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ABSTRACT

Knowledge-Based Visual Question Answering (KB-VQA) requires models to an-
swer questions about an image by integrating external knowledge, posing signif-
icant challenges due to noisy retrieval and the structured, encyclopedic nature of
the knowledge base. These characteristics create a distributional gap from pre-
trained multimodal large language models (MLLMs), making effective reasoning
and domain adaptation difficult in the post-training stage. In this work, we pro-
pose Wiki-R1, a data-generation-based curriculum reinforcement learning frame-
work that systematically incentivizes reasoning in MLLMs for KB-VQA. Wiki-
R1 constructs a sequence of training distributions aligned with the model’s evolv-
ing capability, bridging the gap from pretraining to the KB-VQA target distribu-
tion. We introduce controllable curriculum data generation, which manipulates
the retriever to produce samples at desired difficulty levels, and a curriculum sam-
pling strategy that selects informative samples likely to yield non-zero advantages
during RL updates. Sample difficulty is estimated using observed rewards and
propagated to unobserved samples to guide learning. Experiments on two KB-
VQA benchmarks, Encyclopedic VQA and InfoSeek, demonstrate that Wiki-R1
achieves new state-of-the-art results, improving accuracy from 35.5% to 37.1%
on Encyclopedic VQA and from 40.1% to 44.1% on InfoSeek.

1 INTRODUCTION

Knowledge-Based Visual Question Answering (KB-VQA) is a challenging multimodal task that
requires answering questions about an image by integrating external knowledge. A widely adopted
approach is the Retrieval-Augmented Generation (RAG) framework, which leverages pretrained
models and is further adapted to the task: a retriever first fetches relevant knowledge passages, and
a generator then produces an answer conditioned on this context. However, the noise in the retrieval
system is inherent, and the knowledge base (Vrandečić & Krötzsch, 2014) typically consists of
structured, encyclopedic information. Consequently, the model must not only reason over noisy and
imperfect external evidence but also comprehend retrieved information presented in a structured,
encyclopedic form largely unseen during pretraining. These characteristics position KB-VQA as a
challenging downstream task for pretrained MLLMs, one that demands robust reasoning ability and
effective domain transfer, and is typically addressed in the post-training stage.

Prior work has pursued two main directions. One line aims to improve retrieval quality (Lerner
et al., 2024; Yan & Xie, 2024; Yang et al., 2025; Deng et al., 2025), but retrieval remains inher-
ently noisy and cannot guarantee full coverage of necessary evidence. Another line of work focuses
on enhancing reasoning to handle imperfect retrieval. Specifically, models must understand ency-
clopedic passages and selectively extract relevant information while filtering out irrelevant content.
Early efforts primarily relied on supervised fine-tuning (Caffagni et al., 2024; Qi et al., 2024; Coc-
chi et al., 2024), which enables models to reason over retrieved knowledge for specific training
instances. However, our empirical results indicate that such approaches may have limited reasoning
robustness (Section 4.4). More recent reinforcement learning methods, including GRPO (Shao et al.,
2024), have demonstrated promising reasoning capabilities in general retrieval-augmented genera-
tion (RAG) settings (Jin et al., 2025; Wu et al., 2025). Despite these advances, the effectiveness of
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(a) (b) (c)

Figure 1: ( 1a) and ( 1b): Training dynamics of DAPO on KB-VQA. RL optimization suffers from
a high proportion of zero-advantage samples and low training accuracy, highlighting the distribution
gap between pretraining and the KB-VQA target domain. ( 1c): Motivation of Wiki-R1. To
mitigate this gap, Wiki-R1 generates a sequence of training distributions with progressively reduced
discrepancies and employs a curriculum sampling strategy to select informative samples.

RL-based approaches in tasks that require both multimodal reasoning and cross-domain adaptation,
such as KB-VQA, remains largely unexplored.

To investigate this, we conduct preliminary experiments applying the popular RL algorithm
DAPO (Yu et al., 2025) to incentivize the reasoning ability of MLLMs on KB-VQA. We observe
that over 80% of the samples exhibit zero advantages(Figure 1a) during training, and the overall
training accuracy remains low, around 10%(Figure 1b). These observations indicate that reinforce-
ment learning on KB-VQA suffers from a severe sparse reward problem, which is exacerbated by
the distributional gap between the model’s pretraining data and the KB-VQA target domain. To
further investigate the source of this distributional gap, we conduct experiments using the ground-
truth retrieval, which corresponds to a setting with substantially reduced retrieval noise. As shown
in Figure 1, both the prevalence of zero gradients and the low training accuracy are alleviated. This
observation indicates that retrieval noise is a significant contributing factor to the sparse reward and
ineffective training in RL for KB-VQA.

