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ABSTRACT

The theories of offline and online reinforcement learning, despite having evolved
in parallel, have begun to show signs of the possibility for a unification, with
algorithms and analysis techniques for one setting often having natural counterparts
in the other. However, the notion of density ratio modeling, an emerging paradigm
in offline RL, has been largely absent from online RL, perhaps for good reason: the
very existence and boundedness of density ratios relies on access to an exploratory
dataset with good coverage, but the core challenge in online RL is to collect such a
dataset without having one to start.

In this work we show—perhaps surprisingly—that density ratio-based algorithms
have online counterparts. Assuming only the existence of an exploratory distribu-
tion with good coverage, a structural condition known as coverability (Xie et al.,
2023), we give a new algorithm (GLOW) that uses density ratio realizability and
value function realizability to perform sample-efficient online exploration. GLOW
addresses unbounded density ratios via careful use of truncation, and combines
this with optimism to guide exploration. GLOW is computationally inefficient; we
complement it with a more efficient counterpart, HYGLOW, for the Hybrid RL
setting (Song et al., 2023) wherein online RL is augmented with additional offline
data. HYGLOW is derived as a special case of a more general meta-algorithm that
provides a provable black-box reduction from hybrid RL to offline RL, which may
be of independent interest.

1 INTRODUCTION

A fundamental problem in reinforcement learning (RL) is to understand what modeling assumptions
and algorithmic principles lead to sample-efficient learning guarantees. Investigation into algorithms
for sample-efficient reinforcement learning has primarily focused on two separate formulations:
Offline reinforcement learning, where a learner must optimize a policy from logged transitions and
rewards, and online reinforcement learning, where the learner can gather new data by interacting with
the environment; both formulations share the common goal of learning a near-optimal policy. For
the most part, the bodies of research on offline and online reinforcement have evolved in parallel,
but they exhibit a number of curious similarities. Algorithmically, many design principles for offline
RL (e.g., pessimism) have online counterparts (e.g., optimism), and statistically efficient algorithms
for both frameworks typically require similar representation conditions (e.g., ability to model state-
action value functions). Yet, the frameworks have notable differences: online RL algorithms require
exploration conditions to address the issue of distribution shift (Russo and Van Roy, 2013; Jiang et al.,
2017; Sun et al., 2019; Wang et al., 2020c; Du et al., 2021; Jin et al., 2021a; Foster et al., 2021), while
offline RL algorithms require conceptually distinct coverage conditions to ensure the data logging
distribution sufficiently covers the state space (Munos, 2003; Antos et al., 2008; Chen and Jiang,
2019; Xie and Jiang, 2020, 2021; Jin et al., 2021b; Rashidinejad et al., 2021; Foster et al., 2022; Zhan
et al., 2022).

Recently, Xie et al. (2023) exposed a deeper connection between online and offline RL by showing
that coverability—that is, existence of a data distribution with good coverage for offline RL—is
itself a sufficient condition that enables sample-efficient exploration in online RL, even when the
learner has no prior knowledge of said distribution. This suggests the possibility of a theoretical
unification of online and offline RL, but the picture remains incomplete, and there are many gaps
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in our understanding. Notably, a promising emerging paradigm in offline RL makes use of the
ability to model density ratios (also referred to as marginalized importance weights or simply weight
functions) for the underlying MDP. Density ratio modeling offers an alternative to classical value
function approximation (or, approximate dynamic programming) methods (Munos, 2007; Munos
and Szepesvári, 2008; Chen and Jiang, 2019), as it avoids instability and typically succeeds under
weaker representation conditions (requiring only realizability conditions as opposed to Bellman
completeness-type assumptions). Yet despite extensive investigation into density ratio methods for
offline RL—both in theory (Liu et al., 2018; Uehara et al., 2020; Yang et al., 2020; Uehara et al., 2021;
Jiang and Huang, 2020; Xie and Jiang, 2020; Zhan et al., 2022; Chen and Jiang, 2022; Rashidinejad
et al., 2023; Ozdaglar et al., 2023) and practice (Nachum et al., 2019; Kostrikov et al., 2019; Nachum
and Dai, 2020; Zhang et al., 2020; Lee et al., 2021)—density ratio modeling has been conspicuously
absent in the online reinforcement learning. This leads us to ask:

Can online reinforcement learning benefit from the ability to model density ratios?

