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Abstract

Laparoscopic ultrasound (LUS) is essential for as-
sessing the liver during laparoscopic liver resections.
However, the interpretation of LUS images presents
significant challenges due to the steep learning curve
and image noise. In this study, we propose an en-
hanced U-Net-based neural network with a ResNet18
backbone specifically designed for real-time liver
vessel segmentation of 2D LUS images. Our ap-
proach incorporates five preprocessing steps aimed
at maximizing the training information extracted
from the ultrasound sonogram region. The mod-
ified U-Net model achieved a Dice coefficient of
0.879, demonstrating real-time performance at 40
frames per second and enabling the development
of advanced ultrasound-based surgical navigation
solutions.

1 Introduction

Liver cancer remains one of the top 10 deadliest can-
cers worldwide, resulting in approximately 750,000
annual deaths [1]. The reason for its mortality rate
is late diagnoses, limited treatment options, and
underlying liver disease with aggressive tumor biol-
ogy [2]. To locate liver tumors and vessels during
laparoscopic liver surgery, clinicians are using the
laparoscopic ultrasound (LUS), which helps to navi-
gate and to avoid unnecessary damage during liver
resection or ablation. LUS is a radiation-free medi-
cal device, portable and cost-effective. It provides
real-time images by capturing ultrasound reflected
pulses from soft tissues and bones [3]. All of these
LUS benefits give clinicians the ability to effectively
diagnose liver cancer, such as hepatocellular car-
cinoma and other metastases. Additionally, LUS
allows visualization of essential liver structures, the
portal vein, hepatic veins, and bile ducts.

While valuable, LUS comes with several draw-
backs. A key problem is speckle noise, an artifact
from ultrasound waves, that interferes as reflected off
tissue microstructures. This effect lowers overall im-
age quality [4]. Vessel boundaries can also appear un-
clear because of differences in tissue echogenicity —
the way tissues reflect sound. When boundaries fade,
tracking blood vessels during surgery becomes more
difficult. Finally, underlying conditions like fatty
liver or cirrhosis are causing liver texture changes
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AI-Enabled Vessels Segmentation Model for Real-Time Laparo-

which interfere with the interpretation of ultrasound
scans [5].

These imaging issues limit how effectively LUS can
guide surgeons during liver procedures [6]. Several
conventional techniques could be used to account for
these challenges. One of the default modes of current
ultrasound (US) systems, is Color Doppler mode,
which can be used to visualize blood flow by detect-
ing frequency shifts in moving blood cells and to
enable real-time assessment of vascularity. However,
it has a relatively small region of interest, and its
effectiveness is heavily dependent on the operators’
skill, which might introduce inconsistency in the
interpretation of the LUS data [7]. Another tradi-
tional visualization method is a Contrast-Enhanced
Ultrasound (CEUS). It uses microbubble contrast
agents to improve the visibility of blood vessels.
Unfortunately, this method requires careful timing
to capture the best blood flow enhancement after
the contrast is given, which can be difficult in busy
surgical environment [8]. Traditional segmentation
algorithms, such as region growing, thresholding,
and clustering, have also been employed for tissue
segmentation [9]. All of them require manual tuning
of thresholds value and seed points, which limits
their robustness in handling the complex and het-
erogeneous tissue structures present in ultrasound
images.

Over the recent years, deep learning-based ap-
proaches have emerged as a leading method for au-
tomated vessel segmentation. These techniques have
achieved impressive results, with a Dice similarity
coefficient of 0.734 for ultrasound images [10], 0.928
for MRI slices [11], and 0.814 for CT scans [12]. U-
Net-based architectures, have been recognized as the
gold standard for semantic segmentation tasks [13].
Their encoder-decoder structure and skip connec-
tions have made them adaptable to enhancements
such as adding residual blocks (ResU-Net) [14], dense
connections (DenseU-Net) [6], attention gates (At-
tention U-Net) [15], or transformers (TransU-Net)
[16]. Although these studies have demonstrated
competitive results in segmenting various biological
tissues from ultrasound data, only a few have ex-
plored the performance of real-time segmentation [6,
17].