To address this challenge, we propose a data-generation-based curriculum reinforcement learning
framework, Wiki-R1, designed to incentivize the reasoning ability of MLLMs on the challenging
KB-VQA task. Wiki-R1 constructs a sequence of training distributions adaptively aligned with the
model’s evolving capability, gradually bridging the gap from pretraining to the KB-VQA target dis-
tribution, as illustrated in Figure 1. Unlike conventional curriculum learning, we generate training
data with controllable difficulty rather than selecting from a fixed dataset. Specifically, we introduce
controllable curriculum data generation, which manipulates the retriever to produce samples at the
desired difficulty level, adaptively adjusted based on the model’s observed training accuracy during
RL optimization. Since generated data may not always match the intended difficulty, we further pro-
pose a curriculum sampling strategy that selects samples likely to yield non-zero advantages during
RL updates. To estimate sample difficulty, we use observed rewards as a proxy and propagate this
information to unobserved samples. Together, controllable data generation and curriculum sampling
form a principled framework that systematically guides the model through progressively harder ex-
amples, ensuring meaningful learning signals and stable reinforcement learning on KB-VQA.

We evaluate our proposed framework on two standard knowledge-based visual question answering
benchmarks: Encyclopedic-VQA (Mensink et al., 2023) and InfoSeek (Chen et al., 2023). Our
method, Wiki-R1, achieves new state-of-the-art performance on both datasets, with an accuracy
of 37.1% on Encyclopedic-VQA (surpassing the previous best of 35.5%) and 44.1% on InfoSeek
(improving upon the prior state-of-the-art of 40.1%). Notably, on the challenging Unseen-Question
split of InfoSeek, our model attains an accuracy of 47.8%. This performance not only exceeds
the previous benchmark but also surpasses our model’s overall accuracy, underscoring its strong
generalization capability to novel queries.

Our main contributions are as follows:

• We propose Wiki-R1, a data-generation-based curriculum RL framework that incentivizes
the reasoning ability of MLLMs on KB-VQA with data and sampling curriculum.

• Wiki-R1 constructs a curriculum of training distributions by manipulating the retrieval sys-
tem and adaptively adjusting difficulty based on the model’s performance. Curriculum
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sampling complements this process by selecting informative samples using propagated re-
ward signals, ensuring the curriculum effectively guides learning.

• Experimental results demonstrate that Wiki-R1 consistently surpasses prior state-of-the-art
methods on two challenging knowledge-based VQA benchmarks, with particularly pro-
nounced improvements in unseen settings.

2 RELATED WORKS

2.1 KNOWLEDGE-BASED VISUAL QUESTION ANSWERING

The KB-VQA task addresses questions whose answers require external or domain-specific knowl-
edge beyond what is present in the image itself. Early datasets such as OK-VQA (Marino et al.,
2019; Schwenk et al., 2022) and KVQA (Shah et al., 2019) posed questions requiring commonsense
knowledge. With the development of LLM-based MLLMs, these datasets are no longer sufficient
to evaluate KB-VQA in more realistic scenarios. To address these limitations, recent benchmarks
such as Encyclopedic-VQA (Mensink et al., 2023) and InfoSeek (Chen et al., 2023) present greater
challenges by targeting highly specific, Wikipedia-scale knowledge. They require models to capture
detailed information about particular entities and nuanced encyclopedic facts.

To tackle this task, Retrieval-Augmented Generation (RAG) has emerged as a widely adopted
paradigm, where models retrieve relevant content from external knowledge bases such as Wikipedia
to support question answering. Recent studies can be broadly categorized into two directions. The
first focuses on improving the retrieval system itself, for instance, by training contrastive image-text
encoders to achieve more accurate retrieval results (Xu et al., 2024; Radford et al., 2021; Sun et al.,
2023; Wei et al., 2023; Xiao et al., 2024; Caffagni et al., 2024). However, due to the large scale of
knowledge bases and the inherent long-tail distribution of training data, retrieval noise is often un-
avoidable. The second line of work, therefore, aims to adapt models to noisy retrieval outputs. For
example, Wiki-LLaVA (Caffagni et al., 2024) integrates external multimodal knowledge via a hierar-
chical retrieval pipeline within a contrastive embedding space (Radford et al., 2021). RoRAVLM (Qi
et al., 2024) instead introduces a visual token refinement module to filter out query-irrelevant visual
information from both retrieved and query images. More recently, ReflectiVA (Cocchi et al., 2024)
employs reflective tokens to dynamically determine the reliability of retrieved content, thereby mit-
igating the impact of noisy retrieval results. In this work, we propose to leverage reinforcement
learning to enhance the model’s ability to reason under noisy retrieval conditions, enabling it to
derive correct answers even when the retrieved content is imperfect.