Adapting density ratio-based methods to the online setting with provable guarantees presents a
number of conceptual and technical challenges. First, since the data distribution in online RL is
constantly changing, it is unclear what densities one should even attempt to model. Second, most
offline reinforcement learning algorithms require relatively stringent notions of coverage for the data
distribution. In online RL, it is unreasonable to expect data gathered early in the learning process to
have good coverage, and naive algorithms may cycle or fail to explore as a result. As such, it may not
be reasonable to expect density ratio modeling to benefit online RL in the same fashion as offline.

Our contributions. We show that in spite of these challenges, density ratio modeling enables
guarantees for online reinforcement learning that were previously out of reach.

• Density ratios for online RL. We show (Section 3) that for any MDP with low coverability,
density ratio realizability and realizability of the optimal state-action value function are sufficient
for sample-efficient online RL. This result is obtained through a new algorithm, GLOW, which ad-
dresses the issue of distribution shift via careful use of truncated density ratios, which it combines
with optimism to drive exploration. This complements Xie et al. (2023), who gave guarantees for
coverable MDPs under a stronger Bellman completeness assumption for the value function class.

• Density ratios for hybrid RL. Our algorithm for online RL is computationally inefficient.
We complement it (Section 4) with a more efficient counterpart, HYGLOW, for the hybrid RL
framework (Song et al., 2023), where the learner has access to additional offline data that covers
a high-quality policy.

• Hybrid-to-offline reductions. To achieve the result above, we investigate a broader question:
when can offline RL algorithms be adapted as-is to online settings? We provide a new
meta-algorithm, H2O, which reduces hybrid RL to offline RL by repeatedly calling a given offline
RL algorithm as a black box. We show that H2O enjoys low regret whenever the black-box offline
algorithm satisfies certain conditions, and demonstrate that these conditions are satisfied by a
range of existing offline algorithms, thus lifting them to the hybrid RL setting.

While our results are theoretical in nature, we are optimistic that they will lead to further investigation
into the power of density ratio modeling in online RL and inspire practical algorithms.

1.1 PRELIMINARIES

Markov Decision Processes. We consider an episodic reinforcement learning setting. A Markov De-
cision Process (MDP) is a tupleM = (X ,A, P,R,H, d1), where X is the (large/potentially infinite)
state space,A is the action space, H ∈ N is the horizon, R = {Rh}Hh=1 is the reward function (where
Rh : X ×A → ∆([0, 1])), P = {Ph}h≤1 is the transition distribution (where Ph : X ×A → ∆(X )),
and d1 is the initial state distribution. A randomized policy is a sequence of functions π = {πh :
X → ∆(A)}Hh=1. When a policy is executed, it generates a trajectory (x1, a1, r1), . . . , (xH , aH , rh)
via the process ah ∼ πh(xh), rh ∼ Rh(xh, ah), xh+1 ∼ Ph(xh, ah), initialized at x1 ∼ d1 (we use
xH+1 to denote a deterministic terminal state with zero reward). We write Pπ[·] and Eπ[·] to denote
the law and corresponding expectation for the trajectory under this process.

For a policy π, the expected reward for is given by J(π) := Eπ
[∑H

h=1 rh
]
, and the value functions

given by V π
h (x) := Eπ

[∑H
h′=h rh′ | xh = x

]
, and Qπ

h(x, a) := Eπ
[∑H

h′=h rh′ | xh = x, ah = a
]
.

We write π⋆ = {π⋆
h}Hh=1 to denote an optimal deterministic policy, which maximizes V π at all
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states. We let Th denote the Bellman (optimality) operator for layer h, defined via [Thf ](x, a) =
E
[
rh +maxa′ f(xh+1, a

′) | xh = x, ah = a
]

for f : X ×A → R.

Online RL. In the online reinforcement learning framework, the learner repeatedly interacts with an
unknown MDP by executing a policy and observing the resulting trajectory. The goal is to maximize
total reward. Formally, the protocol proceeds in N rounds, where at each round t ∈ [N ], the learner
selects a policy π(t) = {π(t)

h }Hh=1 in the (unknown) underlying MDP M⋆ and observes the trajectory
{(x(t)

h , a
(t)

h , r
(t)

h )}Hh=1. Our results are most naturally stated in terms of PAC guarantees. Here, after
the N rounds of interaction conclude, the learner can use all of the data collected to produce a final
policy π̂, with the goal of minimizing

Risk := Eπ̂∼p[J(π
⋆)− J(π̂)], (1)

where p ∈ ∆(Π) denotes a distribution that the algorithm can use to randomize the final policy.

Additional definitions and assumptions. We assume that rewards are normalized such that∑H
h=1 rh ∈ [0, 1] almost surely for all trajectories (Jiang and Agarwal, 2018; Wang et al., 2020a;

Zhang et al., 2021; Jin et al., 2021a). To simplify presentation, we assume that X andA are countable;
we expect that our results extend to handle continuous variables with an appropriate measure-theoretic
treatment. We define the occupancy measure for policy π via dπh(x, a) := Pπ[xh = x, ah = a].

