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Abstract001

Laparoscopic ultrasound (LUS) is essential for as-002

sessing the liver during laparoscopic liver resections.003

However, the interpretation of LUS images presents004

significant challenges due to the steep learning curve005

and image noise. In this study, we propose an en-006

hanced U-Net-based neural network with a ResNet18007

backbone specifically designed for real-time liver008

vessel segmentation of 2D LUS images. Our ap-009

proach incorporates five preprocessing steps aimed010

at maximizing the training information extracted011

from the ultrasound sonogram region. The mod-012

ified U-Net model achieved a Dice coefficient of013

0.879, demonstrating real-time performance at 40014

frames per second and enabling the development015

of advanced ultrasound-based surgical navigation016

solutions.017

1 Introduction018

Liver cancer remains one of the top 10 deadliest can-019

cers worldwide, resulting in approximately 750,000020

annual deaths [1]. The reason for its mortality rate021

is late diagnoses, limited treatment options, and022

underlying liver disease with aggressive tumor biol-023

ogy [2]. To locate liver tumors and vessels during024

laparoscopic liver surgery, clinicians are using the025

laparoscopic ultrasound (LUS), which helps to navi-026

gate and to avoid unnecessary damage during liver027

resection or ablation. LUS is a radiation-free medi-028

cal device, portable and cost-effective. It provides029

real-time images by capturing ultrasound reflected030

pulses from soft tissues and bones [3]. All of these031

LUS benefits give clinicians the ability to effectively032

diagnose liver cancer, such as hepatocellular car-033

cinoma and other metastases. Additionally, LUS034

allows visualization of essential liver structures, the035

portal vein, hepatic veins, and bile ducts.036

While valuable, LUS comes with several draw-037

backs. A key problem is speckle noise, an artifact038

from ultrasound waves, that interferes as reflected off039

tissue microstructures. This effect lowers overall im-040

age quality [4]. Vessel boundaries can also appear un-041

clear because of differences in tissue echogenicity —042

the way tissues reflect sound. When boundaries fade,043

tracking blood vessels during surgery becomes more044

difficult. Finally, underlying conditions like fatty045

liver or cirrhosis are causing liver texture changes046

which interfere with the interpretation of ultrasound 047

scans [5]. 048

These imaging issues limit how effectively LUS can 049

guide surgeons during liver procedures [6]. Several 050

conventional techniques could be used to account for 051

these challenges. One of the default modes of current 052

ultrasound (US) systems, is Color Doppler mode, 053

which can be used to visualize blood flow by detect- 054

ing frequency shifts in moving blood cells and to 055

enable real-time assessment of vascularity. However, 056

it has a relatively small region of interest, and its 057

effectiveness is heavily dependent on the operators’ 058

skill, which might introduce inconsistency in the 059

interpretation of the LUS data [7]. Another tradi- 060

tional visualization method is a Contrast-Enhanced 061

Ultrasound (CEUS). It uses microbubble contrast 062

agents to improve the visibility of blood vessels. 063

Unfortunately, this method requires careful timing 064

to capture the best blood flow enhancement after 065

the contrast is given, which can be difficult in busy 066

surgical environment [8]. Traditional segmentation 067

algorithms, such as region growing, thresholding, 068

and clustering, have also been employed for tissue 069

segmentation [9]. All of them require manual tuning 070

of thresholds value and seed points, which limits 071

their robustness in handling the complex and het- 072

erogeneous tissue structures present in ultrasound 073

images. 074

Over the recent years, deep learning-based ap- 075

proaches have emerged as a leading method for au- 076

tomated vessel segmentation. These techniques have 077

achieved impressive results, with a Dice similarity 078

coefficient of 0.734 for ultrasound images [10], 0.928 079

for MRI slices [11], and 0.814 for CT scans [12]. U- 080

Net-based architectures, have been recognized as the 081

gold standard for semantic segmentation tasks [13]. 082

Their encoder-decoder structure and skip connec- 083

tions have made them adaptable to enhancements 084

such as adding residual blocks (ResU-Net) [14], dense 085

connections (DenseU-Net) [6], attention gates (At- 086

tention U-Net) [15], or transformers (TransU-Net) 087

[16]. Although these studies have demonstrated 088

competitive results in segmenting various biological 089

tissues from ultrasound data, only a few have ex- 090

plored the performance of real-time segmentation [6, 091

17]. 092

Real-time ultrasound image segmentation is a 093

complex task due to the noise and inconsistent data. 094

Preprocessing is often employed to suppress speckle 095
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noise and reduce artifacts, but this adds computa-096