2.2 CURRICULUM LEARNING FOR RL

Curriculum learning (Bengio et al., 2009; Graves et al., 2017) structures the training process by
gradually moving from easier to more difficult examples. In reinforcement learning, curricula are
typically based on task complexity (Justesen et al., 2018; Wang et al., 2019; Li et al., 2019), or
alternatively learned through teacher–student frameworks formulated as partially observable Markov
decision processes (Matiisen et al., 2017; Portelas et al., 2019). With the success of DeepSeek-R1,
recent studies have explored incorporating curriculum learning into value-free RL frameworks such
as GRPO (Shao et al., 2024). For instance, ADARFT (Shi et al., 2025a) dynamically prioritizes
samples with higher learning potential based on recent reward signals, while DUMP (Wang et al.,
2025b) adopts the Upper Confidence Bound principle to adaptively adjust sampling probabilities
across different data distributions. In the context of multimodal RAG, several works (Ji et al., 2025;
Wang et al., 2025a; Zhang et al., 2025) apply fixed curricula, training policies progressively from
easy to hard samples. More advanced approaches, such as VL-Cogito (Yuan et al., 2025), estimate
sample difficulty using current reward signals and dynamically adjust sample weights accordingly.
In this work, we go beyond selection-based curricula and instead generate controllable training
distributions, enabling principled, difficulty-aware data construction that bridges the gap between
pretraining and target distribution. We further introduce an observation-propagation mechanism
that propagates sparse on-policy reward signals to unobserved examples, yielding reliable difficulty
estimates to drive curriculum sampling.
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Figure 2: Left: Controllable curriculum data generation. We manipulate the retriever to generate
training samples with gradually increasing difficulty, adaptively aligned with the model’s evolving
capability, bridging the gap from pretraining to the KB-VQA target distribution. Right: Curricu-
lum sampling with observation propagation. We adaptively select informative samples likely to
produce non-zero advantage during RL updates, with sample difficulty estimated from observed re-
wards and propagated to unobserved examples.

3 WIKI-R1

In this section, we present Wiki-R1, a curriculum reinforcement learning framework that enhances
the reasoning ability of multimodal large language models (MLLMs) for the challenging knowledge-
based visual question answering (KB-VQA) task. We first formulate the KB-VQA task to establish
the problem setting in Section 3.1, and then introduce the training objective under our post-training
reinforcement learning setting in Section 3.2. Building on this objective, we design two tightly
coupled components: (i) curriculum data generation (Section 3.3), which constructs a progressive
training sequence from easy to hard by manipulating the retrieval system, and (ii) curriculum sam-
pling (Section 3.4), which dynamically selects informative samples via observation propagation.
The overall pipeline is illustrated in Figure 2, with a detailed pseudo-code provided in the appendix.

3.1 TASK DEFINITION

The goal of Knowledge-based Visual Question Answering(KB-VQA) is to generate an answer y to
a textual query q given an image Iq , by jointly reasoning over the input and relevant knowledge
retrieved from an external knowledge base (KB). Formally, we define a large-scale multimodal KB,
such as Wikipedia (Vrandečić & Krötzsch, 2014), as

B = (Pi, Ii)
N
i=1, (1)

where Pi denotes a textual article and Ii is the corresponding visual content associated with entity i.
To incorporate external knowledge, a retriever is employed to select a subset of relevant multimodal
documents, and a non-parametric, rule-based retrieval modification function is also cooperated to
adjust the retrieval results:

Sϕ = Retriever(q, Iq,B), S ⊂ B, (2)

where ϕ denotes the retrieval modification function and S contains the knowledge passage most
relevant to the query (q, Iq). The retrieved set Sϕ serves as additional context for answer generation.
Formally, the KB-VQA objective is to model the conditional distribution of the answer y given the
query q, the image Iq , and the retrieved knowledge Sϕ:

max
θ

E(Iq,q,y)∼D

[
log pθ(y | Iq, q, Sϕ)

]
, (3)

where θ denotes the learnable parameters and D is the KB-VQA dataset.

3.2 TRAINING OBJECTIVE

To address the challenging KB-VQA task that requires reasoning ability, we consider a post-training
setting in which a pretrained MLLM is further adapted to the KB-VQA task via reinforcement
learning. In this stage, the model is optimized to maximize the expected reward over KB-VQA data,
conditioned on the query–image pair (q, Iq) and the retrieved knowledge Sϕ. A key challenge is
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the sparsity of reward signals, which can hinder stable optimization. To address this, we leverage
the retrieval modification function ϕ and further introduce a sampling schedule µ, which together
shape the learning signal and training distribution. Formally, the gradient under (µ, ϕ) for the model
policy πθ is given by

∇θJ(πθ;µ;ϕ) = E(q,Iq,y)∼µ Ey∗∼πθ(·|q,Iq,Sϕ)

[
∇θ log πθ(y | q, Iq, Sϕ) r(y, y

∗)
]
. (4)

where y∗ is the sampled answer from the policy πθ, and y denotes the ground-truth answer.

Unlike traditional policy gradient methods that rely on random sampling for µ and a fixed retrieval
strategy for ϕ, our framework Wiki-R1 explicitly incorporates curriculum-aware sampling and con-
trollable retrieval modifications. This design provides a principled way to align data generation with
optimization, thereby mitigating the gap between pretraining and target distributions. Further details
are presented in the following sections.

