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Abstract

Previous work in fair machine learning has char-
acterised the Fair Bayes Optimal Classifier (BOC)
on a given distribution for both deterministic and
randomized classifiers. We study the robustness
of the Fair BOC to adversarial noise in the data
distribution. Kearns & Li (1988) implies that the
accuracy of the deterministic BOC without any
fairness constraints is robust (Lipschitz) to mali-
cious noise in the data distribution. We demon-
strate that their robustness guarantee breaks down
when we add fairness constraints. Hence, we
consider the randomized Fair BOC, and our cen-
tral result is that its accuracy is robust to mali-
cious noise in the data distribution. Our robust-
ness result applies to various fairness constraints—
Demographic Parity, Equal Opportunity, Predic-
tive Equality. Beyond robustness, we demonstrate
that randomization leads to better accuracy and
efficiency. However, we show that the random-
ized Fair BOC is nearly-deterministic, and gives
randomized predictions on at most one data point,
hence availing numerous benefits of randomness,
while using very little of it.

1. Introduction
The effectiveness of machine learning models has resulted
in improved efficiency across multiple domains but has also
raised concerns about their fairness and possible amplifica-
tion of biases in their training data (Barocas et al., 2019).
When machine learning models are used to make decisions
that skew the distribution of important economic resources
or reinforce stereotypes, they compound disparities to cause
social and economic harm. Fair classification has been an
important topic of research, and binary fair classification
where the model makes yes/no decisions algorithmically is
a simple yet challenging setting to study foundational ques-

1Northeastern University 2Microsoft Research. Correspon-
dence to: Sushant Agarwal <agarwal.sus@northeastern.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

tions in optimal fair classification (Menon & Williamson,
2018b). In group-fair classification, each data point has cer-
tain sensitive attributes indicating the demographic group(s)
to which it belongs (e.g., race, gender). Popular notions
of group-fairness such as statistical or demographic par-
ity, equal opportunity, equalized odds, and predictive parity
are all motivated by the binary fair classification setting.
Demographic parity prescribes the positivity rates to be
equal across different groups (e.g., race, gender), whereas
equal opportunity prescribes the true positive rates to be
equal across different groups (Dwork et al., 2012; Hardt
et al., 2016). Previous work has looked at various trade-offs
between accuracy and fairness as well as the difficulty in sat-
isfying multiple fairness constraints simultaneously (Celis
et al., 2020). Previous work has also mathematically charac-
terized the Fair Bayes Optimal Classifier (BOC), namely, the
optimal deterministic classifiers for maximizing accuracy
subject to group-fairness constraints based such as demo-
graphic parity and equal opportunity (Menon & Williamson,
2018a; Chzhen et al., 2019; Celis et al., 2021; Zeng et al.,
2022). Pre-processing or re-weighing for training data im-
balances, in-processing by fairness-constrained training loss,
and post-processing a model’s predictions for balanced out-
comes are three known ways to realize fair and accurate
classifiers in practice (Kamiran & Calders, 2012; Agarwal
et al., 2018; Barocas et al., 2019).

Biased or corrupted training data is a primary cause of unfair-
ness in model predictions or outcomes. Moreover, robust-
ness of a machine learning model under bias or corruption in
the data distribution has been a more pragmatic concern that
predates the research on fair machine learning. Learning
robust classifiers is important because training and test dis-
tributions are not always identical and the training data may
contain noise and malicious corruptions during data collec-
tion, curation, and annotation. Robustness of fair classifiers
under bias/shift in the data distribution is a well studied is-
sue in fair machine learning literature. Akpinar et al. (2022)
empirically study the robustness of BOC and Fair BOC on
synthetic data distributions and provide a sandbox tool for
stress-testing fair classifiers. Sharma et al. (2023) and Ghosh
et al. (2023) empirically study robustness of fair classifiers
under data bias on semi-synthetic real-world datasets (i.e.,
real-world datasets with synthetically injected bias/shift).
In both these papers, Exponentiated Gradient Reduction

1



Optimal Fair Learning Robust to Adversarial Distribution Shift

(EGR) or ExpGrad (Agarwal et al., 2018) stands out for its
better robustness under data bias/shift, and it is inherently a
randomized classifier.

A particularly compelling and illustrative practical exam-
ple for fair binary classification with maliciously corrupted
training data is that of hate speech classifiers. Hate speech
classifiers are known to exhibit biases against the same
vulnerable demographics they were supposed to protect in
online forums. For example, text in African American En-
glish (AAE) has higher likelihood of being misreported as
hate speech and even proper mentions of group identifiers
such as ‘gay’ or ‘black’ get misreported as toxic or preju-
diced. Moreover, the training data taken from online forums
that is used to train hate speech classifiers contains societal
biases of novice human annotators as well as malicious at-
tempts made to bypass existing classifiers or filters used in
data collections and annotation process (Davani et al., 2023;
Davidson, 2023). Maliciously corrupted training data makes
it difficult to train fair hate speech classifiers with robust
accuracy and fairness guarantees that would be retained af-
ter real-world deployment (Davani et al., 2023; Davidson,
2023; Hartvigsen et al., 2022; Harris et al., 2022).

Classification under malicious noise is a theoretically chal-
lenging direction on its own, even without any fairness
constraints. Balcan & Haghtalab (2020) survey research di-
rections that originate from the work of Kearns & Li (1988),
but focus on the hardness of learning linear classifiers un-
der malicious noise and recent results that get around it.
Unlike previous works on learning from malicious noise
that consider any hypothesis class or a specific one such
as linear classifiers, we consider the hypothesis class of
all binary classifiers, deterministic as well as randomized.
Although previous work in fair machine learning has exten-
sively studied the Fair BOC and fair pre-/in-/post-processing
methods to achieve best possible fairness-accuracy trade-
offs, their fairness and accuracy guarantees may not hold
when training data is biased or contaminated and does not
match test data. Adversarial or unknown bias in data makes
it important to study the robustness of fairness and accuracy
guarantees of the Fair BOC.

The seminal work of Kearns & Li (1988) shows the robust-
ness (of accuracy) to malicious noise of any deterministic
hypothesis class (without fairness constraints) in terms of a
Lipschitz condition, i.e., given two similar distributions, the
accuracy of the optimal classifier on each distribution is also
similar. In particular, their robustness guarantee also car-
ries over to the deterministic BOC. In contrast, more recent
findings by Konstantinov & Lampert (2022) reveal a con-
cerning vulnerability: incorporating fairness constraints can
render certain deterministic hypothesis classes non-robust
to adversarial noise. This gap in understanding necessitates
an investigation into the robustness of Fair BOC’s under

adversarial distribution shift, which in turn is the focus of
this paper.

1.1. Overview of Our Results

We summarize our key contributions.

• We demonstrate in Claim 1 (Section 3.1) that the de-
terministic Fair BOC is not robust to adversarial noise,
corroborating Konstantinov & Lampert (2022).

Our main results prove the robustness of randomized Fair
BOC’s.

• We prove in Theorems 1 (Section 3.2), 2 and 3 (Sec-
tion 4) that the accuracy of the randomized Fair BOC is
robust to malicious noise across three popular fairness
notions (Demographic Parity, Equal Opportunity, and
Predictive Equality). This robustness is characterized
by a (local) Lipschitz property, where the Lipschitz con-
stant depends on the distribution (Yang et al., 2020).

• Toward this end, we first prove in Claims 2, 3, and 7
(Sections 3.2 and 4) that a fixed hypothesis maintains
comparable accuracy and fairness across two similar
distributions. This, however, does not imply our main
results since the Fair BOC may change significantly for
neighboring distributions. We establish the Lipschitz
property using a more sophisticated analysis of the
specific structure of the randomized Fair BOC.

In addition to robustness, randomization confers multiple
advantages.

• Claim 1 demonstrates that the Randomized Fair BOC
can outperform its deterministic counterpart in accu-
racy by 0.5− ϵ (for any ϵ > 0). We complement this
with a tightness result in Claim 6 (Appendix A).

• The Randomized Fair BOC can be computed in poly-
nomial time, whereas we prove in Claim 5 (Appendix
A) that computing the deterministic Fair BOC is NP-
complete.

Randomization is a very natural and useful resource for fair-
ness as ties are often broken by a random coin toss. However,
when it brings arbitrariness to critical decisions, it needs to
be used judiciously and sparingly (Creel & Hellman, 2021;
Rosenblatt & Witter, 2024; Cooper et al., 2024). A key
property of the randomized Fair BOC is that it is nearly
deterministic, being randomized at most on a single point in
the domain and deterministic elsewhere. Thus, in a sense,
we have the best of both worlds, preserving the benefits of
randomization, while using very little of it.
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We present the problem formulation in Section 2. More
detailed comparison with most relevant previous work is
given in Section 5.1, and we conclude in Section 5.2.