tional overhead. Varying echogenicity makes bound-097

ary detection difficult. Therefore, deep learning098

models need to be carefully optimized to achieve099

accurate results. Post-processing techniques, such100

as mask refinement for frame-to-frame consistency,101

or resizing output to the original resolution, add102

further computational load. This makes difficult to103

balance between tuning models for high accuracy or104

for the speed required in real-time applications.105

In a recent study, Smistad et al. [18] used an Ar-106

tificial Intelligence (AI) model to segment blood ves-107

sels, nerves, and bone structures during anesthesia-108

related procedures, and showed a promising perfor-109

mance. However, the predictions were made on a110

frame-by-frame basis without considering the tem-111

poral information in the sequential ultrasound data,112

which could have inherent potential information to113

enhance the performance.114

This paper aims to develop an automated AI-115

enabled LUS model for real-time vessel segmenta-116

tion, which can significantly improve liver cancer117

surgery. The contributions of the proposed workflow118

are summarized as follows:119

1. Fully anonymized LUS liver video data was lo-120

cally acquired and annotated with the assistance121

of experienced clinicians. The annotations are122

currently under final review by a radiologist.123

2. A dynamic approach was developed to extract124

the ultrasound sonogram from video frames. It125

enabled precise masking of the imaging area and126

prevented the network from learning irrelevant127

background features, thereby segmentation ac-128

curacy got improved without compromising real-129

time performance.130

3. The triplet input setup, similar to ones used131

for LUS-CT co-registration [19] and for object132

recognition [20], was integrated into a lightweight133

ResNet18 U-Net model, enhancing segmentation134

quality by introducing contextual information135

between frames.136

4. Contrast Limited Adaptive Histogram Equaliza-137

tion (CLAHE) [21] was applied and optimized138

for our dataset. It enhanced vessel boundaries139

and improved lumen visibility, which resulted in140

increased segmentation accuracy.141

5. A comprehensive study was conducted to eval-142

uate the performance of different U-Net family143

encoders, focusing on both segmentation accuracy144

and real-time inference efficiency.145

The AI-generated 2D liver vessel segmentation146

masks can also be used for 3D vessel reconstruction,147

aiding in image registration between preoperative148

and intraoperative stages.149

2 Proposed methodology 150

This paper addresses the segmentation of the ves- 151

sels in real time in laparoscopic ultrasound using 152

a U-Net–based encoder–decoder with a ResNet18 153

backbone. 154

2.1 Pre-processing pipeline 155

As shown on the left side of Figure 1, all the LUS 156

frames undergo standardization before entering the 157

network to: a) emphasize learning focused on the 158

acoustic sonogram, b) stabilize contrast across differ- 159

ent cases, acquisition depths, and sonogram shapes, 160

and c) ensure a consistent input shape while pre- 161

serving spatial geometry. The specific preprocessing 162

steps (1 to 5) visualized in Figure 1 will be described 163

in detail as follows: 164

1. Grayscale conversion: In LUS video, the RGB 165

channels are identical copies of the same intensity 166

data, so this processing step eliminates redundant 167

channels, resulting in a single-channel grayscale 168

representation. 169

2. Sonogram detection: To locate the US sono- 170

gram as a trapezoid in frame coordinates, the 171

dynamic contour-based detection with a fallback 172

heuristic was developed and used. For the fall- 173

back, the most recently detected good coordinates 174

were used. The trapezoid is defined by four cor- 175

ner points, stored in a 4× 2 matrix P trap ∈ Z4×2
≥0 , 176

where each row holds the (x, y) coordinates of one 177

corner in a set of intigers Z. By using this method, 178

we managed to successfully detect the sonogram 179

contour even when the acquisition depth was 180

changing. 181

3. Tight crop and CLAHE: After locating 182

the sonogram coordinates, we applied a tight 183

rectangular crop to remove unnecessary back- 184

ground. Two hyperparameters—the contrast lim- 185

iting threshold (clipLimit) and the grid size for 186

histogram equalization (GridSize) — were tuned 187

in a small-scale grid search. The chosen values, 188

clipLimit = 2.0 and GridSize = 8x8, which consis- 189

tently improved image contrast and led to better 190

segmentation performance both quantitatively 191

and qualitatively. 192

4. Sonogram masking: After cropping, the sono- 193

gram was isolated using a binary polygon mask 194

(sonogram = 0, outside = 255). Whitening 195

the background region minimized the predictive 196

model from extending beyond the sonogram con- 197

tour, ensuring the network focuses on anatomical 198

features within the sonogram area. 199

5. Resizing and padding: On the final step, we 200

resized the ultrasound frame by maintaining the 201

aspect ratio to prevent vessel distortion. Lastly, 202
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Figure 1. Overview of the proposed vessel segmentation pipeline. The raw RGB laparoscopic ultrasound frames
undergo five preprocessing steps, are arranged into temporal triplets, encoded with a ResNet18 backbone, and
decoded with a U-Net decoder to generate the final binary mask of the vessels.

