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Abstract

We introduce a training objective for continuous normalizing flows that can be used in the
absence of samples but in the presence of an energy function. Our method relies on either a
prescribed or a learnt interpolation ft of energy functions between the target energy f1 and
the energy function of a generalized Gaussian f0(x) = ||x/σ||pp. The interpolation of energy
functions induces an interpolation of Boltzmann densities pt ∝ e−ft and we aim to find
a time-dependent vector field Vt that transports samples along the family pt of densities.
The condition of transporting samples along the family pt is equivalent to satisfying the
continuity equation with Vt and pt = Z−1

t e−ft . Consequently, we optimize Vt and ft to
satisfy this partial differential equation. We experimentally compare the proposed training
objective to the reverse KL-divergence on Gaussian mixtures and on the Boltzmann density
of a quantum mechanical particle in a double-well potential.

1 Introduction

We consider the task of estimating the expectation value Ex∼p[O(x)] of some observable O, under a proba-
bility density p proportional to the unnormalized density e−f , where f : Rn → R is a given energy function.
In particular, we don’t have access to true samples from p, all we have is the ability to evaluate f and its
derivatives for any x ∈ Rn. A popular technique (Boyda et al., 2021; Albergo et al., 2021a;b; 2022; Abbott
et al., 2022; de Haan et al., 2021; Gerdes et al., 2022; Noé et al., 2018; Köhler et al., 2020; Nicoli et al.,
2020; 2021) for attacking this problem is to use a normalizing flow to parametrize a variational density qθ

and optimize the parameters θ to minimize the reverse KL-divergence

KL[qθ, p] = Ex∼qθ
(log qθ(x) − log p(x)) = Ex∼qθ

(log qθ(x) + f(x)) + Z. (1)

The use of normalizing flows for this problem is particularly attractive because qθ can be used as a proposal for
importance sampling, Ex∼p[O(x)] = Ex∼qθ

[ p(x)
qθ(x) O(x)], to account for the inaccuracies of qθ. Unfortunately,

the reverse KL-divergence is mode-seeking, making the training prone to mode-collapse (Fig. 2). To tackle
this problem, several works have proposed alternative training objectives for normalizng flows. Vaitl et al.
(2022) introduce better estimators of the forward and reverse KL divergences, while Midgley et al. (2022)
use the α = 2 divergence instead of the reverse KL-divergence as their training objective. We propose yet
another alternative based on infinitesimal deformations of Boltzmann densities (Pfau & Rezende, 2020; Máté
& Fleuret, 2022). This work was motivated by denoising diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020)
and score-base models (Song & Ermon, 2019). It also bears similarities to more recent works (Lipman et al.,
2022; Albergo & Vanden-Eijnden, 2022; Liu et al., 2022; Neklyudov et al., 2022) that generalize diffusion
models by relying on more flexible interpolations between the data and the base distribution.

The implementation of our experiments is available at https://github.com/balintmate/boltzmann-interpolations.
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The contributions of this work can be summarized as follows

• In §3 we describe our method which relies on either a prescribed or a learnt interpolation ft of
energy functions between the target energy f1 and the energy function of a generalized Gaussian
f0(x) = ||x/σ||pp. Given ft we optimize a vector field Vt to transport samples along the family
pt(x) ∝ e−ft(x) of Boltzmann densities. After translating this condition to a PDE between Vt and
ft we propose to minimize the amount by which this PDE fails to hold.

– First we find that in certain cases the linear interpolation ft = (1 − t)f0 + tf1 already leads to
improved performance over optimizing the reverse KL-divergence. We also show that in general
this interpolation is insufficient.

– Motivated by the failure mode of the linear interpolation, we parametrize the interpolation with
another neural network ft = (1 − t)f0 + tf1 + t(1 − t)fθ(t) and optimize fθ

t together with the
vector field V θ

t .

