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Abstract

We investigate learning the eigenfunctions of evolution operators for time-reversal
invariant stochastic processes, a prime example being the Langevin equation used
in molecular dynamics. Many physical or chemical processes described by this
equation involve transitions between metastable states separated by high potential
barriers that can hardly be crossed during a simulation. To overcome this bottle-
neck, data are collected via biased simulations that explore the state space more
rapidly. We propose a framework for learning from biased simulations rooted in
the infinitesimal generator of the process and the associated resolvent operator.
We contrast our approach to more common ones based on the transfer operator,
showing that it can provably learn the spectral properties of the unbiased system
from biased data. In experiments, we highlight the advantages of our method over
transfer operator approaches and recent developments based on generator learning,
demonstrating its effectiveness in estimating eigenfunctions and eigenvalues. Im-
portantly, we show that even with datasets containing only a few relevant transitions
due to sub-optimal biasing, our approach recovers relevant information about the
transition mechanism.

1 Introduction

Dynamical systems and stochastic differential equations (SDEs) provide a general mathematical
framework to study natural phenomena, with broad applications in science and engineering. Langevin
SDEs, the main focus of this paper, are widely used to simulate physical processes such as protein
folding or catalytic reactions [see e.g. 47, and references therein]. A main objective is to describe the
dynamics of the process, forecast its evolution from a starting state, ultimately gaining insights on
macroscopic properties of the system.

In molecular dynamics, the motion of a molecule is sampled according to a potential energy U(x),
where the state vector x represents the positions of all the atoms. Specifically, the Langevin equation
dXt = −∇U(Xt)dt+ σdWt describes the stochastic behavior of the system at thermal equilibrium,
whereXt is the random position of the state at time t, the scalar σ is a multiple of the square root of the
system’s temperature, and Wt is a vector random variable describing thermal fluctuations (Brownian
motion). Most often, the atoms evolve in metastable states that are separated by barriers which can
hardly be crossed during a simulation. For instance, for a protein the free energy barrier between
the folded and unfolded states is larger than thermal agitation, making the transition between the
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two states a rare event. Consequently, long trajectories need to be simulated before such interesting
events are observed. In fact, one needs to observe many events to get the relevant thermodynamics
(free energy) and kinetics (transition rates) information [34]. Beyond molecular dynamics, the slow
mixing behavior of many systems modeled by SDEs is a major bottleneck in the study of rare events,
and so designing methodologies which can accelerate the process is paramount.

A general idea to overcome the above problem is to perturb the system dynamics. One important
approach which has been put in place in molecular dynamics is the so-called "bias potential enhanced
sampling" [25, 44, 11]. The main idea is to add to the potential energy a bias potential V , thereby
lowering the barrier and allowing the system state to be explored more rapidly. To make this approach
tractable in large systems, V is often chosen as a function of a few wisely selected variables called
collective variables (CVs). For instance, if a chemical reaction involves a bond breaking, physical
intuition suggests to choose the distance between the reactive atoms [26, 29]. However, for complex
processes, hand-crafted CVs might be "suboptimal", meaning that some of the degrees of freedom
important for the transition are not taken into account, making the biasing process inefficient.

In recent years, machine learning approaches have been employed to find the most relevant CVs
[8, 42, 14, 9, 10, 4, 27]. A key idea is to use available dynamical information to construct the CVs
[41, 31, 7, 42]. For instance, if one can identify the slowest degrees of freedom of the system, one
can accurately describe the transitions between metastable states. These approaches are based on
learning the transfer operator of the system, which models the conditional expectation of a function
(or observable) of the state at a future time, given knowledge of the state at the initial time. It is
learned from the behavior of dynamical correlation functions at large lag times which reflects the slow
modes of the system. The leading eigenfunctions of the learned transfer operator can then be used as
CVs in biased simulations. Moreover, they provide valuable insights into the transition mechanism,
such as the location of the transition state ensemble [48]. Still, this approach suffers from the same
shortcoming described above, namely if the system is slowly mixing, long trajectories are needed to
learn the transfer operator and extract good eigenfunctions.

More recently, there has been growing interest in learning the infinitesimal generator of the process
[15, 1, 50, 20], which allows one to overcome the difficult choice of the lag-time. The statistical
learning properties of generator learning have been addressed in [21], where an approach based on
the resolvent operator has been proposed in order to bypass the unbounded nature of the generator.
However the key difficulty of learning from biased simulations remains an open question. In this work,
we prove that the infinitesimal generator is the adequate tool to deal with dynamical information from
biased data. Leveraging on the statistical learning considerations in [23, 21], we introduce a novel
procedure to compute the leading eigenpairs of the infinitesimal generator from biased dynamics,
opening the doors to numerous applications in computational chemistry and beyond.

Contributions In summary, our main contributions are: 1) We introduce a principle approach, based
on the resolvent of the generator, to extract dynamical properties from biased data; 2) We present a
method to learn the generator from a prescribed dictionary of functions; 3) We introduce a neural
network loss function for learning the dictionary, with provable learning guarantees; 4) We report
experiments on popular molecular dynamics benchmarks, showing that our approach outperforms
state-of-the-art transfer operator and recent generator learning approaches in biased simulations.
Remarkably, even with datasets containing only a few relevant transitions due to sub-optimal biasing,
our method effectively recovers crucial information about the transition mechanism.

Paper organization In Section 2, we introduce the learning problem. Section 3 explores limitations
of transfer operator approaches. In Section 4, we review a recent generator learning approach [21]
and adapt it to nonlinear regression with a finite dictionary of functions. Section 5 presents our
method for learning from biased dynamics. Finally, in Section 6, we report our experimental findings.

2 Learning dynamical systems from data

In this section, we address learning stochastic dynamical systems from data. After introducing the
main objects, we review existing data-driven approaches and conclude with practical challenges. We
ground the discussion in the recently developed statistical learning theory, [22–24], contributing in
particular to the existence of physical priors and feasibility of data acquisition for successful learning.
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Stochastic differential equations (SDEs) and evolution operatorsWhile our observations in the
paper naturally extend to general forms of SDEs [see e.g.33], to simplify the exposition, we focus on
the Langevin equation, which is most relevant to our discussion of biased simulations. Speci�cally,
we consider the overdamped Langevin equation

dX t = �r U(X t )dt +
p

2� � 1dWt and X 0 = x; (1)

describing dynamics in a (state) spaceX � Rd, governed by thepotentialV : Rd ! R at the
temperature� � 1 = kB T, whereWt is aRd-dimensional standard Brownian motion.