Real-time ultrasound image segmentation is a
complex task due to the noise and inconsistent data.
Preprocessing is often employed to suppress speckle
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noise and reduce artifacts, but this adds computa-
tional overhead. Varying echogenicity makes bound-
ary detection difficult. Therefore, deep learning
models need to be carefully optimized to achieve
accurate results. Post-processing techniques, such
as mask refinement for frame-to-frame consistency,
or resizing output to the original resolution, add
further computational load. This makes difficult to
balance between tuning models for high accuracy or
for the speed required in real-time applications.

In a recent study, Smistad et al. [18] used an Ar-
tificial Intelligence (AI) model to segment blood ves-
sels, nerves, and bone structures during anesthesia-
related procedures, and showed a promising perfor-
mance. However, the predictions were made on a
frame-by-frame basis without considering the tem-
poral information in the sequential ultrasound data,
which could have inherent potential information to
enhance the performance.

This paper aims to develop an automated Al-
enabled LUS model for real-time vessel segmenta-
tion, which can significantly improve liver cancer
surgery. The contributions of the proposed workflow
are summarized as follows:

1. Fully anonymized LUS liver video data was lo-
cally acquired and annotated with the assistance
of experienced clinicians. The annotations are
currently under final review by a radiologist.

2. A dynamic approach was developed to extract
the ultrasound sonogram from video frames. It
enabled precise masking of the imaging area and
prevented the network from learning irrelevant
background features, thereby segmentation ac-
curacy got improved without compromising real-
time performance.

3. The triplet input setup, similar to ones used
for LUS-CT co-registration [19] and for object
recognition [20], was integrated into a lightweight
ResNet18 U-Net model, enhancing segmentation
quality by introducing contextual information
between frames.

4. Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE) [21] was applied and optimized
for our dataset. It enhanced vessel boundaries
and improved lumen visibility, which resulted in
increased segmentation accuracy.

5. A comprehensive study was conducted to eval-
uate the performance of different U-Net family
encoders, focusing on both segmentation accuracy
and real-time inference efficiency.

The Al-generated 2D liver vessel segmentation
masks can also be used for 3D vessel reconstruction,
aiding in image registration between preoperative
and intraoperative stages.
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2 Proposed methodology

This paper addresses the segmentation of the ves-
sels in real time in laparoscopic ultrasound using
a U-Net—based encoder—decoder with a ResNet18
backbone.

2.1 Pre-processing pipeline

As shown on the left side of Figure 1, all the LUS
frames undergo standardization before entering the
network to: a) emphasize learning focused on the
acoustic sonogram, b) stabilize contrast across differ-
ent cases, acquisition depths, and sonogram shapes,
and c¢) ensure a consistent input shape while pre-
serving spatial geometry. The specific preprocessing
steps (1 to 5) visualized in Figure 1 will be described
in detail as follows:

1. Grayscale conversion: In LUS video, the RGB
channels are identical copies of the same intensity
data, so this processing step eliminates redundant
channels, resulting in a single-channel grayscale
representation.

2. Sonogram detection: To locate the US sono-
gram as a trapezoid in frame coordinates, the
dynamic contour-based detection with a fallback
heuristic was developed and used. For the fall-
back, the most recently detected good coordinates
were used. The trapezoid is defined by four cor-
ner points, stored in a 4 x 2 matrix P" € %2,
where each row holds the (z,y) coordinates of one
corner in a set of intigers Z. By using this method,
we managed to successfully detect the sonogram
contour even when the acquisition depth was
changing.

3. Tight crop and CLAHE: After locating
the sonogram coordinates, we applied a tight
rectangular crop to remove unnecessary back-
ground. Two hyperparameters—the contrast lim-
iting threshold (clipLimit) and the grid size for
histogram equalization (GridSize) — were tuned
in a small-scale grid search. The chosen values,
clipLimit = 2.0 and GridSize = 88, which consis-
tently improved image contrast and led to better
segmentation performance both quantitatively
and qualitatively.

4. Sonogram masking: After cropping, the sono-
gram was isolated using a binary polygon mask
(sonogram = 0, outside = 255). Whitening
the background region minimized the predictive
model from extending beyond the sonogram con-
tour, ensuring the network focuses on anatomical
features within the sonogram area.

