MINI-BATCH SUBMODULAR MAXIMIZATION

Anonymous authors Paper under double-blind review

ABSTRACT

We present the first *mini-batch* algorithm for maximizing a non-negative monotone *decomposable* submodular function, $F = \sum_{i=1}^{N} f^i$, under a set of constraints. The expected number of oracle evaluations of our algorithm only depends on the size of the ground set. Previous results require a number of oracle evaluations that either depend on N or have a worst-case *exponential* dependence on the size of the ground set.

1 INTRODUCTION

We consider the problem of maximizing a non-negative submodular function F. A set function $F: 2^E \to \mathbb{R}^+$ is submodular if for any subsets $S \subseteq T \subseteq E$ and $e \in E \setminus T$, it holds that

$$F(S+e) - F(S) \ge F(T+e) - F(T)$$

We focus on the case where F is *decomposable*: $F = \sum_{i=1}^{N} f^i$, where each $f^i : 2^E \to \mathbb{R}^+$ is a non-negative submodular function on the ground set E with |E| = n. Further, $\forall i, f^i$ is monotone $(\forall S \subseteq T \subseteq E, f^i(T) \ge f^i(S))$.

We assume that every f^i is represented by an evaluation oracle that returns the value $f^i(S)$ for every $S \subseteq E$. Our goal is to maximize F under some set of constraints while minimizing the number of oracle evaluations to $\{f^i\}$.

For $S, A \subseteq E$ we define $F_S(A) = F(S + A) - F(S)$. We slightly abuse notation and write $F_S(e), F(e)$ instead of $F_S(\{e\}), F(\{e\})$.

Motivation and Background For ease of presentation let us first focus on maximizing F under a cardinality constraint k, i.e., max F(S), $|S| \le k$. The classical greedy algorithm (Nemhauser et al., 1978) (Algorithm 1) achieves an *optimal* (1 - 1/e)-approximation for this problem.

Algorithm 1: Greedy submodular maximization under a cardinality constraint

 $\begin{array}{l} 1 \quad S_{1} \leftarrow \emptyset \\ 2 \quad \text{for } j = 1 \text{ to } k \text{ do} \\ 3 \quad | \quad e' = \arg \max_{e \in E \setminus S_{j}} F_{S_{j}}(e) \\ 4 \quad | \quad S_{j+1} = S_{j} + e' \\ 5 \quad \text{end} \\ 6 \quad \text{return } S_{k+1} \end{array}$

When F is decomposable, and each evaluation of f^i is counted as an oracle call, the above algorithm requires O(Nnk) oracle calls. This can be prohibitively expensive if $N \gg n$. This raises the question: Can we eliminate the dependence on N?

Recently, Rafiey & Yoshida (2022) showed how to construct a *sparsifier* for F. That is, given a parameter $\epsilon > 0$ they show how to find a vector $w \in \mathbb{R}^N$ such that the number of non-zero elements in w is small in expectation and the function $\hat{F} = \sum_{i=1}^{N} w_i f^i$ satisfies with high probability (w.h.p)¹

¹Probability at least $1 - 1/n^c$ for an arbitrary constant c > 1. The value of c does affect the asymptotics of the results we state (including our own).

that

$$\forall S \subseteq E, (1-\epsilon)F(S) \le \hat{F}(S) \le (1+\epsilon)F(S)$$

Specifically, every f^i is sampled with probability α_i proportional to $p_i = \max_{S \subseteq E, F(S) \neq 0} \frac{f^i(S)}{F(S)}$. If it is sampled, it is included in the sparsifier with weight $1/\alpha_i$, which implies that $\mathbb{E}[w_i] = 1$. While calculating the p_i 's exactly requires exponential time, Rafiey & Yoshida (2022) make do with an approximation, which can be calculated using interior point methods (Bai et al., 2016).

Specifically, Rafiey & Yoshida (2022) show that if all f^i 's are non-negative and monotone², the above sparsifier can be constructed by an algorithm that requires poly(N) oracle evaluations and the sparsifier will have expected size $O(\epsilon^{-2}Bn^{2.5}\log n)$, where $B = \max_{i \in [N]} B_i$ and B_i is the number of extreme points in the base polyhedron of f^i . They extend their results to matroid constraints of rank r and show that a sparsifier with expected size $O(\epsilon^{-2}Bn^{1.5}\log n)$ can be constructed.

For the specific case of a cardinality constraint k, this implies a sparsifier of expected size $O(\epsilon^{-2}Bkn^{1.5}\log n)$ can be constructed using poly(N) oracle evaluations. The sparsifier construction is treated as a *preprocessing step* (we elaborate on this in Section 1.1), and therefore the actual execution of Algorithm 1 on the sparsifier requires only $O(\epsilon^{-2}Bk^2n^{2.5}\log n)$ oracle evaluations to get a $(1 - 1/e - \epsilon)$ approximation. This is an improvement over Algorithm 1 when $N \gg n, B$.

Recently, Kudla & Zivný (2023) showed improved results for the case of *bounded curvature*. The *curvature* of a submodular function F is defined as $c = 1 - \min_{S \subseteq E, e \in E \setminus S} \frac{F_S(e)}{F_{\emptyset}(e)}$. We say that F has *bounded-curvature* if c < 1. Submodular functions with bounded curvature (Conforti & Cornuéjols, 1984) offer a balance between modularity and submodularity, capturing the essence of diminishing returns without being too extreme.