The SDE(1) admits a unique strong solutionX = ( X t )> 0 that is a Markov process to which we can
associate the semigroup of Markovtransfer operators(Tt )t � 0 de�ned, for everyt � 0, as

[Tt f ](x) := E[f (X t )jX 0 = x]; x 2 X ; f : X ! R: (2)

For (1) the distribution ofX t converges to theinvariant measure� on X called the Boltzmann
distribution, given by� (dx) / e� �V (x ) dx. In such cases, one can de�ne the semigroup onL 2

� (X ),
and characterize the process by thein�nitesimal generator

L := lim t ! 0+ (Tt � I )=t

de�ned on the Sobolev spaceH 1;2
� (X ) of functions inL 2

� (X ) whose gradient are also inL 2
� (X ). The

transfer operator and the generator are linked one to another by the formulaTt = exp( tL ). Moreover,
it can be shown (see Appendix A) that the generatorL acts onf : X ! R as

L f = �hr U; r f i + � � 1� f; (3)

which, integrating by parts, gives
R
(L f )g d� = � � � 1

R
hr f; r gi d� =

R
f (Lg)d� , showing thatL

is self-adjoint. IfL has only a discrete spectrum, one can solve(1) by computing the spectral
decomposition

L =
P

i 2 N � i f i 
 f i ; (4)
Using(2) and the exponential relation between the transfer operator and the generator, one can write

[Tt f ](x) := E[f (X t )jX 0 = x] =
P

i 2 Net� i f i (x)hf i ; f i ; x 2 X ; f : X ! R (5)

where the timescales of the process appear as the inverses of the generator eigenvalues. Consequently,
the eigenpairs of the generator offer valuable insight about the transitions within the studied system.

Learning from simulations The main difference underpinning the development of learning algo-
rithms for thetransfer operatorand thegeneratorlies in the nature of the data used. While for the
transfer operator we canonly observe anoisyevaluation of the output to learn a compact operator, in
the case of the generator, knowing the drift and diffusion coef�cients allows us to compute the output,
albeit at the cost of learning anunbounded differential operator. Consequently, learning methods
for the former align with vector-valued regression in function spaces [22], whereas methods for the
latter, as discussed in the following section, are more akin to physics-informed regression algorithms.
In both settings, we learn operators de�ned on a function (hypothesis) space, formed by the linear
combinations of a prescribed set of basis functions (dictionary)zj : X ! R, j 2 [m],

H :=
n

hu =
P

j 2 [m ]uj zj
�
� u = ( u1; : : : ; um ) 2 Rm

o
: (6)

The choice of the dictionary, instrumental in designing successful learning algorithms, may be based
on prior knowledge on the process or learned from data [24, 30, 50]. The spaceH is naturally
equipped with the geometry induced by the normkhu k2

H :=
P m

j =1 u2
j : Moreover, every operator

A : H ! H can be identi�ed with matrixA 2 Rm � m by Ahu = z(�)T Au. In the following, we will
refer toA and A as the same object, explicitly stating the difference when necessary.

Transfer operator learning Learning the transfer operatorTt can be simply seen as the vector-valued
regression problem [22], in which the action ofTt : L 2

� (X ) ! L 2
� (X ) on the domainH � L 2

� (X ) is
estimated by an operatorbTt : H ! H . This aims to minimize the mean square error (MSE) w.r.t. the
invariant distribution. Given a datasetDn := ( x i ; yi = x i +1 )n

i =1 of time-lagt > 0 consecutive states
from a trajectory of the process, a common approach is to minimize the regularized empirical MSE,

leading to the ridge regression (RR) estimatorbT := bC
� 1


bCt , where the empirical covariance matrices

are bC= 1
n

P
i 2 [n ] z(x i )z(x i )T and bCt = 1

n

P
i 2 [n ] z(x i )z(yi )T. We then estimate the eigenpairs

(� i ; f i ) in (4) by the eigenpairs(b� i ; bui ) of bT asb� i := ln( b� i =t) and bf i := z(�)T bui .
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We stress that transfer operator approaches crucially relies on the de�nition of the time-lagt from
which dynamics is observed. Setting this value is a delicate task, depending on the events one wants
to study. Ift is chosen too small, the cross-covariance matrices will be too noisy for slowly mixing
processes. On the other hand, ift is too large, because the relevant phenomena occur at large time
scales, a very long simulation is needed to compute the covariance matrices. In order to overcome
this problem biased simulations can be used, which we discuss next.

3 Learning from biased simulations

As discussed above, in molecular dynamics, the desired physical phenomena often cannot be observed
within an affordable simulation time. To address this, one solution is to modify the potential,

U0(x) := U(x) + V (x); x 2 X

where we assume that the introduced perturbation (a form of bias in the data)V (x) is known. For
example the bias potentialV may be constructed from previous system states to promote transitions
to not yet visited regions. One of the prototypical examples is metadynamics [25], whereV is a sum
of Gaussians built on the �y in order to reduce the barrier between metastable states. However, the
bias potential alters the invariant distribution [12], making it challenging to recover the unbiased
dynamics from biased data. Denoting the invariant measure of the perturbed process by� 0 and its
generator byL 0: H 1;2

� 0 (X ) ! H 1;2
� 0 (X ), our principal objective is thus to:

Gather data from simulations generated byL 0 to learn the spectral decomposition
of the unperturbed generatorL .

To tackle this problem, we note that since the eigenfunctions of the generatorL are also eigenfunctions
of every transfer operatorTt = et L , we can address the related problem of learning the transfer
operator from perturbed dynamics. Unfortunately, there is an inherent dif�culty in doing so. While
onetypically knows the perturbationin the generator, that isL 0 = L + hr V;r (�)i ; this knowledge is
not easily transferred to the perturbation of the transfer operator. Indeed, recalling thatT := T1 = eL ,
and since the differential operatorhr V;r (�)i in general does not share the same eigenstructure ofL ,
one has that

T 0 := eL 0
= eL�hr V;r ( �) i 6= T e�hr V;r ( �) i :

Simply put, the generator depends linearly on the bias, while the transfer operator does not. One
strategy to overcome the data distribution change, is toadapt the notion of the risk. To discuss
this idea, recall that the invariant distribution of overdampted Langevin dynamics is the Boltzmann
distribution de�ned by the potential. Hence, we have that

� (dx) =
e� �U (x ) dxR
e� �U (x ) dx

; � 0(dx) =
e� �U 0(x ) dxR
e� �U 0(x ) dx

and
d�
d� 0(x) =

e�V (x )
R

e�V (x ) � 0(dx)
(7)

where the last term is the Radon-Nikodym derivative, which exposes the data-distribution change.
Consequently, we can express the covariance operators for the unperturbed process as weighted
expectations of the perturbed data features

C= EX 0� � 0

�
d�
d� 0 (X 0)z(X 0)z(X 0)T

�
: (8)

However, since the transition kernel of the process(X 0
t )t � 0 generated byL 0 is different from that of

the original process, the above reasoning does not hold for the cross-covariance matrix, that is,

Ct := EX 0 � � 0

�
d�
d� 0 (X 0) z(X 0)z(X t )T

�
6= EX 0

0 � � 0

�
d�
d� 0 (X 0

0) z(X 0
0)z(X 0

t )T
�

=: C0
t ;

Consequently, the estimatorbTt obtained by minimizing the reweighed risk functionalR 0( bTt ) :=
EX 0 � � 0

�
d�
d� 0 (X 0) kz(X 0

t ) � bT
T
t z(X 0)k2

2

�
does notminimize the true risk sinceR 0( bTt ) 6= R( bTt ).

Despite this difference, whenever the perturbation is small or controlled and thetime-lagt is small
enough, estimating the true transfer operator of the process from the perturbed dynamics via reweighed
covariance/cross-covariance operators has been systematically used as the state-of-the art approach in
the �eld of atomistic simulations [7, 9, 31, 49]. The (limited) success of such approaches is based
on a delicate balance of a small enough lag-time and biased potential, since for smallt > 0 one can
approximate Ct by C0

t and minimizeR 0(T) � R (T) overT : H ! H .
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4 In�nitesimal generator learning

In this section, we address generator learning. While there has been signi�cant progress on this topic
[24, 15, 35, 50, 20], we follow the recent approach in [21] for learning the generatorL on an a priori
�xed hypothesis spaceH through its resolvent. Leveraging on its strong statistically guarantees, we
adapt it from kernel regression to nonlinear regression over a dictionary of basis functions, setting the
stage for the development of our deep-learning method.