2. Problem Formulation
We are given a discrete distribution P over X × Z × Y ,
where Z = {A,D} represents the protected group mem-
bership (A denotes the advantaged group, and D denotes
the disadvantaged group)1, X represents all the other fea-
tures, and Y = {0, 1} represents the binary label set (we
adopt the standard convention of associating the label 1
with success or acceptance). A randomized classifica-
tion rule f is a function f : X × Z → [0, 1], where
f(x, z) denotes the probability of a feature vector or in-
stance (x, z) ∈ X × Z being mapped to 1. A determin-
istic classifier is defined similarly, however the output of
f(x, z) is restricted to {0, 1}. We consider the standard
0-1 loss function ℓ0−1

2, whose expected value is given by
L(f,P) = E[ℓ0−1(f)] = Pr[f(X,Z) ̸= Y ], where the
probability is over (X,Z, Y ) ∼ P3. As is standard, we
define accuracy as Acc(f,P) = 1− L(f,P).

In a fairness-aware learning problem, we want to find an
accurate classifier on a given distribution that also satisfies
some fairness constraints. Our work considers 3 of the
most popular notions of fairness (Demographic Parity, Equal
Opportunity, Predictive Equality). We present our proofs
for Demographic Parity in the main body, and defer the
proofs of the other 2 notions to Appendix 4. We state the
Demographic Parity definition below (Dwork et al., 2012).

Definition 1 (Demographic Parity). Denote the selection
rate for group z by rz(f,P) = Pr[f(X,Z) = 1 | Z = z]. f
satisfies Demographic Parity4 if the selection rates are equal
across both groups, i.e., rA(f,P) = rD(f,P). We quantify
the unfairness of f as the difference in selection rates across
groups , i.e., UnfDP(f,P) = |rA(f,P)− rD(f,P)|.

2.1. Fair Bayes Optimal Classifier

Given a distribution P , the optimal (accuracy-maximizing)
classifier f∗ (the BOC) is given by f∗(x, z) = T 1

2
(Pr[Y =

1 | X = x, Z = z]), where Tγ(β) is the threshold function
that outputs 1 if β ≥ γ, and 0 otherwise. We call the term β
in the expression above the score or success probability of a

1Our results also hold when there are multiple groups, but for
ease of exposition, we restrict our analysis to the case of 2 groups.

2Using the same proof techniques, our results also hold for the
more general loss function ℓα, known in literature as cost-sensitive
risk (Menon & Williamson, 2018b), that assigns a weight α to
False Positive errors, and a weight (1−α) to False Negative errors.
However, for simplicity, we restrict our analysis here to ℓ0−1.

3Henceforth, all probabilities will be over (X,Z, Y ) ∼ P ,
unless explicitly stated.

4Classifiers satisfying DP will be often be referred to as DP-fair.

point (x, z), and formally define it below.
Definition 2 (Score). The score S of a point (x, z) is the
probability that it has label 1, i.e., S(x, z) = Pr[Y =
1 | (X = x, Z = z)].

The BOC basically accepts a point if its score is ≥ 1
2 , and

rejects it otherwise. Note that the BOC as described above
is deterministic, and allowing for randomized classifiers
will not provide any increase in accuracy. However, when
fairness constraints are involved, the picture is more com-
plicated, and it turns out that allowing for randomization
actually can lead to a big jump in accuracy. To see how
randomized Fair BOC’s can improve the accuracy of their
deterministic counterparts, let us look at an example from
Agarwal & Deshpande (2022).
Example 1 (Accuracy jump in Randomized Fair BOC’s).
Consider the following distribution P5 over X × Z × Y ,
where X = {x1, x2} (P,S(x, z) = (p, q) denotes that
P(x, z) = p, and S(x, z) = q).

P,S(x1, A) = (0.5, 0.75) P,S(x1, D) = (0.25, 0.5)

P,S(x2, A) = (0, 0) P,S(x2, D) = (0.25, 0)

There are only 2 deterministic classifiers satisfying DP, ei-
ther the constant 1 classifier f1, or the constant 0 classi-
fier f0, with L(f1) = L(f0) = 1

2 . On the other hand,
consider the following randomized classifier f , where
f(x1, A) = 1

2 , f(x1, D) = 1, f(x2, A) = f(x2, D) = 0.
It is easy to see that f satisfies DP, and L(f) = 3

8 , hence
improving over the accuracy of the deterministic DP-fair
BOC’s f0 and f1.

Given a distribution P , Agarwal & Deshpande (2022) char-
acterize the DP-Fair BOC (the optimal classifier subject
to DP constraints) on a given distribution, which we now
describe. We first present some of their terminology.
Definition 3 (Cell). Consider a randomized partition of the
feature space X ×Z into multiple disjoint components. We
call these components cells, and denote a cell by C.

One can also define the score of a cell, in the same way
as we had defind the score of a point. We have already
seen the BOC that thresholds based on scores. Randomized
classifiers give us the ability to threshold by probability
mass, instead of just thresholding by scores. To explain this
better, we introduce the notion of group-wise sorted cells.
Definition 4 (Group-wise Sorted Cells). Define Cz =⋃
x∈X

Cx,z , where the component cells of CA and CD are

arranged in descending order of scores S. If two or more
cells from the same group have the same score, any ordering
within them is acceptable.

5Note that specifying a distribution over X ×Z ×Y is equiva-
lent to specifying a distribution over X × Z along with the scores
for every instance (x, z) ∈ X × Z .
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By Cz(t), denote the topmost cells of Cz comprising of
t fraction of the total probability mass of Cz . Note that
this may involve splitting a cell into 2 parts randomly. For
example, in Example 1, CA( 12 ) would involve splitting Cx1,A

into two equal parts randomly. However, in the deterministic
setting, only CA(0) and CA(1) are defined, and not CA( 12 ).
By T̃t, we denote the mass threshold classifier that accepts
exactly Cz(t) for z ∈ Z . In Example 1, the randomized
classifier f is the mass-threshold classifier T̃ 1

2
.

Definition 5 (Score Boundaries). Consider the component
cells of groupwise sorted CA and CD. Then, the score bound-
aries denote the set I = IA ∪ ID, where Iz consists of all
the boundary points between component cells in Cz .

Definition 6 (Merged Cells). Consider any ri ∈ I in sorted
order, and define a merged cell Ci as Ci = A(T̃ri)−A(T̃ri−),
where A(f) denotes the instances accepted by f , and ri−
denotes the element in I preceding ri.

Characterization Given a distribution P over X × Z ×
Y , the DP-Fair BOC fDP

P is given by the mass-threshold
classifier T̃r′ , where r′ = ri ∈ I is the unique i such that
S(Ci) ≥ 0.5, and S(Ci+) < 0.5, where ri+ denotes the
element in I after ri. Note that the DP-Fair BOC needs to
use randomization on at most one cell in the whole domain,
since the candidate r′ values lie in I. Hence, to evaluate
the Fair BOC, instead of considering the hypothesis class
of all randomized classifiers, it is sufficient to consider the
hypothesis class of classifiers that are randomized on at
most one element in the domain.

Figure 1. If the feature space X × Z has cardinality n, then the
hypothesis class of all randomized classifiers H is the hypercube
[0, 1]n. Similarly, the hypothesis class of all deterministic classi-
fiers is {0, 1}n. A fairness criterion is a linear constraint (this may
not be true of all fairness criteria, but is true of the well-known
ones that we study in this paper), which can be represented by a
hyperplane F . Also, accuracy A is a linear objective, implying that
the Fair BOC is the point in H∩F maximizing A. We illustrate
this in 3-dimensions here.

3. Robustness to Adversarial Distribution Shift
We study the robustness of the DP-Fair BOC to adversarial
distribution shift. We show that given 2 similar distributions
P,P ′ (similarity measured by TV distance), the accuracy of
the DP-Fair BOC on the respective distributions is similar
(satisfies local Lipschitzness). Note that DP-Fair BOC in
the deterministic case does not exhibit such a robustness
property, as we demonstrate in the following example.

3.1. Non-Robustness of the Deterministic Fair BOC

Claim 1 (Non-Robustness of Deterministic Fair BOC’s).
Given ϵ > 0, there exist P,P ′ with TV (P,P ′) ≤ ϵ, such
that the deterministic DP-Fair BOC’s f, f ′ on P,P ′, re-
spectively, satisfy |Acc(f,P)− Acc(f ′,P ′)| ≥ Ω(1).

Proof. Consider the following distribution P , with X =
{x1, x2}.

P,S(x1, A) = (0.25, 1) P,S(x1, D) = (0.25, 1)

P,S(x2, A) = (0.25, 0) P,S(x2, D) = (0.25, 0)

Consider the (deterministic) classifier f , with f(x1, A) =
f(x1, D) = 1, f(x2, A) = f(x2, D) = 0. It is easy to see
that f satisfies DP, and Acc(f) = 1, implying that f is the
DP-Fair BOC in both the deterministic and randomized set-
tings. Consider the neighboring distribution P ′ as follows,
for small ϵ.