performed the symmetric padding to 512 x 512203

using bilinear interpolation. This fixed square204

input ensures compatibility with various network205

backbones, making the preprocessing pipeline206

adaptable for different model selections.207

By applying these five preprocessing steps to208

each LUS video frame, we direct the model’s fo-209

cus toward the sonogram area that contains vascu-210

lar anatomy. CLAHE enhances local contrast for211

thin, low-contrast vessels, while aspect-ratio-based212

resizing prevents geometric distortions of tubular213

structures.214

2.2 Network architecture215

For this study, we tested and adopted a U-Net-216

based encoder–decoder network with multiple back-217

bones from the U-Net family, including lightweight218

ResNet18, MobileNet v2, DenseNet-121, medium-219

sized ResNet50, and Vanilla U-Net, as well as a220

larger model, InceptionNetV2. The selected encoder,221

ResNet18, and the standard U-Net decoder, used for222

training and inference, are shown on the right side223

of Figure 1. ResNet18, pretrained on ImageNet [22],224

provides residual blocks that support stable training225

on small medical datasets. To exploit temporal co-226

herence, sequential frames are processed as triplets227

rather than individually, enabling motion-aware and228

more consistent predictions. In general, U-Net archi-229

tecture was selected due to its strong performance in230

segmentation tasks and its skip connections which231

help retain fine spatial details that are often lost232

during the downsampling process. 233

2.2.1 Modified input layer: temporal triplet 234

setup 235

Unlike conventional U-Net inputs that use a single 236

2D frame, we implemented triplets of consecutive 237

frames to leverage the temporal information of se- 238

quential ultrasound video data. During training, a 239

symmetric triplet setup [It−1, It, It+1] was used, with 240

the ground truth mask corresponding to the middle 241

image It. This configuration allows the model to 242

learn context from both past and future frames, pos- 243

sibly enhancing vessel continuity and robustness to 244

speckle noise. During inference, since future frames 245

are not available, we switched to a more standard 246

triplet setup: [It−2, It−1, It], which maintains the 247

benefits of temporal context without compromising 248

real-time performance. 249

2.2.2 Loss, optimization and training con- 250

trols 251

In preliminary experiments with a Vanilla U-Net, we 252

tested several segmentation loss functions commonly 253

used in medical imaging, including Dice loss [23], Fo- 254

cal loss [24], and Binary Cross-Entropy (BCE) loss 255

[25]. Based on this comparison, we selected BCE 256

as the primary training loss for all tested encoder 257

backbones, as it provided the most consistent gen- 258

eralization and improvements. The Dice coefficient 259

was used as the primary evaluation metric during 260

model validation. The BCE loss can be described 261

3



NLDL
#42

NLDL
#42

NLDL 2026 Full Paper Submission #42. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