They show that when the curvature of all f^i 's and of F is constant it is possible to reduce the preprocessing time to O(Nn) oracle queries and to reduce the size of the sparsifier by a factor of \sqrt{n} . Furthermore, their results extend to the much more general case of *k*-submodular functions. While this significantly improves over the number of oracle calls compared to (Rafiey & Yoshida,

2022), the running time of the preprocessing step depends on $\log \left(\max_{i \in [N]} \frac{\max_{e \in E} f_{\emptyset}^{i}(e)}{\min_{e \in E, f_{\emptyset}^{i}(e) > 0} f_{\emptyset}^{i}(e)} \right)$

There are two main issues with the above approach. The first is that, in general, constructing the sparsifier can be prohibitively slow. The second issue is the factor B in the size of the sparsifier, which can be exponential in n. While Rafiey & Yoshida (2022) note that for some natural problems (e.g., facility location, maximum coverage), B is small and the p_i 's can be computed efficiently, for general problems this can be a significant bottleneck.

1.1 OUR RESULTS

In this work, we focus on the *greedy algorithm* for constrained submodular maximization. We show that instead of sparsifying F, much better results can be achieved by using mini-batches during the execution of the greedy algorithm. That is, rather than sampling a large sparsifier \hat{F} and performing the optimization process, we show that if we sample a much smaller sparsifier (a *mini-batch*), \hat{F}^{j} , for *j*-th step of the greedy algorithm, we can overcome both of the problems presented above. Specifically, our results are *independent* of *B* and our preprocessing is extremely simple and only requires O(nN) oracle evaluations.

While the mini-batch approach results in a significant improvement in performance, computing a sparsifier has the benefit of being independent of the algorithm. This means that we need to reestablish the approximation ratio of our mini-batch algorithm for different constraints. Although these proofs are often straightforward, compiling an exhaustive list of where the mini-batch method is applicable is both laborious and offers limited insights.

To illustrate the effectiveness of our method while maintaining readability, we focus on two widely researched constraints: the cardinality constraint and the p-system constraint (defined later in the section). The cardinality constraint was chosen for its simplicity and its prominence in research,

²Rafiey & Yoshida (2022) also present results for non-monotone functions, however, Kudla & Zivný (2023) point out an error in their calculation and note that the results only hold when all f^i 's are monotone.

while the *p*-system constraint was chosen for its broad applicability. We strongly believe that our approach could be applied beyond submodular functions (e.g., *k*-submodular functions, similar to Kudla & Zivný (2023)), achieve better approximation guarantees for specific constraints, and even applied beyond the greedy algorithm.

We compare our results with the results of Rafiey & Yoshida (2022); Kudla & Zivný (2023) and the naive algorithm (without sampling or sparsification) in Table 1³. While our results hold for the unbounded curvature case, we can get improved performance if the curvature is bounded. It's worth noting that while Kudla & Zivný (2023) assume every f^i has bounded curvature, we only require Fto have bounded curvature.

	Preprocessing	Cardinality constraint $(1 - 1/e - \epsilon)$ -approx	$\begin{array}{c} p\text{-system constraint} \\ (\frac{1-\epsilon}{p+1})\text{-approx} \end{array}$
Naive	None	O(Nnk)	O(Nnk)
Rafiey & Yoshida (unbounded curvature)	poly(N)	$\widetilde{O}(B \cdot \frac{k^2 n^{2.5}}{\epsilon^2})$	$\widetilde{O}(B \cdot rac{k^2 n^{3.5}}{\epsilon^2})$
Our results (unbounded curvature)	O(Nn)	$\widetilde{O}(rac{k^3n^2}{\epsilon^2})$	$\widetilde{O}(\tfrac{k^3p^2n^2}{\epsilon^2})$
Kudla & Zivný (bounded curvature)	O(Nn)	$\widetilde{O}(B \cdot \frac{k^2 n^2}{\epsilon^2})$	$\widetilde{O}(B \cdot \frac{k^2 n^3}{\epsilon^2})$
Our results (bounded curvature)	O(Nn)	$\widetilde{O}(\frac{kn^2}{\epsilon^2})$	$\widetilde{O}\bigl(\tfrac{kn^2}{\epsilon^2} \bigr)$

Table 1: Comparison of the number of oracle queries during preprocessing and during execution. For ease of presentation and to allow comparison with Kudla & Zivný, we assume the curvature is constant. The preprocessing step of Rafiey & Yoshida uses interior point methods, therefore, it is significantly more costly than O(Nn).

Meta greedy algorithm Our starting point is the meta greedy algorithm (Algorithm 2). The algorithm executes for $k \le n$ iterations where k is some upper bound on the size of the solution. At every iteration, the set $A_j \subseteq E \setminus S_j$ represents some constraint that limits the choice of potential elements to extend S_j . The algorithm terminates either when the solution size reaches k or when no further extensions to the current solution are possible (i.e., $A_j = \emptyset$). Furthermore, the algorithm does not have access to the exact *incremental oracle*, F_{S_j} , at every iteration, but only to some approximation.

Algorithm 2: Meta greedy algorithm with an approximate oracle $1 S_1 \leftarrow \emptyset$ Let k be an upper bound on the size of the solution 2 3 for j = 1 to k do Let $A_j \subseteq E \setminus S_j$ ▷ Problem specific constraint 4 if $A_j = \emptyset$ then return S_j 5 Let $\hat{F}_{S_j}^j$ be an approximation for F_{S_j} ▷ Problem specific approximation $e_j = \arg\max_{e \in A_j} \hat{F}_{S_j}^j(e)$ 7 $S_{j+1} = S_j + e_j$ 8 9 end 10 return S_{k+1}

Before we formally define "approximation" in the above, let us note that when we have access to exact values of F_{S_j} , Algorithm 2 captures many variants of the greedy submodular maximization algorithm. For example, setting $A_j = E \setminus S_j$ we get the algorithm of Nemhauser et al. (1978) for maximizing a non-negative submodular function under a cardinality constraint. This meta-algorithm also captures the case of maximization under a *p*-system constraint.