P ′,S(x1, A) = (0.25, 1) P ′,S(x1, D) = (0.25 + ϵ, 1)

P ′,S(x2, A) = (0.25, 0) P ′,S(x2, D) = (0.25− ϵ, 0)

There are only 2 deterministic classifiers satisfying DP, ei-
ther the constant 1 classifier f1, or the constant 0 classifier
f0, with L(f1) = 1

2 + ϵ, and L(f0) = 1
2 − ϵ, implying that

f1 is the DP-Fair BOC in the deterministic setting. Hence,
the difference in accuracy of the deterministic DP-Fair BOC
on arbitrarily close P,P ′ is almost 0.5, demonstrating the
non-robustness of deterministic classifiers to distribution
shift.

3.2. Robustness of the Randomized Fair BOC

Now we state our main result.

Theorem 1 (Robustness of DP-Fair BOC). Given distribu-
tions P,P ′ with TV (P,P ′) = ϵ, we have∣∣Acc(fDP

P ,P)− Acc(fDP
P′ ,P ′)

∣∣ ≤
ϵ

(
1 +

max (P(A),P ′(A))

min(P(A),P ′(A))
+

max (P(D),P ′(D))

min(P(D),P ′(D))

)
.

Remark. Note that the Lipschitz constant will blow up if the
masses of either group becomes very small. Similar terms
in the denominator will naturally feature in all our bounds.
As such, robustness is not satisfied at such extremal points.
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We first prove Lemmas 1 and 2, and Claim 2 that will help
us prove Theorem 1. Lemma 1 shows that one can decom-
pose a transition from distribution P to distribution P ′ with
distance ϵ into a sequence of elementary transitions from
Pi−1 to Pi with distance ϵi such that ϵ =

∑
i ϵi and for

every i, the only difference between Pi−1 and Pi is that
mass is transferred from exactly one element of the domain
to another.

Lemma 1 (Decomposition into Elementary Transitions).
Given distributions P,P ′ with TV (P,P ′) = ϵ, there exist
distributions P0,P1, . . . ,Pn (for some n, with P = P0,
P ′ = Pn), such that the following two conditions hold:

1. Decomposability: TV (Pi−1,Pi) = ϵi,
∑n

i=1 ϵi = ϵ,
and in the transition Pi−1 → Pi, ϵi mass moves from
some instance ai to some bi (ai, bi ∈ X ×Z , all other
elements remain constant).

2. Monotonicity: If P(A) ≤ P ′(A), then for every 1 ≤
i < n, Pi(A) ≤ Pi+1(A) and Pi(D) ≥ Pi+1(D);
otherwise, Pi(A) ≥ Pi+1(A) and Pi(D) ≤ Pi+1(D).

Proof of Lemma 1. We will prove the desired claim for n
equal to number of elements q for which P(q) ̸= P(q′).
Our proof is by induction on n. For the base case, we
have n = 0, in which case P = P ′ and the claim trivially
holds. For the induction step, let a be an element such that
P(a) ̸= P ′(a). Suppose P(a) > P ′(a) and a is in group
A; the arguments for the other scenarios are analogous. We
consider two cases. The first case is when there exists b ∈ A
such that P(b) < P ′(b). We define P̃ as the same as P
except that

P̃(a) = P(a)−min{P(a)− P ′(a),P ′(b)− P(b)}
P̃(b) = P(b) + min{P(a)− P ′(a),P(b)− P ′(b)}.

Note that either P̃(a) = P ′(a) or P̃(b) = P ′(b), which
implies that the number of elements for which P̃ and P ′

differ is less than n. Furthermore, P(A) = P̃(A) and
P(D) = P̃(D). By induction, there exist a sequence of
m < n distributions P̃ = P0,P1, . . . ,Pm = P ′ satisfying
the decomposability and monotonicity properties. Append-
ing the elementary transition P → P̃ to the above sequence
yields the desired sequence for P and P ′ with the decom-
posability and monotonicity properties.

The second case is when there does not exist any b ∈ A
such that P(b) < P ′(b). So, we have P(A) > P ′(A).
Furthermore, there exists b ∈ D such that P(b) < P ′(b).
We define P̃ in the same way as for the first case. Again,
we have that either P̃(a) = P ′(a) or P̃(b) = P ′(b), which
implies that the number of elements for which P̃ and P ′

differ is less than n. Furthermore, P(A) > P̃(A) and
P(D) < P̃(D). By induction, there exist a sequence of

m < n distributions P̃ = P0,P1, . . . ,Pm = P ′ satisfying
the decomposability and monotonicity properties. Again,
appending the elementary transition P → P̃ to the above
sequence yields the desired sequence for P and P ′ with the
decomposability and monotonicity properties.

Claim 2 roughly states that given 2 similar distributions
P,P ′, the accuracy and DP-unfairness of any fixed hypothe-
sis is similar on both P,P ′. Such a property is useful when
we want a guarantee that if we train a classifier on the cor-
rupted distribution P ′, the performance of the classifier on
the actual distribution P will be similar to that on P ′.

Claim 2 (Accuracy, DP Shift for Fixed Hypothesis). Given
distributions P,P ′, such that TV (P,P ′) ≤ ϵ, any hypothe-
sis f satisfies the following two properties:

1. |Acc(f,P)− Acc(f,P ′)| ≤ ϵ.

2. |UnfDP(f,P)− UnfDP(f,P ′)| ≤
ϵ
(

1
min(P(A),P′(A)) +

1
min(P(D),P′(D))

)
Proof of Claim 2. We first establish the desired statements
for the special case where the transition from P to P ′ is
elementary in that the only difference between the two dis-
tributions is that there are two elements a and b that have ϵ
more mass and ϵ less mass, respectively, in P as compared
to P ′ (all other elements have the same mass in the two dis-
tributions). At the end, we invoke Lemma 1 and transitivity
to establish the general claim.

Accuracy: Divide the domain into 4 parts based on
whether a point falls in categories TP,FP,TN, or FN ac-
cording to f . Denote the probability mass of elements in
category E under f by P(E). We know that Acc(f,P) =
P(TP ∪ TN). Doing a simple case by case analysis, we
observe that in the worst case, a belongs to TP ∪ TN, and
b belongs to FP ∪ FN. This transition leads to a loss in
accuracy of ϵ, i.e., Acc(f,P ′) = Acc(f,P) − ϵ. We note
that it is enough to consider a loss in accuracy, since we
can reverse the roles of the distributions and use the same
argument for gain as that for loss.

Demographic Parity: First we notice the following

|UnfDP(f,P)− UnfDP(f,P ′)|
= ||rA(f,P)− rD(f,P)| − |rA(f,P ′)− rD(f,P ′)||
≤ |(rA(f,P)− rD(f,P))− (rA(f,P ′)− rD(f,P ′))|

(Triangle inequality)

= |(rA(f,P)− rA(f,P ′)) + (rD(f,P ′)− rD(f,P))|
≤ |rA(f,P)− rA(f,P ′)|+ |rD(f,P ′)− rD(f,P)| (1)

The above argument breaks up the change in unfairness into
two terms: (i) ∆rA ≜ |rA(f,P)− rA(f,P ′)|, which is the
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difference in selection rates of f for P , and P ′ on A and (ii)
∆rD ≜ |rD(f,P)− rD(f,P ′)|, which is the difference in
selection rates of f for P and P ′ on D.

We proceed to bound ∆rA, and an identical argument can
be used to bound ∆rD. In our argument, we divide the
domain into 4 parts based on the group membership and la-
beling according to f . Let the probability mass of elements
in group z with label y under classifier f be denoted by
P(z, fy). If a, b lie in the same group z then P(A) remains
unchanged, and it is easy to see that the maximum value
of ∆rA is ϵ

P(A) , when P ′(A, f1) = P(A, f1) ± ϵ. In case
a ∈ A, and b ∈ D, then P ′(A) = P(A)− ϵ. We know that
P ′(A) = P ′(A, f1) + P ′(A, f0). Either a lies completely
in (A, f1), completely in (A, f0), or in both (if we are ran-
domizing over the cell containing a). We first consider the
first case, where P ′(A, f1) = P(A, f1)− ϵ.

|rA(f,P)− rA(f,P ′)| =
∣∣∣∣P(A, f1)

P(A)
− P(A, f1)− ϵ

P(A)− ϵ

∣∣∣∣
=

∣∣∣∣P(A)ϵ− P(A, f1)ϵ

P(A) (P(A)− ϵ)

∣∣∣∣
≤ ϵ

∣∣∣∣ 1

P(A)− ϵ

∣∣∣∣
≤ ϵ

(
1

min(P(A),P ′(A))

)
We now consider the second case, where P ′(A, f0) =
P(A, f0)− ϵ.

|rA(f,P)− rA(f,P ′)| =
∣∣∣∣P(A, f1)

P(A)
− P(A, f1)

P(A)− ϵ

∣∣∣∣
=

∣∣∣∣ P(A, f1)ϵ

P(A) (P(A)− ϵ)

∣∣∣∣
≤ ϵ

∣∣∣∣ 1

P(A)− ϵ

∣∣∣∣
≤ ϵ

(
1

min(P(A),P ′(A))

)
It is easy to see that in the third case, where a lies in both
(A, f1) and (A, f0), ∆rA is bounded by the max value of
∆rA of cases 1 and 2.