5. Resizing and padding: On the final step, we
resized the ultrasound frame by maintaining the
aspect ratio to prevent vessel distortion. Lastly,
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Figure 1. Overview of the proposed vessel segmentation pipeline. The raw RGB laparoscopic ultrasound frames
undergo five preprocessing steps, are arranged into temporal triplets, encoded with a ResNet18 backbone, and
decoded with a U-Net decoder to generate the final binary mask of the vessels.

performed the symmetric padding to 512 x 512
using bilinear interpolation. This fixed square
input ensures compatibility with various network
backbones, making the preprocessing pipeline
adaptable for different model selections.

By applying these five preprocessing steps to
each LUS video frame, we direct the model’s fo-
cus toward the sonogram area that contains vascu-
lar anatomy. CLAHE enhances local contrast for
thin, low-contrast vessels, while aspect-ratio-based
resizing prevents geometric distortions of tubular
structures.

2.2 Network architecture

For this study, we tested and adopted a U-Net-
based encoder—decoder network with multiple back-
bones from the U-Net family, including lightweight
ResNet18, MobileNet_v2, DenseNet-121, medium-
sized ResNetb0, and Vanilla U-Net, as well as a
larger model, InceptionNetV2. The selected encoder,
ResNet18, and the standard U-Net decoder, used for
training and inference, are shown on the right side
of Figure 1. ResNet18, pretrained on ImageNet [22],
provides residual blocks that support stable training
on small medical datasets. To exploit temporal co-
herence, sequential frames are processed as triplets
rather than individually, enabling motion-aware and
more consistent predictions. In general, U-Net archi-
tecture was selected due to its strong performance in
segmentation tasks and its skip connections which
help retain fine spatial details that are often lost

during the downsampling process.

2.2.1 DModified input layer: temporal triplet
setup

Unlike conventional U-Net inputs that use a single
2D frame, we implemented triplets of consecutive
frames to leverage the temporal information of se-
quential ultrasound video data. During training, a
symmetric triplet setup [l;_1, It, I;+1] was used, with
the ground truth mask corresponding to the middle
image I;. This configuration allows the model to
learn context from both past and future frames, pos-
sibly enhancing vessel continuity and robustness to
speckle noise. During inference, since future frames
are not available, we switched to a more standard
triplet setup: [li—2,It—1, I¢], which maintains the
benefits of temporal context without compromising
real-time performance.

2.2.2 Loss, optimization and training con-
trols

In preliminary experiments with a Vanilla U-Net, we
tested several segmentation loss functions commonly
used in medical imaging, including Dice loss [23], Fo-
cal loss [24], and Binary Cross-Entropy (BCE) loss
[25]. Based on this comparison, we selected BCE
as the primary training loss for all tested encoder
backbones, as it provided the most consistent gen-
eralization and improvements. The Dice coefficient
was used as the primary evaluation metric during
model validation. The BCE loss can be described
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as follows:

BCE(p,y) = — (ylog(p) + (1 — y)log(1 —p)), (1)

where y € {0, 1} is the ground truth, and p € [0, 1]
is the predicted probability (after sigmoid func-
tion). We employed Binary Cross-Entropy with
logits loss (BCEWithLogitsLoss in PyTorch [26]),
which is equivalent to applying a sigmoid activation
followed by binary cross-entropy, but implemented
in a numerically more stable form.

2.2.3 Optimization

All our networks were trained for up to 100 epochs
under identical conditions to ensure a fair compar-
ison across backbones. For optimization, we used
Adam optimizer with a learning rate of 1 x 1073
and a learning rate scheduler (factor = 0.5, patience
= 5) to improve convergence once the validation
loss plateaued. Other data augmentation techniques
were excluded from the training. To accelerate train-
ing and minimize memory usage, mixed precision
training (AMP) was employed, offering lower compu-
tational costs without compromising accuracy. The
implemented early stopping interrupted the training
if the validation Dice score did not improve for 10
epochs, preventing possible overfitting. The batch
size was set to 18 to fully utilize the available GPU
(RTX 4080, 12GB VRAM), and each channel of the
triplet input was normalized to [—1, 1].

2.3 Dataset and data split

The locally acquired dataset consisted of laparo-
scopic ultrasound videos from 11 separate cases,
which were divided into a total of 2,200 frames.
Each case folder contained sequential 2D frames
along with pixel-wise binary masks that were lo-
cally annotated. To maintain independence between
training and evaluation, a leave-one-case-out strat-
egy was employed, with the held-out case serving
as a fixed test set and the remaining ten cases used
for model development. This data was divided into
training and validation subsets in a 90/10 split.