3.3 CURRICULUM DATA GENERATION

Controllable Data Generation To systematically bridge the gap from pretraining to the KB-VQA
target distribution, we manipulate the retriever to generate a sequence of training samples with con-
trollable difficulty. Intuitively, retrieving more candidates increases the likelihood of including use-
ful query-relevant information, but also introduces additional noise. Motivated by this property, we
design a controllable data generation method that adjusts both the number of retrieved candidates
and whether the ground-truth article is explicitly included in the retrieval results, which is illustrated
in Figure 2.

Specifically, we define a discrete gap level g ∈ {0, 1, . . . , G}, which represents the degree of distri-
bution shift between the generated training samples and the true KB-VQA target distribution. For
each level g, we instantiate a retrieval modification function ϕg(k, γ) that specifies the number of
retrieved candidates k and whether the ground-truth snippet γ is enforced.

• Easiest level (g = 0): we set k = 1 and γ = 1, which retrieve only the ground-truth snippet.
• Intermediate levels (1 < g < G): the k is set to g while keeping γ = 1, introducing noisy

candidates alongside the ground truth.
• Hardest level (g = G): set γ = 0 and k = G − 1, so the retrieval system no longer guarantees

inclusion of the ground truth, fully aligning with the inference-time distribution.

This design produces a controllable hierarchy of training distributions, beginning with g = 0, which
closely resembles the pretraining distribution, and gradually converging to the target KB-VQA dis-
tribution at g = G.

Gap-Level Schedule To dynamically adjust the gap level during training, we design a schedule
based on the model’s observed training accuracy. Concretely, we maintain a sliding window of the
most recent w samples and compute the average training accuracy. Once this moving average ex-
ceeds an upgrade threshold τ , we promote the gap level g 7→ g+1 and reset the stored observations.
This mechanism ensures that the model is gradually exposed to more challenging training distri-
butions only after it has sufficiently mastered the current level, enabling a smooth transition from
pretraining-like data to the target KB-VQA distribution.

3.4 CURRICULUM SAMPLING WITH OBSERVATION PROPAGATION

Sampling Schedule The training data generated by our controllable curriculum may not fully sat-
isfy the desired difficulty. To address this, we introduce a curriculum sampling strategy µ. Prior
work (Shi et al., 2025b) has shown that samples with a training accuracy near 0.5 provide the
strongest gradient signal for reinforcement learning. Accordingly, during training, we sample data
using a Gaussian distribution centered at the historical mean training accuracy of 0.5.

Formally, we denote by µ a sampling schedule represented as a distribution over D:

(q, Iq, y∗) ∼ µ(·), µ ∈ ∆(D), (5)

where (q, Iq, y∗) denotes a sampled training data. This ensures that the model primarily trains on
samples that are challenging yet solvable, maximizing learning efficiency and stabilizing the RL
optimization process.
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Difficulty Estimation via Observation Propagation A key challenge in the sampling schedule
is the sample difficulty estimation. Though observed reward provides a direct evaluation of data,
it’s extremely sparse, which can undermine the effectiveness of curriculum sampling. To address
this, we introduce an observation propagation mechanism to estimate the difficulty of unobserved
samples, which is illustrated in Figure 2. We leverage the insight that the correlation between differ-
ent VQA samples is related to the model’s understanding of their associated knowledge base article.
Concretely, we construct a label propagation graph over VQA samples, where the edge weights be-
tween two samples reflect the similarity of their associated knowledge base articles. We then apply
label propagation to propagate observed accuracies from the training set to unobserved samples.
This allows us to approximate sample-wise expected accuracies, ensuring that curriculum sampling
remains effective even under sparse observations. We provide the details of label propagation in the
appendix.

4 EXPERIMENTS

In this section, we present the experimental validation of our method on two challenging bench-
marks, along with the implementation details. Moreover, we conduct comprehensive ablation stud-
ies to demonstrate the effectiveness of each key component of our method.

4.1 EVALUATION BENCHMARKS

Encyclopedic VQA. To evaluate the performance of multi-modal large language models
(MLLMs) on visual questions requiring extensive external knowledge, we utilize the recently pro-
posed Encyclopedic VQA (EVQA) (Mensink et al., 2023) dataset. This dataset contains visual
questions about detailed properties of fine-grained categories and is primarily constructed using an-
notations from iNaturalist 2021 (Horn et al., 2021) and the Google Landmarks Dataset V2 (Weyand
et al., 2020). The Encyclopedic VQA dataset comprises approximately 221k question-answer pairs
associated with 16.7k different fine-grained entities, each represented by up to five images. The
dataset is divided into training, validation, and test splits, containing 1M, 13.6k, and 5.4k samples,
respectively. For the knowledge base, Encyclopedic VQA filters out non-English Wikipedia pages
from the WIT dataset (Srinivasan et al., 2021) and compiles a total of 2M Wikipedia pages. We
report the BEM (Bulian et al., 2022) score of the test set using official scripts.