Here we argued for when A loses mass. Using symmetry,
we can similarly argue the case where A gains mass, i.e.,
a ∈ D, and b ∈ A, leading to P ′(A) = P(A) + ϵ. Hence,
we conclude that

|rA(f,P)− rA(f,P ′)| ≤ ϵ

(
1

min(P(A),P ′(A))

)
(2)

Also, here we argued for group A, and an identical argument
for D shows that

|rD(f,P)− rD(f,P ′)| ≤ ϵ

(
1

min(P(D),P ′(D)

)
(3)

Plugging Equations 2 and 3 into Equation 1, we get that

|UnfDP(f,P)− UnfDP(f,P ′)| ≤

ϵ

(
1

min(P(A),P ′(A))

)
+ ϵ

(
1

min(P(D),P ′(D))

)

From elementary to arbitrary: Consider a general tran-
sition of distance ϵ from P to P ′. We invoke Lemma 1 to ob-
tain intermediate distributions {Pi} with TV (Pi−1,Pi) =
ϵi satisfying the decomposability and monotonocity proper-
ties. We apply the above proof for each elementary transi-
tion Pi−1 → Pi of mass ϵi. For accuracy, we derive

|Acc(f,P)− Acc(f,P ′)| ≤
∑
i

|Acc(f,Pi−1)− Acc(f,Pi)|

≤
∑
i

ϵi

= ϵ.

For Demographic Parity, we derive

|UnfDP(f,P)− UnfDP(f,P ′)| ≤∑
i

|UnfDP(f,Pi−1)− UnfDP(f,Pi)| ≤

∑
i

ϵi

(
1

min(Pi−1(A),Pi(A))
+

1

min(Pi−1(D),Pi(D))

)
≤
∑
i

ϵi

(
1

min(P(A),P ′(A))
+

1

min(P(D),P ′(D))

)
= ϵ

(
1

min(P(A),P ′(A))
+

1

min(P(D),P ′(D))

)
,

where the second inequality follows from monotonocity
and the last equation follows from decomposability. This
completes the proof of the claim.

We also use Lemma 2 (proof in Appendix A) for our main
result .

Lemma 2. Given any P, f , and P ′, f ′ such that
TV (P,P ′) = ϵ, if f ′(q) differs from f(q) by ∆f(q) (and
is identical elsewhere), then

|Acc(f,P)− Acc(f ′,P ′)| ≤ |P(q)(2S(q)− 1)∆f(q)|+ϵ.

Now we move on to the proof of our main theorem.

Proof of Theorem 1. Armed with these lemmas, we first es-
tablish the claim of the theorem for the special case where
the transition from P to P ′ is elementary in that the only
difference between the two distributions is that there are
two elements a and b that have ϵ more mass and ϵ less mass,
respectively, in P as compared to P ′ (all other elements
have the same mass in the two distributions). At the end,
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we invoke Lemma 1 and transitivity to establish the general
theorem statement.

Consider the transfer of ϵ mass from a to b in a continuous
manner. During this process, either the cell corresponding
to element a will monotonically increase in score or mono-
tonically decrease in score6. The same holds for the cell
corresponding to element b. The scores of all other cells
will remain the same. In the following argument, we assume
that the score of the cell of a decreases monotonically and
that of b increases monotonically. All of the arguments are
analogous for the remaining three cases.

We break down the ϵ mass transfer into smaller increments.
At any point, let P̃ be the distribution at the start of this
increment (so, P̃ = P initially) and P̃ ′ be the distribution
at the end of this increment (so, P̃ ′ = P ′ finally). For an
incremental mass transfer, we analyze how the DP BOC
changes from fDP

P̃ to fDP
P̃′ . Since the mass transfer is from

element a to b, it follows that both P̃(A) and P̃ ′(A) lie
between P(A) and P ′(A) while both P̃(D) and P̃ ′(D) lie
between P(D) and P ′(D). We consider the largest mass
transfer δϵ until one of the two following events occur.

1. Equal-score event: The cell of a has the same score as
the adjacent cell lower in the sorted order or the cell of
b has the same score as the adjacent cell higher in the
sorted order.

2. Threshold event: The score of a merged cell containing
a or b becomes exactly 0.5.

Bounding the accuracy change for δϵ: Note that by the
choice of δϵ, during the transfer δϵ, all the cells remain
in the same order in both groups; furthermore, all masses
and scores of all cells other than the ones containing a or b
remain the same during the transfer. By part 2 of Claim 2,

δUnfDP =
∣∣∣UnfDP(f

DP
P̃ , P̃)− UnfDP(f

DP
P̃ , P̃ ′)

∣∣∣
≤ δϵ

(
1

min(P̃(A), P̃ ′(A))
+

1

min(P̃(D), P̃ ′(D))

)
≤ δϵ

(
1

min(P(A),P ′(A))
+

1

min(P(D),P ′(D))

)

Since UnfDP(f
DP
P̃ , P̃) = 0, we know that δUnfDP =

UnfDP(f
DP
P̃ , P̃ ′) =

∣∣∣rA(fDP
P̃ , P̃)− rD(fDP

P̃ , P̃ ′)
∣∣∣. Consider

the cell q that is split in the middle by the threshold cor-
responding to fDP

P̃ (for now, assume q ∈ D). Since nei-
ther the equal-score event nor the 0.5-score event occur,

6In case the cell corresponding to a has score of 0 or 1, it’s
score will remain unchanged, and this case is trivially covered by
our argument.

we see that after the transition, the boundary of fDP
P̃ in-

tersecting q is δUnfDP away from the boundary in group
A. To modify fDP

P̃ → fDP
P̃′ , we therefore need to move

to move the boundary at q by δUnfDP so that the bound-
aries in both groups align and DP is satisfied (the clas-
sifier remains the same apart from its action on q). The
change in function value on element q, which we denote by
|∆f(q)|, is bounded by δUnfDP

P̃(D)

P̃(q)
, after scaling (since

P̃(D)δUnfDP = |∆f(q)| P̃(q)). At the end of the δϵ mass
transfer, by Lemma 2, the change in accuracy of the optimal
fair classifier is given by∣∣∣Acc(fDP

P̃ , P̃)− Acc(fDP
P̃′ , P̃ ′)

∣∣∣
≤
∣∣∣P̃(q)(2S(q)− 1)∆f(q)

∣∣∣+ δϵ

≤ δϵ

(
1 +

P̃(D) |(2S(q)− 1)|
min(P̃(A), P̃ ′(A))

+
P̃(D) |(2S(q)− 1)|
min(P̃(D), P̃ ′(D))

)

≤ δϵ

(
1 +

max (P(D),P ′(D))

min(P(A),P ′(A))
+

max (P(D),P ′(D))

min(P(D),P ′(D))

)
,

where the last inequality follows from the facts that
|(2S(q)− 1)| ≤ 1, P̃(A) and P̃ ′(A) both lie between P(A)
and P ′(A) and P̃(D) and P̃ ′(D) both lie between P(D)
and P ′(D).

In Appendix A.4, we derive a better upper bound on
|(2S(q)− 1)| and derive the following:∣∣∣Acc(fDP

P̃ , P̃)− Acc(fDP
P̃′ , P̃ ′)

∣∣∣ ≤
δϵ

(
1 +

max (P(A),P ′(A))

min(P(A),P ′(A))
+

max (P(A),P ′(A))

min(P(D),P ′(D))

)
.

Putting the two upper bounds together yields the following:∣∣∣Acc(fDP
P̃ , P̃)− Acc(fDP

P̃′ , P̃ ′)
∣∣∣ ≤

δϵ

(
1 +

max (P(A),P ′(A))

min(P(A),P ′(A))
+

max (P(D),P ′(D))

min(P(D),P ′(D))

)
.

Handling the equal-score and threshold events: We
now describe how to handle the two events.

1. Equal-score event: If the cell of a has the same score
as the adjacent cell lower in the sorted order, then we
swap the two cells so that the cell of a is lower in the
order. Similarly, if the cell of b has the same score as
the adjacent cell higher in the order, then we swap the
two cells so that the cell of b is higher in the order. We
update the classifier f and note that this change has no
impact on the accuracy of f .

2. Threshold event: The score of a merged cell containing
a or b becomes exactly 0.5. We include the merged cell
in the classifier f , again without changing accuracy.

