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Abstract

Laparoscopic ultrasound (LUS) is essential for as-
sessing the liver during laparoscopic liver resections.
However, the interpretation of LUS images presents
significant challenges due to the steep learning curve
and image noise. In this study, we propose an en-
hanced U-Net-based neural network with a ResNet18
backbone specifically designed for real-time liver
vessel segmentation of 2D LUS images. Our ap-
proach incorporates five preprocessing steps aimed
at maximizing the training information extracted
from the ultrasound sonogram region. The mod-
ified U-Net model achieved a Dice coefficient of
0.879, demonstrating real-time performance at 40
frames per second and enabling the development
of advanced ultrasound-based surgical navigation
solutions.

1 Introduction

Liver cancer remains one of the top 10 deadliest can-
cers worldwide, resulting in approximately 750,000
annual deaths [1]. The reason for its mortality rate
is late diagnoses, limited treatment options, and
underlying liver disease with aggressive tumor biol-
ogy [2]. To locate liver tumors and vessels during
laparoscopic liver surgery, clinicians are using the
laparoscopic ultrasound (LUS), which helps to navi-
gate and to avoid unnecessary damage during liver
resection or ablation. LUS is a radiation-free medi-
cal device, portable and cost-effective. It provides
real-time images by capturing ultrasound reflected
pulses from soft tissues and bones [3]. All of these
LUS benefits give clinicians the ability to effectively
diagnose liver cancer, such as hepatocellular car-
cinoma and other metastases. Additionally, LUS
allows visualization of essential liver structures, the
portal vein, hepatic veins, and bile ducts.

While valuable, LUS comes with several draw-
backs. A key problem is speckle noise, an artifact
from ultrasound waves, that interferes as reflected
off tissue microstructures. This effect lowers overall
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image quality [4]. Vessel boundaries can also appear
unclear because of differences in tissue echogenicity -
the way tissues reflect sound. When boundaries fade,
tracking blood vessels during surgery becomes more
difficult. Finally, underlying conditions like fatty
liver or cirrhosis are causing liver texture changes
which interfere with the interpretation of ultrasound
scans [5].

These imaging issues limit how effectively LUS can
guide surgeons during liver procedures [6]. Several
conventional techniques could be used to account
for these challenges. One of the default modes of
current ultrasound (US) systems, is Color Doppler
mode, which can be used to visualize blood flow
by detecting frequency shifts in moving blood cells
and to enable real-time assessment of vascularity.
However, it has a relatively small region of interest,
and its effectiveness is heavily dependent on the
operators’ skill, which might introduce inconsistency
in the interpretation of the LUS data [7].

Another traditional visualization method is a
Contrast-Enhanced Ultrasound (CEUS). It uses mi-
crobubble contrast agents to improve the visibility of
blood vessels. Unfortunately, this method requires
careful timing to capture the best blood flow en-
hancement after the contrast is given, which can
be difficult in busy surgical environment [8]. Tradi-
tional segmentation algorithms, such as region grow-
ing, thresholding, and clustering, have also been
employed for tissue segmentation [9]. All of them
require manual tuning of thresholds value and seed
points, which limits their robustness in handling the
complex and heterogeneous tissue structures present
in ultrasound images.

1.1 Related work

Over recent years, deep learning has become a com-
mon approach for automated vessel segmentation.
Reported performance from different studies varies
widely across imaging modalities, with Dice scores
of 0.734 for ultrasound [10], 0.928 for MRI [11], and
0.814 for CT [12]. Dice scores come from different
datasets and are not directly comparable, however,
they show that ultrasound remains a challenging
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modality for vessel segmentation. U-Net-based archi-
tectures, have been recognized as the gold standard
for semantic segmentation tasks [13]. Their encoder-
decoder structure and skip connections have made
them adaptable to enhancements such as adding
residual blocks (ResU-Net) [14], dense connections
(DenseU-Net) [6], attention gates (Attention U-Net)
[15], or transformers (TransU-Net) [16]. Although
these studies have demonstrated competitive results
in segmenting various biological tissues from ultra-
sound data, only a few have explored the perfor-
mance of real-time segmentation [6, 17].
Real-time ultrasound image segmentation is a