While transfer operator learning does not require any prior knowledge of the system's drift and
diffusion, making use of this information helps learning the generator and avoids the need for setting
the time lag parameter. We brie�y discuss how to achieve this for over-damped Langevin processes
when the constant diffusion term is known. We estimate the generatorindirectlyvia its resolvent(�I �
L )� 1, where� > 0 is a prescribed parameter. To this end, we observe that the action of the resolvent
in H can be expressed as(( �I �L )� 1hu )(x) = � � (x)Tu, where� � is the embedding of the resolvent
(�I �L )� 1 into H , given by� � (x) =

R1
0 E[z(X t )e� �t j X 0= x]dt; x 2 X , see [21]. We then aim to

approximate� � (x) � G� z(x) by a matrixG 2 Rm � m . Unfortunately the embedding of the resolvent
is not known in close form. To overcome this, we contrast the resolvent by de�ning aregularized
energy kernelE�

� : H 1;2
� (X ) � H 1;2

� (X ) ! R, given byE�
� [f; g ] = Ex � � [�f (x)g(x) � f (x)[Lg](x)],

which using (3) becomes

E�
� [f; g ]= Ex � �

h
�f (x)g(x)+ f (x)r U(x)Tr g(x)� 1

� f (x)� g(x)
i

; (9)

and, due to the identity
R

f Lgd� = � � � 1
R

(r f )T(r g)d� , also

E�
� [f; g ]= Ex � �

h
�f (x)g(x)+ 1

�

P
k2 [d]@k f (x)@k g(x)

i
: (10)

SinceL is negative semi-de�nite, the above kernel induces theregularized squared energy norm
E�

� : H 1;2
� (X ) ! [0; + 1 ) by E�

� [f ] := E�
� [f; f ] = Ex � �

�
�f 2(x) � f (x)[L f ](x)

�
. It counteracts

the resolvent and balances the transient dynamics (energy) of the process with the invariant distribution
� . In a nutshell, instead of using the mean square error off (x) := k� � (x) � GTz(x)k2 to de�ne the
risk, we "�ght �re with �re " and penalize the energy to formulate thegenerator regression problem

min
G : H!H

R @(G) � R @(G) := E�
�

�
k� � (�) � bG

T
z(�)k2

�
: (11)

Indeed, this risk overcomes the dif�culty of not knowing� � . To show this, let us de�ne the space
H �

� (X ) := f f 2 H 1;2
� (X ) j E�

� [f ] < 1g associated to the energy normkf kH �
�

:=
p

E�
� [f ], and

recalling that the operatorG: H ! H is identi�ed with a matrixG 2 Rm � m via Ghu = z(�)T(Gu),
de�ne the (injection) operatorZ : Rm ! H �

� by Z u = z(�)Tu, for everyu 2 Rm . Then, since
HS (Rm ; H �

� ) � HS (H ; H �
� ), the norm is the sum of squaredH �

� norm over the standard basis in
Rm , and one obtains

R @(G) = k(�I �L )� 1 � Gk2
HS( H ;H �

� )

= kPH (�I �L )� 1 � Gk2
HS( H ;H �

� )
| {z }

projected problem

+ k(I � PH )( �I �L )� 1k2
HS( H ;H �

� )
| {z }

representation error� (H )

; (12)

wherePH is the orthogonal projector inH �
� (X ) onto H. In learning theory� (H ) is known as

the approximation error of the hypothesis spaceH [see e.g.43]. While this error may vanish for
in�nite-dimensional spaces, whenH is �nite dimensional, controlling� (H ) is crucial to achieving
statistical consistency. This can be accomplished by minimizing (11), which is equivalent to

min
G : H!H

kPH (�I �L )� 1� Gk2
HS( H ;H �

� ) = kZ (Z � Z )yZ � (�I �L )� 1Z � Z Gk2
HS( Rm ;H �

� ) (13)

where(�)y is the Moore-Penrose's pseudoinverse. Using the covariance matrices

Z � (�I �L )� 1Z = C=
�
Ex � � [zi (x)zj (x)]

�
i;j 2 [m ]; and W= Z � Z =

�
E�

� [zi ; zj ]
�

i;j 2 [m ]; (14)

w.r.t. the invariant distribution and energy, respectively, gives the ridge regularized (RR) solution
G = ( W +  I) � 1C,  > 0. The induced RR estimator of the resolvent,G�; : H ! H is given,
for everyhu 2 H , by G�; hu := Z (W +  I) � 1Cu = z(�)T(W +  I) � 1Cu, and it can be estimated
given data from� by replacing expectation and the energy in (14) with their empirical counterparts.
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5 Unbiased learning of the in�nitesimal generator from biased simulations

In this section, we present the main contributions of this work: approximating the leading eigenfunc-
tions (corresponding to the slowest time scales) of the in�nitesimal generator from biased data.While
the general pipeline for the method can be found in �gure 1, in the following, we �rst address re-
gressing the generator on an a priori �xed hypothesis spaceH. Then we introduce our deep-learning
method to either build a suitable spaceH, or even directly learn the eigenfunctions.

Figure 1: Pipeline of our method: from biased simulations to timescales and metastable states.

Unbiasing generator regression Whenever� is absolutely continuous w.r.t.� 0, the regularized
energy kernel (9) satis�es the simple identity

E�
� [f; g ] = E�

� 0

�
f

q
d�
d� 0 ; g

q
d�
d� 0

�
; f; g 2 H 1;2

� (X ); (15)

which, recalling the rightmost equation in(7), implies that when the biasV and the diffusion
coef�cient � are known, the energy kernel can be empirically estimated through samples from� 0

via (10). Moreover, when the potentialU is known too, we can use(9). Now, leveraging on(15)we
directly obtain that

R @(G) � R @(G)= E�
x � � 0

�
k� � (x) � bG

T
z(x)k2

q
d�
d� 0 (x)

�
� � V E�

x � � 0k� � (x) � bG
T
z(x)k2 (16)

where� V = ess supx � � 0
d�
d� 0 (x), which recalling(7) is �nite whenever the biasV is essentially

bounded. Therefore, in sharp contrast to transfer operator learning, whenever the true embedding
� � (x) can be estimated, one can derive principled estimators of the true generatorL 's dominant
eigenpairs from the biased dynamics generated byL 0. This is established by the following proposition,
the proof of which is presented in Appendix B.

Theorem 1. Let Dn = ( x0
i ) i 2 [n ] be the biased dataset generated from� 0. Letw(x) = e�V (x ) and

de�ne the empirical covariances w.r.t. the empirical distributionb� 0= n� 1 P
i 2 [n ] � x 0

i
by

bC =
�
Ex 0� b� 0[w(x0)zi (x0)zj (x0)]

�
i;j 2 [m ] and bW =

�
E�

b� 0[
p

wzi ;
p

wzj ]
�

i;j 2 [m ]: (17)

Compute the eigenpairs(� i ; vi ) i 2 [m ] of the RR estimatorbG�; = ( bW + � I) � 1 bC, and estimate the
eigenpairs in(4) as (b� i ; bf i ) = ( � � 1=� i ; z(�)Tvi ). If the elements ofH and their gradients are
essentially bounded, andlim

m !1
� (H ) = 0 , then for every" > 0, there exist(m; n;  ) 2 N � N � R+ ,

such that, for everyi 2 [m], j� i � b� i j � " andsinL 2
�
(^ (f i ; bf i )) � " , with high probability.