InfoSeek. The InfoSeek (Chen et al., 2023) benchmark is tailored for information-seeking ques-
tions that require expert knowledge. It consists of 1.3 million visual information-seeking questions,
encompassing more than 11,000 visual entities from OVEN (Hu et al., 2023). The dataset comprises
934k training, 73k validation, and 348k test samples. Due to computational resource restrictions, we
sample a class-balanced 10% validation set to report the final performance with official scripts and
select another 1k subset for hyperparameter selection. For the knowledge base, we follow previous
works (Yan & Xie, 2024; Cocchi et al., 2024) and utilize a knowledge base with 100,000 Wikipedia
articles accompanied by images.

4.2 BASELINES

To evaluate the effectiveness of our method, we consider two categories of baselines. (1) Zero-shot
MLLMs. The first category consists of zero-shot multimodal large language models (MLLMs). We
evaluate models of different scales, including BLIP-2 (Li et al., 2023), InstructBLIP (Dai et al.,
2023), LLaVA 1.5 (Liu et al., 2023), Qwen2.5-VL (Bai et al., 2025), and GPT-4V (OpenAI, 2023).
These models are directly applied to KB-VQA without retrieval augmentation, which highlights the
inherent difficulty of the task. (2) Retrieval-augmented Generation. The second category corre-
sponds to methods under the retrieval-augmented generation (RAG) setting. In this setting, models
enhance answer accuracy by retrieving relevant snippets from an external knowledge base. Since
our focus is on KB-VQA with a noisy retrieval system, we primarily compare with methods that do
not perform dedicated retriever training, including DPR (Lerner et al., 2024), RORA-VLM (Qi et al.,
2024), Wiki-LLaVA (Caffagni et al., 2024), EchoSight (Yan & Xie, 2024), and ReflectiVA (Cocchi
et al., 2024).

4.3 IMPLEMENTATION DETAILS

Training Data. To implement reinforcement learning under the KB-VQA setting, we construct a
balanced training set by sampling examples according to their ground-truth entities. Specifically,
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Table 1: Performance comparison on Encyclopedic VQA and InfoSeek. All results of retrieval-
augmented generation methods are reported without applying any re-ranking stage to reorder re-
trieved documents. Retrieval Mode spans two columns: the first specifies the retrieval model, while
the second indicates the type of knowledge source utilized. The V. and T. indicate the visual and
textual retrieval mode. The Con. and Col. indicate textual retrieval model, Contriver (Izacard et al.,
2021) and Colbert V2 (Santhanam et al., 2021) respectively.

Method Retrieval Mode EVQA InfoSeek Avg.Single-hop All Unseen-Q Unseen-E All

Zero-shot MLLMs

BLIP-2 - - 12.6 12.4 12.7 12.3 12.5 12.5
InstructBLIP - - 11.9 12.0 8.9 7.4 8.1 10.1
LLaVA-1.5 7B - - 16.0 16.9 8.3 8.9 7.8 12.4
Qwen-2.5-VL 3B - - 18.6 18.8 26.3 16.1 19.6 19.2
Qwen-2.5-VL 7B - - 26.6 26.3 25.3 17.2 19.9 23.1
GPT-4V - - 26.9 28.1 15.0 14.3 14.6 21.4

Retrieval-Augmented Generation

DPRV+T CLIP ViT-B/32 V. + T. 29.1 - - - 12.4 -
RORA-VLM CLIP+Google Search V. + T. - 20.3 25.1 27.3 - -
Wiki-LLaVA CLIP ViT-L/14+Con. T. 18.3 19.6 28.6 25.7 27.1 23.4
EchoSight EVA-CLIP-8B T. 22.4 21.7 30.0 30.7 30.4 26.1
EchoSight EVA-CLIP-8B V. 26.4 24.9 18.0 19.8 18.8 21.9
ReflectiVA CLIP ViT-L/14 T. 24.9 26.7 34.5 32.9 33.7 30.2
ReflectiVA EVA-CLIP-8B T. 28.0 29.2 40.4 39.8 40.1 34.7
ReflectiVA EVA-CLIP-8B V. 35.5 35.5 28.6 28.1 28.3 31.9

Wiki-R1 3B EVA-CLIP-8B + Col. V.+ T. 40.4 35.9 46.0 40.3 42.2 39.1
Wiki-R1 7B EVA-CLIP-8B + Col. V.+ T. 41.0 37.1 47.8 42.3 44.1 40.6

Table 2: Results under the oracle Wikipedia entity setting. KB Article denotes providing the
entire ground-truth Wikipedia article to the MLLM, while KB Passage denotes using model-specific
strategies to retrieve relevant passages within the article.

Method LLM EVQA InfoSeek
Single-hop Unseen-Q Unseen-E Overall

KB Article

LLaVA-v1.5 Vicuna-7B 42.9 14.2 13.4 13.8
LLaVA-v1.5 LLaMA-3.1-8B 54.1 20.1 17.7 18.8

KB Passage

Wiki-LLaVA LLaMA-3.1-8B 46.8 51.2 50.6 50.9
ReflectiVA LLaMA-3.1-8B 75.2 57.8 57.4 57.6
Wiki-R1(Ours) Qwen-2.5-3B 68.5 64.0 65.9 65.3
Wiki-R1(Ours) Qwen-2.5-7B 69.2 65.5 69.5 68.2

we construct entity-balanced subsets by sampling 20k examples from Encyclopedic VQA (Mensink
et al., 2023) and 20k examples from InfoSeek (Chen et al., 2023), ensuring that each entity is propor-
tionally represented within the subsets. The resulting training set contains a total of 40k examples.
It’s worth mentioning that the scale of our training data is far smaller compared with baselines, and
we provide a data scale comparison in the appendix.

