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Abstract

Few-shot object detection (FSOD) is an emerging problem aimed at detecting novel1

concepts from few exemplars. Existing approaches to FSOD assume abundant base2

labels to adapt to novel objects. This paper studies the task of semi-supervised3

FSOD by considering a realistic scenario in which both base and novel labels are4

simultaneously scarce. We explore the utility of unlabeled data and discover its5

remarkable ability to boost semi-supervised FSOD by way of region proposals.6

Motivated by this finding, we introduce SoftER Teacher, a robust detector combin-7

ing pseudo-labeling with representation learning on region proposals, to harness8

unlabeled data for improved FSOD without relying on abundant labels. Extensive9

experiments show that SoftER Teacher surpasses the novel performance of a strong10

supervised detector using only 10% of required base labels, without experiencing11

catastrophic forgetting observed in prior approaches. Our work also sheds light on12

a potential relationship between semi-supervised and few-shot detection suggesting13

that a stronger semi-supervised detector leads to a more effective few-shot detector.14

1 Introduction15

Modern object detection systems have enjoyed
tremendous progress in recent years, with many
successful applications across diverse indus-
tries. Their success can be mainly attributed
to the availability of large-scale, well-annotated
datasets such as the MS-COCO benchmark [28].
However, the demand for more powerful and
accurate detection models requires consider-
able investments in the hand-labeling of mas-
sive amounts of data, which are costly to scale.
Thus, there is a growing trend in the com-
munity to shift toward a more label-efficient
paradigm, one that can enable detection mod-
els to do more with less hand-labeled data.
Such emerging research directions include self-
supervised representation learning from unla-
beled data [2, 7, 39], multi-modal pre-training
from Web-labeled data [25, 32], semi-supervised
detection (SSOD) [30, 48, 52], and few-shot de-
tection (FSOD) [10, 11, 47], all of which have
shown great promise in alleviating the depen-
dency on large amounts of instance-level class
annotations and bounding boxes.
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Figure 1: The evaluation of generalized FSOD is
characterized by the trade-off between novel accuracy
and base forgetting. We leverage unlabeled data to
optimize for semi-supervised FSOD on both classes.
Our approach significantly expands base class AP
(39.3 → 44.4) while exhibiting less than 7% in base
degradation (vs. 16% for LVC [21]). SoftER Teacher
is the best model on the Overall AP metric, leading
the next best Retentive R-CNN [10] by +2.0 AP.16
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Figure 2: We present the Label-Efficient Detection framework to harness supplementary unlabeled data for
generalized semi-supervised few-shot detection. At the core of the framework is our proposed SoftER Teacher
with Entropy Regression for improved semi-supervised base representation learning (upper right). Extensive
comparative experiments show that SoftER Teacher is also a more label-efficient few-shot detector (lower right).

This paper focuses on the intersection of SSOD and FSOD, which are essentially two sides of the17

same coin in the context of label-efficient detection. On one side, SSOD investigates the detection18

problem with a small fraction of images containing ground truth labels. On the other side, FSOD19

addresses the objective of adapting a base detector to learn novel concepts from few instance-level20

annotations. Existing approaches to FSOD assume abundant base classes to train the base detector.21

However, such assumption is not ideal in practical scenarios where labels may be limited for both22

base and novel classes, giving rise to the research question: can we do more on FSOD with the23

available unlabeled data without additional hand-labeling?24

We answer this question by introducing the unique task of semi-supervised few-shot detection, in25

which we explore the utility of unlabeled data for improving detection with label scarcity for both26

base and novel classes. Inspired by recent advances in SSOD and FSOD, our approach is two-fold:27

(1) we leverage unlabeled data to improve detection with a small fraction of labeled images; and (2)28

we generalize the resulting semi-supervised detector into a label-efficient few-shot detector by way of29

transfer learning. Our chief motivation is to not necessarily depend on an abundance of base classes30

for robust few-shot detection, which increases the versatility of our approach in realistic applications.31

Moreover, our approach to semi-supervised FSOD adapts a base detector to learn novel concepts32

with reduced performance degradation to base classes, a desirable result missing in most prior33

approaches. Figure 1 illustrates that while recent work [11, 21, 36] achieve impressive detection on34

novel categories, they all ignore the importance of preserving base class accuracy. For generalized35

FSOD [10], the goal is to expand the learned vocabulary of the base detector with novel concepts. As36

such, base and novel class performances are equally important, since samples at test time may contain37

instances of both objects. Therefore, the more realistic evaluation metric for FSOD is not only novel38

AP, but the combined base and novel AP, for which our approach establishes a new state of the art.39