Note that, due to the form of the estimator, the normalizing constant
R

w(x)dx does not need be
computed. Moreover, relying on the upper bound in(16) we can alternatively computebC and bW
without the weightsw and still ensure that the above result holds true.

Neural network based learning Theorem 1 guarantees successful estimation of the eigendecom-
position of the generator in(4) whenever the energy-basedrepresentation error� (H ) in (12) is
controlled. It is therefore natural to minimize� (H ) by choosing an appropriate basis functionzi 's.
Inspired by the recent work [24], we parameterize them by a neural network, and optimize them to
span the leading invariant subspace of the generator.

Let z� = ( z�
i ) i 2 [m ] : X ! Rm be a neural network (NN) embedding parameterized by� 2 � weights

with continuously differentiable activation functions, and let� �
i , i 2 [m], be real non-positive
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(trainable) weights. We propose to optimize the NN to �nd the slowest time-scales� �
i that

solve the eigenvalue equationLz�
i = � �

i z�
i , i 2 [m]. Letting Z � : Rm ! H �

� (X ) be the (pa-
rameterized) injection operator, given, for everyu 2 Rm by Z � u =

P
i 2 [m ] z�

i ui , and denot-
ing � �

� = ( �I � diag(� �
1; : : : ; � �

m )) � 1, the eigenvalue equations for the resolvent then become
(�I � L )� 1Z � = Z � � �

� . In other words, we aim to �nd the best rank-m decomposition of resol-
vent(�I �L )� 1 � Z � � �

� Z �
� . Therefore, for some hyperparameter� � 0 we introduce the loss

E� (� ) := k(�I �L )� 1 � Z � � �
� Z �

� k2
HS( H �

� ) � k (�I �L )� 1k2
HS( H �

� ) + �
X

i;j 2 [m ]

(hz�
i ; z�

j i
L 2

�
� � i;j )2:

While the �rst term measures the approximation error in the energy space, it cannot be used as a loss,
because the action of the resolvent is not known. To mitigate this, the second term is introduced,
under the assumption that(�I �L )� 1 2 HS (H �

� (X )) (see Appendix C for a discussion). The third
term is optional; speci�cally, if the goal is not only to identify the proper invariant subspace of the
generator (� = 0 ), but also to optimize the neural network to extract eigenfunctions as features, then
this last term (� > 0) encourages the orthonormality of features inL 2

� (X ), an idea successfully
exploited in machine learning and computational chemistry [see e.g. 24, and references therein].

Recalling(14)and denoting byC� andW� the covariance matrices associated to the parameterized
features, after some algebra, we obtain that

E� (� ) = tr
�
C� � �

� W� � �
� � 2C� � �

� + � (C� � I)2�
: (18)

In turn, this can be estimated from biased data by two independent samplesb� 0
1 andb� 0

2 as

Eb� 0
1 ;b� 0

2
� (� )= tr

h
(bC

1
� � �

�
bW

2
� � �

� + bC
2
� � �

�
bW

1
� � �

� )=2� bw1 bC
2
� � �

� � bw2 bC
1
� � �

� + � (bC
1
� � bw1 I)( bC

2
� � bw2 I)

i
; (19)

wherebC
k
� and bW

k
� are the empirical covariances given by(17) for distributionb� 0

k , while bwk =
Ex 0� b� 0

k x w(x0), k2[2]. Importantly, the computational complexity of the loss(19) is of the order
O(nm2d), whered is the state dimension andn the sample size, however it can be reduced to
O(nmd) (see Appendix C) allowing its application to learn large dictionaries for high-dimensional
problems with big amounts of (biased) data.

The following result, linked to controlling of the representation error as detailed in Theorem 1, pro-
vides theoretical guarantees for our approach. The proof and discussion are provided in Appendix B.

Theorem 2. Given a compact operator(�I �L )� 1, � > 0, if (z� ) i 2 [m ] � H �
� (X ) for all � 2 � , then

E
�
Eb� 0

1 ;b� 0
2

� (� )
�

= w2 E� (� ) � �
P

i 2 [m ]
w 2

( � � � i )2 ; for all � 2 � ; (20)

wherew = Ex � � 0[w(x)]. Moreover, if� > 0 and� m +2 < � m +1 , then the equality holds if and only if
(� �

i ; z�
i ) = ( � i ; f i ) � -a.e., up to the ordering of indices and choice of eigenfunction signs fori 2 [m].

This theorem provides a justi�cation for minimizing the loss in(19), which can be achieved by
stochastic optimization algorithms, to obtain an approximation of either the leading invariant subspace
of the resolvent(�I �L )� 1 (without orthonormality loss, i.e.� = 0 ), on which the estimator in
Theorem 1 can be computed, or even the individual eigenpairs (� > 0). A pseudocode of our method
is provided below. The main advantage of this method is that it exploits the knowledge of the process.
namely, if only the biasV and the diffusion coef�cient� are known, recalling(10), the computation
of loss relies just of the gradient of the features. On the other hand, the knowledge of the potential
can also be exploited via(9). Finally, even if the neural network features are not perfectly learned,
one can still resort to Theorem 1 to compute the approximate eigendecomposition ofL .

6 Experiments

In this section, we test the method described above on well-established [14, 9, 32, 36] molecular
dynamics benchmarks, featuring biased simulations of increasing complexity. We �rst start by
showing the ef�ciency of our method on a simple one dimensional double well potential. We
then proceed to the Muller-Brown potential which is a 2D potential, where this time, sampling is
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Algorithm 1: From biased to unbiased dynamics via in�nitesimal generator

1: Parameters� > 0 shift of the generator,m number of wanted eigenfunctions,K number of
optimization steps, > 0 and� > 0 regression and NN hyperparameters

2: Inputs DatasetDn = ( x ` )` 2 [n ] gathered from a simulation with bias potentialV
3: Compute weightsw(x ` ) = exp( �V (x ` )) , ` 2 [n], to be used in line 7
4: if the dictionary of functionz does not already existthen
5: Initialization : randomly initialize neural networks weights of� � and(z�

i ) i 2 [m ], setk = 0
6: while k < K do
7: ComputebC

j
� and bW

j
� , j = 1 ; 2, using (17) for two independent batchesb� 0

1 andb� 0
2

8: Compute lossbEb� 0
1 ;b� 0

2 (� ) using (19) and backpropagate
9: end while

10: end if
11: ComputebC and bW using (17) the datatsetDn

12: Compute the eigenpairs(� i ; vi ) i 2 [m ] of bG�; =( bW+ � I) � 1 bC
13: Output Estimated eigenpairs ofL are(b� i ; bf i )=( � � 1=� i ; z� (�)Tvi ), i 2 [m]

accelerated by a bias potential built on the �y. Finally, we study the conformational landscape of
alanine dipeptide. This small molecule is a classical testing ground for rare event methods. To
showcase the ef�ciency of our method we analyse two different sets of data both generated in a
metadynamics-like approach and showcase the ef�ciency of our approach, even with a small number
of transitions in the training set. The codes used to train the models can be found in the following
repository: https://github.com/DevergneTimothee/GenLearn

One dimensional double well potential We �rst showcase the ef�ciency of our method on a simple
one dimensional toy model. We sample transitions fromU + V, whereU is a double well potential
andV is a bias potential. The results are shown Figure 7 in the appendix, where our method clearly
outperforms transfer operator approaches and recovers the true underlying dynamics.