3 Results and discussion

Various backbone architectures were tuned and
compared within the proposed U-Net framework.
Performance was initially evaluated using 5-fold
cross-validation across all cases to identify the most
promising encoders. Following this, we conducted
single-fold training with a fixed leave-one-case-out
test set to assess generalization on unseen data.
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Table 1. Comparison of vessel segmentation perfor-
mance of different models: Dice coefficient (DC) with
standard deviation (Std) from 5-fold cross-validation
(CV), and DC, recall, precision, and Intersection over
Union (IoU) on the test set.

Encoder Type 5-Fold CV Test set
DC + Std DC Recall Precision  IoU

ResNet18 0.916 £+ 0.002 | 0.879  0.840 0.923 0.783
ResNet50 0.904 £+ 0.002 | 0.856  0.811 0.912 0.748
MobileNet_v2 | 0.906 + 0.002 | 0.862  0.819 0.917 0.757
Vanilla U-Net | 0.918 £+ 0.003 | 0.859  0.827 0.897 0.753
DenseNet121 0.901 + 0.003 | 0.849  0.798 0.913 0.738
IncResNetV2 | 0.926 + 0.002 | 0.888 0.867 0.911 0.798

3.1 Quantitative results

Table 1 presents the results of the 5-fold cross-
validation experiments, comparing six backbone con-
figurations. All tested encoders achieved Dice scores
above 0.9 in 5-fold cross-validation, demonstrating
that vessel segmentation in LUS is a learnable task.
The consistent results across architectures indicate
strong robustness and suggest that encoder selec-
tion can be guided by efficiency and deployment
considerations rather than segmentation accuracy
alone. When looking at the results from the test set,
both InceptionResNetV2 and ResNet18 performed
well, with InceptionResNetV2 reaching the highest
Dice score of 0.888 and recall of 0.867 on the test
set. Deep architecture and Inception modules en-
able InceptionResNetV2 to capture multi-scale rich
features, while residual connections help stabilize
training similarly as in ResNet18. However, with a
large number of parameters, the model is computa-
tionally heavy, leading to longer training times and
slower inference compared to lighter backbones.

Despite being the lightest model, ResNet18 pro-
duced competitive Dice of 0.879 and high precision
score of 0.923, benefiting from residual connections
that support efficient gradient flow and stable fea-
ture learning. Additionally, the smaller parameter
count noticeably improved the inference speed, pre-
serving real-time capability even with our additional
preprocessing steps. This balance of accuracy and
efficiency makes ResNet18 particularly suited for
laparoscopic ultrasound vessel segmentation, where
reliable performance must be achieved under strict
computational constraints.

3.2 Qualitative results

Figure 2 shows representative segmentation exam-
ples from three test frames, comparing ground truth
annotations with predictions from the lightweight
ResNet18, the heavier InceptionResNetV2, and the
medium-sized Vanilla U-Net. Across the mod-
els, there is a noticeable tendency for slight over-
segmentation. While InceptionResNetV2 produced
the most visually refined results, its computational
complexity makes it less suitable for real-time de-
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Preprocessed Ground Truth

ResNetl8
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IncepResNetV2 Vanilla-UNet

Figure 2. Vessel segmentation results using three models.
Red: ground truth, Yellow: model predictions, Blue circles: over-predicted regions.

ployment. In contrast, ResNet18 provided visually
comparable masks, with segmentation quality not
significantly inferior to that of Vanilla U-Net, despite
being much lighter.

3.3 Impact of the triplet setup

To assess whether the proposed triplet input im-
proves temporal stability compared to single-frame
predictions, we trained a ResNet18 model with both
single-frame and triplet inputs under otherwise iden-
tical settings. We then defined temporal consistency
metrics, following recent studies [27, 28], and re-
ported them in Table 2. Temporal Dice is defined as
the Dice coefficient between consecutive frame pre-
dictions, averaged over the sequence, while Temporal
IoU is defined analogously using the IoU.

In addition, we evaluated prediction stability
across time. Following Rebol et al. [29], we mea-
sured Flip-rate, the proportion of pixels whose labels
switch between consecutive frames (e.g., a vessel
pixel that disappears and reappears). This captures
segmentation “flickering” over time. However, in
our experiments, Flip-rate values were consistently
close to zero, likely reflecting both the strong class
imbalance (vessel vs. background) and the generally
high segmentation accuracy. Thus, the Flip-rate
confirms the absence of large temporal instabilities
in both compared models.