We measure the utility of unlabeled data within our integrated semi-supervised few-shot framework,40

and discover an interesting empirical finding connecting the effectiveness of unlabeled data to41

semi-supervised FSOD by way of region proposals. Without bells and whistles, by simply adding42

unlabeled data to a supervised detector, we show a marked improvement on both base and novel class43

performances while also mitigating catastrophic base forgetting [31].44

Summary of Main Contributions. First, we introduce SoftER Teacher, a simple yet effective45

and versatile detector, to combine the strengths of pseudo-labeling with representation learning on46

unlabeled images. SoftER Teacher enhances the quality of region proposals to substantially boost47

semi-supervised FSOD. Our empirical analysis on the relationship between unlabeled data and region48

proposals extends earlier results on proposal evaluation beyond supervised detection [17, 46].49

Second, Figure 2 illustrates a potential relationship suggesting that a strong semi-supervised detector50

is also a label-efficient few-shot detector, an interesting and non-trivial empirical observation linking51

the two disparate domains. On the task of semi-supervised FSOD, our SoftER Teacher model exceeds52

the novel class performance of a strong supervised detector [10] using only 10% of required base53
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labels, while exhibiting less than 9% in base forgetting. When trained on 100% of labeled base54

classes with supplementary unlabeled data, SoftER Teacher sets a new standard on semi-supervised55

few-shot performance using varying amounts of bounding box annotations.56

Third, we establish the Label-Efficient Detection benchmark to quantify the utility of unlabeled data57

for generalized semi-supervised FSOD. We hope that our benchmark serves as a strong baseline, and58

a blueprint, to inspire future research toward this new problem setting in the community.59

2 Related Work60

Semi-Supervised Detection. Recent approaches to SSOD can be summarized into consistency-61

based and pseudo-labeling categories. The leading consistency method is Humble Teacher [44], which62

trains a pair of detectors on both labeled and unlabeled data in the student-teacher framework [16, 45].63

Humble Teacher learns representations from unlabeled data by enforcing consistency on predicted64

soft labels from region proposals. Humble Teacher was inspired by CSD [18], which was the first65

approach to leverage consistency regularization [40] for SSOD, but utilizes strong data augmentation66

to deliver robust performance.67

The state of the art on SSOD, however, belongs to a family of pseudo-labeling methods, which68

trains a pair of detectors on pseudo labels along with (limited) human labels. One such method is69

Soft Teacher [52] which vastly improves upon its previous counterparts STAC [42] and Unbiased70

Teacher [29] by enabling end-to-end pseudo-labeling on unlabeled images. More recently, Consistent71

Teacher [48] advances the performance envelope by reducing the inconsistency of pseudo targets. In72

both consistency-based and pseudo-labeling methods, the teacher model is an exponential moving73

average (EMA) of its student counterpart and is used to predict soft or pseudo labels on unlabeled data.74

The main difference between the two is how the surrogate labels are used to generate unsupervised75

targets to be jointly trained with the supervised objective.76

We extend the strong performance of Soft Teacher by incorporating a new module for Entropy77

Regression to learn additional representations from unlabeled images by way of region proposals.78

Our model, aptly named SoftER Teacher, combines the attractive benefits of pseudo-labeling with79

supplementary proposal learning to establish a stronger baseline for SSOD.80

Few-Shot Detection. Existing methods on FSOD can also be grouped into two categories: meta81

learning and transfer learning. Early work on meta learning introduced meta models to acquire82

class-level knowledge for adapting a base detector to novel concepts. Meta learners are jointly trained83

and fine-tuned with the base detectors to perform tasks like feature re-weighting, such as FSRW [19]84

and Meta R-CNN [53], or category-specific weight prediction (MetaDet) [49] using few exemplars of85

support images and ground truth bounding box annotations for the target objects.86

Recent work on transfer learning for FSOD found that fine-tuning the last layer of the pre-trained87

base detector (i.e., the box classifier and regressor) on a balanced subset of base and novel classes,88

while freezing the rest of the detector, can significantly improve detection accuracy. The simple yet89

effective two-stage fine-tuning approach TFA [47] outperformed all prior meta learning methods on90

both base and novel detection metrics. Retentive R-CNN [10] extends TFA by introducing the Bias-91

Balanced RPN and Re-Detector modules to achieve strong novel performance without sacrificing base92

accuracy, a desideratum of FSOD. Other transfer learning methods, such as FSCE [43], DeFRCN [36],93

FADI [3], and DCFS [11], address the shortcomings of the box classifier to boost FSOD. While94

these methods obtain impressive performance on novel categories, they suffer from considerable base95

class forgetting, making them sub-optimal in real-world applications requiring efficient and accurate96

detection on test samples containing instances of both classes.97

We show that both base and novel class performances can be further improved when unlabeled images98

are incorporated into the two-stage fine-tuning procedure without catastrophic base forgetting, which99

lead to a new standard for semi-supervised FSOD.100

Semi-Supervised Few-Shot Detection. There have been few attempts at leveraging unlabeled101

data to improve FSOD, but to our knowledge none directly addressed the task of optimizing for102

semi-supervised few-shot detection, in which setting both base and novel labels are simultaneously103

scarce. LVC [21] mines novel targets from the same base training dataset via pseudo-labeling to boost104

novel class detection, but comes at the cost of base performance. UniT [22] obtains impressive results105

on any-shot detection, but assumes abundant image-level labels for the base and novel targets. And106