Muller Brown potential with metadynamics biasing Muller Brown is a 2 dimensional potential
presenting metastable states often studied in the context of enhanced sampling [19, 37, 14, 9]. It
presents two minima, with one of them separated into two sub-basins. We thus expect two relevant
eigenpairs: the slowest one corresponding to the transition between the two basins and the second
slowest one describing the transition between the two sub-basins. However, at low temperature
crossing the barrier occurs rarely. To expedite the rate of transition we use metadynamics and instead
of having a prede�ned bias potential, as in the previous section, the bias is built on the �y using
metadynamics [25]. The results of the training procedure are presented in Figure 2. We compare the
results with deepTICA and a state of the art generator learning approach in [50]. From this �gure, we
see that we managed to accurately learn the dynamical behavior of the system despite the fact that
the dynamics was performed using a bias potential. As expected, it is clearly outperforming transfer
operator approaches. We achieve similar or slightly better results (particularly near the transition
state) on the qualitative shape of the eigenfunctions. On the other hand, our method performs better
than previous work on generator learning on the estimation of eigenvalues, and is the closest to the
ground truth eigenvalues. This is likely to be due to the fact that the method in [50] requires the
tuning of hyperparameters in the loss function, while in our case, these coef�cients are trainable. It
should be noted that here, the eigenfunctions were �tted with well-learned features. However, we
present in the appendix results where the features are not perfectly learned, but we still manage to
recover the eigenfunctions.

Alanine dipeptide with OPES biasing We next treat a more concrete molecular dynamics example
with the study of the conformational change of alanine dipeptide in gas phase. It is a molecule
containing 22 atoms, of which 10 are heavy. For the remaining of this study, we will only take into
account the positions of the heavy atoms, making it a 30 dimensional system. This molecule has
widely been used to test methods in enhanced sampling [9, 50, 42]: it presents a conformational
change which is a rare event described by the angles� and . In the studies made on this system, the
angle� has been shown to be a good CV: the transition between the two states is very well described,
and thus a bias potential can easily be built with this CV. On the other hand, the angle misses
most of the transition and is a non optimal CV. We generated biased dataset using a variation of
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Figure 2: Muller Brown potential. Comparison of the ground truth two �rst relevant eigenfunctions of
the potential (�rst column ) with this work (second column), transfer operator approach deepTICA
[7] (third column ) and the work of Zhang et al. [50] (fourth column). x and y axis are the
coordinates of the system and points are colored according to the value of the eigenfunction. The
underlying potential is represented by the level lines in white. Associated eigenvalues� are also
reported.

metadynamics called on the �y probability enhanced sampling (OPES) [16], which allows a more
extensive and faster exploration of the state space than metadynamics [25]:

Dataset 1:800ns simulation, biasing on the dihedral angle, with OPES leading to few transitions
between the two states. The bias potential was built during the �rst 100ns of the simulation. For the
remaining 700ns, the potential built during the �rst part was kept �xed to enhance transitions.
Dataset 2:50ns simulation, biasing on� dihedral angle, with OPES leading to many transitions
between the two states. The bias potential was built during the �rst 20ns of the simulation. For the
remaining 30ns, the potential built during the �rst part was kept to enhanced transitions.

Dataset 1 mimics situations where one has only a basic prior knowledge of the system: only a
"suboptimal" CV is used yielding to only a few transitions between the metastable states within
the affordable simulation time. In order to ensure translational and rotational invariant vectors, we
use Kabsch [18] algorithm, which has been used in previous studies [50, 4, 10] to transform the
positions of the atoms. The results are presented in Figure 3. Panelsa) andb) display the �rst and
second eigenfunctions learned by our method respectively. Notice that, even though only 2 transitions
are present in dataset 1, the �rst eigenfunction separates the two metastable states, and the second
identi�es a faster transition in one metastable state. Panelc) showcases the good out-of-sample
generalization ability of the method. It visualizes the �rst eigenfunction obtained as above, but this
time visualized on points from dataset 2 and in the plane of dihedral angles� and� . Interestingly, we
discover that a linear relationship is present in the transition region, in agreement with recent �ndings
in the molecular dynamics literature [6, 19].

To further improve the description of the transition and to enhance the training set without any prior
knowledge of the mechanism, one could perform biased simulations using the �rst eigenfunction.
Nonetheless, this is not the scope of this paper. To push our method further and see its capabilities
when training on a good dataset, we trained it on Dataset 2. One key quantity in molecular dynamics
is the committor function for metastable states A and B, which is de�ned as the probability of, starting
from A, going to B before going back to A. Theory tells us that the committor is linearly related to
the �rst eigenfunction of the generator, a result going back to Kolmogorov [see5, for a discussion].
This relation is exposed in paneld) of Figure 3, when comparing to the committor model obtained in
[19] indicating the good performance of our method.

Chignolin miniprotein In this section, we report the results of our method obtained on a larger
scale experiment: the folding/unfolding mechanism of the chignolin miniprotein. This system has
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Figure 3: Alanine Dipeptide. Results of our method trained on Dataset 1a) and b) �rst and
second eigenfunctions represented on dataset 1, in the plane of the� and dihedral angles.c) �rst
eigenfunction represented on dataset 2, in the plane of the� and� dihedral angles, indicating that our
method is effective even when trained from poor CVs (see text for more discussion). On all three
panels, points are colored according to the value of the eigenfunction.d) Comparison of our method
with the committor (q) of [19]

extensively been studied [46, 19, 39, 7]. We �rst performed a 1� s biased simulation using the
deep-TDA collective variable [46, 37] to gather transitions. Then we chose descriptors as input of
the neural networks that are known to describe well the folding process [7]. Finally, we trained the
method described in the current work with this trajectory and compared it with the results obtained
when training on a106� s unbiased trajectory provided by D.E. Shaw research [28]. The results are
presented in �gure 4, showing a very good agreement between the training on an unbiased trajectory
and on a biased one.

Figure 4: Our method for the chignolin miniprotein. The data points are represented in the plane of
the distance between the nitrogen atom of the residue 3: ASP (ASP3N) and the oxygen atom of the
residue 7: Gly (Gly7O) and the distance between ASP3N and the oxygen atom of residue 8: THR
(THR8) which allow visualizing the folded and unfolded states.