Training Details. We adopt the widely used VERL (Volcengine, 2025) framework and implement
our proposed design based on the DAPO (Yu et al., 2025) algorithm. The learning rate for both vari-
ants is set to 1e-6, and we set the number of rollouts for each sample to 4. For other hyperparameters,
we follow the official scripts. For base models, we employ the recently released Qwen2.5-VL (Bai
et al., 2025) models (3B and 7B), which represent the state-of-the-art among open-source multi-
modal language models. For curriculum data generation, the window size w is set to 300, the gap
threshold τ is 0.55, and the maximum gap G is set to 6. The training takes 9 hours for the 3B variant
and 12 hours for the 7B variant on 4 A100 GPUs.
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Table 3: Ablation study of framework design on Encyclopedic VQA and InfoSeek. We conduct
experiments on Qwen-2.5-VL 3B model. Each row progressively adds components, and we mark
enabled modules with ✓. The Samp. Cur., Data Cur., Obs. Prop. indicate the sampling curriculum,
data curriculum generation, and observation propagation strategies.

Method Modules EVQA InfoSeek
Data Cur. Samp. Cur. Obs. Prop. Single-hop Overall Unseen-Q Unseen-E Overall

Zero-shot - - - 18.6 18.8 26.3 16.1 19.6
SFT - - - 21.6 25.1 38.7 24.9 29.5

DAPO × × × 35.9 31.4 44.9 39.8 41.5
✓ × × 39.4 34.5 46.9 41.1 43.0
✓ ✓ × 36.4 32.1 45.2 37.3 40.0
✓ ✓ ✓ 40.4 35.9 46.0 40.3 42.2

Retrieval System We follow previous works (Yan & Xie, 2024) that utilize EVA-CLIP 8B to
compute the visual similarity score and utilize ColBERT V2 (Santhanam et al., 2021) to extract the
relevant text chunks and compute the question relevance score. We use a weighted sum to combine
these scores. The score weight is selected based on the recall on the training set of Encyclopedic
VQA and Infoseek, respectively. More details are provided in the appendix.

4.4 PERFORMANCE ANALYSIS

Comparison with State of Art. We evaluate our model on the two benchmarks described above,
comparing against zero-shot multimodal LLMs (MLLMs), and retrieval-augmented baselines. As
shown in Table 1, our proposed method with the 3B variant surpasses previous state-of-the-art ap-
proaches. Moreover, our framework consistently achieves strong performance across both bench-
marks using a single retrieval system, in contrast to prior methods such as EchoSight and ReflectiVA,
whose performance is highly sensitive to the retrieval mode. For instance, ReflectiVA (Cocchi et al.,
2024) attains 35.5 on EVQA under visual retrieval, but its accuracy on InfoSeek drops to 28.3 com-
pared to 40.1 with textual retrieval. These results demonstrate that our framework is not only more
robust across benchmarks but also achieves superior overall performance.

Inference with Oracle Documents. To comprehensively evaluate our model, we further conduct
experiments under an oracle setting, where the ground-truth entity (i.e., the Wikipedia page asso-
ciated with the query) is directly provided. In this configuration, Wiki-R1 is only given retrieval
results from the ground-truth entity, while the passages within the article may still contain noise.
Thus, this setting can be regarded as the upper bound of our approach by eliminating entity-level
retrieval noise. As shown in Table 2, Wiki-R1 shows strong performance on both benchmarks,
demonstrating its strong ability to effectively leverage correct retrieval results.

4.5 ABLATION STUDY

Effectiveness of Curriculum Data Generation To assess the contribution of each component in
our framework, we conduct a detailed ablation study. We start from a supervised fine-tuning (SFT)
baseline, and then incorporate the strong reinforcement learning algorithm DAPO (Yu et al., 2025).
Building upon DAPO, we further introduce a curriculum data generation strategy, which adapts the
retrieval policy to construct training data from easier to more challenging instances.

As shown in Table 3, naive SFT yields only limited improvements, while DAPO, as a powerful RL
algorithm, achieves substantial gains. Our proposed data curriculum further enhances the effective-
ness of DAPO, particularly on the more challenging EVQA benchmark, highlighting the importance
of curriculum-guided data generation in noisy retrieval settings.

Effectiveness of Curriculum Sampling We further analyze the proposed sampling strategy by
introducing curriculum sampling on top of data curriculum, and then augmenting it with observation
propagation. As shown in Table 3, naively applying curriculum sampling alone leads to degraded
performance. We attribute this to the sparsity of observations: selecting the next training stage
solely based on the accuracy of observed samples tends to either repeatedly select a small subset of
seen samples or randomly sample from entirely unobserved instances. This highlights the necessity
of our observation propagation module, which alleviates the sparsity issue and enables curriculum
sampling to function as intended, thereby improving both training efficiency and effectiveness.