3



SSFOD [51] performs semi-supervised FSOD within an episodic meta training and N -way k-shot107

evaluation framework [20] while also requiring abundant base classes. Our approach is fundamentally108

different in that we do not strictly depend on abundant base labels, but make effective utilization of109

external unlabeled data for robust semi-supervised FSOD with reduced base degradation.110

3 Approach111

We propose to combine the available (limited) labeled examples with supplementary unlabeled images112

to boost semi-supervised FSOD. We begin with the fully supervised scenario in which we have access113

to a set of labeled image-target pairs (xl, yl) ∈ Dsup. The supervised FSOD setting [10, 19, 47]114

assumes a base dataset Cbase ∈ Dsup with abundant instance-level annotations and a novel dataset115

Cnovel ∈ Dsup with only a few k (e.g., k ∈ {1, 5, 10}) labeled instances, or “shots”, per category. The116

goal of FSOD is to expand the base detector by adapting it to learn new target concepts such that the117

resulting detector is optimized for accuracy on a test set comprising both classes in Cbase ∪ Cnovel.118

To maintain parity with existing work, we adopt the simple yet effective two-stage transfer learning119

approach [10, 47] currently leading the FSOD literature, which comprises an initial stage of base120

class pre-training followed by a second stage of novel category fine-tuning. We consider the modern121

Faster R-CNN (FRCN) [37] system as our supervised base detector, which consists of a ResNet [15]122

backbone and a feature pyramid network (FPN) [27] neck for feature extraction, a region proposal123

network (RPN), an RoIAlign [14] operation for mapping proposals to region-of-interest (RoI) features,124

and a fully-connected head for RoI classification and regression. Let FRCN be represented by fθ, a125

stochastic function parametrized by a set of learnable weights θ. Formally, the base pre-training step126

is subjected to the standard supervised objective, over a mini-batch of labeled examples bl, given by:127

Lsup =
1

|bl|
∑
i∈bl

Lroi
cls(fθ(xi), yi) + Lroi

reg(fθ(xi), yi). (1)

Here, fθ(xi) denotes a forward pass on the i-th image to produce box classification and localization128

predictions from class-agnostic proposals, yi is the i-th ground truth annotation containing box labels129

and coordinates, and
(
Lroi

cls,Lroi
reg

)
are the cross-entropy and L1 losses, respectively, for the RoI head.130

Henceforth for simplicity, we develop our approach only on the RoI head and omit the presentation131

on the classification and regression losses of the RPN, which remain constant without changes, to132

predict and localize the “objectness” of region proposals.133

3.1 What Makes for Effective FSOD?134

We revisit this question from the perspective of maximizing representation learning while minimizing135

base forgetting. In two-stage detectors [14, 37], the quality of region proposals is a strong predictor136

of supervised detection performance [17, 46], since they focus the detector head on candidate RoIs.137

This is especially true for FSOD approaches based on transfer learning, in which the established138

procedure is to freeze the RPN during few-shot fine-tuning. Intuitively, if we can incorporate methods139

and/or data to boost representation learning by way of the RPN, then the detector should have a140

higher chance of discovering novel categories to improve few-shot performance.141

We conduct extensive experiments on the COCO dataset to verify our intuition. We split the dataset142

into disjoint 60 base and 20 novel categories and pre-train three variants of the FRCN detector on143

the base classes: (i) FRCN-Base, (ii) FRCN-Base augmented with COCO unlabeled2017 images144

leveraging the Soft Teacher formulation, and (iii) FRCN-Full using both base and novel classes to145

represent the upper-bound performance. We also experiment with CRPN-Base, a method specially146

designed to improve proposal quality and detection performance using a two-stage Cascade RPN [46].147

Figure 3a quantifies the “class-agnosticism” of various RPNs, using the standard metric AR@300148

proposals, for varying fractions of base labels. Surprisingly, unlabeled data has the remarkable ability149

to boost proposal recall on novel-only categories, even in the extremely low 1% label limit. Somewhat150

unsurprising is the ability of CRPN-Base to propose novel objects competitive with FRCN-Base151

+ Unlabeled when more base labels are available. Consistent with previous findings [10, 21],152

Figures 3b and 3c show that the vanilla supervised FRCN-Base has a strong tendency to reject novel153

objects as background, due to the lack of annotations, resulting in the worst recall on novel classes.154

As alluded in Section 1, the contribution of unlabeled data to FSOD goes beyond improving base155

and novel detection performances; unlabeled data can also help mitigate catastrophic base forgetting.156
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Figure 3: We analyze the effectiveness of the RPN as a function of base labels. (a) Unlabeled data provides a
convincing boost in proposal quality, closing the gap between the Base and Full detectors, which should lead
to better discovery of novel categories during fine-tuning. (b–c) In low-label regimes, unlabeled data can help
produce diverse proposals (green boxes) on novel unseen objects {boat, bus, car, dog}, whereas the vanilla
supervised FRCN-Base fails to capture comparable foreground objects (red boxes). Best viewed digitally.