7 Conclusions

We presented a method to learn the eigenfunctions and eigenvalues of the generator of Langevin
dynamics from biased simulations, with strong theoretical guarantees. We contrasted this approach
with those based on the transfer operator and a recent generator learning approach based on Rayleigh
quotients. In experiments, we observed that our approach is effective even when trained from sub-
optimal biased simulations. In the future our method could be applied to larger-scale simulations
to discover rare events such as protein-ligand binding or catalytic processes. A main limitation
of our method is that, in its current form, it is formulated for time-homogeneous bias potentials.
However, the proposed framework could be naturally extended to time-dependent biasing, broadening
its applicability in computational chemistry. Furthermore, given the quality of our results on alanine
dipeptide, in the future, we can use our method to compute accurate eigenfunctions from old, possibly
poorly converged, metadynamics simulations, thereby gaining novel and more accurate physical
information.
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Appendix

The appendix contains additional background on stochastic differential equations, proofs of the
results omitted in the main body, and more information about our learning method and the numerical
experiments.

notation meaning notation meaning

[ � ] setf 1; 2 : : : ; �g [ � ]+ nonnegative part of a number
X state space of the Markov process (X t ) t � 0 time-homogeneous Markov process

dWt Brownian motion � inverse temperature of the system
U potential energy of the system V bias potential
� Boltzmann distribution of potentialU � 0 Boltzmann distribution of potentialU+ V
b� empirical version of� b� 0 empirical version of� 0

d�=d� 0 density of� w.r.t. � 0 w exponential weights ofd�=d� 0

L 2
� (X ) L 2 space onX w.r.t. the measure� H 1;2

� (X ) Sobolev space w.r.t.� onX
Tt transfer operator with lag timet T̂t empirical estimator ofTt

L generator of the true process L 0 generator of the biased process
� shift parameter (�I �L )� 1 resolvent at�
H hypothetical Hilbert space z basis functions

E� [�; �] regularized energy kernel E� [�] regularized energy norm
H �

� (X ) space associated to the energy norm Z injection operator
R @ risk functional bR @ empirical risk functional
C covariance bC empirical covariance
W covariance in energy space bW empirical covariance in energy space
� i generator eigenvalue f i generator eigenfunction
b� i empirical estimator of� i bf i empirical estimator off i

z� neural network embedding � neural network weights
Z � neural network injection operator � �

� neural network weights
E� regularized loss function bE� regularized empirical loss function

Table 1: Summary of used notations.

A Background

In this work we consider stochastic differential equations (SDE) of the form

dX t = a(X t )dt + b(X t )dWt and X 0 = x: (21)

The special case of Langevin equation considered in the main body of the paper corresponds to

a(x) = �r U(x) andb(x) =
q

2
� I . Equation(21) describes the dynamics of the random vector

X t in the state spaceX � Rd, governed by thedrift a : Rd ! Rd and thediffusionb : Rd ! Rd� p

coef�cients, whereWt is aRp-dimensional standard Brownian motion. Under the usual conditions
[see e.g.33] thata andbare globally Lispchitz and sub-linear, the SDE(21)admits an unique strong
solutionX = ( X t )> 0 that is a Markov process to which we can associate the semigroup of Markov
transfer operators(Tt )t � 0 de�ned, for everyt � 0, as

[Tt f ](x) := E[f (X t )jX 0 = x]; x 2 X ; f : X ! R: (22)

For stable processes, the distribution ofX t converges to aninvariant measure� on X , such that
X 0 � � implies thatX t � � for all t � 0. In such cases, one can de�ne the semigroup onL 2

� (X ),
and characterize the process by thein�nitesimal generatorof the semi-group(Tt )t > 0,

L := lim
t ! 0+

Tt � I
t

(23)
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de�ned on the Sobolev spaceH 1;2
� (X ) of functions inL 2

� (X ) whose gradient are inL 2
� (X ), too, i.e.

L : L 2
� (X ) ! L 2

� (X ) anddom(L ) = H 1;2
� (X ). The transfer operator and the generator are linked

to each other by the formulaTt = exp( tL ).

After de�ning the in�nitesimal generator for Markov processes by(23), we provide its explicit form
for solution processes of equations like(21). Given a smooth functionf 2 C2(X ; R), Itô's formula
[see for instance 3, p. 495] provides fort 2 R+ ,

f (X t ) � f (X 0) =
Z t

0

dX

i =1

@i f (X s)dX i
s + 1

2

Z t

0

dX

i;j =1

@2
ij f (X s)dhX i ; X j i s

=
Z t

0
r f (X s)TdX s + 1

2

Z t

0
Tr

�
X T

s (r 2f )(X s)X s
�
ds:

Recalling (21), we get

f (X t ) = f (X 0) +
Z t

0

�
r f (X s)Ta(X s) + 1

2 Tr
�
b(X s)T(r 2f (X s))b(X s)

�
�
ds

+
Z t

0
r f (X s)Tb(X s)dWs: (24)

Providedf andbare smooth enough, the expectation of the last stochastic integral vanishes so that
we get

E[f (X t )jX 0 = x] = f (x) +
Z t

0
E

h
r f (X s)Ta(X s) + 1

2 Tr
�
b(X s)T(r 2f (X s))b(X s)

� ��
�X 0 = x

i
ds

Recalling thatL = lim
t ! 0+

(Tt f � f )=t, we get for everyx 2 X ,

L f (x) = lim
t ! 0

E[f (X t )jX 0 = x] � f (x)
t

= lim
t ! 0

1
t

� Z t

0
E

h
r f (X s)Ta(X s) + 1

2 Tr
�
(X s)T(r 2f (X s))b(X s)

� i
ds

�
�
�X 0 = x

�

= r f (x)Ta(x) + 1
2 Tr

�
b(x)T(r 2f (x))b(x)

�
; (25)

which provides the closed formula for the IG associated with the solution process of(21). In particular,
for Langevin dynamics this reduces to (3).

Next, recalling that for a bounded linear operatorA on some Hilbert spaceH theresolvent setof the
operatorA is de�ned as� (A) = f � 2 Cj A � �I is bijectiveg, and itsspectrumSp(A) = Cnf � (A)g,
let � � Sp(A) be the isolated part of the spectra, i.e. both� and� = Sp(A) n � are closed inSp(A).
Then, theRiesz spectral projectorP� : H ! H is de�ned by

P� =
1

2�

Z

�
(zI � A) � 1dz; (26)

where� is any contour in the resolvent setRes(A) with � in its interior and separating� from � .
Indeed, we have thatP2

� = P� andH = Im(P� ) � Ker(P� ) whereIm(P� ) andKer(P� ) are both
invariant underA, and we haveSp(A j Im( P � )

) = � andSp(A jKer( P � )
) = � . Moreover,P� + P� = I

andP� P� = P� P� = 0 .

Finally if A is acompactoperator, then the Riesz-Schauder theorem [see e.g.38] assures thatSp(T)
is a discrete set having no limit points except possibly� = 0 . Moreover, for any nonzero� 2 Sp(T),
then� is aneigenvalue(i.e. it belongs to the point spectrum) of �nite multiplicity, and, hence, we can
deduce the spectral decomposition in the form

A =
X

� 2 Sp(A )

� P � ; (27)

where the geometric multiplicity of� , r � = rank(P� ), is bounded by the algebraic multiplicity
of � . If additionally A is a normal operator, i.e.AA � = A � A, thenP� = P �

� is an orthogonal
projector for each� 2 Sp(A) andP� =

P r �
i =1  i 
  i , where i are normalized eigenfunctions of

A corresponding to� andr � is both algebraic and geometric multiplicity of� .

We conclude this section by stating the well-known Davis-Kahan perturbation bound for eigenfunc-
tions of self-adjoint compact operators.
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Proposition 1 ([13]). Let A be compact self-adjoint operator on a separable Hilbert spaceH.
Given a pair(b�; bf ) 2 C � H such thatk bf k = 1 , let � be the eigenvalue ofA that is closest to
b� and letf be its normalized eigenfunction. Ifbg = min fj b� � � j j � 2 Sp(A) n f � gg > 0, then
sin(^ ( bf ; f )) � k A bf � b� bf k=bg.