2 PROBLEM SETUP: DENSITY RATIO MODELING AND COVERABILITY

To investigate the power of density ratio modeling in online RL, we make use of function approx-
imation, and aim to provide sample complexity guarantees with no explicit dependence on the
size of the state space. We begin by appealing to value function approximation, a standard ap-
proach in online and offline reinforcement learning, and assume access to a value-function class
F ⊂ (X ×A× [H]→ [0, 1]) that can realize the optimal value function Q⋆.

Assumption 2.1 (Value function realizability). We have Q⋆ ∈ F .

For f ∈ F , we define the greedy policy πf via πf,h(x) = argmaxa fh(x, a), with ties broken in an
arbitrary consistent fashion. For the remainder of the paper, we define Π := {πf | f ∈ F} as the
policy class induced by F , unless otherwise specified.

Density ratio modeling. While value function approximation is a natural modeling approach, prior
works in both online (Du et al., 2020; Weisz et al., 2021; Wang et al., 2021) and offline RL (Wang et al.,
2020b; Zanette, 2021; Foster et al., 2022) have shown that value function realizability alone is not
sufficient for statistically tractable learning in many settings. As such, value function approximation
methods in online (Zanette et al., 2020; Jin et al., 2021a; Xie et al., 2023) and offline RL (Antos et al.,
2008; Chen and Jiang, 2019) typically require additional representation conditions that may not be
satisfied in practice, such as the stringent Bellman completeness assumption (i.e., ThFh+1 ⊆ Fh).

In offline RL, a promising emerging paradigm that goes beyond pure value function approximation
is to model density ratios (or, marginalized important weights), which typically take the form
dπ
h(x,a)/µh(x,a) for a policy π, where µh denotes the offline data distribution.1 A recent line of

work (Xie and Jiang, 2020; Jiang and Huang, 2020; Zhan et al., 2022) shows, that given access
to a realizable value function class and a weight function classW that can realize the ratio dπ

h/µh

(typically either for all policies π, or for the optimal policy π⋆), one can learn a near-optimal policy
offline in a sample-efficient fashion; such results sidestep the need for stringent value function
representation conditions like Bellman completeness. To explore whether density ratio modeling
has similar benefits in online RL, we make the following assumption.

Assumption 2.2 (Density ratio realizability). The learner has access to a weight function class
W ⊂ (X × A × [H] → R+) such that for any policy pair π, π′ ∈ Π, and h ∈ [H], we have
wπ;π′

h (x, a) := dπ
h(x,a)/dπ′

h (x,a) ∈ Wh.2

Assumption 2.2 does not assume that the density ratios under consideration are finite. That is, we do
not assume boundedness of the weights, and our results do not pay for their range; our algorithm will
only access certain clipped versions of the weight functions (Remark B.1).

1Formally, in offline reinforcement learning the learner does not interact with M⋆ but is given a dataset of
tuples (xh, ah, rh, xh+1) collected i.i.d. according to (xh, ah) ∼ µh, rh ∼ Rh(xh, ah), xh+1 ∼ Ph(xh, ah).

2We adopt the convention that x/0 = +∞ when x > 0 and 0/0 = 1.
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Compared to density ratio approaches in the offline setting, which typically require either realizability
of dπ

h/µh for all π ∈ Π or realizability of dπ⋆

h /µh, where µ is the offline data distribution, we require
realizability of dπ

h/dπ′
h for all pairs of policies π, π′ ∈ Π. This assumption is natural because it

facilitates transfer between historical data (which is algorithm-dependent) and future policies. We
refer the reader to Appendix B for a detailed comparison to alternative assumptions.

Coverability. In addition to realizability assumptions, online RL methods require exploration
conditions (Russo and Van Roy, 2013; Jiang et al., 2017; Sun et al., 2019; Wang et al., 2020c; Du
et al., 2021; Jin et al., 2021a; Foster et al., 2021) that allow deliberately designed algorithms to control
distribution shift or extrapolate to unseen states. Towards lifting density ratio modeling from offline
to online RL, we make use of coverability (Xie et al., 2023), an exploration condition inspired by the
notion of coverage in the offline setting.

Definition 2.1 (Coverability coefficient (Xie et al., 2023)). The coverability coefficient Ccov > 0 for
a policy class Π is given by Ccov := infµ1,...,µH∈∆(X×A) supπ∈Π,h∈[H] ∥d

π
h/µh∥∞. We refer to the

distribution µ⋆
h that attains the minimum for h as the coverability distribution.