We find analogous effectiveness of FRCN-Base + Unlabeled on the combined Overall AR@300157

metric, for both base + novel objects, suggesting the RPN, when trained with unlabeled data, has the158

ability to retain base proposals and help combat base degradation during few-shot fine-tuning.159

Discussion. This paper rethinks a different and more versatile way to improve the RPN for FSOD160

while avoiding catastrophic forgetting. The previous LVC approach proposed to unfreeze the RPN161

during fine-tuning to obtain large performance gains on novel categories, but comes at the cost of162

significant base degradation (up to 19%). Similarly, FSCE [43] proposed to unfreeze the RPN while163

also doubling the number of proposals to encourage novel foreground detection during fine-tuning.164

However, this method increases the detection overhead and remains unclear whether it helps mitigate165

base forgetting. We illustrate that simply adding unlabeled data to the base detector leads to a166

compelling boost in proposal quality, without the need for any ad hoc modifications to the RPN.167

We attribute this unique benefit of our approach to the potential base-novel object interactions found168

in abundant images. When learning with unlabeled data, the base detector can obtain semantically169

similar cues of novel objects to inform the RPN on foreground detection. Sun et al. [43] showed that170

visually analogous objects have high cosine similarity scores (e.g., sim(cow, horse) = 0.39). With171

1% of labels, these base-novel interactions are limited, resulting in a recall of 22.7%. Given a sizable172

unlabeled dataset, the base detector improves its representations to yield a gain of +12.3 points.173

3.2 Semi-Supervised Base Pre-Training174

Motivated by the promising utility of unlabeled data, we now relax the strict assumption on having175

abundant base classes for FSOD and introduce a new and more general setting of having a small176

fraction of base labels given abundant unlabeled images. We revisit the task of semi-supervised177

base pre-training by formulating an unsupervised loss computed on an unlabeled dataset Dunsup to be178

jointly trained with the supervised loss on Dsup. We consider the following canonical optimization179

objective widely adopted as part of the framework for semi-supervised learning [1, 23, 33]:180

min
θ
Lsup(Dsup, θ) + λLunsup(Dunsup, θ), (2)

where λ > 0 is a hyper-parameter controlling the contribution of the unsupervised component. Next,181

we describe the unsupervised criterion on Dunsup to make FRCN into a semi-supervised detector.182

Soft Teacher. We adopt Soft Teacher [52] as the baseline SSOD formulation for its simplicity183

but strong performance. Soft Teacher trains FRCN in a student-teacher fashion on both labeled184

and unlabeled data. The student is trained on labeled examples in the standard supervised manner185

per Eq. (1). For unlabeled images, the teacher is treated as a fixed detector to generate thousands186

of box candidates, most of which are eliminated for redundancy with non-maximum suppression.187

Additionally, box candidates are thresholded for foreground objects and go through an iterative188

jittering-refinement procedure to reduce localization variance, resulting in a set of high-quality189

pseudo boxes to be jointly trained with ground truth annotations.190

As is common practice [41, 45], the teacher’s parameters θ̄ are updated from the student’s via191

θ̄ = EMA(θ) at each training step. Integral to the success of Soft Teacher is a student-teacher data192

augmentation strategy inspired by STAC [42]. The student trains on unlabeled images subjected to193

complex random perturbations, akin to RandAugment [6], including affine transforms. Separately,194
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Figure 4: Visualization of student-teacher proposals with confidence scores ≥ 0.99. As illustrated by the arrow,
a pair of student-teacher proposals is related by a transformation matrix M , which is used to align proposals
between student and teacher images for enforcing box classification similarity and localization consistency.

the teacher receives weakly augmented images with simple random resizing and flipping. This195

multi-stream augmentation design allows the teacher to generate reliable unsupervised targets on196

easy images to guide the student’s learning on difficult images for better generalization.197

At the time of box classification and regression in the RoI head, we have a set of unlabeled images198

along with teacher-generated pseudo labels (xu, ŷu) ∈ Dunsup. The unsupervised loss for Soft Teacher199

on a mini-batch of unlabeled images bu is defined as:200

Lsoft
unsup =

1

|bu|
∑
i∈bu

Lroi
cls(fθ(xi), ŷi) + Lroi

reg(fθ(xi), ŷi). (3)

SoftER Teacher. The design of Soft Teacher employs class confidence thresholding and box201

jittering to select high-quality pseudo-label candidates for unsupervised classification and regression.202

However, it uses an aggressive threshold of 0.9, resulting in a trade-off between low recall and high203

precision at 33% and 89%, respectively [52]. We observe that low recall can result in poor detection204

performance on small and ambiguous objects [26], especially in low-label regimes where the teacher205

has insufficient confidence about its predicted pseudo labels. We aim to extend Soft Teacher and206

improve its detection recall by learning additional representations from abundant region proposals.207

Given a set of proposals p generated by the student’s RPN on a batch of unlabeled images, we208

apply the student-teacher data augmentation pipeline described above to obtain (ps, pt), denoting209

transformed student and teacher proposals, which are related to each other by a transformation matrix210

M . We then forward pass Faster R-CNN twice, as the student fθ and teacher fθ̄, to obtain two sets211

of RoI outputs for predicted box classification logits (zs, zt) and localization coordinates (rs, rt).212

Let gc be the softmax function over the channel dimension c. We define an auxiliary unsupervised213

criterion for proposal box similarity based on a cross-entropy measure H(zs, zt):214

Lent
cls =

1∑
i wi

∑
i∈p

wi ·H(zis, zit),

in which H(zis, zit) = −
1

C

∑
c∈C

gc(zit) log gc(zis).