as follows:262

BCE(p, y) = − (y log(p) + (1− y) log(1− p)) , (1)263

where y ∈ {0, 1} is the ground truth, and p ∈ [0, 1]264

is the predicted probability (after sigmoid func-265

tion). We employed Binary Cross-Entropy with266

logits loss (BCEWithLogitsLoss in PyTorch [26]),267

which is equivalent to applying a sigmoid activation268

followed by binary cross-entropy, but implemented269

in a numerically more stable form.270

2.2.3 Optimization271

All our networks were trained for up to 100 epochs272

under identical conditions to ensure a fair compar-273

ison across backbones. For optimization, we used274

Adam optimizer with a learning rate of 1 × 10−3
275

and a learning rate scheduler (factor = 0.5, patience276

= 5) to improve convergence once the validation277

loss plateaued. Other data augmentation techniques278

were excluded from the training. To accelerate train-279

ing and minimize memory usage, mixed precision280

training (AMP) was employed, offering lower compu-281

tational costs without compromising accuracy. The282

implemented early stopping interrupted the training283

if the validation Dice score did not improve for 10284

epochs, preventing possible overfitting. The batch285

size was set to 18 to fully utilize the available GPU286

(RTX 4080, 12GB VRAM), and each channel of the287

triplet input was normalized to [−1, 1].288

2.3 Dataset and data split289

The locally acquired dataset consisted of laparo-290

scopic ultrasound videos from 11 separate cases,291

which were divided into a total of 2,200 frames.292

Each case folder contained sequential 2D frames293

along with pixel-wise binary masks that were lo-294

cally annotated. To maintain independence between295

training and evaluation, a leave-one-case-out strat-296

egy was employed, with the held-out case serving297

as a fixed test set and the remaining ten cases used298

for model development. This data was divided into299

training and validation subsets in a 90/10 split.300

3 Results and discussion301

Various backbone architectures were tuned and302

compared within the proposed U-Net framework.303

Performance was initially evaluated using 5-fold304

cross-validation across all cases to identify the most305

promising encoders. Following this, we conducted306

single-fold training with a fixed leave-one-case-out307

test set to assess generalization on unseen data.308

Table 1. Comparison of vessel segmentation perfor-
mance of different models: Dice coefficient (DC) with
standard deviation (Std) from 5-fold cross-validation
(CV), and DC, recall, precision, and Intersection over
Union (IoU) on the test set.

Encoder Type
5-Fold CV Test set
DC ± Std DC Recall Precision IoU

ResNet18 0.916 ± 0.002 0.879 0.840 0.923 0.783
ResNet50 0.904 ± 0.002 0.856 0.811 0.912 0.748
MobileNet v2 0.906 ± 0.002 0.862 0.819 0.917 0.757
Vanilla U-Net 0.918 ± 0.003 0.859 0.827 0.897 0.753
DenseNet121 0.901 ± 0.003 0.849 0.798 0.913 0.738
IncResNetV2 0.926 ± 0.002 0.888 0.867 0.911 0.798

3.1 Quantitative results 309

Table 1 presents the results of the 5-fold cross- 310

validation experiments, comparing six backbone con- 311

figurations. All tested encoders achieved Dice scores 312

above 0.9 in 5-fold cross-validation, demonstrating 313

that vessel segmentation in LUS is a learnable task. 314

The consistent results across architectures indicate 315

strong robustness and suggest that encoder selec- 316

tion can be guided by efficiency and deployment 317

considerations rather than segmentation accuracy 318

alone. When looking at the results from the test set, 319

both InceptionResNetV2 and ResNet18 performed 320

well, with InceptionResNetV2 reaching the highest 321

Dice score of 0.888 and recall of 0.867 on the test 322

set. Deep architecture and Inception modules en- 323

able InceptionResNetV2 to capture multi-scale rich 324

features, while residual connections help stabilize 325

training similarly as in ResNet18. However, with a 326

large number of parameters, the model is computa- 327

tionally heavy, leading to longer training times and 328

slower inference compared to lighter backbones. 329

Despite being the lightest model, ResNet18 pro- 330

duced competitive Dice of 0.879 and high precision 331

score of 0.923, benefiting from residual connections 332

that support efficient gradient flow and stable fea- 333

ture learning. Additionally, the smaller parameter 334

count noticeably improved the inference speed, pre- 335

serving real-time capability even with our additional 336

preprocessing steps. This balance of accuracy and 337

efficiency makes ResNet18 particularly suited for 338

laparoscopic ultrasound vessel segmentation, where 339

reliable performance must be achieved under strict 340

computational constraints. 341

3.2 Qualitative results 342

Figure 2 shows representative segmentation exam- 343

ples from three test frames, comparing ground truth 344

annotations with predictions from the lightweight 345

ResNet18, the heavier InceptionResNetV2, and the 346

medium-sized Vanilla U-Net. Across the mod- 347

els, there is a noticeable tendency for slight over- 348

segmentation. While InceptionResNetV2 produced 349

the most visually refined results, its computational 350

complexity makes it less suitable for real-time de- 351
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Figure 2. Vessel segmentation results using three models.
Red: ground truth, Yellow: model predictions, Blue circles: over-predicted regions.