• In §4 we run experiments on Gaussian mixtures and on the Boltzmann density of a quantum particle
in a double-well potential, and report improvements in KL-divergence, effective sample size, mode
coverage and also training speed.

log Z = 0

log Z

e−f1 /Z1

e−f1

e−f0 /Z0

Figure 1: Interpolating in the space of unnormal-
ized probability densities. The unnormalized target
density (red) and its normalization (black) that we
are trying to fit a flow to. The base density of the
flow (green) lying on the subspace of normalized
probability densities (orange). The interpolation
connecting the base density to the unnormalized
target (blue) and the induced interpolation of nor-
malized densities (the projection of the blue trajec-
tory to the “log Z = 0”-plane).

Motivation

Consider the following multimodal density
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where N (µ, σ) denotes a normal density centered at µ with covariance matrix diag(σ2). Fig. 2 shows the
mode-collapse of a normalizing flow trained with the reverse KL-divergence on this target. The reason why
mode collapse can happen in the first place is the training objective itself. The mode seeking behavior of the
reverse KL-divergence can be explained as follows. As the sampling is done according to qθ, the difference
in log-likelihoods is weighted by the likelihood qθ. This implies that if qθ completely ignores modes of p
the log-likelihoods of p and qθ are not compared over regions that are not covered by qθ. In this paper
we introduce a training objective for continuous normalizing flows that can be used to replace the reverse
KL-divergence and investigate to what extent it solves the issue of mode collapse on multimodal targets.

Figure 2: Mode-seeking nature of the reverse KL-divergence. The figures from left to right show how the
latent gaussian is transformed by the continuous normalizing flow trained with the reverse KL objective.
The blue blobs denote the target density (2), the arrows represent the vector field Vt.
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2 Background

Change of variables. Let p0(z) be a probability density on Rn and Ψ : Rn → Rn a diffeomorphism.
Pushing the density p0 forward along Ψ induces a new probability density p implicitly defined by

log p0(z) = log p(Ψz) + log | det JΨ(z)|. (3)

The term log | det JΨ(z)| measures how much the function Ψ expands volume locally at z.

Continuous change of variables. Let now Vt be a time-dependent vector field and Ψτ denote the
diffeomorphism of flowing along the integral curves of Vt from 0 to τ . This family of diffeomorphisms
generates a one-parameter family of densities pτ . The amount of volume expansion a particle experiences
along a trajectory t 7→ Φtz between 0 and τ is

∫ τ

0 ∇ · Vt(Ψtz)dt. The log-likelihoods are then related by

log p0(z) = log pτ (Ψτ z) +
∫ τ

0
∇ · Vt(Ψtz)dt. (4)

Normalizing flows. Normalizing flows (Tabak & Turner, 2013; Rezende & Mohamed, 2015; Dinh et al.,
2016) (continuous normalizing flows (Chen et al., 2018)) parametrize a subset of the space of all densities
on Rn. They do this by first fixing a base density p0 and using a neural network that parametrizes the
transformation Ψ (the vector field Vt). The (continuous) change of variables formula is then applied to
compute the density induced by Ψ (Vt). Recently, generalizations of normalizing flows have also been
studied (Nielsen et al., 2020; Huang et al., 2020; Máté et al., 2022).

Boltzmann densities. Let f : Rn → R be an energy function with a finite normalizing constant Z =∫
e−f(x)dnx. The function f then induces a Boltzmann density over the configurations x ∈ Rn, p(x) =

1
Z e−f(x). Conversely, given a probability density function p : Rn → R+,0 the corresponding energy function
can be recovered up to a constant f = − log p − log Z.

The continuity equation. One can describe a time-dependent probability density either with its time
dependent density function pt or by a reference (base) density p0 and a time-dependent vector field Vt. The
latter generates pτ by pushing p0 forward along the integral curves of Vt from t = 0 to t = τ . The two
descriptions are related by the continuity equation ∂tpt + ∇ · (ptVt) = 0, which, in the case of Boltzmann
densities pt = Z−1

t e−ft can be rewritten as follows,

0 = ∂tpt + ∇ · (ptVt) expanding pt = Z−1
t e−ft (5)