7
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Thus, in a sense, between any two occurrences of these
events, the change in accuracy is bounded by an amount
proportional to the mass transfer; when we reach these
occurrences, the mass transfer is paused, the BOC changes
without any change in accuracy. Furthermore, at every
occurrence of the event, one of these three events happen:
the cell containing a moves down in the order, the cell
containing b moves up in the order, or an additional merged
cell is placed above the threshold. Since the number of times
these events can occur is upper bounded by the number of
cells in the two groups, this process is finite. Therefore,
adding over all the δϵ mass transfers, we obtain the desired
upper bound on the change in accuracy between the BOC’s
for P and P ′.

ϵ

(
1 +

max (P(A),P ′(A))

min(P(A),P ′(A))
+

max (P(D),P ′(D))

min(P(D),P ′(D))

)
.

From elementary to arbitrary: Consider a general tran-
sition of distance ϵ from P to P ′. We invoke Lemma 1 to ob-
tain intermediate distributions {Pi} with TV (Pi−1,Pi) =
ϵi satisfying the decomposability and monotonocity proper-
ties. We apply the above proof for each elementary transi-
tion Pi−1 → Pi of mass ϵi. For accuracy, we derive∣∣Acc(fDP

P ,P)− Acc(fDP
P′ ,P ′)

∣∣ ≤∑
i

∣∣∣Acc(fDP
Pi−1

,Pi−1)− Acc(fDPPi,Pi)
∣∣∣ ≤∑

i

ϵi×(
1 +

max(Pi−1(A),Pi(A))

min(Pi−1(A),Pi(A))
+

max(Pi−1(D),Pi(D))

min(Pi−1(D),Pi(D))

)
≤
∑
i

ϵi

(
1 +

max(P(A),P ′(A))

min(P(A),P ′(A))
+

max(P(D),P ′(D))

min(P(D),P ′(D))

)
= ϵ

(
1 +

max(P(A),P ′(A))

min(P(A),P ′(A))
+

max(P(D),P ′(D))

min(P(D),P ′(D))

)
,

where the third inequality follows from monotonocity and
the last equation follows from decomposability. This com-
pletes the proof of the theorem.

We now state the following corollary, which follows from
Claim 2 and Theorem 1. It roughly states that given 2
closeby distributions P,P ′, the accuracy of the respective
DP-Fair BOC’s is similar on P . Such a property is useful
when we want a guarantee that intuitively says that if we
train on the corrupted distribution P ′, we get a similar out-
come to what we would have gotten had we trained on the
true distribution P .

Corollary 1. Given distributions P,P ′ with TV (P,P ′) =
ϵ, we have∣∣Acc(fDP

P ,P)− Acc(fDP
P′ ,P)

∣∣ ≤
ϵ

(
2 +

max (P(A),P ′(A))

min(P(A),P ′(A))
+

max (P(D),P ′(D))

min(P(D),P ′(D))

)
.

4. Equal Opportunity and Predictive Equality
Earlier, we presented results for Demographic Parity. Our
results also extend to the popular fairness notions of Equal
Opportunity and Predictive Equality (Hardt et al., 2016;
Barocas et al., 2019). We state the results here, and defer the
proofs to Appendix B. We first define the fairness notions.

Definition 7 (Equal TPR, or Equal Opportunity). Denote
the true positive rate of f on group z by

TPRz(f,P) = Pr[f(X,Z) = 1 | Y = 1, Z = z].

f satisfies Equal Opportunity if the true positive rates are
equal for both groups, i.e. TPRA(f,P) = TPRD(f,P).
We quantify the unfairness of f as the difference in true
positive rates across groups , i.e.,

UnfEO(f,P) = |TPRA(f,P)− TPRD(f,P)|.

Definition 8 (Equal FPR, or Predictive Equality). Denote
the false positive rate of of f on group z by

FPRz(f,P) = Pr[f(X,Z) = 1 | Y = 0, Z = z].

f satisfies Predictive Equality if the false positive rates are
equal for both groups, i.e. FPRA(f,P) = FPRD(f,P).
We quantify the unfairness of f as the difference in false
positive rates across groups , i.e.,

UnfPE(f,P) = |FPRA(f,P)− FPRD(f,P)|.

Remark. Classifiers satisfying these notions of fairness will
be referred to as EO-fair, and PE-fair respectively. The
results for PE follow using the same proof techniques as that
of EO (since we can just reverse the roles of the labels 0 and
1 in EO to get results for PE). We state the analogous results
for PE in Appendix B.3. In addition, previous work has also
considered equal False Negative rate (FNR) and equal True
Negative rate (TNR) as notions of fairness. Obtaining equal
TPR is equivalent to obtaining equal FNR, and obtaining
equal TNR is equivalent to obtaining equal FPR, and hence
results for these notions of fairness also follow.

We now state the results for EO.

Claim 3 (EO Shift for a Fixed Hypothesis). Given distribu-
tions P,P ′, with TV (P,P ′) ≤ ϵ, and any hypothesis f , it
holds that

|UnfEO(f,P)− UnfEO(f,P ′)| ≤ ϵK(P,P ′),

where fEO
P , fEO

P′ are the EO-Fair BOC’s on P,P ′ respec-
tively, and K(P,P ′) =(

1

min(P(A, 1),P ′(A, 1))
+

1

min(P(D, 1),P ′(D, 1))

)
.
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Theorem 2 (Robustness of EO-Fair BOC). Given distribu-
tions P,P ′, such that TV (P,P ′) = ϵ, we have that∣∣Acc(fEO

P ,P)− Acc(fEO
P′ ,P ′)

∣∣ ≤
ϵ (1 + 2max(P(1),P ′(1))K(P,P ′)) ,

where fEO
P , fEO

P′ are the EO-Fair BOC’s on P,P ′ respec-
tively, and K(P,P ′) is as defined in Claim 3.

Corollary 2. Given distributions P,P ′, such that
TV (P,P ′) = ϵ, we have that∣∣Acc(fEO

P ,P)− Acc(fEO
P′ ,P)

∣∣ ≤
2ϵ (1 + max(P(1),P ′(1))K(P,P ′)) ,

where fEO
P , fEO

P′ are the EO-Fair BOC’s on P,P ′ respec-
tively, and K(P,P ′) is as defined in Claim 3.

5. Discussion
5.1. Comparison with Related Work

We now present detailed comparison with relevant previous
work. In Blum et al. (2024), they aim to avoid the non-
robustness phenomena highlighted in Konstantinov & Lam-
pert (2022), as follows. Given any deterministic hypothesis
class H, and distributions P,P ′ with TV (P,P ′) = ϵ, they
construct a randomized closure of H called PQ(H). Denote
by f, f ′ the optimal classifiers (subject to DP constraints)
on P,P ′ restricted to H, PQ(H) respectively. They show
that this satisfies a one-directional Lipschitzness constraint,
i.e., Acc(f ′,P ′) ≥ Acc(f,P) − O(ϵ). They also show
analogous results for EO and PE. Our setup has some key
differences. We do not consider any arbitrary H, but the
BOC setting which includes all deterministic classifiers (and
the 1-skeleton of their convex closure). More crucially, our
robustness guarantee is stronger, as their Lipschitzness guar-
antee is only one-directional. In addition, in most cases,
their output hypothesis incorporates a lot of randomness,
outputting a randomized decision on all elements in the do-
main, whereas our output hypothesis is randomized on at
most one element.

In the concurrent work of Xian & Zhao (2024), the sensi-
tivity analysis (Theorem 3.1) bounds the drop in accuracy
of the optimal fair classifier under a shift in distribution, for
the multiclass and multigroup setting, focusing on continu-
ous domains. However, their sensitivity analysis only holds
for either a shift in the label distribution, or in the group
membership distribution, whereas our robustness guaran-
tee works for adversarial distribution shifts. Adversarial or
arbitrary distribution shifts are strictly more general than la-
bel/covariate shifts, and moreover, they cannot be simulated
by any combination of label/covariate shifts. In addition,
in their sensitivity analysis (Theorem 3.1, 2nd result), the
change in accuracy due to group distribution shift, is a con-
stant independent of the amount of distribution shift (in the

case of perfect fairness). We prove a stronger Lipschitz-
ness guarantee, where the excess risk goes to 0 as distance
between the distributions becomes arbitrarily small. Further-
more, they do not provide a description of the Randomized
Fair BOC in the case of discrete domains, whereas we pro-
vide a complete characterization of the same, show that it is
minimally random. In addition, our algorithm (to output the
Fair BOC on a distribution) is very simple and efficient, run-
ning in O(|X | log(|X |)) time, while their algorithm solves
a large linear program with O(|X |) constraints in O(|X |)
variables, requiring a much higher complexity.