³Where \widetilde{O} hides $\log n$ factors.

p-systems The concept of *p*-systems offers a generalized framework for understanding independence families, parameterized by an integer *p*. We can define a *p*-system in the context of an independence family $\mathcal{I} \subseteq 2^E$ and $E' \subseteq E$. Let $\mathcal{B}(E')$ be the maximal independent sets within \mathcal{I} that are also subsets of E'. Formally,

$$\mathcal{B}(E') = \{ A \in \mathcal{I} | A \subseteq E' \text{ and no } A' \in \mathcal{I} \text{ exists such that } A \subset A' \subseteq E' \}.$$

A distinguishing characteristic of a *p*-system is that for every $E' \subseteq E$, the ratio of the sizes of the largest to the smallest sets in $\mathcal{B}(E')$ does not exceed *p*:

$$\frac{\max_{A \in \mathcal{B}(E')} |A|}{\min_{A \in \mathcal{B}(E')} |A|} \le p$$

The significance of p-systems lies in their ability to encapsulate a variety of combinatorial structures. For instance, when we consider the intersection of p matroids, they can be aptly described using p-systems. To provide more tangible examples, in graph theory, the collection of matchings in a standard graph can be viewed as a 2-system. Extending this to hypergraphs, where edges might have cardinalities up to p, the set of matchings therein can be conceptualized as a p-system.

The greedy algorithm for *p*-systems Formally, the optimization problem can be expressed as: $\max_{S \in \mathcal{I}} F(S)$ where the pair (E, \mathcal{I}) characterizes a *p*-system and $F : 2^E \to \mathbb{R}^+$ denotes a nonnegative monotone submodular set function. It was shown by Nemhauser et al. (1978) that the natural greedy approach achieves an optimal approximation ratio of $\frac{1}{p+1}$. Setting $A_j = \{e \mid S_j + e \in \mathcal{I}\}$ (i.e., S_j remains an independent set after adding *e*) in Algorithm 2 we get the greedy algorithm of Nemhauser et al. (1978). Note that for general *p*-systems it might be that k = n, however, there are very natural problems where $k \ll n$. For example, for maximum matching *E* corresponds to all edges in the graph, which can be quadratic in the number of nodes, while the solution is at most linear in the number of nodes.

Approximate oracles In many scenarios we do not have access to *exact* values of F_{S_j} , and instead we must make do with an approximation. We start with the notion of an *approximate incremental* oracle introduced in (Goundan & Schulz, 2007). We say that $\hat{F}_{S_j}^j$ is an $(1 - \epsilon)$ -approximate incremental oracle if

$$\forall e \in A_j, (1-\epsilon)F_{S_j}(e) \le \hat{F}_{S_j}^j(e) \le (1+\epsilon)F_{S_j}(e)$$

It was shown in (Goundan & Schulz, 2007; Călinescu et al., 2011)⁴ that given a $(1 - \epsilon)$ -approximate incremental oracle, the greedy algorithm under both a cardinality constraint and a *p*-system constraint achieves almost the same (optimal) approximation ratio as the non-approximate case.

Theorem 1. Algorithm 2 with an $(1 - \epsilon)$ -approximate incremental oracle has the following guarantees w.h.p.

- It achieves a $(1 1/e \epsilon)$ -approximation under a cardinality constraint k (Goundan & Schulz, 2007).
- It achieves a $\left(\frac{1-\epsilon}{1+p}\right)$ -approximation under a p-system constraint (Călinescu et al., 2011).

We introduce a weaker type of approximate incremental oracle, which we call an *additive* approximate incremental oracle. We extend the results of Theorem 1 for this case. Let S^* be some optimal solution for F (under the relevant set of constraints). We say that $\hat{F}_{S_j}^j$ is an *additive* ϵ' -approximate incremental oracle if

$$\forall e \in A_j, F_{S_j}(e) - \epsilon' F(S^*) \le \hat{F}_{S_j}^j \le F_{S_j}(e) + \epsilon' F(S^*)$$

This might seem problematic at first glance, as it might be the case that $F(S^*) \gg F_{S_j}(e)$. Luckily, the proofs guaranteeing the approximation ratio are *linear* in nature. Therefore, by the end of the proof we end up with an expression of the form:

$$F(S_{k+1}) \ge F(S^*)\beta + \gamma \epsilon' F(S^*)$$

⁴Strictly speaking, both Goundan & Schulz (2007) and Călinescu et al. (2011) define the approximate incremental oracle to be a function that returns e_j at iteration j of the greedy algorithm such that $\forall e \in A_j, F_{S_j}(e_j) \ge (1 - \epsilon)F_{S_j}(e)$. Our definition guarantees this property while allowing easy analysis of the mini-batch algorithm.

Where β is the desired approximation ratio and γ depends on the parameters of the problem (e.g., $\beta = (1 - 1/e), \gamma = 2k$ for a cardinality constraint). We can achieve the desired result by setting $\epsilon' = \epsilon/\gamma$. We state the following theorem (the proofs are very similar to those of Goundan & Schulz (2007); Călinescu et al. (2011), and we defer them to the Appendix).

Theorem 2. Algorithm 2 with an additive ϵ' -approximate incremental oracle has the following guarantees w.h.p.

- If $\epsilon' < \epsilon/2k$, it achieves a $(1 1/e \epsilon)$ -approximation under a cardinality constraint k.
- If $\epsilon' < \epsilon/2kp$, it achieves a $(\frac{1-\epsilon}{1+p})$ -approximation under a p-system constraint.