= ∂t(Z−1
t e−ft) + ∇ · (Z−1

t e−ftVt) (6)
= e−ft∂t(Z−1

t ) + Z−1
t ∂t(e−ft) + Z−1

t ∇ · (e−ftVt) (7)
= e−ft∂t(Z−1

t ) + Z−1
t ∂t(e−ft) + Z−1

t e−ft∇ · Vt + Z−1
t ⟨∇e−ft , Vt⟩ (8)

= e−ft∂t(Z−1
t ) − Z−1

t e−ft∂t(ft) + Z−1
t e−ft∇ · Vt − Z−1

t e−ft⟨∇ft, Vt⟩ factoring out pt = Z−1
t e−ft (9)

= Z−1
t e−ft

(
Zt∂t(Z−1

t )︸ ︷︷ ︸
−∂t log Zt

−∂tft + ∇ · Vt − ⟨∇ft, Vt⟩
)

, (10)

where ⟨ , ⟩ is the Euclidean scalar product between vectors. Since pt = Z−1
t e−ft > 0, we conclude

∂tft + ⟨∇ft, Vt⟩ − ∇ · Vt + ∂t log Zt = 0, (11)

Lemma 1. Moreover, if any time-dependent energy function ft, time-dependent vector field Vt and spatially
constant function Ct satisfies

∂tft + ⟨∇ft, Vt⟩ − ∇ · Vt + Ct = 0, (12)

then Ct necessarily equals ∂t log Zt with Zt =
∫

e−ft(x)dnx.
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Proof. Let ft, Vt, Ct be such that they satisfy (12). We can then compute

∂t log Zt = ∂tZt

Zt
=
∫

(−∂tft)e−ft(x)dnx∫
e−ft(x)dnx

=
∫ −∇·(e−ft(x)Vt)︷ ︸︸ ︷

(⟨∇ft, Vt⟩ − ∇ · Vt)e−ft(x) dnx∫
e−ft(x)dnx

+
∫

Cte
−ft(x)dnx∫

e−ft(x)dnx
= Ct (13)

where the last equality follows from the divergence theorem and the fact that e−ft(x) vanishes at infinity.

When numerically solving the continuity equation, Lemma 1 enables us to work with (12) instead of (11) and
parametrize the triplet (f, V, C) with C being a spatially constant function instead of estimating ∂t log Zt.
In what follows we only work with (12) and refer to it as the continuity equation.

3 Approximating the transport field

From here on, we will use the vector field Vt and the term “continuous normalizing flow” interchangeably.
Our goal is to sample from a target Boltzmann density ptarget ∝ e−ftarget by

1. defining a family of energy functions ft, 0 ≤ t ≤ 1 interpolating between the target energy f1 = ftarget
and the energy function of a generalized Gaussian f0(x) = ||x/σ||pp,

2. finding a transport field Vt such that (ft, Vt) “solves” the continuity equation (12).

If we succeed at both of these constructions, then we can obtain samples from ptarget by sampling from
p0 ∝ e−||x/σ||p

p and let the samples follow the integral curves of Vt from t = 0 to t = 1. Note that we
turned the problem of learning a single density e−f1 into a continuous collection of problems, learning all
the densities e−ft for 0 ≤ t ≤ 1. It might seem like that we just made the task more difficult, but the idea
is that for any 0 ≤ τ ≤ 1, the density e−fτ is easier to fit once e−fτ−ε is already fitted for some small ε.

The pointwise continuity error

Regarding the second item of the above list, an analytical expression for Vt is not easy to find if we are given
a family of energy functions ft. This would amount to solving (12), which is difficult in general. Therefore
we will parametrize Vt with a neural network and train it to minimize the amount by which the pair (ft, Vt)
fails to satisfy the continuity equation. We begin by recalling the continuity equation,

∂tft + ⟨∇ft, Vt⟩ − ∇ · Vt + Ct = 0, (14)
where Ct is a spatially constant function. In what follows, V θ

t and Cθ
t are parametrized by neural networks

and are trained to minimize some monotonically increasing function L1 of the pointwise continuity error

Eθ,x,t = |∂tft(x) + ⟨∇ft(x), V θ
t (x)⟩ − ∇ · V θ

t (x) + Cθ
t |. (15)

The expression L(Eθ,x,t) measures the incompatibility of ft and Vt at a single (t, x) pair of coordinates, we
will need to optimize some sort of integral of this pointwise error over both t and x.