Chen et al. (2024) contains a similar sensitivity analysis
as Xian & Zhao (2024), for the same setting except binary
group and binary class. Unlike us, they do not deal with ad-
versarial distributions shifts, but only label distribution shifts
and/or group distribution shifts. In addition, our setups are
fundamentally different, theirs being the continuous case,
and ours being the discrete case. Moreover, their sensitivity
analysis (Theorem 2) is looser, and has an extra additive
error term, unlike ours and that of Xian & Zhao (2024).
Besides, they do not deal with the case of perfect fairness,
and require δ > 0. Chen et al. (2022) also consider fair-
ness under distribution shift. Their result is fundamentally
different, and essentially shows that the fairness of a fixed
hypothesis class on two similar distributions is similar. This
is essentially what we show in Claims 2/3/7, however, they
only deal with label and covariate shifts, while we tackle
the more general case of adversarial distribution shifts.

5.2. Future Work

Some directions for further work include extending our re-
sults for binary classification to multi-class classification,
and regression. Another direction could be to look at re-
laxed or approximate versions of the fairness notions we
considered. One could even look at other popular notions of
fairness, or satisfying multiple fairness notions simultane-
ously. It would also be valuable to experimentally validate
our theoretical claims. In addition, note that our results hold
for adversarial noise, but it might be possible to strengthen
the bounds if the noise came from a particular distribution.

Impact Statement
This paper presents work towards advancing theoretical un-
derstanding of fair machine learning under adversarial or
malicious distribution shift. Our results provide normative
principles in the debate on pros and cons of randomized
algorithmic decisions with societal consequences. Our work
underlines the need to compare and contrast different ways
to rectify biases in algorithmic decision-making with soci-
etal consequences.
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A. Missing Results from Section 3
A.1. Non-Robustness of the Deterministic Fair BOC (approximate fairness)

We show through the example below that the non-robustness phenomenon highlighted in Claim 1 also holds when we
only require approximate fairness7. In particular, this can hold in the case where sensitive group populations are highly
imbalanced, for example when the mass of group A is much larger than the mass of group D, i.e., P (A) ≫ P (D). We set
δ = 0.25, and slightly modify the example in Claim 1, where we skew the probability mass towards Group A (in Claim 1,
the group masses are balanced).

Claim 4 (Non-Robustness of Deterministic Fair BOC (approximate fairness)). There exist distributions P,P ′

with TV (P,P ′) = ϵ, such that the deterministic DP-Fair BOC’s f, f ′ on P,P ′, respectively, satisfies
|Acc(f,P)− Acc(f ′,P ′)| ≥ Ω(1).

Proof. Consider a distribution P, where P, S(x1, A) = (0.4, 1) — P, S(x1, D) = (0.1, 1) — P, S(x2, A) = (0.4, 0) —
P, S(x2, D) = (0.1, 0) Consider the (deterministic) classifier f , with f(x1, A) = f(x1, D) = 1, f(x2, A) = f(x2, D) = 0.
f satisfies DP, and Acc(f) = 1. Consider the neighboring distribution P ′ differing only on (x1, D), (x2, D), as follows.

P ′, S(x1, D) = (0.1 + 0.05, 1) — P ′, S(x2, D) = (0.1− 0.05, 0)

If we apply f on P ′, it does not satisfy approximate DP for any δ < 0.25, even though TV (P, P ′) is small (0.05). There
are only 2 deterministic classifiers satisfying approximate DP for any δ < 0.25, either the constant 1 classifier f1, or the
constant 0 classifier f0, with Acc(f1) = 1/2 + 0.05, and Acc(f0) = 1/2− 0.05. Hence, the difference in accuracy of the
deterministic (approximate) DP-Fair BOC on closeby P, P ′ is almost 0.5, demonstrating non-robustness.

A.2. NP-Completeness of Deterministic Fair Bayes Optimal Classifiers

Claim 5 (NP-Completeness of Deterministic DP-Fair BOC). Given a distribution P , the problem of computing the
deterministic DP-Fair BOC is NP-complete.

Proof. We formalize the deterministic DP-Fair BOC decision problem as follows: Given a probability distribution P and a
score function S over a domain X ×Z and an accuracy α, determine whether there exists a deterministic fair classifier with
accuracy at least α.

It is easy to see that the above problem is is in NP since one can guess the 0-1 classification for each item in the domain
and check in polynomial time that the resulting classifier is fair and satisfies the accuracy bound by verifying two linear
inequalities. We now show that the problem is NP-hard via a polynomial-time reduction from the NP-complete Partition
problem, which we state below.

Partition problem: Given a set S of n positive integers a1, a2, . . . , an summing to 2s, determine whether there exists a
subset of S that sums to s.

The reduction from Partition to the deterministic DP-Fair BOC problem is as follows. Given an instance I of Partition,
we create an instance I ′ of the deterministic DP-fair BOC problem. Instance I ′ has n+ 2 items—(x1, A) with mass 1/4
and score 1, item (x2, A) with mass 1/4 and score 0, and then n items (yi, D) with mass ai/(4s) and score 0.5—and ask
whether there is a deterministic DP-Fair classifier with accuracy α ≥ 3/4. It is clear that there are at most 3 kinds of
deterministic DP-fair classifiers: (i) the all-0 classifier that classifies all items as 0, (ii) the all-1 classifier that classifies all
items as 1, and (iii) if and only f I is a yes-instance with S partitioned into S1 and S2 of equal sums, then the classifier that
accepts exactly one of (x1, A) or (x2, A) and accepts all items in (yi, D) with ai ∈ S1 and rejecting all items in (yi, D)
with ai ∈ S2. The first two classifiers have accuracy 1/2 while the third, if it exists, has accuracy 3/4 if (x1, A) is accepted
and less than 3/4 otherwise. Thus, there exists a deterministic Fair BOC for instance I ′ with 3/4 accuracy if and only if I is
a yes-instance for the Partition problem. Clearly, the reduction is of time polynomial in the size of the deterministic DP-Fair
BOC instance, thus establishing its NP-completeness.

Since determining the existence of a deterministic DP-fair classifier with accuracy at least 3/4 is NP-complete it follows
immediately that finding a deterministic DP-Fair BOC is also NP-complete.

7We define a δ-approximately fair classifier as follows, “If r denotes selection rate, a classifier f is δ-approximately DP-fair if
|r(f,A)− r(f,D)| < δ”.
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A.3. Maximal Accuracy Gain for Randomized Classifiers

Consider the example in Claim 1, and consider the following randomized classifier f ′, where

f ′(x1, A) = f ′(x1, D) = 1, f ′(x2, A) = 4ϵ, f ′(x2, D) = 0.

It is easy to see that f ′ satisfies DP on P ′, and Acc(f ′) = 1− ϵ. Hence, the randomized DP-fair BOC improves over the
accuracy of its deterministic counterpart by 0.5− 2ϵ, where ϵ > 0 can be made arbitrarily small (so the gain in accuracy
approaches 0.5). In the following claim, we argue that this example is tight, i.e., we cannot hope to achieve an improvement
over 0.5.

Claim 6 (Bound in Accuracy Gain for Randomized classifiers). Given any distribution P , the difference in accuracy of the
Randomized and Deterministic DP-Fair BOC’s on P is strictly lesser than 0.5.

Proof. Note that the constant classifiers f0, f1 always satisfy DP, and Acc(f0) = 1 − Acc(f1). Hence, the minimum
accuracy of the optimal DP-fair deterministic classifier is 0.5. The maximum accuracy of its randomized counterpart is
bounded by 1, hence bounding the difference in accuracy by 0.5. It suffices to show that these 2 events cannot occur
simultaneously. Note that if some classifier has perfect accuracy, then all cells in the domain have score of either 0 or 1. In
particular, this also holds if the optimal DP-fair randomized classifier has accuracy 1. However, observe that if we randomize
over any cell with score of 0(1), we are accepting (rejecting) a part of it, leading to a loss in accuracy. This implies that any
classifier with accuracy 1 has to be deterministic, concluding our proof.

A.4. Completion of the Robustness Analysis for Demographic Parity

In this section, we present the argument that was deferred in the proof of Theorem 1. This argument concerns a better upper
bound on |2S(q)− 1| than the vacuous bound of 1, where q is the element that is split by the threshold corresponding to the
classifier f . Notice that since by assumption, f splits q in the middle, we know that there is a portion of q that is rejected.
Hence, the weighted score of a merged cell involving q (say Cq) has score below the threshold of 0.5. Let Cq contain some
element t from group A. We are able to bound the score of S(q) by the following chain of inequalities.

S(Cq) ≤ 0.5 =⇒ S(q)P(D) + S(t)P(A) ≤ 0.5 (P(D) + P(A))

=⇒ S(q)P(D) ≤ 0.5 (P(D) + P(A))

=⇒ 2S(q)− 1 ≤ P(A)

P(D)
(4)

Since f splits q in the middle, there is also a portion of q that is accepted. Hence, the weighted score of a merged cell
involving q (say Cq) has score above the threshold of 0.5. Let Cq contain some element t from group A. We are able to
bound the score of S(q) by the following chain of inequalities.