complex task due to the noise and inconsistent data.
Preprocessing is often employed to suppress speckle
noise and reduce artifacts, but this adds computa-
tional overhead. Varying echogenicity makes bound-
ary detection difficult. This means the model re-
quires careful tuning to remain reliable under these
imaging conditions. Post-processing techniques,
such as mask refinement for frame-to-frame con-
sistency, or resizing output to the original resolu-
tion, add further computational load. This makes
it difficult to balance between models tuned for ac-
curacy and models tuned for the speed required in
real-time applications. Smistad et al. [18] used
an Artificial Intelligence (AI) model to segment
blood vessels, nerves, and bone structures during
anesthesia-related procedures, and showed a promis-
ing real-time performance. However, the predictions
were made on a frame-by-frame basis without con-
sidering the temporal information in the sequential
ultrasound data, which could have inherent potential
information to enhance the performance.

1.2 Contribution summary

This paper presents an automated AI-enabled LUS
model for real-time vessel segmentation, developed
to support liver surgery and improve intraoperative
guidance. Our main contribution is an end-to-end,
real-time workflow that automatically extracts and
masks the ultrasound sonogram, applies CLAHE
tuned to our LUS data, and uses a triplet-frame
input with a lightweight ResNet18 backbone. To-
gether, these components improve vessel detection
and segmentation continuity while keeping inference
speed compatible with intraoperative use. Below,
we outline the methodological and dataset contribu-
tions that form this clinically-oriented pipeline.

1. Fully anonymized LUS liver video data was lo-
cally acquired and annotated with the assistance
of experienced clinicians, and all annotations were
verified and approved by a radiologist.

2. A dynamic approach was developed to extract
the ultrasound sonogram from video frames. It
enabled precise masking of the imaging area and

prevented the network from learning irrelevant
background features, thereby improving segmen-
tation accuracy without compromising real-time
performance.

3. The triplet input setup, similar to ones used
for LUS-CT co-registration [19] and for object
recognition [20], was integrated into a lightweight
ResNet18 U-Net model, enhancing segmentation
quality by introducing contextual information
between frames.

4. Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE) [21] was applied and optimized
for our dataset. It enhanced vessel boundaries
and improved lumen visibility, which resulted in
increased segmentation accuracy.

5. A comprehensive study was conducted to eval-
uate the performance of different U-Net family
encoders, focusing on both segmentation accuracy
and real-time inference efficiency.

The AI-generated 2D liver vessel segmentation
masks can also be used for 3D vessel reconstruction,
aiding in image registration between preoperative
and intraoperative stages.

2 Proposed methodology

The proposed method uses an encoder–decoder ar-
chitecture with a ResNet18 backbone to perform
real-time vessel segmentation in laparoscopic ultra-
sound frames.

2.1 Pre-processing pipeline

As shown on the left side of Figure 1, all the LUS
frames undergo standardization before entering the
network to: a) emphasize learning focused on the
acoustic sonogram, b) stabilize contrast across differ-
ent cases, acquisition depths, and sonogram shapes,
and c) ensure a consistent input shape while pre-
serving spatial geometry. The specific preprocessing
steps (1 to 5) visualized in Figure 1 will be described
in detail as follows:

1. Grayscale conversion: Our recorded LUS
videos contain identical R, G and B chan-
nels (stacked intensity), therefore, we converted
frames to a single grayscale channel to remove re-
dundancy, reduce computation and memory use,
and avoid learning artificial color patterns that
are not part of the actual ultrasound signal.

2. Sonogram detection: To locate the US sono-
gram as a trapezoid in frame coordinates, the
dynamic contour-based detection with a fallback
heuristic was developed and used. For the fall-
back, the most recently detected good coordinates
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Figure 1. Overview of the proposed vessel segmentation pipeline. The raw RGB laparoscopic ultrasound frames
undergo five preprocessing steps, are arranged into temporal triplets, encoded with a ResNet18 backbone, and
decoded with a U-Net decoder to generate the final binary mask of the vessels.

were used. The trapezoid is defined by four cor-
ner points, stored in a 4× 2 matrix P trap ∈ Z4×2

≥0 ,
where each row holds the (x, y) coordinates of
one corner in a set of intigers Z. By using this
locally developed method, we managed to suc-
cessfully detect the sonogram contour even when
the acquisition depth was changing.

