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Abstract

Physics Informed Neural Networks (PINNs) have demonstrated remarkable success
in learning complex physical processes such as shocks and turbulence, but their
applicability has been limited due to long training times. In this work, we explore
the potential of large batch size training to save training time and improve final
accuracy in PINNs. We show that conclusions about generalization gap brought by
large batch size training on image classification tasks may not be compatible with
PINNs. We conclude that larger batch sizes always beneficial to training PINNs.

1 Introduction

The advance of computation hardware technologies in the last decade has enabled researchers to
explore the possibility of extremely large scale training of neural networks for image based tasks
such as classification and segmentation. In the course of 3 years, from 2016 to 2019, the training
time of the ResNet50 [1] architecture for ImageNet[2] classification task has been reduced from 29
hours[1] in the original paper to 1 minute [3], while maintaining comparable Top-1 testing accuracy,
by using various techniques such as learning rate warm up and layer-wise gradient normalization[4, 5].
However, other studies[6, 7] suggest that training with extremely large batch size often suffer from
poor generalization performance on the test set, possibly due to the discrepancy between the loss
landscapes on the train data and test data. Keskar et al.[6] numerically show that the training loss
landscape, linearly parameterized around the local minima, is often “flatter”, and matches that of the
test loss, when using smaller batch size. They, therefore, pose a conjecture that a larger batch size
leads to “sharper” local minimum in the training loss landscape that results in poor generalization
accuracy. In [8], the authors empirically validate on ImageNet the assumption that decreasing
learning rate and increasing batch size have similar effects on training and suggest that under the
current parallelization hardware framework, larger batch sizes should be preferable due to its superior
efficiency.

While numerous works[6, 9, 8] have studied the effect of batch size on Convolutional Neural Networks
(CNNs) and image-based classification tasks, no such studies have been carried out for physics-
informed machine learning [10]. In this paper, we extend such analysis onto Physics Informed Neural
Networks (PINNs)[11], a framework for learning representations of the solutions to non-linear partial
differential equations (PDEs). Unlike the ImageNet classification task, where the train and test data
are finite, the input data for PINNs is often sampled uniformly within the interior and on the boundary
of the domain. Hence, we don’t have a limitation on the amount of data we can use during training
and each training iteration is carried out using a set of unique points. Additionally, PINNs are trained
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in a self-supervised manner where we the train the network to satisfy certain boundary conditions
and an underlying PDE, which directly contrasts with image classification problems. Furthermore, in
PINNs, the evaluation metric is often calculated on test points that are also evenly sampled across the
domain, leading to the same train and test data distributions. This means that the generalization gap
as described in [6] does not directly apply when dealing with PINNs.

Based on these observations, we conclude that the literature surrounding batch size on vision tasks
may not generalize to PINNs and that this area demands more research. Thus, in this paper, we
explore the impact of larger batch size under the scientific computing scenario with PINNs. The
structure of the remaining of this paper is as follows: in Section 2, we briefly describe Physics
Informed Neural Networks (PINNs); in Section 3 we carry out experiments demonstrate the benefit
of utilizing larger batch-sizes for PINNs through two different PDEs, namely the Poisson equation
and the Navier-Stokes equation; finally, in Section 4 we summarize our findings and outline possible
future areas of research.

2 Physics Informed Neural Networks (PINNs)

We begin with a brief overview of physics-informed neural networks (PINNs)[12] which is a method
for approximating the solution to differential equations using neural networks. Consider a PDE with
a Dirichlet boundary condition

N [u](x) = f(x), x ∈ Ω u(x) = g(x),x ∈ ∂Ω, (1)

where N is some nonlinear operator. To approximate this PDE using PINNs, we define a neural
network uθ and tune the parameters θ of the network to minimize the following loss function

L(θ) = E
x∼D∂Ω

α(uθ(x)− g(x))2 + E
x∼DΩ

(N [uθ](x)− f(x))2. (2)

DΩ,D∂Ω are uniform distributions supported on the interior and the boundary of the domain Ω, and
α is the weight for the boundary loss term used to balance the residual and the boundary losses. The
weight α may be fixed or adaptive [13]. By minimizing the loss function above, the networks learns a
solution to the desired PDE in (1).

3 Experiments on PINNs

For the experiments carried out in this section, we consider the following PDEs

Poisson Equation The 2−dimensional Poisson PDE consists of finding u : Ω → R satisfying

uxx + uyy − f = 0, (3)

where uxx, uyy are the second-order partial derivatives with respect to input x, y and Ω ⊂ R2. For
our experiments, we choose Ω = [−1, 1]2 and choose a model solution u and corresponding forcing
function f as

u(x, y) = sin(kπx) sin(kπy) f(x, y) = −2k2π2 sin(kπx) sin(kπy) (4)

Navier-Stokes Equation We consider a decaying turbulence simulation in a periodic square domain
Ω = [0, 2π]2 with Reynolds number Re = 100 and T = 0.12. We pose this problem using the
velocity-vorticity formulation:

wt + u · ∇w =
1

Re
∆w, in [0, T ]× Ω, (5)