S(Cq) ≥ 0.5 =⇒ S(q)P(D) + S(t)P(A) ≥ 0.5 (P(D) + P(A))

=⇒ S(q)P(D) + P(A) ≥ 0.5 (P(D) + P(A))

=⇒ S(q)P(D) ≥ 0.5 (P(D)− P(A))

=⇒ 2S(q)− 1 ≥ −P(A)

P(D)
(5)

Combining Equations 4 and 5, we get

|2S(q)− 1| ≤ P(A)

P(D)
(6)
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Using Equation 6, we get that∣∣∣Acc(fDP
P̃ , P̃)− Acc(fDP

P̃′ , P̃ ′)
∣∣∣

≤ δϵ

(
1

min(P̃(A), P̃ ′(A))
+

1

min(P̃(D), P̃ ′(D))

)
P̃(D)

P̃(A)

P̃(D)
+ δϵ

= δϵ

(
1

min(P̃(A), P̃ ′(A))
+

1

min(P̃(D), P̃ ′(D))

)
P̃(A) + δϵ

≤ δϵ

(
1 +

max (P(A),P ′(A))

min(P(A),P ′(A))
+

max (P(A),P ′(A))

min(P(D),P ′(D))

)
(7)

The last equation follows by monotonicity. This completes the missing argument in the proof of Theorem 1.

A.5. Proof of Lemma 2

Proof. The contribution to accuracy of an element q is given by

P(q)S(q)f(q) + P(q)(1− S(q))(1− f(q))

= 2P(q)S(q)f(q) + P(q)− P(q)S(q)− P(q)f(q)

If P changes by ϵ and f(q) changes by ∆f(q) (and remains constant elsewhere), then we can split the process into two
parts: (i) f(q) changes by ∆f(q) (and remains constant elsewhere) while P remains constant, and (ii) P changes by ϵ while
f remains constant. We consider each of the parts.

If P remains fixed, and f(q) changes by ∆f(q) to give f ′(q), then change in accuracy on q (and also overall accuracy) is
given by

|2P(q)S(q)∆f(q)− P(q)∆f(q)| = |P(q)(2S(q)− 1)∆f(q)|

If P changes by ϵ, and f ′ remains constant, then by Claim 2 the change in accuracy is bounded by ϵ. Thus, the total change
in accuracy is bounded as follows.

|Acc(f,P)− Acc(f ′,P ′)| ≤ |P(q)(2S(q)− 1)∆f(q)|+ ϵ.

B. Equal Opportunity and Predictive Equality (continued)
B.1. Fair Bayes Optimal Classifier

When discussing the DP-Fair BOC, we considered mass-threshold classifiers T̃t, that select Cz(t), and reject Cz − Cz(t), for
both z = A, and z = D. T̃t applies the same threshold t to both groups A and D. In this section, we consider groupwise
mass-threshold classifiers T̃tA,tD that apply different thresholds tA and tD to groups A and D respectively.

Denote the True Positive rate of a classifier f restricted to a cell C by TPR(f(C)). Given r ∈ (0, 1], there is a unique classifier
T̃tA,tD , such that TPR(T̃tA,tD (CA)) = TPR(T̃tA,tD (CD)) = r. Denote this classifier by fr. Given r = 0, T̃tA,tD need not be
unique as there could exist cells with score 1. In that case, we define f0 to be the unique groupwise mass-threshold classifier
accepting exactly the cells with score 1. Denote the groupwise thresholds of fr by rA and rD respectively, i.e., fr = T̃rA,rD .
We now introduce some terminology, before detailing the EO-Fair BOC as characterized in Agarwal & Deshpande (2022).

Definition 9 (TP-Boundaries). Recall the set of score-boundaries I. We then define the set of TP-boundaries ITP as

ITP = {r | rA ∈ I, or rD ∈ I},

ITP essentially consists of all the true positive rates r, such that, the corresponding groupwise threshold classifier fr =
T̃rA,rD has a threshold at a point in the set of score boundaries I.

As with DP, we define the notion of a merged cell, but notice that it differs from the notion of merged cell in the case of DP.
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Definition 10 (Merged cell (EO)). Consider ri ∈ ITP , and define a merged cell Ci, where

Ci = A(fri)−A(fri−),

where ri− denotes the element in ITP preceding ri.

Characterization Given a distribution P over X ×Z ×Y , the EO-Fair BOC fEO
P is given by the mass-threshold classifier

is given by the group wise mass-threshold classifier fr′ , where r′ = ri ∈ I is the unique i such that S(Ci) ≥ 0.5, and
S(Ci+) < 0.5, where ri+ denotes the element in ITP after ri.

B.2. Robustness to Adversarial Distribution Shift

We study the robustness of the EO-Fair BOC to adversarial distribution shift. We show that given two similar distributions
P,P ′, the accuracy of the EO-Fair BOC on the respective distributions is similar (satisfies local Lipschitzness). Before
proving the main result (Theorem 2), we prove Claim 3, which analyzes the change in unfairness, with respect to EO, of a
fixed classifier due to a distribution shift. Such a property is useful when we want a guarantee that if we train a classifier on
the corrupted distribution P ′, the performance of the classifier on the actual distribution P will be similar to that on P ′.

Proof of Claim 3. As in the proof of Claim 2, it follows from Lemma 1 and transitivity that it is enough to prove the
statement of the claim for elementary transitions. We consider a transition a → b of mass ϵ. We first derive

|UnfEO(f,P)− UnfEO(f,P ′)| = ||TPRA(f,P)− TPRD(f,P)| − |TPRA(f,P ′)− TPRD(f,P ′)||
≤ |(TPRA(f,P)− TPRD(f,P))− (TPRA(f,P ′)− TPRD(f,P ′))|

(Triangle inequality)

= |(TPRA(f,P)− TPRA(f,P ′)) + (TPRD(f,P ′)− TPRD(f,P))|
≤ |TPRA(f,P)− TPRA(f,P ′)|+ |TPRD(f,P ′)− TPRD(f,P)| (8)

This breaks up the change in unfairness into two terms, which correspond to the difference in true positive rates of f for P
and P ′ on A,D respectively (denoted by ∆TPRA,∆TPRD). Divide the domain into 8 parts based on the group membership
and whether a point falls in TP,FP,TN, or FN according to f . Denote the probability mass of elements in group z in category
E under f by P(Ez). We know that P(A) = P(A, 1) + P(A, 0) = (P(TPA) + P(FNA)) + (P(TNA) + P(FPA)).

We proceed to bound ∆TPRA, and an identical argument can be used to bound ∆TPRD. If a, b lie in P(A, 1), it remains
unchanged, and it is easy to see that the maximum value of ∆TPRA is ϵ

P(A,1) , when P ′(TPA) = P(TPA) ± ϵ. In case
a ∈ (A, 1), and b /∈ (A, 1), then P ′(A, 1) = P(A, 1) − ϵ. We know that P ′(A, 1) = P ′(TPA) + P ′(FNA). Either a lies
completely in TPA, completely in FNA, or in both (if we are randomizing over the cell containing a). We first consider the
first case, where P ′(TPA) = P(TPA)− ϵ.

|TPRA(f,P)− TPRA(f,P ′)| =
∣∣∣∣P(TPA)

P(A, 1)
− P(TPA)− ϵ

P(A, 1)− ϵ

∣∣∣∣
=

∣∣∣∣P(TPA)P(A, 1)− P(TPA)ϵ− P(TPA)P(A, 1) + P(A, 1)ϵ

P(A, 1) (P(A, 1)− ϵ)

∣∣∣∣
=

∣∣∣∣ P(A, 1)ϵ− P(TPA)ϵ

P(A, 1) (P(A, 1)− ϵ)

∣∣∣∣
= ϵ

∣∣∣∣ P(FNA)

P(A, 1) (P(A, 1)− ϵ)

∣∣∣∣
≤ ϵ

∣∣∣∣ 1

P(A, 1)− ϵ

∣∣∣∣
= ϵ

∣∣∣∣ 1

P ′(A, 1)

∣∣∣∣
≤ ϵ

(
1

min(P(A, 1),P ′(A, 1))

)
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We now consider the second case, where P ′(FNA) = P(FNA)− ϵ.

|TPRA(f,P)− TPRA(f,P ′)| =
∣∣∣∣P(TPA)

P(A)
− P ′(TPA)

P ′(A, 1)

∣∣∣∣
=

∣∣∣∣P(TPA)

P(A, 1)
− P(TPA)

P(A, 1)− ϵ

∣∣∣∣
=

∣∣∣∣P(TPA)P(A, 1)− P(TPA)ϵ− P(TPA)P(A, 1)

P(A, 1) (P(A, 1)− ϵ)

∣∣∣∣
=

∣∣∣∣ P(TPA)ϵ

P(A, 1) (P(A, 1)− ϵ)

∣∣∣∣
≤ ϵ

∣∣∣∣ 1

P(A, 1)− ϵ

∣∣∣∣
= ϵ

∣∣∣∣ 1

P ′(A, 1)

∣∣∣∣
≤ ϵ

(
1

min(P(A, 1),P ′(A, 1))

)
(9)

It is easy to see that in the third case, where a lies in both TPA and FNA, ∆TPRA is bounded by the max value of ∆TPRA

of cases 1 and 2.