B Unbiased generator regression

In this section, we prove Theorem 1 relying on recently developed statistical theory of generator
learning [21]. To that end, let� (x) := z(�)Tz(x) 2 H be a feature map of the RKHS spaceH
of dimensiondim(H) = m. Let Wuj = � 2

j uj be the eigenvalue decomposition ofW and let
vj := uj =� j . This induces the SVD of the injection operator,Z uj = � j ~zj for ~zj := z(�)Tvj .

SinceH � H 1;1
� (X ), we have that

c� = ess sup
x � �

P
j 2 N [� j~zj (x)j2 � zj (x)[L ~zj ](x)] < + 1 ;

and, denoting W := W + � I
tr[W� 1

 W ] � m:

In addition denote the empirical version of W as bW := bW + � I.

Now, we can apply the following propositions from [21] to our setting, recalling the notation for
normalizing constantw := Ex � � 0[w(x)] for whichw(�)=w = d�=d� 0.

Proposition 2. Given� > 0, with probability in the i.i.d. draw of(x i )n
i =1 from � , it holds that

Pfk bW � Wk � "n (� )g � 1 � �;

where

"n (� ) =
2kWk

3n
L(� ) +

r
2kWk

n
L(� ) and L (� ) = log

4tr(W)
� kWk

: (28)

Proposition 3. Given� > 0, with probability in the i.i.d. draw of(x i )n
i =1 from � , it holds that

P
n

kW� 1=2
 ( bW � W)W� 1=2

 k � "1
n (; � )

o
� 1 � �; (29)

where

"1
n (; � ) =

2c�

3n
L 1(; � ) +

r
2c�

n
L 1(; � ); (30)

and

L 1(; � ) = ln
4
�

+ ln
tr(W� 1

 W)

kW� 1
 Wk

:

Moreover,

P
�

kW1=2


bW
� 1
 W1=2

 k �
1

1 � "1
n (; � )

�
� 1 � �: (31)

Proposition 4. With probability in the i.i.d. draw of(x i )n
i =1 from � , it holds

P
n

kW� 1=2
 ( bC � C)kF � "2

n (; � )
o

� 1 � �;

where

"2
n (; � ) =

4
p

2mkWk
�

ln
2
�

r
c�

n
+

c�

n2 : (32)

We are now ready to prove Theorem 1, which we restate here for convenience.

Theorem 1. Let Dn = ( x0
i ) i 2 [n ] be the biased dataset generated from� 0. Letw(x) = e�V (x ) and

de�ne the empirical covariances w.r.t. the empirical distributionb� 0= n� 1 P
i 2 [n ] � x 0

i
by

bC =
�
Ex 0� b� 0[w(x0)zi (x0)zj (x0)]

�
i;j 2 [m ] and bW =

�
E�

b� 0[
p

wzi ;
p

wzj ]
�

i;j 2 [m ]: (17)
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Compute the eigenpairs(� i ; vi ) i 2 [m ] of the RR estimatorbG�; = ( bW + � I) � 1 bC, and estimate the
eigenpairs in(4) as (b� i ; bf i ) = ( � � 1=� i ; z(�)Tvi ). If the elements ofH and their gradients are
essentially bounded, andlim

m !1
� (H ) = 0 , then for every" > 0, there exist(m; n;  ) 2 N � N � R+ ,

such that, for everyi 2 [m], j� i � b� i j � " andsinL 2
�
(^ (f i ; bf i )) � " , with high probability.

Proof. We �rst show thatR @( bG�; ) < " for big enoughm; n 2 N and small enough > 0.

Observe that
W = E[ bW]=w and C= E[bC]=w (33)

and, hence
G�; := W� 1

 C = ( E[ bW ]) � 1(E[bC]);

due to cancellation ofw.

Given" > 0, let m 2 N be such that� (H ) = k(I � PH )( �I �L )� 1k2
HS( H ;H �

� ) < "= 3. Next, since

PH (�I �L )� 1Z�Z G�; =( I �Z W� 1
 Z � )( �I �L )� 1Z = Z (WyC � W� 1

 C);

we have that

kPH (�I �L )� 1Z�Z G�; kHS( H ;H �
� ) = kW1=2(WyC� W� 1

 C)kF = kW1=2(Wxy� W� 1
 )CkF ! 0;

as ! 0. Hence, let > 0 be such thatkPH (�I �L )� 1Z�Z G�; kH!H �
�

< "= 3.

Finally, using the decomposition of the risk

R @( bG�; ) � � (H )+ kPH (�I �L )� 1Z�Z G�; kHS( Rm ;H �
� ) + kZ ( bG�; � bG�; )kHS( Rm ;H �

� )

it remains to show that for large enoughn we havekZ (G�; � bG�; )kHS( Rm ;H �
� ) � "=3.

To that end observe that

W1=2
 ( bG�; � G�; ) = W1=2


bW

� 1
 ( bC � bW W� 1

 C � C)

= W1=2


bW
� 1
 W1=2



�
W� 1=2

 ( bC � C) � W� 1=2
 ( bW � W)W� 1=2

 (W� 1=2
 C)

�
:

Thus, by multiplying the above expression byw and applying Propositions 3 and 4, we obtain that
there existsn 2 N such thatkZ (G�; � bG�; )kHS( Rm ;H �

� ) � "=3.

Next, assuming thatk bW � Wk is small, for the normalization of the estimated eigenfunctions we
have that

kvj k2
2

k bf j k2
H �

�

=
vT

j vj

vT
j Wvj

�
vT

j vj

vT
j

bWvj � vT
j (W � bW)vj

�
1

� +
min ( bW) � k bW � Wk

�
1

� m (W) � 2k bW � Wk
:

where we have that� m (W) > 0 due to fact that(zj ) are linearly independent.

Therefore, to conclude the proof, we apply [21, Proposition 2] which directly relying on Proposition
1 yields the result.

At last we remark, based on the observation thatW = E[ bW]=w andC = E[bC]=w, one can readily
obtain stronger version of Theorem 1 in the general RKHS setting of [21].

C Unbiased deep learning of spectral features

In this section, we provide details on our DNN method and prove Theorem 2. To that end, let us
denote the terms in the loss as

E (� ):= k(�I �L )� 1�Z � � �
� Z �

� k2
HS( H �

� )�k (�I �L )� 1k2
HS( H �

� )
| {z }

expected lossE

+ 
P

i;j 2 [m ](hz
�
i ; z�

j i
L 2

�
� � i;j )2

| {z }
orthonormality lossEon

; (34)
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and recall that the injection operator isZ � =( z� )T(�) : Rm ! H �
� (X ). It is easy to show from the

de�nition of the adjoint that, for everyf 2 H �
� (X ), we have

Z �
� f = Ex � � [z� (x)(( �I �L )f )(x)]: (35)

Thus, Z �
� Z � = E� [z�

i ; z�
j ]i;j 2 [m ] which we denote byW� , while Z �

� (�I � L )Z � =
Ex � � [z�

i (x)z�
j (x)] i;j 2 [m ] is denoted by C� .