The continuity loss

Suppose that we have an interpolation of energy functions ft. We propose to train V θ
t and Cθ

t to minimize
the continuity error (15) along the trajectories of V θ

t . Formally, let qθ be a parametric density parametrized
by a continuous normalizing flow V θ

t . We update the parameters to minimalize the integral of L(E) along
the trajectories of the flow,

L(θ) = Ez∼p0

[∫ 1

0
L
(

Eθ,γθ
t (z),t

)
dt

]
, (16)

where γθ
τ (z) is given by transporting z along the vector field V θ

t between 0 and τ . We evaluate the integral
(16) by discretizing time and using numerical ODE solvers.

1In our experiments we tried L : R+ −→ R+ ∈ {E 7→ E, E 7→ E2, E 7→ E + E2, E 7→ log(1 + E)}.
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First approach: Linear interpolation

Arguably the simplest way to interpolate between a pair of functions (f0, f1) is to set
ft(x) = (1 − t)f0(x) + tf1(x), 0 ≤ t ≤ 1. (17)

The same interpolation is proposed by Wu et al. (2020) in the context of stochastic normalizing flows and
is also a common choice for annealed importance sampling (Neal, 1998). We will call the family (17) the
linear interpolation. Fig. 3 shows the evolution of the samples along a continuous normalizing flow trained
with the continuity loss using the linear interpolation. We observe that the same network trained with the
continuity loss instead of the reverse KL-divergence can capture all 4 modes of (2).

Figure 3: The same continuous normalizing flow as in Fig. 2 trained with the continuity loss using the linear
interpolation. The top row shows how the target density evolves under the predefined linear interpolation
between f0 = x2/2 and f1 = − log(Eq. 2), while the bottom row shows how the samples from qθ evolve
along Vt as t is varied.

The issue with the linear interpolation. Let us now consider the density
1
3 N

([
4 4
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, 1
)

+ 2
3 N

([
−8 −8

]
, 1
)

. (18)
This target does not enjoy the symmetry properties of the previous mixture, one of the modes is closer to the
base and has a lower relative weight than the other one. The top row of Fig. 4 shows the linear interpolation
to this target and the second row shows that this interpolation is insufficient to capture the mode which is
further away. In a nutshell, the reason for this is that the linear interpolation does not preserve the relative
weights of the modes as t is varied.

Figure 4: The issue with the linear interpolation. The top row shows how the target density evolves under
the predefined linear interpolation between f0 = x2/8 and f1 = − log(Eq. 18), while the bottom row shows
how the samples from qθ evolve along Vt as t is varied.
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Interlude: good and bad interpolations

The reason why the linear interpolation can lead to problems is illustrated in Figures 5 and 6. Figure 5 shows
a particular example where the linear interpolation in log-density space induces a “good” interpolation in
density space. Figure 6 shows that for certain target functions the linear interpolation in log-density space
induces an interpolation in density space that is not “local” in the sense that probability mass gets moved
between the modes. Such densities are difficult to learn with the linear interpolation, even if in principle
there exists a vector field Vt that moves probability mass the correct way along any interpolation.
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Figure 5: Linear interpolation between f0(x) = x2/4 and f1 = − log( 1
2 e−(x−3)2 + 1

2 e−(x+3)2). Linear interpo-
lation in the log-density space (top row), and the induced interpolation in density space (middle row). The
transport field Vt which can be represented as a scalar-valued function for one-dimensional densities (bottom
row). The thin gray line in the bottom row denotes Vt = 0.
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Figure 6: Linear interpolation between f0(x) = x2/4 and f1 = − log( 1
3 e−(x−1)2 + 2

3 e−(x+4)2). Linear interpo-
lation in the log-density space (top row), and the induced interpolation in density space (middle row). The
transport field Vt which can be represented as a scalar-valued function for one-dimensional densities (bottom
row). The thin gray line in the bottom row denotes Vt = 0. Note how the relative weights of modes is not
preserved as t is varied, resulting in the exploding norm of Vt.
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Sanity check: interpolate along the diffusion process