Coverability is a structural property of the underlying MDP, and can be interpreted as the best value
one can achieve for the concentrability coefficient Cconc(µ) := supπ∈Π,h∈[H] ∥d

π
h/µh∥∞ (a standard

coverage parameter in offline RL (Munos, 2007; Munos and Szepesvári, 2008; Chen and Jiang,
2019)) by optimally designing the offline data distribution µ. However, in our setting the agent has
no prior knowledge of µ⋆ and no way to explicitly search for it. Examples that admit low coverability
include tabular MDPs and Block MDPs (Xie et al., 2023), linear/low-rank MDPs (Huang et al., 2023),
and analytically sparse low-rank MDPs (Golowich et al., 2023); see Appendix C for further examples.

Concretely, we aim for sample complexity guarantees scaling as poly(H,Ccov, log|F|, log|W|, ε−1),
where ε is the desired bound on the risk in Eq. (1).3 Such a guarantee complements Xie et al. (2023),
who achieved similar sample complexity under the Bellman completeness assumption, and parallels
the fashion in which density ratio modeling allows one to remove completeness in offline RL.

Additional notation. For n ∈ N, we write [n] = {1, . . . , n}. For a countable set Z , we write ∆(Z)
for the set of probability distributions on Z . We adopt standard big-oh notation, and use Õ(·) and Ω̃(·)
to suppress factors polylogarithmic in H , T , ε−1, log|F|, log|W|, and other problem parameters. For
each h ∈ [H], we define Fh = {fh | f ∈ F} andWh = {wh | w ∈ W}.

3 ONLINE RL WITH DENSITY RATIO REALIZABILITY

This section presents our main results for the online RL setting. We first introduce our main algorithm,
GLOW (Algorithm 1), and explain the intuition behind its design (Section 3.1). We then show
(Section 3.2) that GLOW obtains polynomial sample complexity guarantees (Theorems 3.1 and 3.2)
under density ratio realizability and coverability, and conclude with a proof sketch.

3.1 ALGORITHM AND KEY IDEAS

Our algorithm, GLOW (Algorithm 1), is based on the principle of optimism in the face of uncertainty.
For each iteration t ≤ T ∈ N, the algorithm uses the density ratio classW to construct a confidence set
(or, version space) F (t) ⊆ F with the property that Q⋆ ∈ F (t). It then chooses a policy π(t) = πf(t)

based on the value function f (t) ∈ F (t) with the most optimistic estimate E[f1(x1, πf,1(x1))] for the
initial value. Then, it uses the policy π(t) to gather K ∈ N trajectories, which are used to update the
confidence set for subsequent iterations.

Within the scheme above, the main novelty to our approach lies in the confidence set construction.
GLOW appeals to global optimism (Jiang et al., 2017; Zanette et al., 2020; Du et al., 2021; Jin et al.,
2021a; Xie et al., 2023), and constructs the confidence set F (t) by searching for value functions
f ∈ F that satisfy certain Bellman residual constraints for all layers h ∈ [H] simultaneously. For
MDPs with low coverability, previous such approaches (Jin et al., 2021a; Xie et al., 2023) make use of
constraints based on squared Bellman error, which requires Bellman completeness. The confidence
set construction in GLOW (Eq. (3)) departs from this approach, and aims to find f ∈ F such that the

3To simplify presentation as much as possible, we assume finiteness of F and W , but our results extend to
infinite classes via standard uniform convergence arguments. Likewise, we do not require exact realizability, and
an extension to misspecified classes is given in Appendix E.
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average Bellman error is small for all weight functions. At the population level, this (informally)
corresponds to requiring that for all h ∈ [H] and w ∈ W ,4

Ed̄(t)

[
wh(xh, ah)(fh(xh, ah)− [Thfh+1](xh, ah))

]
− α(t) · Ed̄(t)

[
(wh(xh, ah))

2
]
≤ β(t). (2)

where d̄(t)

h := 1
t−1

∑
i<t d

π(t)

h is the historical data distribution and α(t) > 0 and β(t) > 0 are
algorithm parameters; this is motivated by the fact that the optimal value function satisfies
Eπ
[
wh(xh, ah)(Q

⋆
h(xh, ah)−

[
ThQ⋆

h+1

]
(xh, ah))

]
= 0 for all functions w and policies π. Our

analysis uses that Eq. (2) holds for the weight function w(t)

h := dπ(t)

h /d̄(t)
h , which allows to transfer

bounds on the off-policy Bellman error for the historical distribution d̄(t) to the on-policy Bellman
error for π(t).