Mini-batch sampling Our main result shows that when $\hat{F}_{S_j}^j$ is sampled using mini-batch sampling we indeed get, w.h.p. an (additive) approximate incremental oracle for every step of the algorithm. We present our sampling procedure in Algorithm 3. It takes in a batch size parameter α and samples every f^i with probability proportional to αp_i . The main benefit in our approach is that its is sufficient to set $p_i = \max_{e \in E, F_{\emptyset}(e) \neq 0} \frac{f_{\emptyset}^i(e)}{F_{\emptyset}(e)}$ compared to $\max_{S \subseteq E, F(S) \neq 0} \frac{f^i(S)}{F(S)}$ in (Rafiey & Yoshida, 2022). This only requires O(Nn) oracle evaluations.

Similar to Rafiey & Yoshida (2022) we treat the computation of the p_i 's as a preprocessing step. The justification for this, is that the p_i 's do not depend on the *constraints* of the problem. Therefore, computing the p_i 's a single time, we can execute our algorithm on various constraints (e.g., different *p*-systems).

Algorithm 3: Sample(α)

 $\begin{array}{l} \forall i \in [N], p_i \leftarrow \max_{e \in E, F_{\emptyset}(e) \neq 0} \frac{f_{\emptyset}^i(e)}{F_{\emptyset}(e)} & \triangleright \text{ Computed once, during preprocessing} \\ w \leftarrow 0 \\ \text{3 for } i = 1 \text{ to } N \text{ do} \\ \text{4 } \mid \alpha_i \leftarrow \min\{1, \alpha p_i\} \\ \text{5 } \mid w_i \leftarrow 1/\alpha_i \text{ with probability } \alpha_i \\ \text{6 end} \\ \text{7 return } \hat{F} = \sum_{i=1}^N w_i f^i \\ \end{array}$

Plugging Algorithm 3 into Line 6 of Algorithm 2 we get our *mini-batch greedy algorithm*. That is, in the *j*-th iteration, we call Algorithm 3, get back \hat{F} and set $\hat{F}_{S_i}^j(e) = \hat{F}_{S_i}(e)$.

In Section 2 we analyze the relation between the batch parameter, α , and the the type of approximate incremental oracles guaranteed by our sampling procedure. We state the main theorem for the section below.

Theorem 3. The mini-batch greedy algorithm maximizing a non-negative monotone submodular function has the following guarantees:

- If F has curvature bounded by c, and $\alpha = \Theta(\frac{\log n}{\epsilon^2(1-c)})$ it holds w.h.p that $\forall j \in [k]$ that $\hat{F}_{S_j}^j$ is an $(1-\epsilon)$ -approximate incremental oracle.
- If $\alpha = \Theta(\epsilon^{-2} \log n)$ it holds w.h.p that $\forall j \in [k]$ that $\hat{F}_{S_j}^j$ is an additive ϵ -approximate incremental oracle.

Furthermore, the number of oracle evaluations during preprocessing is O(nN) and an expected $\alpha(\sum_{i=1}^{N} p_i)(\sum_{i=1}^{k} |A_j|) = O(\alpha k n^2)$ during execution.

Combining Theorem 3 with Theorem 1 and Theorem 2 we state our main result.

Theorem 4. The mini-batch greedy algorithm maximizing a non-negative monotone submodular function requires O(nN) oracle calls during preprocessing and has the following guarantees:

- If F has curvature bounded by c, it achieves w.h.p a $(1 1/e \epsilon)$ -approximation under a cardinality constraint and $(\frac{1-\epsilon}{1+p})$ -approximation under a p-system constraint with an expected $O(\frac{kn^2 \log n}{\epsilon^2(1-c)})$ oracle evaluations for both cases.
- It achieves w.h.p a $(1 1/e \epsilon)$ -approximation under a cardinality constraint and $(\frac{1-\epsilon}{1+p})$ -approximation under a p-system constraint with an expected $O(k^3(n/\epsilon)^2 \log n)$ and $O(k^3(pn/\epsilon)^2 \log n)$ oracle evaluations respectively.

1.2 RELATED WORK

Approximate oracles Apart from the results of (Goundan & Schulz, 2007; Călinescu et al., 2011) there are works that use different notions of an approximate oracle. Several works consider an approximate oracle \hat{F} , such that $\forall S \subseteq E$, $|\hat{F}(S) - F(S)| < \epsilon F(S)$ (Crawford et al., 2019; Horel & Singer, 2016; Qian et al., 2017). The main difference of these models to our work is the fact that they do not assume the surrogate function, \hat{F} , to be submodular. This adds a significant complication to the analysis and degrades the performance guarantees.

Mini-batch methods The closest results resembling mini-batch methods for submodular functions are due to Buchbinder et al. (2015); Mirzasoleiman et al. (2015). They improve the expected query complexity of the greedy algorithm under a cardinality constraint by only considering a small random subset of $E \setminus S_j$ at the *j*-th iteration. We note that their approach can be combined into our mini-batch algorithm, reducing our query complexity by a $\tilde{\Theta}(k)$ factor, resulting in an approximation guarantee in expectation instead of w.h.p.