Diffusion Processes. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) learn to reverse a
diffusion process that is in essence also a family of probability densities pt on Rn interpolating between the
data density p1(x) and the latent n−dimensional gaussian p0 = N (0, σ). Samples from pt are of the form√

tx +
√

1 − tz where x ∼ p1, z ∼ p0. Geometrically, the probability density pt is obtained by first stretching
p1 by a factor of

√
t and then convolving with the Gaussian kernel Gσ

√
1−t2.

p1(x) λt−−−−−→ t−n/2p1(t−1/2x) Gt−−−−−→ t−n/2p1(t−1/2x) ∗ Gσ
√

1−t︸ ︷︷ ︸
pt(x)

, (19)

where we used λt to denote the stretching by a factor of
√

t and Gt to denote the convolution with the
Gaussian kernel Gσ

√
1−t. If t = 1, both λt (stretching by a factor of 1) and Gt (convolving with a Dirac-

delta) are just the identity. If t = 0, then λt collapses p1 to a Dirac-delta at the orgin and Gt convolves
it with N (0, σ) implying that p0 = N (0, σ). The attractive thing about the diffusion process is that it
provides an interpolation between densities where the situation of Fig. 6 is avoided. Loosely speaking, this
interpolation is “local” in a sense that that the linear interpolation was not.

The family of Gaussian mixtures is closed under the diffusion process (19), we can even explicitly compute
the time-evolution of a Gaussian mixture and use it to replace the linear interpolation. Fig. 7 shows samples
from a normalizing flow that was trained with the continuity loss using the hand-computed interpolation of
its diffusion process.

Figure 7: The same continuous normalizing flow as in Fig. 4 with the continuity loss using the diffusion
interpolation. The blue blobs denote the target density (18), a mixture of two Gaussians. The top row shows
how the target density evolves under the predefined diffusion-like interpolation, while the bottom row shows
how the samples from qθ evolve along the flow as t is varied.

Unfortunately, since all we are given is the ability to evaluate the target energy pointwise, there is no
analytical formula for calculating the diffusion process of an arbitrary target density. Moreover, any numerical
approach involves integration, that gets increasingly expensive as t gets smaller and the dimensionality of the
problem gets larger. Nonetheless, this result demonstrates that minimizing the continuity error is a feasible
approach, one just needs to be more careful about the interpolation between the latent and target energy
functions. The authors could not find a predefined interpolation that is 1) “local” in the still not formal, but
intuitive sense and 2) easy to compute for arbitrary target energies. Instead, we propose to learn the family
of densities between the base and the target.

2The Gaussian kernel Gσ
√

1−t is a Gaussian density with mean 0 and covariance matrix diag(σ2(1 − t)).
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Parametrizing the interpolation

We propose to use a neural network to parametrize the interpolation ft as

ft(x) = (1 − t)f0(x) + tf1(x) + t(1 − t)fθ
t (x), 0 ≤ t ≤ 1, (20)

where fθ
t is parametrized by a neural network. This parametrization ensures that the boundary conditions

at t ∈ {0, 1} are satisfied, and allows for flexibility on the open time-interval (0, 1). The parameters of
the interpolation are trained together with the those of the flow (and those of Ct) with the objective of
minimizing the continuity loss. Fig. 8 shows that this flexibility allows a flow trained with the continuity
loss to capture both modes of the distribution (18).

Figure 8: The same continuous normalizing flow as in Fig. 4 trained with the continuity loss using the
trainable interpolation. The blue blobs denote the target density (18), a mixture of 2 Gaussians. The top
row shows how the target density evolves under the learned interpolation, while the bottom row shows how
the samples from qθ evolve along Vt as t is varied.

4 Experiments

To compare the continuity loss to the reverse KL-divergence we train the same normalizing flow architecture
by minimizing the 1) reverse KL objective and 2) the continuity loss. We run experiments on Gaussian
mixtures and on the Boltzmann distribution of a quantum mechanical particle in a double-well potential.