Remark 3.1. Among density ratio-based algorithms for offline reinforcement learning (Jiang and
Huang, 2020; Xie and Jiang, 2020; Zhan et al., 2022; Chen and Jiang, 2022; Rashidinejad et al.,
2023), the constraint (2) is most directly inspired by the Minimax Average Bellman Optimization
(MABO) algorithm (Xie and Jiang, 2020), which uses a similar minimax approximation to the average
Bellman error.

Partial coverage and clipping. Compared to the offline setting, much extra work is required to
handle the issue of partial coverage. Early in the learning process, the ratio w(t)

h := dπ(t)

h /d̄(t)
h may

be unbounded, which prevents the naive empirical approximation to Eq. (2) from concentrating. To
address this issue, GLOW carefully truncates the weight functions under consideration.

Definition 3.1 (Clipping operator). For any w : X × A → R ∪ {∞} and γ ∈ R, we define the
clipped weight function (at scale γ) via clipγ [w](x, a) := min{w(x, a), γ}.

We replace the weight functions in Eq. (2) with clipped counterparts clipγ(t) [w](x, a), where
γ(t) := γ · t for a parameter γ ∈ [0, 1]. For a given iteration t, clipping in this fashion may render
Eq. (2) a poor approximation to the on-policy Bellman error. The crux of our analysis is to show—via
coverability—that on average across all iterations, the approximation error is small.

An important difference relative to MABO is that the weighted Bellman error in Eq. (2) incorporates a
quadratic penalty −α(t) · Ed̄(t) [(wh(xh, ah))

2] for the weight function. This is not essential to derive
polynomial sample complexity guarantees, but is critical to attain the 1/ε2-type rates we achieve
under our strongest realizability assumption. Briefly, regularization is beneficial because it allows
us to appeal to variance-dependent Bernstein-style concentration; our analysis shows that while the
variance of the weight functions under consideration may not be small on a per-iteration basis, it
is small on average across all iterations (again, via coverability). Interestingly, similar quadratic
penalties have been used within empirical offline RL algorithms based on density ratio modeling
(Yang et al., 2020; Lee et al., 2021), as well as recent theoretical results (Zhan et al., 2022), but for
considerations seemingly unrelated to concentration.

3.2 MAIN RESULT: SAMPLE COMPLEXITY BOUND FOR GLOW

We now present the main sample complexity guarantees for GLOW. The first result we present, which
gives the tightest sample complexity bound, is stated under a form of density ratio realizability that
strengthens Assumption 2.2. Concretely, we assume that the classW can realize density ratios for
certain mixtures of policies. For t ∈ N, we write π(1:t) as a shorthand for a sequence (π(1), · · · , π(t)),
where π(i) ∈ Π, and let dπ

(1:t)

:= 1
t

∑t
i=1 d

π(i)

.

Assumption 2.2′ (Density ratio realizability, mixture version). Let T be the parameter to GLOW
(Algorithm 1). For all h ∈ [H], π ∈ Π, t ≤ T , and π(1), . . . , π(t) ∈ Π, we have

wπ;π(1:t)

h (x, a) :=
dπh(x, a)

dπ
(1:t)

h (x, a)
∈ W.

This assumption directly facilitates transfer from the algorithm’s historical distribution d̄(t)

h :=
1

t−1

∑
i<t d

π(t)

h to on-policy error. Under Assumption 2.2′, GLOW obtains 1/ε2-PAC sample
complexity and

√
T -regret.

4Average Bellman error without weight functions is used in algorithms such at OLIVE (Jiang et al., 2017) and
BILIN-UCB Du et al. (2021). Without weighting, this approach is insufficient to derive guarantees based on
coverability; see discussion in Xie et al. (2023).
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Algorithm 1 GLOW: Global Optimism via Weight Function Realizability
input: Value function class F , Weight function classW , Parameters T,K ∈ N, γ ∈ [0, 1].

1: // For Thm. 3.1, set T = Θ̃((H2Ccov/ε2) · log(|F||W|/δ)), K = 1, and γ =
√

Ccov/(T log(|F||W|/δ)).

2: // For Thm. 3.2, set T = Θ̃(H2Ccov/ε2), K = Θ̃(T log(|F||W|/δ)), and γ =
√

Ccov/T.

3: Set γ(t) = γ · t, α(t) = 8/γ(t) and β(t) = (36γ
(t)
/K(t−1)) · log(6|F||W|TH/δ).