Decomposable submodular functions An excellent survey of the importance of decomposable functions is given in Rafiey & Yoshida (2022), which we summarize below. Decomposable submodular functions are prevalent in both machine learning and economic studies. In economics, they play a pivotal role in welfare optimization during combinatorial auctions (Dobzinski & Schapira, 2006; Feige, 2009; Feige & Vondrák, 2006; Papadimitriou et al., 2008; Vondrák, 2008). In machine learning, these functions are instrumental in tasks like data summarization, aiming to select a concise yet representative subset of elements. Their utility spans various domains, from exemplar-based clustering by (Dueck & Frey, 2007) to image summarization (Tschiatschek et al., 2014), recommender systems (Parambath et al., 2016) and document summarization (Lin & Bilmes, 2011). The optimization of these functions, especially under specific constraints (e.g., cardinality, matroid) has been studied in various data summarization settings (Mirzasoleiman et al., 2016a;b;c) and differential privacy (Chaturvedi et al., 2021; Mitrovic et al., 2017; Rafiey & Yoshida, 2020).

2 ANALYSIS OF THE MINI-BATCH GREEDY ALGORITHM

Let us start by bounding the expected size of \hat{F} in Algorithm 3. We start with the following useful lemma.

Lemma 5. It holds that $\sum_{i=1}^{N} p_i \leq n$.

Proof. Let us divide the range [N] into $A_e = \left\{ i \in N \mid e = \arg \max_{e' \in E} \frac{f_{\phi}^i(e')}{F_{\phi}(e')} \right\}$. If 2 elements in E achieve the maximum value for some i, we assign it to a single A_e arbitrarily.

$$\sum_{i=1}^{N} p_i = \sum_{i=1}^{N} \max_{e \in E} \frac{f_{\emptyset}^i(e)}{F_{\emptyset}(e)} = \sum_{e \in E} \sum_{i \in A_e} \frac{f_{\emptyset}^i(e)}{F_{\emptyset}(e)} = \sum_{e \in E} \frac{\sum_{i \in A_e} f_{\emptyset}^i(e)}{F_{\emptyset}(e)} \le \sum_{e \in E} 1 \le n$$

Using the above we state the following lemma:

Lemma 6. The expected size of \hat{F} is $\alpha \sum_{i=1}^{N} p_i \leq \alpha n$.

Proof. Let X_i be an indicator variable for the event $w_i > 0$. We are interested in $\sum_{i=1}^{N} \mathbb{E}[X_i]$. It holds that:

$$\sum_{i=1}^{N} \mathbb{E}[X_i] = \sum_{i=1}^{N} \alpha_i \le \sum_{i=1}^{N} \alpha p_i = \alpha \sum_{i=1}^{N} p_i \le \alpha n$$

Next, let us show that \hat{F} returned by Algorithm 3 is indeed an (additive) approximate incremental oracle w.h.p. We make use of the following Hoeffding bound.

Theorem 7 (Hoeffding bound). Let $X_1, ..., X_N$ be independent random variables in the range [0, a]. Let $X = \sum_{i=1}^{N} X_i$. Then for any $\epsilon \in [0, 1]$ and $\mu \ge \mathbb{E}[T]$,

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge \epsilon \mu) \le 2 \exp\left(-\frac{\epsilon^2 \mu}{3a}\right)$$

The following lemma provides concentration guarantees for \hat{F} in Algorithm 3.

Lemma 8. For every $S \subseteq E$ (\hat{F} sampled after S is fixed) and for every $e \in E$ and $\mu \geq F_S(e)$, it holds that

$$\mathbb{P}\left[|\hat{F}_{S}(e) - F_{S}(e)| \ge \epsilon \mu\right] \le 2 \exp\left(-\frac{\epsilon^{2} \mu}{3F_{\emptyset}(e)/\alpha}\right)$$

Proof. Fix some $e \in E$. Let $G = \sum_{i \in I} f^i$, where $I = \{i \in [N] \mid \alpha_i = 1\}$. Let $F'_S(e) = F_S(e) - G_S(e)$ and $\hat{F}'_S(e) = \hat{F}_S(e) - G_S(e)$. Let $J = [N] \setminus I$. It holds that:

$$\mathbb{P}\left[|\hat{F}_S(e) - F_S(e)| \ge \epsilon\mu\right] = \mathbb{P}\left[|\hat{F}'_S(e) + G_S(e) - F'_S(e) - G_S(e)| \ge \epsilon\mu\right] = \mathbb{P}\left[|\hat{F}'_S(e) - F'_S(e)| \ge \epsilon\mu\right]$$

Due to the fact that $\mathbb{E}[w_i] = 1$ we have $\mathbb{E}[\hat{F}'_S(e)] = \mathbb{E}[\sum_{i \in J} w_i f^i_S(e)] = F'_S(e)$. As f^i 's are monotone, it holds that $\mu \ge F_S(e) \ge F'_S(e)$. Applying a Hoeffding bound (Theorem 7) we have

$$\mathbb{P}\left[|\hat{F}'_{S}(e) - F'_{S}(e)| \ge \epsilon \mu\right] \le 2 \exp\left(-\epsilon^{2} \mu/3a\right)$$

where $a = \max\{w_i f_S^i(e)\}_{i \in J}$. Recall that $w_i = 1/\alpha_i$ where $\alpha_i = \min\{1, \alpha p_i\}$ and $\alpha_i < 1$ for all $i \in J$. Let us upper bound a.

$$a = \max_{i \in J} w_i f_S^i(e) = \max_{i \in J} \frac{f_S^i(e)}{\alpha p_i} = \max_{i \in J} \frac{f_S^i(e)}{\alpha \cdot \max_{e' \in E} \frac{f_{\phi}^i(e')}{F_{\phi}(e')}} \le \max_{i \in J} \frac{f_{\phi}^i(e)}{\alpha \cdot \frac{f_{\phi}^i(e)}{F_{\phi}(e)}} = \frac{F_{\phi}(e)}{\alpha}$$

Where the inequality is due to submodularity and non-negativity in the nominator and maximality in the denominator. Given the above upper bound for a we get:

$$\mathbb{P}\left[|\hat{F}_{S}(e) - F_{S}(e)| \ge \epsilon \mu\right] \le 2 \exp\left(-\epsilon^{2} \mu/3a\right) \le 2 \exp\left(-\frac{\epsilon^{2} \alpha \mu}{3F_{\emptyset}(e)}\right)$$

Using the above we state the main theorem for this section.