3. Tight crop and CLAHE: After locating the
sonogram coordinates, we applied a tight rect-
angular crop to remove unnecessary background.
Following the CLAHE application strategy of
Ansari et al. [6], we tuned two hyperparameters
- the contrast limiting threshold (clipLimit) and
the grid size for histogram equalization (Grid-
Size), using a small-scale grid search on a valida-
tion subset. The selected values, clipLimit = 2.0
and GridSize = 8×8, consistently improved image
contrast and produced better segmentation per-
formance both quantitatively and qualitatively.

4. Sonogram masking: After cropping, the sono-
gram was isolated using a binary polygon mask
(sonogram = 0, outside = 255). Whitening the
background region prevents the model from learn-
ing irrelevant background patterns and reduces
false positives outside the imaging area, ensur-
ing the network focuses on anatomical features
inside the sonogram. The original video frames
contained non-anatomical elements such as text
overlays, depth and distance markers, and inter-
face graphics from the ultrasound device. Includ-
ing these elements during training could lead the

network to associate them with anatomical struc-
tures, so removing them ensured that only clin-
ically relevant image content was used. Similar
masking-based extraction approaches are com-
monly applied in ultrasound preprocessing [22].

5. Resizing and padding: In the final step, we
resized the ultrasound frame while preserving
its aspect ratio to avoid geometric distortion of
vessel structures, which is a standard operation in
ultrasound imaging workflows [22]. After resizing,
the image was symmetrically padded to 512 x
512 using bilinear interpolation to provide a fixed
square input compatible with a wide range of
network backbones.

By applying these five preprocessing steps to
each LUS video frame, we direct the model’s fo-
cus toward the sonogram area that contains vascu-
lar anatomy. CLAHE enhances local contrast for
thin, low-contrast vessels, while aspect-ratio-based
resizing prevents geometric distortions of tubular
structures.

2.2 Network architecture

For this study, we tested and adopted a U-Net-
based encoder–decoder network with multiple back-
bones from the U-Net family, including lightweight
ResNet18 [23], MobileNet v2 [24], DenseNet-121
[25], medium-sized ResNet50 [23], and Vanilla U-Net
[13], as well as a larger model, InceptionNetV2 [26].
All encoders except the vanilla U-Net were used
via the Segmentation Models PyTorch library [27],
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which provides standardized open source implemen-
tations of these architectures. The selected encoder,
ResNet18, and the standard U-Net decoder, used for
training and inference, are shown on the right side
of Figure 1. ResNet18, pretrained on ImageNet [28],
provides residual blocks that support stable training
on small medical datasets. To exploit temporal co-
herence, sequential frames are processed as triplets
rather than individually, enabling motion-aware and
more consistent predictions. In general, U-Net archi-
tecture was selected due to its strong performance in
segmentation tasks and its skip connections which
help retain fine spatial details that are often lost
during the downsampling process.

2.2.1 Modified input layer: temporal triplet
setup

Unlike conventional U-Net inputs that use a single
2D frame, we implemented triplets of consecutive
frames to utilize the temporal information of sequen-
tial ultrasound video data. During training process,
we used a symmetric triplet setup [It−1, It, It+1],
with the ground truth mask corresponding to the
middle image It. This configuration allows the
model to learn context from both past and future
frames, possibly enhancing vessel continuity and ro-
bustness to speckle noise. During inference, since
future frames are not available, we switched to a
more standard triplet setup: [It−2, It−1, It], which
maintains the benefits of temporal context without
compromising real-time performance.

2.2.2 Loss, optimization and training con-
trols

In preliminary experiments with a Vanilla U-Net,
we evaluated several segmentation loss functions
commonly used in medical imaging. Dice loss [29],
Focal loss [30], and Binary Cross Entropy (BCE) loss
[31] functions were tested and compared. By looking
at the Dice score curves in Figure 2 we noticed,
that BCE was more stable and it reached slightly
higher Dice values than Dice or Focal loss. Dice and
Focal loss showed more fluctuations, suggesting less
reliable optimisation. BCE was therefore selected as
the primary training loss for all encoder backbones,
as it offered the most consistent generalization and
improvements. The Dice coefficient was used as the
primary evaluation metric during model validation.
The BCE loss is defined as follows:

BCE(p, y) = − (y log(p) + (1− y) log(1− p)) , (1)

where y ∈ {0, 1} is the ground truth, and p ∈ [0, 1]
is the predicted probability (after sigmoid func-
tion). We employed Binary Cross-Entropy with
logits loss (BCEWithLogitsLoss in PyTorch [32]),
which is equivalent to applying a sigmoid activation

followed by binary cross-entropy, but implemented
in a numerically more stable form.