Performance metrics

To quantify the results of the experiments, for each model we report a subset of the following metrics. For
all runs we report the reverse KL-divergence (minus log Z),

Ex∼qθ
(log qθ(x) − log p(x)) (21)

and the effective sample size,

ESSr =
( 1

N

∑
i p(xi)/qθ(xi)

)2

1
N

∑
i(p(xi)/qθ(xi))2 , xi ∼ qθ, (22)

where N is the number of samples. These metrics capture how good a fit qθ is for p, but only in those regions
where samples are available. They are therefore insensitive to mode collapse. To compensate for this, we
compute the Hausdorff distance between the means of the modes M = {m1, ..., mk} and a batch of samples
X = {x1, ..., xN } from the model,

H(M, X) = max
m∈M

min
x∈X

√
||m − x||2. (23)
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In the case of Gaussian mixtures, the means M are the means of mixture components whereas in the case of
the quantum mechanical particle, the means are (ϕ1, ϕ2, ..., ϕN ) = (a, a, ..., a) and (ϕ1, ϕ2, ..., ϕN ) = (b, b, ..., b)
where a and b are the two local minima of V (ϕ) (see §4.2 for details). The Hausdorff distance is a good
metric for measuring mode coverage but is insensitive to the shape of the distributions. Finally, the forward
KL-divergence (plus log Z),

Ex∼p(log p(x) − log qθ(x)) (24)
and effective sample size,

ESSf =
( 1

N

∑
i qθ(xi)/p(xi)

)2

1
N

∑
i(qθ(xi)/pθ(xi))2 , xi ∼ p. (25)

provide the most accurate (both mode coverage and shape matching) description of the goodness of the fit.
As they require samples from p, we only report them for the experiments on Gaussian mixtures.

4.1 Gaussian mixtures

In this section we consider two targets, those given by (2) and (18). The metrics are reported in Table 1 and
correspond well to what we observe in Figures 2, 3, 4 and 8.

Table 1: Results of training the same flow architecture with different objectives on the targets (2) and (18).
Note that the target densities are normalized, i.e. log Z = 0. Mean and standard deviation values over 5
seeds are reported.

Energy function given by log(Eq.2)

H(M, X) ↓ Rev. KL ↓ Rev. ESS ↑ Fw.KL ↓ Fw. ESS ↑

KL(qθ, p) 19.26 ± .333 1.387 ± .001 0.999 ± .000 110.6 ± 97.6 0.254 ± .006
Cont. Loss with Linear Int. 0.060 ± .023 0.003 ± .002 0.998 ± .001 0.001 ± .001 0.998 ± .002
Cont. Loss with Trainable Int. 0.053 ± .010 0.000 ± .001 1.000 ± .000 0.000 ± .000 0.999 ± .000

Energy function given by log(Eq.18)

H(M, X) ↓ Rev. KL ↓ Rev. ESS ↑ Fw.KL ↓ Fw. ESS ↑

KL(qθ, p) 13.25 ± .363 1.099 ± .000 1.000 ± .000 74.38 ± 30.3 0.332 ± .007
Cont. Loss with Linear Int. 2.329 ± .124 1.081 ± .004 0.928 ± .080 37.68 ± 6.99 0.336 ± .008
Cont. Loss with Trainable Int. 0.045 ± .022 0.001 ± .001 0.999 ± .000 0.000 ± .000 1.000 ± .000

4.2 Quantum mechanical particle in a double-well potential

In this section we consider the trajectory of a quantum mechanical particle moving in a one-dimensional
double-well potential V between t = 0 and t = T . We closely follow the experimental setup of Vaitl et al.
(2022). The action associated to a continous trajectory ϕ(t) ∈ Rn, 0 ≤ t ≤ T reads

S[ϕ(t)] =
∫ T

0

m

2 (∂tϕ)2 + V (ϕ)dt, V (ϕ) = −m

2 ϕ2 + λ

4 ϕ4, (26)

where λ are numerical parameters. After distretizing time, the discretised action of a trajectory (ϕ1, ..., ϕN )
is