Theorem 3. The mini-batch greedy algorithm maximizing a non-negative monotone submodular function has the following guarantees:

• If F has curvature bounded by c, and $\alpha = \Theta(\frac{\log n}{\epsilon^2(1-c)})$ it holds w.h.p that $\forall j \in [k]$ that $\hat{F}_{S_j}^j$ is an $(1-\epsilon)$ -approximate incremental oracle.

• If $\alpha = \Theta(\epsilon^{-2} \log n)$ it holds w.h.p that $\forall j \in [k]$ that $\hat{F}_{S_j}^j$ is an additive ϵ -approximate incremental oracle.

Furthermore, the number of oracle evaluations during preprocessing is O(nN) and an expected $\alpha(\sum_{i=1}^{N} p_i)(\sum_{j=1}^{k} |A_j|) = O(\alpha k n^2)$ during execution.

Proof. The number of oracle evaluations is due to Lemma 5 and the fact that the algorithm executes for k iteration and must evaluate $|A_i| \le n$ elements per iteration.

Let us prove the approximation guarantees. Let us start with the bounded curvature case. Fix some S_j . As \hat{F}^j is sampled after S_j is fixed, we can fix some $e \in E$ and apply Lemma 8 with $\mu = F_{S_j}(e)$. We get that:

$$\mathbb{P}\left[|\hat{F}_{S_j}^j(e) - F_{S_j}(e)| \ge \epsilon F_{S_j}(e)\right] \le 2\exp\left(-\frac{\epsilon^2 \alpha F_{S_j}(e)}{3F_{\emptyset}(e)}\right) \le 2\exp\left(-\frac{\epsilon^2 \alpha(1-c)}{3}\right) \le 1/n^3$$

Where the second inequality is due to the fact that $F_{S_j}(e)/F_{\emptyset}(e) \geq \min_{S \subseteq E, e' \in E \setminus S} F_S(e')/F_{\emptyset}(e') = 1 - c$, and the last transition is by setting an appropriate constant in $\alpha = \Theta(\frac{\log(n)}{\epsilon^2(1-c)})$.

When the curvature is not bounded, we set $\mu = F_{\emptyset}(e) \ge F_{S_i}(e)$ and get:

$$\mathbb{P}\left[|\hat{F}_{S_j}^j(e) - F_{S_j}(e)| \ge \epsilon F_{\emptyset}(e)\right] \le 2 \exp\left(-\frac{\epsilon^2 \alpha F_{\emptyset}(e)}{3F_{\emptyset}(e)}\right) \le 2 \exp\left(-\frac{\epsilon^2 \alpha}{3}\right) \le 1/n^3$$

Where again the last inequality is by setting an appropriate constant in $\alpha = \Theta(\epsilon^{-2} \log n)$.

For both cases, we take a union bound over all $e \in E$ and $j \in [k]$ (at most n^2 values), which concludes the proof.

Note that in the above we use the fact that $F_{\emptyset}(e) \leq F(S^*)$ to get the second result. This is sufficient for our proofs to go through, however, the theorem has a much stronger guarantee which might be useful in other contexts.

REFERENCES

- Wenruo Bai, Rishabh K. Iyer, Kai Wei, and Jeff A. Bilmes. Algorithms for optimizing the ratio of submodular functions. In *ICML*, volume 48 of *JMLR Workshop and Conference Proceedings*, pp. 2751–2759. JMLR.org, 2016.
- Niv Buchbinder, Moran Feldman, and Roy Schwartz. Comparing apples and oranges: Query tradeoff in submodular maximization. In SODA, pp. 1149–1168. SIAM, 2015.
- Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone submodular function subject to a matroid constraint. *SIAM J. Comput.*, 40(6):1740–1766, 2011.
- Anamay Chaturvedi, Huy Le Nguyen, and Lydia Zakynthinou. Differentially private decomposable submodular maximization. In AAAI, pp. 6984–6992. AAAI Press, 2021.
- Michele Conforti and Gérard Cornuéjols. Submodular set functions, matroids and the greedy algorithm: Tight worst-case bounds and some generalizations of the rado-edmonds theorem. *Discret. Appl. Math.*, 7(3):251–274, 1984.
- Victoria G. Crawford, Alan Kuhnle, and My T. Thai. Submodular cost submodular cover with an approximate oracle. In *ICML*, volume 97 of *Proceedings of Machine Learning Research*, pp. 1426–1435. PMLR, 2019.
- Shahar Dobzinski and Michael Schapira. An improved approximation algorithm for combinatorial auctions with submodular bidders. In *SODA*, pp. 1064–1073. ACM Press, 2006.