Figure 2. Validation Dice across epochs for three
different loss functions (BCE, Dice, and Focal), using
early stopping. These curves are smoothed, so the last
few points may appear to increase slightly even though
the underlying validation Dice already plateaued when
early stopping triggered.

2.2.3 Optimization

All our networks were trained for up to 100 epochs
under identical conditions to ensure a fair compar-
ison across backbones. For optimization, we used
Adam optimizer with a learning rate of 1×10−3 and
a learning rate scheduler (factor = 0.5, patience =
5) to improve convergence once the validation loss
plateaued. During preliminary experiments, we eval-
uated several geometric and intensity-based augmen-
tation strategies. Different encoder architectures re-
sponded inconsistently to these augmentations, with
some showing improved performance and others de-
grading under the similar augmentation setup. To
avoid introducing architecture-dependent bias and
to maintain a controlled comparison across models,
we therefore trained all networks without additional
augmentation. To accelerate training and reduce
GPU memory usage, automatic mixed precision was
used. We used early stopping function to interrupt
training after 10 epochs without improvement in the
validation Dice score. The batch size was set to 18,
determined by the available GPU memory (RTX
4080, 12 GB VRAM). Each channel of the triplet
input was normalized to [−1, 1]to improve training
stability.

2.3 Dataset and data split

The dataset consists of laparoscopic ultrasound
videos from 11 acquisitions, obtained from 9 pa-
tients. One patient contributed three acquisitions
from separate sessions, each capturing distinct liver
views, as confirmed by a radiologist, and treated
as independent cases. By doing this we preserved
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Figure 3. Vessel segmentation results using three models.
Red: ground truth, Yellow: model predictions, Green: over-predicted regions.

.

all usable data and maximized the full size of the
training set. All data were recorded using a com-
mercial laparoscopic ultrasound system, and only
video-format data were available. Access to raw
ultrasound signals was not possible. From these
videos, 2,200 sequential frames containing vessels
were extracted, and pixel-wise binary masks were
created and subsequently verified by a radiologist.
To preserve independence between development and
evaluation, one case was set aside as the test set.
The remaining ten acquisitions were used for model
development under a 5-fold cross-validation scheme,
with eight used for training and two for validation in
each fold. After cross-validation, a final model was
trained on the same ten acquisitions using a 90/10
split to maximize the training sample while retain-
ing an internal validation subset. Final performance
was evaluated on the held-out test set.

3 Results and discussion

Various backbone architectures were tuned and com-
pared within the proposed U-Net framework. Per-
formance was evaluated using the cross validation
protocol described in Section 2.3 to identify the most
promising encoders. A final model was then trained
and assessed on the held out test set to measure
generalization on unseen data.

3.1 Quantitative results

Comparison results presented in Table 1 are from
5-fold cross-validation experiments, made with
six backbone configurations. All tested encoders
achieved Dice scores above 0.9 in 5-fold CV, demon-
strating that vessel segmentation in LUS is a learn-

able task. The consistent results across architectures
indicate robustness and suggest that encoder selec-
tion can be made not only by the accuracy alone,
but also by efficiency and deployment factors. When
looking at the results from the test set, both Incep-
tionResNetV2 and ResNet18 performed well, with
InceptionResNetV2 reaching the highest Dice score
of 0.888 and recall of 0.867. Deep architecture and
Inception modules allow InceptionResNetV2 to cap-
ture multi-scale features, while residual connections
help stabilize training similarly as in ResNet18. How-
ever, with a large number of parameters, the model
is computationally heavy, leading to longer train-
ing times and slower inference compared to lighter
encoders.