8
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Figure 3: Left: Number of ignored trajectories. Trajectories are ignored when they provide
zero advantage and no training signal; a larger number indicates lower training efficiency. Right:
Accuracy over training iterations. Performance is reported on the EVQA test set and the InfoSeek
validation set. The star denotes an increase in curriculum difficulty during Wiki-R1 training.

Efficiency of Observation Propagation Our proposed observation propagation module addresses
the sparsity of observations by efficiently identifying samples required for constructing the sampling
curriculum. This reduces the number of skipped trajectories that contain no reward signal. To illus-
trate this effect, we compare three settings: (i) Vanilla DAPO, (ii) DAPO with a curriculum sampling
schedule, denoted as Curriculum Sampling Only, and (iii) DAPO with curriculum sampling plus our
observation propagation, resulting in the Wiki-R1. As shown in Figure 3, observation propagation
significantly decreases the number of skipped trajectories during training, thereby improving the
efficiency of RL optimization. Moreover, by reducing wasted samples, it simultaneously enhances
the overall training effectiveness.

Visualization of Training Dynamics. To gain deeper insights into the behavior of our framework,
we track the performance of DAPO and Wiki-R1 across training iterations. As shown in Figure 3,
DAPO exhibits rapid improvement in the early stage (e.g., within the first 100 iterations), but its per-
formance on EVQA degrades as training progresses. We attribute this to overfitting on the relatively
easier InfoSeek dataset: compared to InfoSeek, EVQA involves noisier retrieval results (Table 4),
which deviate further from the MLLM’s pretrained distribution. In contrast, Wiki-R1 with curricu-
lum training achieves stable improvements on both benchmarks, and its best performance emerges
when training reaches the highest curriculum difficulty level—closely matching the challenges in
real inference scenarios.

5 LIMITATION

While our proposed Wiki-R1 effectively incentivizes the reasoning ability of MLLMs on KB-VQA,
it also has certain limitations. In particular, manipulating the retrieval system provides only a partial
means of controlling the gap between the pretraining and target distributions, rather than a fully
controllable data generation process. We view this as a promising direction for future research,
where advances in controllable data generation could enable more principled curriculum design for
KB-VQA and related tasks.

6 CONCLUSION

In this work, we introduce Wiki-R1, a data-generation-based curriculum reinforcement learning
framework that incentivizes the reasoning ability of multimodal large language models on challeng-
ing KB-VQA tasks. By constructing a sequence of training distributions aligned with the model’s
evolving capability, and combining controllable curriculum data generation with adaptive curricu-
lum sampling, Wiki-R1 effectively mitigates sparse reward issues and guides the model through
progressively harder examples. Extensive experiments on Encyclopedic VQA and InfoSeek demon-
strate significant improvements over state-of-the-art methods, including strong generalization to un-
seen questions. Our framework provides a principled approach for integrating retrieval and rein-
forcement learning in downstream tasks with distributional gaps, offering insights for future research
on domain-adaptive reasoning in retrieval-augmented multimodal settings.

9
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Table 4: Retrieval results on EVQA test and InfoSeek validation sets. We report Recall@K for
K = {1, 5, 10, 20}. The CLIP I-I is the retrieval with the visual similarity score from EVQA-CLIP
8B only.

Methods Retrieval Mode EVQA Test InfoSeek Val
R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

CLIP I-I Visual 11.0 26.2 33.8 41.0 45.7 65.7 71.6 76.2
ReflectiVA Textual 10.1 20.5 - 29.4 56.1 77.6 - 86.4
ReflectiVA Visual 15.6 36.1 - 49.8 29.6 41.4 - 46.6
Wiki-R1 Visual+Textual 16.7 41.0 44.8 47.5 46.9 67.1 72.9 77.2

A APPENDIX

A.1 DETAILS OF RETRIEVAL SYSTEM

In this section, we provide a detailed design of our retrieval system, which consists of two main
modules: a visual-based retrieval module and a textual-based retrieval module. To combine the
outputs of these two modules, we employ a score fusion strategy that weights and merges the visual
and textual retrieval scores to produce a final ranking of candidate knowledge snippets for each
query. The performance is shown in Table 4

Visual-based Retrieval We first perform a coarse-level retrieval using a visual-based approach.
Following previous work (Yan & Xie, 2024; Cocchi et al., 2024), we employ EVA-CLIP 8B (Sun
et al., 2023) to extract global visual features from the query image Iq and the images I in the
knowledge base B. The similarity between the query and candidate images is then computed using
the cosine similarity of their corresponding feature vectors. This provides an initial ranking of
candidate knowledge items based on visual relevance.