S(ϕ1, ... , ϕN ) =
N∑

i=1

(
m

2

(
ϕi − ϕi+1

∆T

)2
+ V (ϕi)

)
∆T, V (ϕ) = −m

2 ϕ2 + λ

4 ϕ4, (27)

where ∆T = T/N , m and the subscript i + 1 is to be understood modulo N . We replicate the choices of
Vaitl et al. (2022) for T = 4, λ = 1, N ∈ {4, 8, 16, 32, 64} and we use mass values m ∈ {1.50, 3.00, 4.50, 6.00}.
The goal is then, as before, to sample trajectories (ϕ1, ... , ϕN ) from the Boltzmann density

p(ϕ1, ... , ϕN ) = 1
Z

e−S(ϕ1, ... ,ϕN ), Z =
∫
RN

e−S(ϕ1, ... ,ϕN )dN x (28)
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Figure 9: Dependence of V (ϕ) and of the Boltzmann
density e−V (ϕ) on m.

Heuristics. For larger values of m, the energy
barrier between the wells of V gets greater, resulting
in a bimodal, one-dimensional Boltzmann density
e−V (ϕ). (Fig. 9). Intuitively, the second summand
in (27) encourages the particle to follow the unnor-
malized density e−V (ϕ) at every time step, while the
first one penalizes if the values of ϕ at consecutive
time steps differ too much (i.e. belong to different
modes of e−V (ϕ)). With the above interpretation
we can argue that ϕi and ϕi+1 are likely to be close,
and every ϕi is likely to belong to one of the modes
of e−V (ϕi). Then the density e−S(ϕ1,...,ϕN ) has two
modes, centered at (a, a, ..., a) and (b, b, ..., b), where
a and b are the local minima of V .

Sensitivity to the mass parameter. Now we
fix N = 16 and vary the mass of particle m ∈
{1.50, 3.00, 4.50, 6.00}. We compare the continuity
loss with the trainable interpolation to the reverse
KL objective. The quantitative results are summa-
rized in Table 2. In Figure 10 we compare e−V (ϕ) to the histogram of flattened samples from the trained
models. This makes sense since the action encourages the particle to follow the one-dimensional Boltzmann
density of the potential V (ϕ) at every time step. Note that these two densities are not supposed to perfectly
match, and Fig. 10 can only be used to detect mode-collapse of the flow.
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C
on
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Figure 10: Mode collapse of the reverse KL-divergence for higher values of m. The unnormalized density
p(ϕ) ∝ e−V (ϕ) (blue curve), compared to flattened samples ϕi (orange histogram).

Table 2: Results of training the same flow architecture with different objectives on the energy function
(27). Note that a decrease of log 2 ≈ 0.7 in reverse KL-divergence corresponds to covering twice as much
probability mass. Mean and standard deviation values over 3 seeds are reported.

m = 1.50 m = 3.00

H(M, X) ↓ Rev. KL ↓ Rev. ESS ↑ H(M, X) ↓ Rev. KL ↓ Rev. ESS ↑

KL(qθ, p) 0.717 ± .06 −1.052 ± .00 0.951 ± .00 0.541 ± .00 −1.832 ± .01 0.801 ± .11
Continuity Loss 0.678 ± .02 −1.054 ± .00 0.991 ± .00 0.486 ± .04 −1.835 ± .00 0.979 ± .00