Despite being the lightest model, ResNet18 pro-
duced competitive Dice of 0.879 and high precision
score of 0.923, benefiting from residual connections
that support efficient gradient flow and stable fea-
ture learning. Additionally, the smaller parameter
count noticeably improved the inference speed, pre-
serving real-time capability even with our additional
preprocessing steps. This balance of accuracy and
efficiency makes ResNet18 particularly suited for
laparoscopic ultrasound vessel segmentation, where
reliable performance must be achieved under strict
computational constraints.

3.2 Qualitative results

Selected segmentation examples from three test
frames, shown in Figure 3, compare ground truth
annotations with predictions from the lightweight
ResNet18, the heavier InceptionResNetV2, and the
medium-sized Vanilla U-Net. Across the mod-
els, there is a noticeable tendency for slight over-
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Table 1. Comparison of vessel segmentation perfor-
mance of different models: Dice coefficient (DC) with
standard deviation (Std) from 5-fold cross-validation
(CV), and DC, recall, precision, and Intersection over
Union (IoU) on the test set.

Encoder Type
5-Fold CV Test set
DC ± Std DC Recall Precision IoU

ResNet18 0.916 ± 0.002 0.879 0.840 0.923 0.783
ResNet50 0.904 ± 0.002 0.856 0.811 0.912 0.748
MobileNet v2 0.906 ± 0.002 0.862 0.819 0.917 0.757
Vanilla U-Net 0.918 ± 0.003 0.859 0.827 0.897 0.753
DenseNet121 0.901 ± 0.003 0.849 0.798 0.913 0.738
IncResNetV2 0.926 ± 0.002 0.888 0.867 0.911 0.798

segmentation. While InceptionResNetV2 produced
the most visually refined results, its computational
complexity makes it less suitable for real-time de-
ployment. In contrast, ResNet18 provided visually
comparable masks, with segmentation quality not
significantly inferior to that of Vanilla U-Net, despite
being much lighter.

3.3 Impact of the triplet setup

To assess whether the proposed triplet input im-
proves temporal stability compared to single-frame
predictions, we trained a ResNet18 model with both
single-frame and triplet inputs under otherwise iden-
tical settings. We then defined temporal consistency
metrics, following recent studies [33, 34], and re-
ported them in Table 2. Temporal Dice is defined as
the Dice coefficient between consecutive frame pre-
dictions, averaged over the sequence, while Temporal
IoU is defined analogously using the IoU.

During training, the model predicts the segmen-
tation of the central frame in each temporal triplet,
which is a common setup allowing the network to
learn temporal context from both future and past
frames. During real-time inference, the future frame
is not available, and the model therefore operates on
the current frame and its two earlier frames. This
creates a small mismatch between training and in-
ference conditions and remains a limitation of the
present implementation. A future extension could
use only past frames during training to fully align
with real-time constraints.

In addition, we evaluated prediction stability
across time. Following Rebol et al. [35], we mea-
sured Flip-rate, the proportion of pixels whose labels
switch between consecutive frames (e.g., a vessel
pixel that disappears and reappears). This captures
segmentation “flickering” over time. However, in
our experiments, Flip-rate values were consistently
close to zero, likely reflecting both the strong class
imbalance (vessel vs. background) and the generally
high segmentation accuracy. Thus, the Flip-rate
confirms the absence of large temporal instabilities
in both compared models.
To quantify boundary stability, we used the idea

from Perazzi et al. [36]. We define Boundary jitter

Table 2. Comparison of single-frame and triplet input
ResNet18 U-Net models. Mean ± standard deviation is
reported for all metrics. Arrows indicate whether higher
(↑) or lower (↓) values are better.

Metric
ResNet18 U-Net

(Single)
ResNet18 U-Net

(Triplet)

Per-frame DC vs. GT (↑) 0.875 ± 0.031 0.879 ± 0.030
Temporal DC (↑) 0.932 ± 0.056 0.938 ± 0.045
Temporal IoU (↑) 0.877 ± 0.091 0.886 ± 0.073
Flip rate (↓) 0.008 ± 0.008 0.007 ± 0.007
Boundary jitter (px, ↓) 1.334 ± 1.257 0.980 ± 0.990

as the average displacement (in pixels) of the pre-
dicted vessel boundary between consecutive frames,
capturing small shifts of vessel contours. The re-
sults indicate that our model performs better when
trained with adjacent frames, enhancing all tempo-
ral metrics. We also assessed the per-frame Dice
score against the ground truth (GT), which showed
slight improvement. Additionally, the triplet input
configuration improved temporal consistency. It pro-
duced masks that were more stable and less prone to
flickering compared to the single-frame predictions
shown in Figure 4. The triplet-frame setup also
reduced both false positive and false negative pre-
dictions. Overall, it generated smoother masks and
a more stable stream during real-time experiments.