∇ · u = 0, in [0, T ]× Ω, (6)
w(0, x, y) = w0(x, y), in Ω, (7)

3.1 Sharpness of PINNs local minimum

First, utilizing the 2D Poisson Equation, we demonstrate that training with larger batch size leads to
sharper local minimum. The specific architecture we utilize along with optimization hyper-parameters
have been listed in Appendix B.4. We visualize the sharpness of the loss function qualitatively at
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the parameters obtained by the end of the training from singular values of the Hessian matrix of the
loss function evaluated at the resulting parameters. Given the O(N3) complexity in performing the
SVD, we reduce the neural network to 3 hidden layers, each with 16 neurons, and choose k = 4 in
equation (4). Figure 1 shows the sorted singular values of parameters obtained from training with
different batch size, as normalized by the L2 norm of the singular value vectors. The singular values
obtained from larger batch sizes decay consistently faster than that obtained from smaller batch sizes,
suggesting that sharper loss landscapes. While Keskar et al.[6] propose that sharper local minima
exacerbates the discrepancy between the validation and training metrics, in the case of PINNs the
continuous uniform sampling fills the gap and consequently yields improved errors at sharper local
minima.

3.2 Learning rate scaling for PINNs

Figure 1: Sorted singular values, normalized
by L2 norm of the singular value vectors.
Each curve is evaluated on one set of parame-
ters returned by an instance of training with
various batch size, as indicated in the legend,
along with its relative L2 error.

While the example above have shown the efficacy
of increasing batch size, in this section we further
demonstrate that an optimal learning rate choice can
significantly improve prediction accuracy and accel-
erate training. While convex optimization suggests
that less noise in the gradient estimate in each step al-
lows the use of larger learning rates and consequently
leads to faster convergence[14], it is not sufficiently
studied how the learning rate should be scaled in pro-
portion to the batch size increase in neural networks.
Given the scaling scheme

log learning rate ∝ κ log(batch size), (8)

two commonly used schemes are linear scaling[8, 15],
where κ = 1, and square root scaling[16], where
κ = 0.5. In this experiment, we will use PINNs to
solve the 2-dimensional Poisson problem as using
k = 12 in equation (4) and a more challenging Navier-Stokes (NS) equation to explore the optimal
learning rate scaling schemes.

For both these cases, we perform a grid search to determine the optimal learning rate for a batch
size. The specific architectures and hyperparameter choices we utilized for our experiments have
been discussed in the Appendix. Figure 2 summarizes our findings through heat maps of the final
mean ensemble errors for combinations of batch size and learning rates on the 2−D Poisson and
turbulence problem. Additionally, we plot the number of iterations required to achieve a particular
error tolerance.

In summary, we infer the following from our results when utilizing a large batch size for training
PINNs:

• Consistent improvements in the accuracy of the solution obtained.
• Higher tolerance to choice of learning rate; large batch sizes allows using larger learning

rates without compromising the stability of training. However, we do note that beyond a
certain threshold, higher learning rates would always lead to divergence of training.

• Quicker convergence to a desired error tolerance.
• Finally, the inferred slope κ for the scaling of optimal learning rate were 0.7636 and
−0.05952 respectively for the 2−D Poisson and turbulence. This shows that an optimal
scaling scheme is likely dependent on properties of each specific problem and that a general
learning rate scheme may not exist.

4 Discussion

We demonstrate that PINNs greatly benefit from higher batch sizes, which not only improve the
accuracy but also speed up the training process. While the choice of optimal learning rate helps
improve accuracy, we see that the improvement gained from learning rate tuning is not as impactful
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(a) (b)

(c) (d)

Figure 2: (Left) Final mean ensemble error. Ensembles where divergence in training occurs are
marked in white. (Right) Number of iterations needed to reach certain error threshold. Ensembles
whose mean error never reached the threshold are marked as white. The blue dots are the learning rate
that returns best testing error given the batch size. The dashed and dotted parallel lines are scaling
references for linear and square root scaling, respectively. The blue solid line is the linear regression
fit for the optimal learning rate. (Top) Heat maps for 2-D Poisson problem. The error threshold
is 0.05. The slope is 0.7636, and its 90% confidence interval is [0.549647, 0.9776257]. (Bottom)
Heat maps for turbulence problem. The error threshold is 0.01 The slope is −0.05952, and its 90%
confidence interval is [−0.1638367, 0.04478911].

as that from increasing batch size. We are aware that PINNs still are significantly more expensive
than classical numerical solvers. However, our work demonstrates that PINNs can become more
competitive when worked with larger batch sizes. Given that they can achieve a required tolerance
faster with higher batch sizes, a particularly effective route to this accelerate training would be
employing data-parallelism to reduce the time per iteration.