(4)

Here, gc outputs a distribution over C classes and wi is the Boolean weight for the predicted positive215

(foreground) class: wi = 1 if argmax(zit) ̸= background, else wi = 0.216

Similarly for proposal box regression, we constrain the predicted box coordinates (rs, rt) to be217

close. Since there are complex geometric distortions between the two, we first map teacher proposal218

coordinates rt to the student space using the transformation M . Then, we align the proposal boxes219

via the intersection-over-union (IoU) criterion:220

Liou
reg = 1− 1

|p|
∑
i∈p

wi · IoU(ris,M(rit)), (5)

where we treat the IoU metric as a loss [38] to quantify the discrepancy between student and teacher221

proposal coordinates. Note that both the cross-entropy and IoU losses, Eqs. (4) and (5), are computed222

only on predicted foreground classes.223

Recall that we have two different transformation pipelines operating on each proposal, so we have224

two augmented views of each proposal. Figure 4 illustrates that by enforcing these randomly225
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augmented views, and their box coordinates, to be similar, we enable the student to tap into abundant226

region proposals to learn diverse feature representations across a spectrum of scale, color, and227

geometric perturbations. Our formulation draws inspiration from recent research on self-supervised228

representation learning with multi-augmented views [5, 13]. Note the cross-entropy similarity between229

the student and teacher predictions, Eq. (4), can be interpreted as a form of entropy regularization [12],230

which has been proven to work well in various semi-supervised classification scenarios [33, 34]. The231

overall optimization objective at the RoI head for our SoftER Teacher model is computed as:232

Lsofter
total = Lsup + αLsoft

unsup + β
(
Lent

cls + Liou
reg

)
, (6)

where we set α = |bu|
|bl| following Soft Teacher and find β = 2α works well across all experiments.233

Discussion. Our approach to proposal learning is unique and different from Humble Teacher [44] in234

two major ways: (1) we use diverse data transformations, including geometric distortions, to enforce235

proposal similarity, whereas Humble Teacher considered only simple random flipping and color236

transforms; and (2) we adopt the IoU metric for box localization consistency over L2 distance, which237

has been shown to produce inferior box regression [38]. Further, Humble Teacher acknowledged that238

matching student-teacher proposals under complex affine transforms is not a trivial task and “could239

lead to undesirably complicated details.” We solve this complicated task by tracking the affine matrix240

M in our entropy regression module, to address a key weakness of Soft Teacher by boosting object241

recall, thereby enabling SoftER Teacher to demonstrate superior learning with unlabeled data over242

Humble Teacher and Soft Teacher. Please refer to Appendix B.3 for detailed comparative results.243

3.3 Semi-Supervised Few-Shot Fine-Tuning244

We propose a simple two-step approach to harness unlabeled data for semi-supervised few-shot245

fine-tuning. First, we initialize the few-shot detector, f ′
θ̄
← fθ̄, with parameters copied from the base246

teacher detector pre-trained with unlabeled data per Eq. (6). And second, we further train the RoI247

head of f ′
θ̄

on novel classes using the available few-shot and unlabeled examples while freezing the248

base backbone, FPN, and RPN components. Then, we fine-tune the few-shot detector on a balanced249

training set of k shots per class containing both base and novel instances. We only update the RoI250

box classifier while freezing all other components, including the box regressor, since it is the main251

source of error [11, 43]. To our knowledge, we are the first to incorporate external unlabeled data252

with few-shot fine-tuning, which provides a compelling boost to novel performance while enjoying253

substantial gains in base detection without catastrophic forgetting. We present detailed ablation254

studies in Appendix A to validate our approach and design choices.255

4 Experiments256

Datasets. Consistent with the current literature on FSOD, we evaluate our approach on the257

challenging PASCAL VOC [9] and MS-COCO 2017 [28] detection benchmarks. For VOC, we use258

the combined VOC07+12 trainval splits as the labeled training set and evaluate performance259

on the VOC2007 test set. For COCO, we utilize the train2017 split as labeled data and test on260

val2017. We also leverage COCO-20, the subset of COCO data having the same 20 class names as261