- Delbert Dueck and Brendan J. Frey. Non-metric affinity propagation for unsupervised image categorization. In *ICCV*, pp. 1–8. IEEE Computer Society, 2007.
- Uriel Feige. On maximizing welfare when utility functions are subadditive. *SIAM J. Comput.*, 39 (1):122–142, 2009.
- Uriel Feige and Jan Vondrák. Approximation algorithms for allocation problems: Improving the factor of 1 1/e. In *FOCS*, pp. 667–676. IEEE Computer Society, 2006.
- Pranava R Goundan and Andreas S Schulz. Revisiting the greedy approach to submodular set function maximization. *Optimization online*, (1984):1–25, 2007.
- Thibaut Horel and Yaron Singer. Maximization of approximately submodular functions. In *NIPS*, pp. 3045–3053, 2016.
- Jannik Kudla and Stanislav Zivný. Sparsification of monotone k-submodular functions of low curvature. CoRR, abs/2302.03143, 2023.
- Hui Lin and Jeff A. Bilmes. A class of submodular functions for document summarization. In ACL, pp. 510–520. The Association for Computer Linguistics, 2011.
- Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas Krause. Lazier than lazy greedy. In *AAAI*, pp. 1812–1818. AAAI Press, 2015.
- Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. Fast constrained submodular maximization: Personalized data summarization. In *ICML*, volume 48 of *JMLR Workshop* and Conference Proceedings, pp. 1358–1367. JMLR.org, 2016a.
- Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed submodular maximization. J. Mach. Learn. Res., 17:238:1–238:44, 2016b.
- Baharan Mirzasoleiman, Morteza Zadimoghaddam, and Amin Karbasi. Fast distributed submodular cover: Public-private data summarization. In NIPS, pp. 3594–3602, 2016c.
- Marko Mitrovic, Mark Bun, Andreas Krause, and Amin Karbasi. Differentially private submodular maximization: Data summarization in disguise. In *ICML*, volume 70 of *Proceedings of Machine Learning Research*, pp. 2478–2487. PMLR, 2017.
- George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approximations for maximizing submodular set functions - I. *Math. Program.*, 14(1):265–294, 1978.
- Christos H. Papadimitriou, Michael Schapira, and Yaron Singer. On the hardness of being truthful. In *FOCS*, pp. 250–259. IEEE Computer Society, 2008.
- Shameem Puthiya Parambath, Nicolas Usunier, and Yves Grandvalet. A coverage-based approach to recommendation diversity on similarity graph. In *RecSys*, pp. 15–22. ACM, 2016.
- Chao Qian, Jing-Cheng Shi, Yang Yu, Ke Tang, and Zhi-Hua Zhou. Subset selection under noise. In *NIPS*, pp. 3560–3570, 2017.
- Akbar Rafiey and Yuichi Yoshida. Fast and private submodular and k-submodular functions maximization with matroid constraints. In *ICML*, volume 119 of *Proceedings of Machine Learning Research*, pp. 7887–7897. PMLR, 2020.
- Akbar Rafiey and Yuichi Yoshida. Sparsification of decomposable submodular functions. *arXiv* preprint arXiv:2201.07289, 2022.
- Sebastian Tschiatschek, Rishabh K. Iyer, Haochen Wei, and Jeff A. Bilmes. Learning mixtures of submodular functions for image collection summarization. In *NIPS*, pp. 1413–1421, 2014.
- Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle model. In *STOC*, pp. 67–74. ACM, 2008.

A PROOF OF THEOREM 2

Theorem 2 directly follows from the two lemmas below.

Lemma 9. Let $\epsilon' \leq \epsilon/2k$. Algorithm 2 with an additive ϵ' -approximate incremental oracle achieves a $(1 - 1/e - \epsilon)$ -approximation under a cardinality constraint k.

Proof. Let S^* be some optimal solution for F. We start by proving that the following holds for every $j \in [k]$:

$$F(S_{j+1}) - F(S_j) \ge \frac{1}{k}((1-\epsilon)F(S^*) - F(S_j))$$

Fix some $j \in [k]$ and let $S^* \setminus S_j = \{e_1^*, \dots, e_\ell^*\}$ where $\ell \leq k$. Let $S_t^* = \{e_1^*, \dots, e_t^*\}$, and $S_0^* = \emptyset$. Let us first use submodularity and monotonicity to upper bound $F(S^*)$.

$$F(S^*) \le F(S^* + S_j) = F(S_j) + \sum_{t=1}^{\ell} [F(S_j + S_t^*) - F(S_j + S_{t-1}^*)]$$

$$\le F(S_j) + \sum_{t=1}^{\ell} F_{S_j}(e_t^*) \le F(S_j) + \sum_{t=1}^{\ell} \max_{e \in E \setminus S_j} F_{S_j}(e)$$

$$\le F(S_j) + k \max_{e \in E \setminus S_j} F_{S_j}(e) \le F(S_j) + k(\max_{e \in E \setminus S_j} \hat{F}_{S_j}^j(e) + \epsilon' F(S^*))$$

Where the last inequality is due to the fact that $\hat{F}_{S_j}^j$ is an additive ϵ' -approximate incremental oracle. Noting that $e_j = \arg \max_{e \in E \setminus S_j} \hat{F}_{S_j}^j(e)$ we get that:

$$F(S^*) \le F(S_j) + k(\hat{F}_{S_j}^j(e_j) + \epsilon' F(S^*))$$
$$\implies \hat{F}_{S_j}^j(e_j) \ge \frac{1}{k}((1 - \epsilon' k)F(S^*) - F(S_j))$$

The above lower bounds the progress on the *j*-th mini-batch. Now, let us bound the progress on *F*. Again, we use the fact that $\hat{F}_{S_i}^j$ is an additive ϵ' -approximate incremental oracle.

$$F(S_{j+1}) - F(S_j) \ge \hat{F}_{S_j}^j(e_j) - \epsilon' F(S^*)$$

$$\ge \frac{1}{k} ((1 - \epsilon'k)F(S^*) - F(S_j)) - \epsilon' F(S^*) \ge \frac{1}{k} ((1 - 2\epsilon'k)F(S^*) - F(S_j))$$