4: Initialize D(1)

h = ∅ for all h ≤ H .
5: for t = 1, . . . , T do
6: Define confidence set based on (regularized) minimax average Bellman error:

F (t) =

{
f ∈ F | ∀h : sup

w∈Wh

ÊD(t)
h

[(
[∆̂hf ](x, a, r, x

′)
)
· w̃h(x, a)− α(t) ·

(
w̃h(x, a)

)2] ≤ β(t)

}
,

(3)

where w̃ := clipγ(t) [w] and [∆̂hf ](x, a, r, x
′) := fh(x, a)− r −maxa′ fh+1(x

′, a′).
7: Compute optimistic value function and policy:

f (t) := argmax
f∈F(t)

Ê
x1∼D(t)

1

[f1(x1, πf (x1))], and π(t) := πf(t) . (4)

8: Initialize D(t+1)

h ← D(t)

h for h ∈ [H].
9: for k = 1, . . . ,K do // Online data collection.

10: Collect a trajectory (x1, a1, r1), . . . , (xH , aH , rH) by executing π(t).
11: Update D(t+1)

h ← D(t+1)

h ∪ {(xh, ah, rh, xh+1)} for each h ∈ [H].
12: output: policy π̂ = Unif(π(1), . . . , π(T )). // For PAC guarantee only.

Theorem 3.1 (Risk bound for GLOW under strong density ratio realizability). Let ε > 0 be given, and
suppose that Assumptions 2.1 and 2.2′ hold. Then, GLOW, with hyperparameters T = Θ̃

(
(H

2Ccov/ε2) ·
log(|F||W|/δ)

)
, K = 1, and γ =

√
Ccov/(T log(|F||W|/δ)) returns an ε-suboptimal policy π̂ with

probability at least 1− δ after collecting

N = Õ

(
H2Ccov

ε2
log(|F||W|/δ)

)
(5)

trajectories. Additionally, for any T ∈ N, with the same choice for K and γ as above, GLOW enjoys
the regret bound Reg :=

∑T
t=1 J(π

⋆)− J(π(t)) = Õ
(
H
√
CcovT log(|F||W|/δ)

)
.

Next, we provide our main result, which gives a sample complexity guarantee under density ratio
realizability for pure policies (Assumption 2.2). To obtain the result, we begin with a class W
that satisfies Assumption 2.2, then expand it to obtain an augmented classW that satisfies mixture
realizability (Assumption 2.2′). This reduction increases log|W| by a T factor, which we offset by
increasing the batch size K; this leads to a polynomial increase in sample complexity.5

Theorem 3.2 (Risk bound for GLOW under weak density ratio realizability). Let ε > 0 be given, and
suppose that Assumptions 2.1 and 2.2 hold for the classes F andW . Then, GLOW, when executed
with a modified classW defined in Eq. (30) in Appendix E, with hyperparameters T = Θ̃(H

2Ccov/ε2),
K = Θ̃(T log(|F||W|/δ)), and γ =

√
Ccov/T , returns an ε-suboptimal policy π̂ with probability at

least 1− δ after collecting N trajectories, for

N = Õ

(
H4C2

cov

ε4
log(|F||W|/δ)

)
. (6)

Theorems 3.1 and 3.2 show for the first time that value function realizability and density ratio
realizability alone are sufficient for sample-efficient online RL under coverability. In particular,
the sample complexity and regret bound in Theorem 3.1 match the coverability-based guarantees
obtained in Xie et al. (2023, Theorem 1) under the complementary Bellman completeness assumption,
with the only difference being that they scale with log(|F||W|) instead of log|F|; as discussed in

5This reduction also prevents us from obtaining a regret bound directly under Assumption 2.2, though a
(slower-than-

√
T ) regret bound can be attained using an explore-then-commit strategy.
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Xie et al. (2023), this rate is tight for the special case of contextual bandits (H = 1). Interesting open
questions include (i) whether the sample complexity for learning with density ratio realizability for
pure policies can be improved to 1/ε2, and (ii) whether value realizability and coverability alone are
sufficient for sample-efficient RL. Extensions to Theorems 3.1 and 3.2 under misspecification are
given in Appendix E; see also Remark B.1 We further refer to Appendix C for examples instantiating
these results, Appendix E.1 for a proof sketch, and Remark B.3 for a connection of our algorithm to
the GOLF algorithm (Jin et al., 2021a; Xie et al., 2023).

