1, . . . , e∗t }, and S∗

0 = ∅.
Let us first use submodularity and monotonicity to upper bound F (S∗).

F (S∗) ≤ F (S∗ + Sj) = F (Sj) +

ℓ∑
t=1

[F (Sj + S∗
t)− F (Sj + S∗

t−1)]

≤ F (Sj) +

ℓ∑
t=1

FSj
(e∗t) ≤ F (Sj) +

ℓ∑
t=1

max
e∈E\Sj

FSj
(e)

≤ F (Sj) + k max
e∈E\Sj

FSj (e) ≤ F (Sj) + k(max
e∈E\Sj

F̂ j
Sj
(e) + ϵ′F (S∗))

Where the last inequality is due to the fact that F̂ j
Sj

is an additive ϵ′-approximate incremental oracle.

Noting that ej = argmaxe∈E\Sj
F̂ j
Sj
(e) we get that:

F (S∗) ≤ F (Sj) + k(F̂ j
Sj
(ej) + ϵ′F (S∗))

=⇒ F̂ j
Sj
(ej) ≥

1

k
((1− ϵ′k)F (S∗)− F (Sj))

The above lower bounds the progress on the j-th mini-batch. Now, let us bound the progress on F .
Again, we use the fact that F̂ j

Sj
is an additive ϵ′-approximate incremental oracle.

F (Sj+1)− F (Sj) ≥ F̂ j
Sj
(ej)− ϵ′F (S∗)

≥ 1

k
((1− ϵ′k)F (S∗)− F (Sj))− ϵ′F (S∗) ≥ 1

k
((1− 2ϵ′k)F (S∗)− F (Sj))

Finally, using the fact that ϵ′ ≤ ϵ/2k we get:

F (Sj+1)− F (Sj) ≥
1

k
((1− ϵ)F (S∗)− F (Sj))

Rearranging, the result directly follows using standard arguments.

F (Sk+1) >
(1− ϵ)

k
F (S∗) + (1− 1

k
)F (Sk) ≥

(1− ϵ)

k
F (S∗)(

k∑
i=0

(1− 1

k
)i) + F (∅)

≥ F (S∗)
(1− ϵ)(1− 1

k)
k

k(1− (1− 1
k))

= (1− ϵ)(1− 1

k
)kF (S∗) ≥ (1− ϵ)(1− 1/e)F (S∗) ≥ (1− 1/e− ϵ)F (S∗)

Lemma 10. Let ϵ′ ≤ ϵ/2kp. Algorithm 2 with an additive ϵ′-approximate incremental oracle
achieves a (1−ϵ

1+p)-approximation under a p-system constraint.

Proof. Let S∗ be some optimal solution for F . Assume without loss of generality that the solution
returned by the algorithm consists of k elements Sk+1 = {e1, . . . , ek}.

10

Under review as a conference paper at ICLR 2024

We show the existence of a partition S∗
1 , S

∗
2 , . . . , S

∗
k of S∗ such that FSj

(ej) ≥ 1
pFSk+1

(S∗
j) −

2ϵ′F (S∗). Note, we allow some of the sets in the partition to be empty.

Define Tk = S∗. For j = k, k − 1, ..., 2 execute: Let Bj = {e ∈ Tj | Sj + e ∈ I}. If |Bj | ≤ p
set S∗

j = Bj ; else pick an arbitrary S∗
j ⊂ Bj with

∣∣S∗
j

∣∣ = p. Then set Tj−1 = Tj \ S∗
j before

decreasing j. After the loop set S∗
1 = T1. It is clear that for j = 2, ..., k,

∣∣S∗
j

∣∣ ≤ p.

We prove by induction over j = 0, 1, ..., k − 1 that |Tk−j | ≤ (k − j)p. For j = 0, when the greedy
algorithm stops, Sk+1 is a maximal independent set contained in E, therefore any independent set
(including Tk = S∗) satisfies |Tk| ≤ p |Sk+1| = pk. We proceed to the inductive step for j > 0.
There are two cases: (1) |Bk−j+1| > p, which implies that

∣∣∣S∗
k−j+1

∣∣∣ = p and using the induction

hypothesis we get that |Tk−j | = |Tk−j+1| −
∣∣∣S∗

k−j+1

∣∣∣ ≤ (k − j + 1)p − p = (k − j)p. (2)
|Bk−j+1| ≤ p, it holds that Tk−j = Tk−j+1 \ Bk−j+1. Let Y = Sk−j+1 + Tk−j . Due to the
definition of Bk−j+1 it holds that Sk−j+1 is a maximal independent set in Y . It holds that Tk−j is
independent and contained in Y , therefore |Tk−j | ≤ p |Sk−j+1| = p(k − j).

Finally, we get that |T1| = |S∗
1 | ≤ p. By construction it holds that ∀j ∈ [k],∀e ∈ S∗

j , Sj +

e is independent. From the choice made by the greedy algorithm and the fact that F̂ j
Sj

is an additive
ϵ′-approximate incremental oracle it follows that for each e ∈ S∗

j :

FSj (ej) ≥ F̂ j
Sj
(ej)− ϵ′F (S∗) ≥ F̂ j

Sj
(e)− ϵ′F (S∗) ≥ FSj (e)− 2ϵ′F (S∗)

Hence,∣∣S∗
j

∣∣FSj (ej) ≥
∑
e∈S∗

j

(FSj (e)−2ϵ′F (S∗)) ≥ FSj (S
∗
j)−2ϵ′

∣∣S∗
j

∣∣F (S∗) ≥ FSk+1
(S∗

j)−2ϵ′
∣∣S∗

j

∣∣F (S∗)

Using submodularity in the last two inequalities.

For all j ∈ {1, 2, ..., k} it holds that
∣∣S∗

j

∣∣ ≤ p, and thus FSj (ej) ≥ 1
pFSk+1

(S∗
j)− 2ϵ′F (S∗). Using

the partition we get that:

F (Sk+1) ≥
k∑

j=1

FSj
(ej) ≥

k∑
j=1

(
1

p
FSk+1

(S∗
j)− 2ϵ′F (S∗))

≥ 1

p
FSk+1

(S∗)− 2ϵ′kF (S∗) ≥ 1

p
(F (S∗)− F (Sk+1))− 2ϵ′kF (S∗)

Where the second to last inequality is due to submodularity and the last is due to monotonicity.
Rearranging we get that:

F (Sk+1) ≥
(1− 2pϵ′k)

p+ 1
F (S∗)

As ϵ′ < ϵ
2pk we get the desired result.

11

	Introduction
	Our results
	Related work

	Analysis of the mini-batch greedy algorithm
	Proof of Theorem 2