m = 4.50 m = 6.00

H(M, X) ↓ Rev. KL ↓ Rev. ESS ↑ H(M, X) ↓ Rev. KL ↓ Rev. ESS ↑

KL(qθ, p) 13.61 ± .49 −9.058 ± .00 0.883 ± .05 16.67 ± .00 −22.49 ± .01 0.935 ± .01
Continuity Loss 0.335 ± .00 −9.765 ± .01 0.966 ± .01 0.300 ± .00 −23.19 ± .01 0.963 ± .01
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Sensitivity to the dimensionality and computational speedup. In this section we fix a relatively
small mass value, m = 1.50, resulting in a unimodal Boltzmann density. We then train models at different
time resolutions, N ∈ {4, 8, 16, 32, 64}. For each N we trained two models, one with the reverse KL and
one with the continuity loss. Figure 11 shows the evolution of the (reverse) effective sample size and the
continuity loss during the training process. Since the continuity loss is a pointwise objective, contrary to
the reverse KL, it does not require backpropagation along the trajectories of the flow. On the other hand,
the “baseline” reverse KL objective only requires a parametrization of Vt and the computation of ∇ · Vt.
In addition to this, the continuity loss also requires to parametrizations of Ct and ft and the computation
of ∂tf, ∇f and Ct. Overall, we observed a speedup when switching to the continuity loss both in terms of
number of optimization steps per unit time and also in terms of convergence speed (Figure 11).
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Figure 11: Evolution of the (reverse) effective sample size (left) and of the continuity loss (right) during
training for different dimensionality of the problem. The solid lines correspond to the models trained by
optimizing the continuity loss, while the dashed lines denote the models trained by optimizing the reverse
KL divergence.

Implementation and training details

Architectures. The parametrization of Vt and ft are given by a weighted average of 4 MLPs. The
weighting is done by evenly spaced RBF time-kernels, one for each model. In the case of the Gaussian targets
the MLPs has two hidden layers with 64 neurons per layer, in the case of the quantum particle the MLPs
has 3 hidden layers with 128 neurons per layer. Between the linear layers we use swish nonlinearities. The
parametrization of Ct consists of a single MLP with the same hyperparameters as the mixture components
of the parametrizations of Vt and ft. Importantly, our architecture is completely oblivious to the Z2 ⋉ Cn-
symmetry of the lattice of quantum mechanical particle and to the Z2-symmetry of the double-well potential.
We rely on automatic differentiation to compute all derivatives. We leave the exploitation of symmetries
and the use of architectures with analytic expressions for the divergence of Vt (Köhler et al., 2020; Gerdes
et al., 2022), as well as for ∇ft and ∂tft, for future work.

Optimization. We train with a batch size of 256 using the Adam optimizer (Kingma & Ba, 2017) and
evaluate on batches of size 4096. The trajectories of the flow are computed by a 4th-order Runge-Kutta
solver with 50 integration steps. The N = 64 and N = 32 runs in §4.2 are trained for 2.5 × 105 and 105

iterations, respectively. All other models are trained for 104 iterations. The initial learning rate of 3 × 10−3

is annealed to 0 following a cosine schedule.

Base Density. We use a standard Gaussian base for the target (2), a centered Gaussian with standard
deviation 2 for the target (18) and the generalized Gaussian proportional to e−x4 in the experiments of §4.2.

On the choice of the function L. The definition of the the continuity loss (16) involves a somewhat
arbitrary choice of the function L. We compared the functions {E 7→ E , E 7→ E2, E 7→ E +E2, E 7→ log(1+E)}
and ended up using E + E2 in all of our experiments, as it empirically outperformed the other choices. The
intuition is that the L2 norm provides good gradients when the error is large, while the L1 norm provides
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good gradients when the error is small and therefore their sum is expected to be superior to both of them.
Our experiments support this intuition.

5 Summary and Closing remarks

We introduced an alternative training objective of continuous normalizing flows that uses an interpolation of
energy functions. We’ve demonstrated empirically that the proposed objective is less prone to mode collapse
than the KL-divergence when the target density has multiple modes and is computationally more efficient.

Two reasons for mode collapse. There can be, at least, two different reasons for mode collapse when
training with the reverse KL-divergence. First, if one of the modes is so far away from the base distribution
that it never gets visited by the flow. Second, if a mode is visited during training by trajectories of the flow,
but the flow still ignores it and fits the remaining modes of the density. It is important to distinguish these
two scenarios as our proposed technique can help with the second kind, but not the first one. This is also
the reason why the choice of the base density is important. When the base has a higher variance, a larger
fraction of the space gets visited.

Reframing the method as a PINN. Our work naturally fits into the framework of Physics-informed
neural networks (Raissi et al., 2019). What this work calls the pointwise continuity error, would be called
the residual to the continuity equation in the PINN literature. The core idea is essentially the same: the
optmization of a neural network to satisfy a PDE.
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