To quantify boundary stability, we used the idea
from Perazzi et al. [30]. We define Boundary jitter
as the average displacement (in pixels) of the pre-
dicted vessel boundary between consecutive frames,
capturing small shifts of vessel contours. The re-
sults indicate that our model performs better when
trained with adjacent frames, enhancing all temporal
metrics. We also assessed the per-frame standard de-

Table 2. Comparison of single-frame and triplet input
ResNet18 U-Net models. Mean £ standard deviation is
reported for all metrics. Arrows indicate whether higher
(1) or lower (J) values are better.

ResNet18 U-Net  ResNet18 U-Net

Metric (Single) (Triplet)

Per-frame DC vs. GT (1) 0.875 £ 0.031 0.879 £+ 0.030
Temporal DC (1) 0.932 £ 0.056 0.938 £+ 0.045
Temporal IoU (1) 0.877 £ 0.091 0.886 + 0.073
Flip rate () 0.008 £ 0.008 0.007 £+ 0.007
Boundary jitter (px, |) 1.334 £ 1.257 0.980 + 0.990

viation against the ground truth (GT), which showed
slight improvement. Additionally, the triplet input
configuration enhanced temporal consistency, yield-
ing masks that were more stable and less prone to
flickering compared to the single-frame predictions
shown in the provided four consecutive frames in Fig-
ure 3. The masks produced by the triple-frame setup
had fewer false positive predictions, fewer false neg-
ative predictions, and fewer instances of flickering,
resulting in a more stable stream during real-time
experiments.

3.4 Real-time experiment and results

To test deployment under realistic conditions, the
models were evaluated on an unseen laparoscopic
ultrasound video using the full real-time pipeline,
including preprocessing, frame-wise inference, and
post-processing to mimic the clinician’s view. The
developed dynamic contour detector enabled the
model to adapt to changing imaging depths without
introducing artifacts, maintaining high frames per
second (fps) even with intensive preprocessing and
post-processing.
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Ground Truth

Single (orange)

Triplet (orange)

Figure 3. Qualitative comparison of vessel segmentation results from single-frame and triplet-based ResNet18
U-Net models. Green circles highlight false negatives (under-predicted vessels), while yellow circles mark false
positives (over-predicted regions), and blue circles indicate temporal flipping across frames.

The real-time performance metrics of the tested
models are summarized in Table 3. The final col-
umn reflects the results observed during continuous
video playback in fps. Despite InceptionResNetV2
achieving the highest Dice score, it was the slowest
for inference. The literature suggests that a frame
rate of 30 fps is generally sufficient for real-time
performance [31, 32]. A couple of tested models,
including ResNet18, ResNet50, and MobileNet_v2
reached and sustained this fps target, with ResNet18
also allowing for potential further tuning if needed.
Notably, this model delivered segmentation qual-
ity comparable to that of InceptionResNetV2 while
achieving a stable throughput of 40 fps, making it
the most viable candidate for intraoperative segmen-
tation deployment.

4 Conclusion

In this paper, we presented a five-step preprocessing
framework combined with a triplet-based ResNet18
U-Net model for real-time laparoscopic ultrasound
image segmentation, achieving competitive Dice
scores for liver vessel segmentation. Key contri-
butions include a dynamic contour detector that
improved generalization across varying depths and
a triplet input setup that enhanced the temporal
stability of vessel segmentation. We also evaluated
real-time performance and mask quality, confirming
the feasibility of deployment. Future work will focus
on direct integration with live ultrasound streams
and extension to 3D vessel reconstruction.

Table 3. Comparison of model complexity and perfor-
mance. Parameter count, forward-pass inference time,
model size, and measured real-time fps (including prepro-
cessing and postprocessing in the ultrasound pipeline)
are reported.

Encoder name Parameters Time (ms) Model size (MB) FPS
ResNet18 14,328,209 5.48 56.08 40
ResNet50 32,521,105 9.03 127.38 36
MobileNet_v2 6,628,945 7.55 26.17 37
Vanilla U-Net 31,037,633 12.63 121.33 29
DenseNet121 13,607,633 16.97 53.78 29
IncResNetV2 62,029,297 29.21 243.04 21
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