VOC, and COCO unlabeled2017 as the sources of supplementary unlabeled data.262

Performance Metrics. Following established evaluation protocol, we assess detection performance263

using AP50 for the average precision at overlap threshold 0.5 and AP50:95 for the mean average264

precision computed over a range of 10 overlap thresholds between 0.5 and 0.95. We also report265

average recall AR to complement AP for assessing object coverage, which has previously been used266

to evaluate detection performance of small objects [24, 26].267

Implementation Details. For most experiments, we adopt the ResNet-101 backbone pre-trained268

on ImageNet 1K [8] for a direct comparison with existing work. For some experiments, we also269

employ ResNet-50 to demonstrate parameter-efficient learning with SoftER Teacher. We implement270

our models in MMDetection [4] and PyTorch [35]. Complete details are given in Appendix C.271

4.1 SoftER Teacher is a Parameter- and Label-Efficient Few-Shot Detector272

We conduct our few-shot experiments on the same VOC and COCO samples provided by the TFA273

benchmark [47]. The VOC dataset is randomly partitioned into 15 base and 5 novel classes, in which274
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Table 1: FSOD results evaluated on COCO val2017. We report the mean and 95% confidence interval over 5
random samples for our models. SoftER Teacher with ResNet-101 is the best model on the combined Overall
AP metric, incurring less than 9% in base forgetting vs. 11%–DCFS, 17%–DeFRCN, and 19%–LVC.

COCO val2017 Backbone Base AP50:95
Base AP50:95 (60 Classes) Novel AP50:95 (20 Classes) Overall AP50:95 (80 Classes)

Method 5-Shot 10-Shot 30-Shot 5-Shot 10-Shot 30-Shot 5-Shot 10-Shot 30-Shot

LVC [21] R-50 – – 29.7± n/a 33.3± n/a – 17.6 ± n/a 25.5 ± n/a – 26.7± n/a 31.4± n/a
SoftER Teacher (Ours) R-50 42.0 38.4 ± 0.2 38.4 ± 0.2 39.7 ± 0.2 8.2± 0.3 10.3± 0.5 12.9± 0.6 30.9 ± 0.1 31.4 ± 0.2 33.0 ± 0.1
TFA [47] R-101 39.3 32.3± 0.6 32.4± 0.6 34.2± 0.4 7.0± 0.7 9.1± 0.5 12.1± 0.4 25.9± 0.6 26.6± 0.5 28.7± 0.4
LVC [21] R-101 39.3 – 31.9± n/a 33.0± n/a – 17.8± n/a 24.5 ± n/a – 28.4± n/a 30.9± n/a
DeFRCN [36] R-101 39.3 32.6± 0.3 34.0± 0.2 34.8± 0.1 13.6± 0.7 16.8± 0.6 21.2± 0.4 27.8± 0.3 29.7± 0.2 31.4± 0.1
DCFS [11] R-101 39.3 35.0± 0.2 35.7± 0.2 35.8± 0.2 15.7 ± 0.5 18.3 ± 0.4 21.9± 0.3 30.2± 0.2 31.4± 0.2 32.3± 0.2
Retentive R-CNN [10] R-101 39.3 39.3± n/a 39.2± n/a 39.3± n/a 7.7± n/a 9.5± n/a 12.4± n/a 31.4± n/a 31.8± n/a 32.6± n/a
SoftER Teacher (Ours) R-101 44.4 40.3 ± 0.2 40.2 ± 0.3 41.4 ± 0.2 8.7± 0.6 11.0± 0.4 14.0± 0.6 32.4 ± 0.2 32.9 ± 0.1 34.6 ± 0.1

Table 2: FSOD results evaluated on VOC07 test. We report the mean and 95% confidence interval over 10
random samples for our models. SoftER Teacher with ResNet-50 surpasses the supervised MPSR, TFA, and
Retentive R-CNN models with ResNet-101 by a large margin on most metrics under consideration, while being
more parameter-efficient. Results for the other two partition splits are given in Appendix B.1.

VOC07 test – Split 1 Backbone Base Base Base AP50 (15 Classes) Novel AP50 (5 Classes) Overall AP50 (20 Classes)

Method AP50 AR50 1-Shot 5-Shot 10-Shot 1-Shot 5-Shot 10-Shot 1-Shot 5-Shot 10-Shot

MPSR [50] R-101 80.8 – 61.5 69.7 71.6 42.8 55.3 61.2 56.8 66.1 69.0
Retentive R-CNN [10] R-101 80.8 – 80.9 80.8 80.8 42.4 53.7 56.1 71.3 74.0 74.6
TFA [47] R-101 80.8 – 77.6± 0.2 77.4± 0.3 77.5± 0.2 25.3± 2.2 47.9± 1.2 52.8± 1.0 64.5± 0.6 70.1± 0.4 71.3± 0.3