4 EFFICIENT HYBRID RL WITH DENSITY RATIO REALIZABILITY

Toward overcoming the challenges of intractable computation in online exploration, a number of
recent works show that including additional offline data in online RL can lead to computational
benefits in theory (e.g., Xie et al., 2021b; Wagenmaker and Pacchiano, 2023; Song et al., 2023; Zhou
et al., 2023) and in practice (e.g., Cabi et al., 2020; Nair et al., 2020; Ball et al., 2023; Song et al.,
2023; Zhou et al., 2023). Notably, combining offline and online data can enable algorithms that
provably explore without having to appeal to optimism or pessimism, both of which are difficult to
implement efficiently under general function approximation.

Song et al. (2023) formalize a version of this setting—in which online RL is augmented with offline
data—as hybrid reinforcement learning. Formally, in hybrid RL, the learner interacts with the MDP
online (as in Section 1.1) but is additionally given an offline dataset Doff collected from a data
distribution ν. The data distribution ν is typically assumed to provide coverage for the optimal policy
π⋆ (formalized in Definition 4.3), but not on all policies, and thus additional online exploration is
required (see Appendix F.2 for further discussion).

4.1 H2O: A PROVABLE BLACK-BOX HYBRID-TO-OFFLINE REDUCTION

Interestingly, many of the above approaches for the hybrid setting simply apply offline algorithms
(with relatively little modification) on a mixture of online and offline data (e.g., Cabi et al., 2020; Nair
et al., 2020; Ball et al., 2023). This raises the question: when can we use a given offline algorithm as
a black box to solve the problem of hybrid RL (or, more generally, of online RL?). To answer this,
we give a general meta-algorithm, H2O, which provides a provable black-box reduction to solve the
hybrid RL problem by repeatedly invoking a given offline RL algorithm on a mixture of offline data
and freshly gathered online trajectories. To present the result, we first describe the class of offline RL
algorithms with which it will be applied.

Offline RL and partial coverage. We refer to a collection of distributions µ = {µh}Hh=1, where µh ∈
∆(X ×A), as a data distribution, and we say that a dataset D = {Dh}Hh=1 has H · n samples from
data distributions µ(1), . . . , µ(n) if Dh = {(x(i)

h , a
(i)

h , r
(i)

h , x
(i)

h+1)}ni=1 where (x(i)

h , a
(i)

h ) ∼ µ(i)

h , r(i)

h ∼
Rh(x

(i)

h , a
(i)

h ), x(i)

h+1 ∼ Ph(x
(i)

h , a
(i)

h ). We denote the mixture distribution via µ(1:n) = {µ(1:n)

h }Hh=1,
where µ(1:n)

h := 1
n

∑n
i=1 µ

(i)

h . An offline RL algorithm Algoff takes as input a dataset D = {Dh}Hh=1

of H · n samples from µ(1), . . . , µ(n) and outputs a policy π = (πh)
H
h=1.6 An offline algorithm is

measured by its risk, as in Equation (1); we write Riskoff when we are in the offline interaction
protocol.

An immediate problem with directly invoking offline RL algorithms in the hybrid model is that
typical algorithms—particularly, those that do not make use of pessimism (e.g., Xie and Jiang,
2020)—require relatively uniform notions of coverage (e.g., coverage for all policies as opposed
to just coverage for π⋆) to provide guarantees, leading one to worry that their behaviour might be
completely uncontrolled when applied with non-exploratory datasets. Fortunately, we will show
that for a large class algorithms whose risk scales with a measure of coverage we refer to as clipped
concentrability, this phenomenon cannot occur.

Definition 4.1 (Clipped concentrability coefficient). The clipped concentrability coefficient (at scale
γ ∈ R+) for π ∈ Π relative to a data distribution µ = {µh}Hh=1, where µh ∈ ∆(X×A), is defined as

CCh(π, µ, γ) :=

∥∥∥∥clipγ[dπhµh

]∥∥∥∥
1,dπ

h

.

6When parameters are needed, Algoff should instead be thought of as the algorithm for a fixed choice of
parameter. Likewise, we treat function approximators (F , W , etc.) as part of the algorithm. We consider
adaptively chosen (µ(i))ni=1 because, in the reduction, Algoff will be invoked on history-dependent datasets.
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This coefficient should be thought of as a generalization of the standard (squared) L2(µ) concentrabil-
ity coefficient C2

conc,2,h(π, µ) := ∥d
π
h/µh∥22,µh

= ∥dπ
h/µh∥1,dπ

h
, a fundamental object in the analysis of

offline RL algorithms (e.g., Farahmand et al., 2010), but incorporates clipping to better handle partial
coverage. We consider offline RL algorithms with the property that for any offline distribution µ, the
algorithm’s risk can be bounded by the clipped concentrability coefficients for (i) the output policy
π̂, and (ii) the optimal policy π⋆. For the following definition, we recall the notation γ(n) := γ · n.