Beyond the single-frame versus triplet comparison,
we also conducted a follow-up experiment to examine
how different temporal input configurations influ-
ence model behavior. We compared single-frame,
triplet, five-frame, seven-frame, and a far-frames
(frames at positions: −3, 0, +3), all under identi-
cal training conditions. All temporal configurations
performed better than the single-frame baseline in
terms of training convergence and validation accu-
racy, confirming that temporal context is beneficial
for LUS vessel segmentation. Full training curves for
this ablation are provided in Appendix A. Increasing
the number of adjacent frames (five or seven) did not
yield additional gains, suggesting that neighbour-
ing frames are highly redundant. Interestingly, the
far-frame setup, which introduces broader temporal
separation, produced the most stable validation loss
and the highest validation Dice. This suggests that
temporally distant frames provide more useful infor-
mation than tightly clustered ones. Such observation
may be worth examining further to understand how
different temporal sampling strategies affect model
performance. Overall, the results support the use of
temporal inputs and show that the triplet configu-
ration offers a practical balance between accuracy,
stability, and real-time feasibility. However, these
trends are specific to our dataset and acquisition
setup, and different probe motion dynamics or frame
sampling rates may lead to different temporal de-
pendencies.
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Figure 4. Qualitative comparison of vessel segmentation results from single-frame and triplet-based ResNet18
U-Net models. Green color highlights false negatives (under-predicted vessels), while yellow color marks false
positives (over-predicted regions), and blue circles indicate temporal flipping across frames.

3.4 Real-time experiment and results

To test deployment under realistic conditions, the
models were evaluated on an unseen laparoscopic
ultrasound video using the full real-time pipeline,
including preprocessing, frame-wise inference, and
post-processing to mimic the clinician’s view. The
developed dynamic contour detector enabled the
model to adapt to changing imaging depths without
introducing artifacts, maintaining high frames per
second (fps) even with intensive preprocessing and
post-processing.
The real-time performance metrics of the tested

models are summarized in Table 3. The final col-
umn reflects the results observed during continuous
video playback in fps. Despite InceptionResNetV2
achieving the highest Dice score, it was the slowest
for inference. The literature suggests that a frame
rate of 30 fps is generally sufficient for real-time
performance [37, 38]. A couple of tested models,
including ResNet18, ResNet50, and MobileNet v2
reached and sustained this fps target, with ResNet18
also allowing for potential further tuning if needed.
Notably, this model delivered segmentation qual-
ity comparable to that of InceptionResNetV2 while
achieving a stable throughput of 40 fps, making it
the most viable candidate for intraoperative segmen-
tation deployment.

3.5 Dataset limitations

The dataset used in this study was relatively small,
consisting of 11 acquisitions and 2,200 images, how-
ever it is comparable to the dataset sizes reported in
other liver vessel segmentation studies [6, 10]. We
recognize, that limited number of acquisitions con-
strains the amount of independent data available for

Table 3. Comparison of model complexity and perfor-
mance. Parameter count, forward-pass inference time,
model size, and measured real-time fps (including prepro-
cessing and postprocessing in the ultrasound pipeline)
are reported.

Encoder name Parameters Time (ms) Model size (MB) FPS

ResNet18 14,328,209 5.48 56.08 40
ResNet50 32,521,105 9.03 127.38 36
MobileNet v2 6,628,945 7.55 26.17 37
Vanilla U-Net 31,037,633 12.63 121.33 29
DenseNet121 13,607,633 16.97 53.78 29
IncResNetV2 62,029,297 29.21 243.04 21

validation. As we kept one test set for final testing,
the remaining ten acquisitions were used for 5-fold
CV and model development. Despite this limitation,
the variation between folds in the 5-fold CV results,
presented in Table 1, remained low. This indicated
a stable model performance. In the future, other
evaluation techniques such as 3-fold cross-validation
or leave-one-out validation could be explored. Fi-
nally, if more annotated LUS data become available,
the model can be retrained to further strengthen
generalizability.