Faster R-CNN (Our Impl.) R-50 81.7 88.0 82.0± 0.2 82.4± 0.1 82.3± 0.1 27.9± 3.2 52.1± 2.1 58.2± 1.6 68.5± 0.8 74.9± 0.5 76.2± 0.4
Soft Teacher (Our Impl.) R-50 85.3 91.2 84.5± 0.3 85.2± 0.1 85.2± 0.1 29.5± 4.2 56.2± 2.6 62.3± 1.8 70.8± 1.1 78.0± 0.7 79.5± 0.5
SoftER Teacher (Ours) R-50 85.9 92.5 84.5 ± 0.4 85.5 ± 0.1 85.5 ± 0.1 31.6± 3.9 57.7 ± 2.6 63.4 ± 1.7 71.3 ± 1.2 78.5 ± 0.7 80.0 ± 0.4

there are k ∈ {1, 5, 10} labeled boxes per category sampled from the joint VOC07+12 trainval275

splits. And the COCO dataset is divided into 60 base and 20 novel classes having the same VOC276

category names with k ∈ {5, 10, 30} shots. We leverage COCO-20 and unlabeled2017 as external277

unlabeled data to augment base pre-training and novel fine-tuning on VOC and COCO, respectively.278

Table 1 compares the effectiveness of SoftER Teacher against transfer-learning methods representing279

the state of the art on COCO, for the evaluation of both base and novel performances. We report the280

ideal supervised base AP of 39.3 [10, 47] along with our substantially improved semi-supervised base281

AP of 44.4 to measure the extent of base forgetting. Recall that the more realistic evaluation metric for282

generalized FSOD is not only novel AP, but the combination of base and novel AP. We summarize the283

following key takeaways: (a) SoftER Teacher with ResNet-101 trained with supplementary unlabeled284

data is the best model on the combined Overall AP metric for 80 classes, leading the next best285

Retentive R-CNN by up to +2.0 AP; (b) SoftER Teacher with ResNet-50 is on par with Retentive286

R-CNN while being more parameter-efficient; and (c) SoftER Teacher achieves the state of the art287

while being more efficient with respect to parameters and labels.288

We notice a recurring theme in the FSOD literature that seems to favor novel class performance289

while ignoring base accuracy, even though the detection of both classes is equally important at test290

time. Table 2 shows comparative results on VOC, for which there are few existing work evaluating291

on both base and novel AP. We report the ideal supervisd base AP of 80.8 [10, 47] along with our292

vastly expanded base AP of 85.9 using unlabeled data. SoftER Teacher with ResNet-50 incurs293

negligible base forgetting of less than 1.6% while exceeding MPSR, TFA, and Retentive R-CNN with294

ResNet-101 by a notable margin on most metrics. Although MPSR achieves impressive one-shot295

performance on novel categories, it suffers catastrophic base forgetting by as much as 24%. Retentive296

R-CNN does not exhibit base class degradation, but generally falls behind on novel class performance.297

Tables 1 and 2 corroborate our observation on the trade-off between novel performance and base298

forgetting, for which our approach aims to simultaneously optimize. Due to page limit, we refer to299

Appendix A for detailed ablation studies analyzing the design and benefits of SoftER Teacher.300

4.2 How Does Proposal Quality Impact Semi-Supervised Few-Shot Detection?301

In this section, we continue our discussion from Sec. 3.1 by analyzing semi-supervised FSOD as a302

function of proposal quality in Figure 5. We measure proposal quality using the metric AR@p [46],303

for p ∈ {100, 300, 1000} proposals, averaged over thresholds between 0.5 and 0.95. We arrive at the304

following conclusions: (a) SoftER Teacher produces better proposals than the comparisons across305

varying fractions of labels; and (b–d) proposal quality is strongly correlated with semi-supervised306

FSOD, an insightful empirical finding that extends existing results beyond supervised detection [17].307
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Faster R-CNN w/ ResNet-101 Soft Teacher w/ ResNet-101 SoftER Teacher w/ ResNet-101 (Ours)

Figure 5: Proposal quality is highly correlated with semi-supervised FSOD. SoftER Teacher produces the best
proposals among the comparisons (a), which yield the strongest 30-shot performances (b–d). Shaded regions
denote standard deviation over 5 samples. Appendix B.2 gives similar trends for 5-shot and 10-shot results.

Table 3: We introduce the Label-Efficient Detection benchmark for generalized semi-supervised FSOD on
COCO. All models are trained with ResNet-101. We report the mean and standard deviation over 5 samples.
Using only 10% of base labels (bottom row), SoftER Teacher surpasses the supervised novel performance of
Retentive R-CNN trained with 100% of base labels (top row) while incurring less than 9% in base degradation.