Future lines of research regarding this topic include analysing the behaviour of batch size on more
complicated PDEs. While this study does not consider higher dimensional PDEs, we conjecture that
higher batch sizes could significantly help in that space as well, where utilizing classic numerical
methods is often very computationally expensive or impossible in practice. Finally, while PINNs
solve a single instance of a PDE, a possible future direction of study would involve the study of batch
size in the context of operator learning architectures [17, 18, 19, 20, 21]. Using these architectures, it
is possible to evaluate the solution of PDEs under different parameters almost instantaneously, after
spending time training the model prior to deployment. Increasing batch sizes and reducing training
time of operator learning frameworks has the potential of improving the practicality of these methods
in both industry and academia.
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A Architecture

A.1 Multilayer Pecerptron (MLP)

A Multilayer Pecerptron (MLP) consists of compositions of layers, which are affine transformations
followed by an activation function σ : R → R. That is, a layer computes the following transformation
from Rdin to Rdout

x 7→ σ(Wx+ b),

where W ∈ Rdin×dout and b ∈ Rdout are trainable parameters and σ is applied element-wise.

The MLP architecture then consists of multiple iterations of the transformation above being carried
out, each with independent trainable parameters.

A.2 Positional Encoding

The harmonic encoding given input vector x can be expressed as the concatenation of feature vectors

[sin(2kπx), cos(2kπx)], k = −2,−1, 0, 1, 2. (9)

A.3 Modified MLP

A modified MLP architecture for PINNs was described in [22] and found to consistently yield better
results for PINNs. An L-layer architecture of the modified MLP is defined as follows

U = σ(XW1 + b1), V = σ(XW2 + b2), (10)

H(1) = σ(XW (1) + b(1)), (11)

Z(l) = σ(H(k)W (l+1) + b(l+1)), l = 1, . . . , L− 1, (12)

H(l+1) = (1−Z(l))⊙U +Z(l) ⊙ V , l = 1, . . . , L− 1, (13)

uθ(X) = H(L)W (L+1) + b(L+1), (14)

where σ denotes a nonlinear activation function, ⊙ denotes a point-wise multiplication, and X
denotes an batch of input coordinates.

B Hyper Parameter and Architecture Choices for Numerical Experiments

B.1 Optimizer Choice

We train using Adam[23] and learning rate schedule consisting of a linear warmup phase of 1, 000
steps followed by an exponential decay schedule with rate 0.1 per 10, 000 transition steps. The total
number of iterations is 20, 000. At the end of training, the learning rate is reduced to 0.01 of the peak
value 1.

B.2 Singular Value Spectrum for 2D Poisson Problem

The weight on the boundary loss term in equation (2) is 1000 for the evaluation of singular value
spectrum. We set the MLP following the positional encoding to be 3 hidden layers, each with 16
neurons.

B.3 Grid Search for 2D Poisson

We utilize a 3-layer MLP of width 256 with a positional encoding layer consisting of 5 frequencies,
and utilize a boundary loss weight α = 100 in Equation 2. The results presented were averaged over
an ensemble size of 32.

1The code to reproduce our results is available upon request
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B.4 Navier Stokes

The architecture we utilize is largely based on the architecture utilized in [24]: a modified MLP
architecture consisting of 3 hidden layers of width 256. with harmonic expansion layer at the start
to ensure that the network implicitly satisfies the periodic boundary conditions. Additionally, we
parameterize the model using two separate networks as

uθ1,θ2(x, y, t) = ūθ1(x, y, t)t+ ũθ2(x, y) (15)

Before, we carry out our grid search, we train the network ũθ2 to capture the initial condition with
high accuracy (0.01% relative L2 error) and keep this fixed for all the experiments we perform.
Hence, we’re only evolving θ1 during the process of training our model and do not have losses for
the initial condition competing during the process of training. However, we assign a weight of 500 to
the continuity residual equation over the vorticity residual equation. Finally, we train the network
utilizing the causality enforcing training process described in [24].

C Larger batch size helps overcome the spectral bias

We use a one dimensional Poisson problem to demonstrate that larger batch size helps to stabilize
training.

Poisson Equation The 1−dimensional Poisson PDE consists of finding u : Ω → R satisfying

uxx − f = 0, (16)

where uxx are the second-order partial derivatives with respect to input x, y and Ω ⊂ R. For our
experiments, we choose Ω = [−1, 1]. We choose the solution

u =

3∑
i

Ai sin(πkix), A1 = 0.5, A2 = 0.3, A3 = 0.2, k1 = 1, k2 = 12, k3 = 48. (17)

In this case the weight on the boundary loss term in equation (2) is 10, and we use the same
architecture as in section B.3. Figure 3 shows that larger batch size stabilizes the training, reduce the
uncertainty, and shift the predictive power spectrum towards higher frequency.

(a) (b)

Figure 3: (a) Final mean ensemble predictions trained with batch size 1, 64, 1024 with 2−std error
bands, top to bottom. Ground truth function is represented in the dashed blue line. (b) Power
spectrum of final mean ensemble prediction trained with various batch sizes. Vertical dashed lines
are frequencies present in the target function. The intensities of these frequencies of target function
are approximately 100.80, 100.57, 100.17, left to right.
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