3.6 Model selection limitations

CNN-based backbones, used in this study, are not
the newest architectures, but they remain widely
applied and competitive in medical image segmenta-
tion. Other types, like transformer based segmenta-
tion models represent a more recent research direc-
tion, but they typically require much larger datasets
and higher computational resources, which were not
available in this study. Given our focus on develop-
ing an accurate and real-time vessel segmentation
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model suitable for intraoperative use, we prioritized
architectures that offer strong performance with lim-
ited data and efficient inference speed. For these
reasons, transformer based methods were not further
explored, but they remain a potential extension if
more annotated data become available.

3.7 Dataset characteristics and clini-
cal context

The dataset consists intraoperative ultrasound se-
quences collected from patients with various un-
derlying liver conditions, including fatty liver and
cirrhosis, which contribute to variability in image
appearance. During the annotation process, the
reviewing radiologist noted several cases showing
typical features, including signs of fatty liver or cir-
rhotic change, as well as cysts, tumors, or marks
from prior ablation procedures when visible within
the 200 frame acquisitions. This variability reflects
the real world conditions under which LUS vessel seg-
mentation models must operate. While the dataset
includes a wide spectrum of liver pathologies, the
present study did not perform a pathology specific
analysis of model performance. Such an investiga-
tion would be a valuable extension for future work.

3.8 Multimodal extension

We also considered whether the method could be
extended to a multimodal setting by, for example,
incorporating Doppler information, which highlights
vascular structures through flow and velocity pat-
terns. Prior work, such as Jiang et al. [39], has
shown that combining Doppler with B-mode data
can improve vascular segmentation by providing
complementary physiological information. However,
our retrospective LUS dataset contained only B-
mode recordings and did not include any Doppler
channels, making such multimodal fusion currently
infeasible. Exploring Doppler-augmented segmenta-
tion therefore remains an interesting direction for
future research.

4 Conclusion

In this paper, we presented a five-step preprocessing
framework combined with a triplet-based ResNet18
U-Net model for real-time laparoscopic ultrasound
image segmentation, achieving competitive Dice
scores for liver vessel segmentation. Key contri-
butions include a dynamic contour detector that
improved generalization across varying depths and
a triplet input setup that enhanced the temporal
stability of vessel segmentation. We also evaluated
real-time performance and mask quality, confirming
the feasibility of deployment. Future work will focus

on direct integration with live ultrasound streams
and extension to 3D vessel reconstruction.

Acknowledgments

The authors acknowledge the guidance and support
of Rafael Palomar. This study was carried out as
part of the EU project HoloSurge, project number
101137233, which aims to develop a multi-modal 3D
holographic tool and real-time guidance system.

References

[1] The World Cancer Research Fund. Liver can-
cer statistics. 2022. url: https : / / www .

wcrf . org / preventing - cancer / cancer -

statistics/liver-cancer-statistics/.

[2] E. P. Weledji, G. E. Orock, M. N. Ngowe, and
D. S. Nsagha. “How grim is hepatocellular car-
cinoma?” In: Annals of Medicine and Surgery
3.3 (2014). issn: 2049-0801. doi: 10.1016/j.
amsu.2014.06.006.

[3] E. Kazam. “Ultrasound Teaching Manual: The
Basics of Performing and Interpreting Ultra-
sound Scans”. In: Clinical Imaging 23.6 (Nov.
1999). issn: 0899-7071. doi: 10.1016/S0899-
7071(99)00133-3.

[4] M. Baad, Z. F. Lu, I. Reiser, and D. Paushter.
“Clinical Significance of US Artifacts”. In: Ra-
dioGraphics 37.5 (Aug. 2017). issn: 0271-5333.
doi: 10.1148/rg.2017160175.

[5] J. F. Gerstenmaier and R. N. Gibson. “Ultra-
sound in chronic liver disease”. In: Insights
Imaging 5.4 (2014). issn: 18694101. doi: 10.
1007/s13244-014-0336-2.