ployment. In contrast, ResNet18 provided visually352

comparable masks, with segmentation quality not353

significantly inferior to that of Vanilla U-Net, despite354

being much lighter.355

3.3 Impact of the triplet setup356

To assess whether the proposed triplet input im-357

proves temporal stability compared to single-frame358

predictions, we trained a ResNet18 model with both359

single-frame and triplet inputs under otherwise iden-360

tical settings. We then defined temporal consistency361

metrics, following recent studies [27, 28], and re-362

ported them in Table 2. Temporal Dice is defined as363

the Dice coefficient between consecutive frame pre-364

dictions, averaged over the sequence, while Temporal365

IoU is defined analogously using the IoU.366

In addition, we evaluated prediction stability367

across time. Following Rebol et al. [29], we mea-368

sured Flip-rate, the proportion of pixels whose labels369

switch between consecutive frames (e.g., a vessel370

pixel that disappears and reappears). This captures371

segmentation “flickering” over time. However, in372

our experiments, Flip-rate values were consistently373

close to zero, likely reflecting both the strong class374

imbalance (vessel vs. background) and the generally375

high segmentation accuracy. Thus, the Flip-rate376

confirms the absence of large temporal instabilities377

in both compared models.378

To quantify boundary stability, we used the idea379

from Perazzi et al. [30]. We define Boundary jitter380

as the average displacement (in pixels) of the pre-381

dicted vessel boundary between consecutive frames,382

capturing small shifts of vessel contours. The re-383

sults indicate that our model performs better when384

trained with adjacent frames, enhancing all temporal385

metrics. We also assessed the per-frame standard de-386

Table 2. Comparison of single-frame and triplet input
ResNet18 U-Net models. Mean ± standard deviation is
reported for all metrics. Arrows indicate whether higher
(↑) or lower (↓) values are better.

Metric
ResNet18 U-Net

(Single)
ResNet18 U-Net

(Triplet)

Per-frame DC vs. GT (↑) 0.875 ± 0.031 0.879 ± 0.030
Temporal DC (↑) 0.932 ± 0.056 0.938 ± 0.045
Temporal IoU (↑) 0.877 ± 0.091 0.886 ± 0.073
Flip rate (↓) 0.008 ± 0.008 0.007 ± 0.007
Boundary jitter (px, ↓) 1.334 ± 1.257 0.980 ± 0.990

viation against the ground truth (GT), which showed 387

slight improvement. Additionally, the triplet input 388

configuration enhanced temporal consistency, yield- 389

ing masks that were more stable and less prone to 390

flickering compared to the single-frame predictions 391

shown in the provided four consecutive frames in Fig- 392

ure 3. The masks produced by the triple-frame setup 393

had fewer false positive predictions, fewer false neg- 394

ative predictions, and fewer instances of flickering, 395

resulting in a more stable stream during real-time 396

experiments. 397

3.4 Real-time experiment and results 398

To test deployment under realistic conditions, the 399

models were evaluated on an unseen laparoscopic 400

ultrasound video using the full real-time pipeline, 401

including preprocessing, frame-wise inference, and 402

post-processing to mimic the clinician’s view. The 403

developed dynamic contour detector enabled the 404

model to adapt to changing imaging depths without 405

introducing artifacts, maintaining high frames per 406

second (fps) even with intensive preprocessing and 407

post-processing. 408
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Figure 3. Qualitative comparison of vessel segmentation results from single-frame and triplet-based ResNet18
U-Net models. Green circles highlight false negatives (under-predicted vessels), while yellow circles mark false
positives (over-predicted regions), and blue circles indicate temporal flipping across frames.

The real-time performance metrics of the tested409

models are summarized in Table 3. The final col-410

umn reflects the results observed during continuous411

video playback in fps. Despite InceptionResNetV2412

achieving the highest Dice score, it was the slowest413

for inference. The literature suggests that a frame414

rate of 30 fps is generally sufficient for real-time415

performance [31, 32]. A couple of tested models,416

including ResNet18, ResNet50, and MobileNet v2417

reached and sustained this fps target, with ResNet18418

also allowing for potential further tuning if needed.419

Notably, this model delivered segmentation qual-420

ity comparable to that of InceptionResNetV2 while421

achieving a stable throughput of 40 fps, making it422

the most viable candidate for intraoperative segmen-423

tation deployment.424

4 Conclusion425

In this paper, we presented a five-step preprocessing426

framework combined with a triplet-based ResNet18427

U-Net model for real-time laparoscopic ultrasound428

image segmentation, achieving competitive Dice429

scores for liver vessel segmentation. Key contri-430

butions include a dynamic contour detector that431

improved generalization across varying depths and432

a triplet input setup that enhanced the temporal433

stability of vessel segmentation. We also evaluated434

real-time performance and mask quality, confirming435

the feasibility of deployment. Future work will focus436

on direct integration with live ultrasound streams437

and extension to 3D vessel reconstruction.438

Table 3. Comparison of model complexity and perfor-
mance. Parameter count, forward-pass inference time,
model size, and measured real-time fps (including prepro-
cessing and postprocessing in the ultrasound pipeline)
are reported.

Encoder name Parameters Time (ms) Model size (MB) FPS

ResNet18 14,328,209 5.48 56.08 40
ResNet50 32,521,105 9.03 127.38 36
MobileNet v2 6,628,945 7.55 26.17 37
Vanilla U-Net 31,037,633 12.63 121.33 29
DenseNet121 13,607,633 16.97 53.78 29
IncResNetV2 62,029,297 29.21 243.04 21
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