Theorem 2. Given a compact operator(�I �L )� 1, � > 0, if (z� ) i 2 [m ] � H �
� (X ) for all � 2 � , then

E
�
Eb� 0

1 ;b� 0
2

� (� )
�

= w2 E� (� ) � �
P

i 2 [m ]
w 2

( � � � i )2 ; for all � 2 � ; (20)

wherew = Ex � � 0[w(x)]. Moreover, if� > 0 and� m +2 < � m +1 , then the equality holds if and only if
(� �

i ; z�
i ) = ( � i ; f i ) � -a.e., up to the ordering of indices and choice of eigenfunction signs fori 2 [m].

Proof. Let Pk : H �
� (X ) ! H �

� (X ) be spectral projector ofL corresponding to thek largest eigen-
values. Now, consider

Ek (� )= kPk (�I �L )� 1�Z � � �
� Z �

� k2
HS( H �

� ) �k Pk (�I �L )� 1k2
HS( H �

� ) :

Due to Eckhart-Young theorem, we have that for every� 2 � , the best rank-m approximation of
(�I �L )� 1 is (�I �L )� 1Pm = ( �I �L )� 1Pk Pm , for k > m , and it holds

Ek (� )�
kX

j = m +1

(� � � i ) � 1 �
kX

j =1

(� � � i ) � 1 = �
mX

j =1

(� � � i ) � 1:

As before, expanding inEk the HS norm via the trace, we obtain

Ek (� )= kZ � � �
� Z �

� k2
HS( H �

� ) � 2 tr[Z � � �
� Z �

� (�I �L )� 1Pk ]= E(� )+2 tr[Z � � �
� Z �

� (�I �L )� 1(I � Pk )];

and, hence, by Cauchy-Schwartz inequality, we have that

jE(� ) � E k (� )j � kZ � k2
HS( H ;H �

� ) k� �
� kk(�I �L )� 1(I � Pk )k = 1

�

X

i 2 [m ]

E�
� [z�

i ](� � � k+1 ) � 1:

Observing thatz�
i 2 H �

� (X ), i.e. E�
� [z�

i ] < 1 , we conclude that, for every� 2 � , lim
k !1

Ek (� ) =

E(� ). Therefore, noting thatE� (� ) � E (� ), inequality in(20) is proven. Since the equality clearly
holds for the leading eigenpairs of the generator, to prove the reverse, it suf�ces to recall the
uniqueness result of the best rank-m estimator, which is given byPm (�I �L )� 1, i.e. (z�

i ) i 2 [m ] span
the leading invariant subspace(f i ) i 2 [m ] of the generator. So, if

E� (� ) = E(� ) =
mX

j =1

(� � � i ) � 1

and� > 0, we have thatEon (� ) = 0 , implying that(zi ) i 2 [m ] is an orthonormal basis, and, hence
Pm (�I �L )� 1, i.e. (z�

i ) i 2 [m ] = Z � � �
� Z �

� . The result follows.

To show that
E (� ) = E

�
Eb� 0

1 ;b� 0
2

 (� )
�
=w2;

we rewrite(18) to encounter the distribution change, noting that the empirical covariances are
reweighted but not normaliezed byw. So, we have that

E (� ) = tr
h
w� 2E[bC� ]� �

� E[ bW� ]� �
� � 2w� 1E[C� ]� �

� + w� 2� (E[bC� ] � wI)2
i

:

But, since

Ex � � [f (x)g(x)]= Ex 0� � 0

�
d�
d� 0 (x0) f (x0) g(x0)

�
= Ex 0

1 � � 0

� q
d�
d� 0 (x0

1)f (x0
1)

�
Ex 0

2 � � 0

� q
d�
d� 0 (x0

2)g(x0
2)

�
;

wherex0
1 andx0

2 are two independent r.v. with a law� 0, the proof is completed.
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Figure 5: Typical behavior of the loss function during a training.

Figure 6: Comparison on Muller Brown potential with ground truth, learned features and �tted
eigenfunctions

D Training of a neural network model

D.1 Evolution of the loss with eigenfunctions

It is interesting to note that during the training process, the loss reaches progressively lower plateaus.
This is due to the fact that the NN has found a novel eigenfunction orthogonal to the previously found
ones, starting with the constant one. Then during the plateau phase, the subspace is being explored
until a new relevant direction is found. Typical behavior is shown in Figure 5. It was obtained for the
case of a double well potential (see appendix below), but the same behavior was observed in all the
training sessions. This nice property is a handy tool in properly optimizing the loss and understanding
the proper stopping time.

D.2 Training with imperfect features

One of the main advantages of our method is that even with features that are not eigenfunctions of the
generator, but that were trained with our method, we can recover the good eigenfunction estimates as
proven in Theorem 1. In Figure 6, we illustrate such situation on a simulation of the Muller Brown
potential: the trained features do not represent the ground truth, however, using our �tting method on
the same dataset, we managed to recover eigenfunctions close to the ground truth. This is to the best
of our knowledge the �rst time this kind of "learn and �t" method has been applied to the learning of
the in�nitesimal generator.

19



Figure 7: Simulation of the double well potential (black dashed lines) under an effective biased
potential (blue dashed lines). Our method (blue points) compared to ground truth (black line) and
transfer operator based approach (red points)

D.3 Activation functions and structure of the neural network

In all of our experiments we used the hyperbolic tangent activation function. This choice was made
because it is a widely used, bounded function with continuous derivative. It thus satisfies all the
criteria needed for this method. Finally, when looking for m eigenpairs, instead of having a neural
network with m outputs, we choose to have m neural networks with one output.

D.4 Hyperparameters

Besides common hyperparameters such as learning rate, neural network architecture and activation
function, our method requires only two hyperparameters: η and α. Other methods such as [50] do
not require η, but on the other hand requires one weight per searched eigenfunction.

E Experiments

For all the experiments we used pytorch 1.13, and the optimizations of the models were performed
using the ADAM optimizer. The version of python used is 3.9.18. All the experiments were performed
on a workstation with a AMD® Ryzen threadripper pro 3975wx 32-cores processor and an NVIDIA
Quadro RTX 4000 GPU. In all the experiments, the datasets were randomly split into a training and a
validation dataset. The proportion were set to 80% for training and 20% for validation. The training
of deepTICA models was performed using the mlcolvar package [8].

E.1 One dimensional double well potential

In this subsection, we showcase the efficiency of our method on a simple one dimensional toy model.

The target potential we want to sample has the form Utg(x) = 4(−1.5 exp(−80x2) + x8), which
has a form of two wells separated by a high barrier which can hardly be crossed during a simulation.
In order to observe more transitions between the two wells and efficiently sample the space, we lower
the barrier by running simulations under the following potential: Usim = 4(−0.5 exp(−80x2) + x8),
which thus makes a bias potential: Vbias(x) = Usim(x)− Utg(x) = −4(exp(−80x2)). In Figure 7,
we compare our method based on kernel methods (infinite dimensional dictionary of functions) with
the ground truth and transfer operator baselines, namely deepTICA [7] which is a state-of-the-art
method for molecular dynamics simulations. For this experiment we have used a Gaussian kernel of
lengthscale 0.1, η = 0.1 and a regularization parameter of 10�5

E.2 Muller Brown potential

For this experiment, the dataset was generated using an in-house code implementing the Euler-
Maruyama scheme to discretize the overdamped Langevin equation. The simulation was performed at
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