[6] M. Y. Ansari, Y. Yang, P. K. Meher, and S. P.
Dakua. “Dense-PSP-UNet: A neural network
for fast inference liver ultrasound segmenta-
tion”. In: Computers in Biology and Medicine
153 (2023), p. 106478. issn: 0010-4825. doi:
https://doi.org/10.1016/j.compbiomed.

2022.106478.

[7] P. R. Hoskins. “Principles of doppler ultra-
sound”. In: Diagnostic Ultrasound, Third Ed.
Phys. Equip. (2019), pp. 143–158. doi: 10.
1201/b14901-8.

[8] A. N. Abou Ali, A. Fittipaldi, J. Rocha-Neves,
B. Ruaro, F. Benedetto, Z. Al Ghadban, G. Si-
mon, S. Lepidi, and M. D’Oria. “Clinical appli-
cations of contrast-enhanced ultrasound in vas-
cular surgery: State-of-the-art narrative and
pictorial review”. In: JVS-Vascular Insights:
An Open Access Publication from the Society
for Vascular Surgery 3 (Jan. 2025). issn: 2949-
9127. doi: 10.1016/j.jvsvi.2025.100254.

8

https://www.wcrf.org/preventing-cancer/cancer-statistics/liver-cancer-statistics/
https://www.wcrf.org/preventing-cancer/cancer-statistics/liver-cancer-statistics/
https://www.wcrf.org/preventing-cancer/cancer-statistics/liver-cancer-statistics/
https://doi.org/10.1016/j.amsu.2014.06.006
https://doi.org/10.1016/j.amsu.2014.06.006
https://doi.org/10.1016/S0899-7071(99)00133-3
https://doi.org/10.1016/S0899-7071(99)00133-3
https://doi.org/10.1148/rg.2017160175
https://doi.org/10.1007/s13244-014-0336-2
https://doi.org/10.1007/s13244-014-0336-2
https://doi.org/https://doi.org/10.1016/j.compbiomed.2022.106478
https://doi.org/https://doi.org/10.1016/j.compbiomed.2022.106478
https://doi.org/10.1201/b14901-8
https://doi.org/10.1201/b14901-8
https://doi.org/10.1016/j.jvsvi.2025.100254


[9] D. L. Pham, C. Xu, and J. L. Prince. “Cur-
rent methods in medical image segmentation.”
In: Annual review of biomedical engineering
2 (2000), pp. 315–37. doi: 10.1146/annurev.
bioeng.2.1.315.

[10] K. Tanaka, T. Kurihara, Y. Takahashi, S.
Onogi, T. Sugino, Y. Nakajima, Y. Edamoto,
and K. Masuda. “Segmentation of Liver Blood
Vessel in Ultrasound Images Using Mask R-
CNN”. In: Advanced Biomedical Engineering
13 (2024), pp. 379–388. doi: 10.14326/abe.
13.379.

[11] J. Zeng, D. Jha, E. Aktas, E. Keles, A. Mede-
talibeyoglu, M. Antalek, R. Lewandowski, D.
Ladner, A. A. Borhani, G. Durak, and U.
Bagci. A Reverse Mamba Attention Network
for Pathological Liver Segmentation. 2025. doi:
10.48550/arXiv.2502.18232.

[12] H. B. Jenssen, V. Nainamalai, E. Pelanis, R. P.
Kumar, A. Abildgaard, F. K. Kolrud, B. Ed-
win, J. Jiang, J. Vettukattil, O. J. Elle, and
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Appendix A. Brief Analysis of Temporal Frame Configurations

To investigate the effect of different temporal input configurations, all models were trained on the same
patient split, with Case 8 held out as the fixed test set and excluded from this experiment. The remaining
subjects were used for training and validation, and early stopping was applied based on the validation
macro Dice. Figures (A.1–A.3) summarize training loss, validation loss, and validation Dice across epochs
for all temporal setups.

Figure A.1. Smoothened training loss over epochs for all temporal input configurations, using early-stopping.

Figure A.2. Smoothened validation loss over epochs for all temporal input configurations, using early-stopping.

Figure A.3. Smoothened validation macro Dice across epochs for different temporal input configurations, using
early-stopping.
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