Method % Labeled Base AP50:95 Base AR50:95
Base AP50:95 (60 Classes) Novel AP50:95 (20 Classes) Overall AP50:95 (80 Classes)

5-Shot 10-Shot 30-Shot 5-Shot 10-Shot 30-Shot 5-Shot 10-Shot 30-Shot

Retentive R-CNN 100 39.3 – 39.3 39.2 39.3 7.7 9.5 12.4 31.4 31.8 32.6
SoftER Teacher 44.4 56.1 40.3± 0.2 40.2± 0.3 41.4± 0.2 8.7± 0.6 11.0± 0.4 14.0± 0.6 32.4± 0.2 32.9± 0.1 34.6± 0.1

Faster R-CNN
1

8.7± 0.3 12.3± 0.5 9.8± 0.3 10.0± 0.4 10.8± 0.3 1.9± 0.3 2.7± 0.1 3.5± 0.1 7.8± 0.2 8.2± 0.3 9.0± 0.2
Soft Teacher 19.9± 1.0 30.7± 1.1 19.4± 0.7 19.9± 0.8 21.2± 0.7 5.9± 0.8 7.9± 0.7 10.1± 0.5 16.0± 0.6 16.9± 0.7 18.4± 0.6
SoftER Teacher 19.8± 0.9 32.5± 1.0 19.2± 0.6 19.8± 0.5 21.1± 0.5 6.7± 0.3 8.8± 0.2 10.8± 0.5 16.1± 0.5 17.1± 0.4 18.5± 0.5

Faster R-CNN
5

19.1± 0.3 25.6± 0.4 18.5± 0.5 18.9± 0.3 20.0± 0.5 3.5± 0.2 4.6± 0.2 5.9± 0.3 14.8± 0.4 15.3± 0.2 16.5± 0.4
Soft Teacher 29.6± 0.3 38.7± 0.3 27.5± 0.4 27.8± 0.5 29.2± 0.5 6.7± 0.7 8.9± 0.4 11.1± 0.3 22.3± 0.4 23.1± 0.3 24.7± 0.4
SoftER Teacher 30.2± 0.2 40.7± 0.3 27.5± 0.4 27.9± 0.4 29.3± 0.2 7.9± 0.4 10.1± 0.5 12.4± 0.5 22.6± 0.3 23.4± 0.3 25.1± 0.2

Faster R-CNN
10

24.7± 0.2 32.8± 0.3 22.6± 0.4 22.8± 0.1 24.2± 0.2 3.8± 0.5 5.3± 0.2 6.8± 0.2 17.9± 0.3 18.4± 0.1 19.9± 0.2
Soft Teacher 33.3± 0.2 42.4± 0.2 30.5± 0.5 30.7± 0.4 32.1± 0.3 6.8± 0.3 9.0± 0.6 11.4± 0.3 24.6± 0.4 25.3± 0.4 26.9± 0.3
SoftER Teacher 33.4± 0.4 44.1± 0.2 30.3± 0.5 30.6± 0.5 32.0± 0.4 7.9± 1.3 10.4± 1.1 12.9± 1.0 24.6± 0.1 25.6± 0.3 27.2± 0.3

Although the strong Soft Teacher baseline is effective at harnessing unlabeled data for semi-supervised308

FSOD, our approach demonstrates superior learning by addressing a key shortcoming of Soft Teacher.309

SoftER Teacher boosts object recall via our proposed Entropy Regression module, improving on Soft310

Teacher by +1.2 base AR@100, which yields a gain of +1.5 novel AP for the 30-Shot@10-Percent311

setting. These results further strengthen our empirical observation that a stronger semi-supervised312

detector leads to a more label-efficient few-shot detector. Future work would explore if our finding313

can be extended to a more general case with other SSOD formulations including one-stage detectors.314

4.3 A New Benchmark for Generalized Semi-Supervised Few-Shot Detection315

We present our Label-Efficient Detection benchmark on COCO val2017 in Table 3, evaluated using316

the supervised Faster R-CNN baseline along with the semi-supervised Soft Teacher and SoftER317

Teacher models. Our protocol for semi-supervised FSOD is as follows. In the first stage, we pre-train318

the base detector on the disjoint 60 base categories using {1, 5, 10} percent of labels per Eq. (6). In319

the second stage, we transfer the parameters of the base teacher detector to the few-shot detector320

and fine-tune its RoI box classifier, keeping other components frozen, on a balanced training set321

of k ∈ {5, 10, 30} shots per class containing both base and novel examples. In both stages, we322

supplement base pre-training and novel fine-tuning with images from COCO unlabeled2017.323

We report AP50:95 performances on both base and novel classes along with the aggregated overall324

metric. We also report the ideal AP50:95 and AR50:95 metrics obtained from the first stage of base325

pre-training to measure the potential for base forgetting during the few-shot fine-tuning step. We326

encourage future work to follow suit as we emphasize the importance of optimizing for accuracy on327

both base and novel classes, a desideratum of generalized few-shot object detection.328

5 Conclusion329

This paper presented the Label-Efficient Detection framework to quantify the utility of unlabeled data330

for generalized semi-supervised FSOD. Central to the framework is our SoftER Teacher, a robust331

detector combining the strengths of pseudo-labeling with representation learning on unlabeled images.332

We demonstrated two main areas of impact: (1) SoftER Teacher achieves superior learning with333

unlabeled data to boost semi-supervised FSOD without relying on an abundance of labels; and (2)334

our framework sheds empirical insight into a potential relationship that a stronger semi-supervised335

detector leads to a more effective few-shot detector, the basis of which could inspire future research.336
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