Here we argued for when (A, 1) loses mass. We can similarly argue the case where (A, 1) gains mass, giving us an identical
bound. Also, here we argued for group A, and an identical argument for D shows that

|TPRA(f,P)− TPRA(f,P ′)| ≤ ϵ

(
1

min(P(D, 1),P ′(D, 1))

)
(10)

Plugging Equations 9 and 10 into Equation 8, we get that

|UnfEO(f,P)− UnfEO(f,P ′)| ≤ ϵ

(
1

min(P(D, 1),P ′(D, 1))

)
+ ϵ

(
1

min(P(D, 1),P ′(D, 1))

)

Now we prove our main result (Theorem 2).

Proof of Theorem 2. Following the proof of Theorem 1, by Lemma 1 and transitivity, it suffices to show the theorem
statement for the case where the transition from P to P ′ is elementary in that the only difference between the two
distributions is that there are two elements a and b that have ϵ more mass and ϵ less mass, respectively, in P as compared to
P ′ (all other elements have the same mass in the two distributions). So, in the remainder of the proof, we only consider
elementary transitions.

Consider the transfer of ϵ mass from a to b in a continuous manner. During this process, either the cell corresponding
to element a will monotonically increase in score or monotonically decrease in score8. The same holds for the cell
corresponding to element b. The scores of all other cells will remain the same. In the following argument, we assume that
the score of the cell of a decreases monotonically and that of b increases monotonically. All of the arguments are analogous
for the remaining three cases.

Let f denote the EO-fair BOC for the current distribution P at any instant in this mass transfer process ending in distribution
P ′. As the mass transfer proceeds, we analyze how the EO-fair BOC changes from fEO

P to fEO
P′ . We consider the largest

mass transfer δϵ until one of the two following events occur.

1. Equal-score event: The cell of a has the same score as the adjacent cell lower in the sorted order or the cell of b has the
same score as the adjacent cell higher in the sorted order.

8In case the cell corresponding to a has score of 0 or 1, it’s score will remain unchanged, and this case is trivially covered by our
argument.
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2. Threshold event: The score of a merged cell containing a or b becomes exactly 0.5.

Note that by the choice of δϵ, during the transfer δϵ, all the cells remain in the same order in both groups; furthermore, all
masses and scores of all cells other than the ones containing a or b remain the same during the transfer. By Claim 3,

δUnfEO =
∣∣UnfEO(f

EO
P ,P)− UnfEO(f

EO
P ,P ′)

∣∣
≤ δϵ

(
1

P(A, 1)
+

1

P(D, 1)

)
.

Since UnfEO(f
EO
P (P)) = 0, we know that δUnfEO = UnfEO(f

EO
P ,P ′) =

∣∣TPRA(f
EO
P ,P ′)− TPRD(fEO

P ,P ′)
∣∣. Consider

the cell q that is split by the threshold corresponding to f (for now, assume q ∈ D). Since neither the equal-score event nor
the 0.5-score event occur, we see that after the transition, fEO

P has δUnfEO difference in TPR between groups. To modify
fEO
P → fEO

P′ , we therefore need to move to move the boundary at q so that TPR in both groups align and EO is satisfied
(the classifier f remains the same apart from its action on q). The change in function (|∆f(q)|) of element q is bounded
by δUnfEO

P(D,1)
S(q)P(q) , after scaling (since P(D, 1)δUnfEO = |∆f(q)| P(q)S(q)). If f ′ denotes the EO-Fair BOC for the

distribution at the end of the δϵ mass transfer (just prior to any of the two events), then by Lemma 2, the change in accuracy
of the optimal fair classifier is bounded by

|Acc(f,P)− Acc(f ′,P ′)| ≤ |P(q)(2S(q)− 1)∆f(q)|+ δϵ

≤ δϵ

(
1

min(P(A, 1),P ′(A, 1))
+

1

min(P(D, 1),P ′(D, 1))

)
P(D, 1) |(2S(q)− 1)|

S(q)
(11)

≤ δϵ

(
1

min(P(A, 1),P ′(A, 1))
+

1

min(P(D, 1),P ′(D, 1))

)
P(D)

S(q)
+ δϵ, (12)

where the last equation follows by monotonicity. Note that 1
S(q) can potentially blow up, and we would like to bound it.

Notice that since by assumption, f splits q in the middle, we know that there is a portion of q that is accepted. Hence, the
weighted score of a merged cell involving q (say Cq) has score above the threshold of 0.5. Let Cq contain some element t
from group A, and denote length of group z in Cq by lz . Since the TPR of both components are equal, we know that

P(A)lAS(t)
P(A, 1)

=
P(D)lDS(q)

P(D, 1)
(13)

Also, since S(Cq) ≥ 0.5, we know that

P(A)lAS(t) + P(D)lDS(q) ≥ P(A)lA + P(D)lD
2

(14)

Combining Equations 13, and 14, and after a bunch of simplification, we get that

1

S(q)
≤ 2P(1)

P(D, 1)
− P(A, 1)

P(D, 1)S(t)
(15)

≤ 2P(1)

P(D, 1)
(16)

Where the second equation follows because S(t) ≥ 0. Plugging Equation 16 into Equation 12, we get that

|Acc(f,P)− Acc(f ′,P ′)| ≤ δϵ

(
1

min(P(A, 1),P ′(A, 1))
+

1

min(P(D, 1),P ′(D, 1))

)
2P(1) + δϵ

≤ δϵ

(
1

min(P(A, 1),P ′(A, 1))
+

1

min(P(D, 1),P ′(D, 1))

)
2max(P(1),P ′(1)) + δϵ

(monotonicity)

The handling of the equal-score and threshold events is identical to that in the proof of Theorem 1. We repeat here for
convenience.
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1. Equal-score event: If the cell of a has the same score as the adjacent cell lower in the sorted order, then we swap the
two cells so that the cell of a is lower in the order. Similarly, if the cell of b has the same score as the adjacent cell
higher in the order, then we swap the two cells so that the cell of b is higher in the order. We update the classifier f and
note that this change has no impact on the accuracy of f .

2. Threshold event: The score of a merged cell containing a or b becomes exactly 0.5. We include the merged cell in the
classifier f , again without changing accuracy.

Thus, between any two occurrences of these events, the change in accuracy is bounded by an amount proportional to the
mass transfer; when we reach these occurrences, the mass transfer is paused, the BOC changes without any change in
accuracy. Furthermore, at every occurrence of the event, one of these three events happen: the cell containing a moves down
in the order, the cell containing b moves up in the order, or an additional merged cell is placed above the threshold. Since the
number of times these events can occur is upper bounded by the number of cells in the two groups, this process is finite.
Therefore, adding over all the δϵ mass transfers, we obtain the desired bound on the change in accuracy between the BOC’s
for P and P ′, thus completing the proof of the theorem.

B.3. Predictive Equality

We can obtain analogous results for Predictive Equality from the same proof techniques as that of Equal Opportunity (since
we can just reverse the roles of the labels 0 and 1 in EO to get results for PE). Hence, we only discuss the proofs for EO, and
state the analogous results for PE below without proof.

Claim 7 (PE Shift for a Fixed Hypothesis). Given distributions P,P ′, such that TV (P,P ′) ≤ ϵ, and any hypothesis f , it
holds that

|UnfPE(f,P)− UnfPE(f,P ′)| ≤ ϵ

(
1

min(P(A, 0),P ′(A, 0))
+

1

min(P(D, 0),P ′(D, 0))

)
.

Theorem 3 (Robustness of PE-Fair BOC). Given distributions P,P ′, such that TV (P,P ′) = ϵ, we have that

∣∣Acc(fPE
P ,P)− Acc(fPE

P′ ,P ′)
∣∣ ≤ ϵ

(
1 + 2max(P(0),P ′(0))

(
1

min(P(A, 0),P ′(A, 0))
+

1

min(P(D, 0),P ′(D, 0))

))
,

where fPE
P , fPE

P′ are the PE-Fair BOC’s on P,P ′ respectively.

Corollary 3. Given distributions P,P ′, such that TV (P,P ′) = ϵ, we have that

∣∣Acc(fPE
P ,P)− Acc(fPE

P′ ,P)
∣∣ ≤ 2ϵ

(
1 + max(P(0),P ′(0))

(
1

min(P(A, 0),P ′(A, 0))
+

1

min(P(D, 0),P ′(D, 0))

))
,

where fEO
P , fEO

P′ are the EO-Fair BOC’s on P,P ′ respectively
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