Finally, using the fact that $\epsilon' \leq \epsilon/2k$ we get:

$$F(S_{j+1}) - F(S_j) \ge \frac{1}{k}((1-\epsilon)F(S^*) - F(S_j))$$

Rearranging, the result directly follows using standard arguments.

$$F(S_{k+1}) > \frac{(1-\epsilon)}{k}F(S^*) + (1-\frac{1}{k})F(S_k) \ge \frac{(1-\epsilon)}{k}F(S^*)(\sum_{i=0}^k (1-\frac{1}{k})^i) + F(\emptyset)$$
$$\ge F(S^*)\frac{(1-\epsilon)(1-\frac{1}{k})^k}{k(1-(1-\frac{1}{k}))} = (1-\epsilon)(1-\frac{1}{k})^kF(S^*) \ge (1-\epsilon)(1-1/e)F(S^*) \ge (1-1/e-\epsilon)F(S^*)$$

Lemma 10. Let $\epsilon' \leq \epsilon/2kp$. Algorithm 2 with an additive ϵ' -approximate incremental oracle achieves a $(\frac{1-\epsilon}{1+p})$ -approximation under a p-system constraint.

Proof. Let S^* be some optimal solution for F. Assume without loss of generality that the solution returned by the algorithm consists of k elements $S_{k+1} = \{e_1, \ldots, e_k\}$.

We show the existence of a partition $S_1^*, S_2^*, \ldots, S_k^*$ of S^* such that $F_{S_j}(e_j) \ge \frac{1}{p}F_{S_{k+1}}(S_j^*) - 2\epsilon'F(S^*)$. Note, we allow some of the sets in the partition to be empty.

Define $T_k = S^*$. For j = k, k - 1, ..., 2 execute: Let $B_j = \{e \in T_j \mid S_j + e \in \mathcal{I}\}$. If $|B_j| \leq p$ set $S_j^* = B_j$; else pick an arbitrary $S_j^* \subset B_j$ with $|S_j^*| = p$. Then set $T_{j-1} = T_j \setminus S_j^*$ before decreasing j. After the loop set $S_1^* = T_1$. It is clear that for $j = 2, ..., k, |S_j^*| \leq p$.

We prove by induction over j = 0, 1, ..., k-1 that $|T_{k-j}| \leq (k-j)p$. For j = 0, when the greedy algorithm stops, S_{k+1} is a maximal independent set contained in E, therefore any independent set (including $T_k = S^*$) satisfies $|T_k| \leq p |S_{k+1}| = pk$. We proceed to the inductive step for j > 0. There are two cases: (1) $|B_{k-j+1}| > p$, which implies that $\left|S_{k-j+1}^*\right| = p$ and using the induction hypothesis we get that $|T_{k-j}| = |T_{k-j+1}| - \left|S_{k-j+1}^*\right| \leq (k-j+1)p - p = (k-j)p$. (2) $|B_{k-j+1}| \leq p$, it holds that $T_{k-j} = T_{k-j+1} \setminus B_{k-j+1}$. Let $Y = S_{k-j+1} + T_{k-j}$. Due to the definition of B_{k-j+1} it holds that S_{k-j+1} is a maximal independent set in Y. It holds that T_{k-j} is independent and contained in Y, therefore $|T_{k-j}| \leq p |S_{k-j+1}| = p(k-j)$.

Finally, we get that $|T_1| = |S_1^*| \leq p$. By construction it holds that $\forall j \in [k], \forall e \in S_j^*, S_j + e$ is independent. From the choice made by the greedy algorithm and the fact that $\hat{F}_{S_j}^j$ is an additive ϵ' -approximate incremental oracle it follows that for each $e \in S_j^*$:

$$F_{S_j}(e_j) \ge \hat{F}_{S_j}^j(e_j) - \epsilon' F(S^*) \ge \hat{F}_{S_j}^j(e) - \epsilon' F(S^*) \ge F_{S_j}(e) - 2\epsilon' F(S^*)$$

Hence,

$$\left|S_{j}^{*}\right|F_{S_{j}}(e_{j}) \geq \sum_{e \in S_{j}^{*}} (F_{S_{j}}(e) - 2\epsilon'F(S^{*})) \geq F_{S_{j}}(S_{j}^{*}) - 2\epsilon'\left|S_{j}^{*}\right|F(S^{*}) \geq F_{S_{k+1}}(S_{j}^{*}) - 2\epsilon'\left|S_{j}^{*}\right|F(S^{*})$$

Using submodularity in the last two inequalities.

For all $j \in \{1, 2, ..., k\}$ it holds that $|S_j^*| \le p$, and thus $F_{S_j}(e_j) \ge \frac{1}{p}F_{S_{k+1}}(S_j^*) - 2\epsilon'F(S^*)$. Using the partition we get that:

$$F(S_{k+1}) \ge \sum_{j=1}^{k} F_{S_j}(e_j) \ge \sum_{j=1}^{k} (\frac{1}{p} F_{S_{k+1}}(S_j^*) - 2\epsilon' F(S^*))$$

$$\ge \frac{1}{p} F_{S_{k+1}}(S^*) - 2\epsilon' k F(S^*) \ge \frac{1}{p} (F(S^*) - F(S_{k+1})) - 2\epsilon' k F(S^*)$$

Where the second to last inequality is due to submodularity and the last is due to monotonicity. Rearranging we get that:

$$F(S_{k+1}) \ge \frac{(1-2p\epsilon'k)}{p+1}F(S^*)$$

As $\epsilon' < \frac{\epsilon}{2nk}$ we get the desired result.