Textual-based Retrieval In the textual-based retrieval stage, we aim to achieve two objectives:
(i) extract query-relevant textual passages from each knowledge base article, and (ii) assess the rel-
evance of the article to the query using a text retrieval model. Specifically, we employ the ColBERT
V2 (Santhanam et al., 2021) model and split each article into chunks of size 256. The relevance
score of an article to a given query q is determined by the highest relevance score among its re-
trieved passages.

Retrieval Score Fusing After obtaining the visual similarity score V and textual relevance score
T for each knowledge base article, we fuse the two scores using a weighted sum:

sr = λ · V + (1− λ) · T, (6)

where λ ∈ [0, 1] is a tunable hyperparameter controlling the relative importance of visual and textual
cues. We select λ based on the training set: λ = 0.985 for EVQA and λ = 0.997 for InfoSeek. The
values are close to 1 because V is normalized to V ∈ [0, 1] while T is unnormalized and can take
values T ∈ [0,+∞).

A.2 PSEUDO CODE FOR WIKI-R1

To provide a clearer overview of the training process, we present the pseudo code of Wiki-R1 in
Algorithm 1.

A.3 TRAINING DATA SCALE COMPARISON

In this section, we provide a comparison of the training data scale between our proposed framework
and baseline methods. As shown in Table 5, our method requires substantially fewer training samples
while achieving superior performance. This highlights the efficiency of Wiki-R1 and demonstrates
its applicability in scenarios with limited computational or data resources.
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Algorithm 1 Wiki-R1 - Data and Sampling Curriculum Reinforcement Learning

Require: KB-VQA Training dataset D, knowledge base B, policy model πθ, gap threshold τ , re-
ward function r(·, ·), Propagation Graph K

1: Select RL algorithm A (e.g., PPO,GRPO,DAPO)
2: Initialize retrieval function ϕg where g = 1

3: Initialize estimated sample rewardH ← {0}|D|

4: Initialize sliding window rewardW ← []
5: while training is not finished do
6: Select sample with target difficulty (q, Iq, y∗) from D according toH ▷ Curriculum

sampling with predicted sample reward
7: S ← Retriever(q, Iq,B;ϕg) ▷ Controllable Data Generation
8: Construct Batch Data X ← (q, Iq, S)
9: Generate responses G = πθ(X)

10: Compute reward: R← r(X,G)
11: Update Policy θ ← A(πθ, X,G,R)
12: Maintain sliding windowW ← (W ∪ {R})[−w :] ▷ Only preserve last w elements
13: if 1

|W|
∑

wi∈W wi ≥ τ and g < G then ▷ Upgrade retrieval modification function
14: g ← g + 1
15: ResetW ← []
16: end if
17: H̃ ← Propagate({R},K) ▷ Difficulty estimation via observation propagation
18: for each index i with H̃[i] > 0 do
19: H[i]← H[i] + 1

2 ∗ H̃[i]
20: end for
21: end while

Table 5: Comparison of training data scale and performance across different methods.

Method FT Retrieval FT Generation EVQA InfoSeek

Wiki-LLaVA × ✓ 916,385 902,509
Echosight ✓ × 916,385 902,509
ReflectiVA × ✓ 2,900,000 2,500,000
Wiki-R1 × ✓ 20,000 20,000

A.4 DETAILS OF OBSERVATION PROPAGATION

In this section, we provide a detailed design of the observation propagation mechanism used in
curriculum sampling. The goal of this component is to estimate the difficulty of unobserved train-
ing samples by propagating the limited reward signals observed during RL training. By leveraging
correlations among VQA samples that share the same knowledge base article, we can predict the
expected reward for unobserved samples, enabling more effective curriculum-based difficulty esti-
mation and sample selection.

Graph Construction To implement observation propagation, we first model the correlations be-
tween VQA samples as a label propagation graph K. Specifically, the correlation between samples
is derived from the associated ground-truth knowledge base articles. To quantify the relatedness
between different articles, we adopt a simple rule-based textual similarity approach using TF-IDF.
To reduce noise from weakly related articles, we retain only the top 100 edges for each node in K,
ensuring that the propagation graph focuses on the most relevant inter-article connections.

Label Propagation After constructing the label propagation graph, we apply a non-parametric
label propagation algorithm to propagate observed reward signals to unobserved samples (Algo-
rithm 2). This yields estimated rewards for all training samples, enabling effective curriculum sam-
pling even under sparse observations.
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Algorithm 2 Non-Parametric Label Propagation

Require: Label propagation graph K, observed reward vector A, smoothing factor α, max itera-
tions T

1: Normalize each row of K so that
∑

j Kij = 1
2: Initialize propagated reward Apred ← A
3: for t = 1 to T do
4: Anew ← αKApred + (1− α)A
5: if ∥Anew −Apred∥ < ϵ then break
6: end if
7: Apred ← Anew
8: end for
9: return Apred

B THE USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLMs) were used solely as an assistive tool for refining the
writing of text authored by the researchers. Specifically, LLMs were employed to improve the read-
ability, clarity, and conciseness of sentences drafted by the authors. All research ideas, experimental
designs, analyses, and scientific claims were conceived and developed by the authors without the
involvement of LLMs.
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