Definition 4.2 (CC-bounded offline RL algorithm). An offline algorithm Algoff is CC-bounded at
scale γ ∈ R+ under an assumption Assumption(·) if there exists scalars aγ , bγ such that for all
n ∈ N and data distributions µ(1), . . . , µ(n), Algoff outputs p ∈ ∆(Π) satisfying

Riskoff = Eπ̂∼p[J(π
⋆)− J(π̂)] ≤

H∑
h=1

aγ
n

(CCh(π
⋆, µ(1:n), γ(n)) + Eπ̂∼p[CCh(π̂, µ

(1:n), γ(n))]) + bγ

(7)

with probability at least 1 − δ, when given H · n samples from µ(1), . . . , µ(n) such that
Assumption(µ(1:n),M⋆) is satisfied.

This definition does not automatically imply that the offline algorithm has low offline risk, but simply
that the risk can be bounded in terms of clipped coverage (which may be large if the dataset has poor
coverage). In the sequel, we will show that many natural offline RL algorithms have this property
(Appendix F.1).7

The H2O algorithm. Our reduction, H2O, is given in Algorithm 2. For any dataset D, we will
write D

∣∣
1:t

for the subset consisting of its first t elements. The algorithm is initialized with an offline
dataset Doff = {Doff,h}Hh=1, and at each iteration t ∈ [T ] invokes the black-box offline RL algorithm
Algoff with a dataset Dhybrid = {Dhybrid,h}Hh=1 that mixes the first t elements of Doff,h with all
of the online data gathered so far. This produces a policy π(t), which is executed to gather trajectories
that are then added to the online dataset and used at the next iteration. H2O is inspired by empirical
methods for the hybrid setting (e.g., Cabi et al., 2020; Nair et al., 2020; Ball et al., 2023), and in
particular the meta-algorithm is efficient whenever Algoff is.

Algorithm 2 H2O: Hybrid-to-Offline Reduction
input: Parameter T ∈ N, offline algorithm Algoff , offline datasets Doff = {Doff,h}h each of
size T .

1: Initialize D(1)

on,h = D(1)

hybrid,h = ∅ for all h ∈ [H].
2: for t = 1, . . . , T do
3: Get policy π(t) from Algoff on dataset D(t)

hybrid = {D(t)

hybrid,h}h.
4: Collect (x1, a1, r1), . . . , (xH , aH , rH) using π(t); D(t+1)

on,h := D(t)

on,h ∪ {(xh, ah, rh, xh+1)}.
5: Aggregate offline and online data: D(t+1)

hybrid,h := Doff,h

∣∣
1:t
∪ D(t+1)

on,h for all h ∈ [H].

6: output: policy π̂ = Unif(π(1), . . . , π(T )).

Main risk bound for H2O. We now present the main result for this section: a risk bound for the
H2O reduction. Our bound depends on the coverability parameter for the underlying MDP, as well as
the quality of the offline data distribution ν, quantified by single-policy concentrability.

Definition 4.3 (Single-policy concentrability). A data distribution ν = {νh}Hh=1 satisfies C⋆-single-
policy concentrability if maxh

∥∥dπ⋆

h /νh

∥∥
∞ ≤ C⋆.

Theorem 4.1 (Risk bound for H2O). Let T ∈ N be given, let Doff consist of H · T samples from
data distribution ν, and suppose that ν satisfies C⋆-single-policy concentrability. Let Algoff be CC-
bounded at scale γ ∈ (0, 1) under Assumption(·), with parameters aγ and bγ . Suppose that ∀ t ∈
[T ] and π(1), . . . , π(t) ∈ Π, Assumption(µ(t),M⋆) holds for µ(t) := {1/2(νh + 1/t

∑t
i=1 d

π(i)

h )}Hh=1.
Then, with probability at least 1 − δT , the risk of H2O (Algorithm 2) with T , Algoff , and Doff is

7Examples of assumptions for Assumption include value function completeness (e.g., for FQI (Chen and
Jiang, 2019)) and realizability of value functions and density ratios (e.g., for MABO (Xie and Jiang, 2020)).
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bounded as8

Risk ≤ Õ
(
H

(
aγ(C⋆ + Ccov)

T
+ bγ

))
. (8)

For the algorithms we consider, one can take aγ ∝ a/γ and bγ ∝ bγ for scalar-valued problem
parameters a, b > 0, so that choosing γ optimally gives Risk ≤ Õ

(
H
√

(C⋆+Ccov)ab/T
)

. This is a
special case of a more general result, Theorem F.6, which handles the general case where ν need not
satisfy single-policy concentrability.

4.2 APPLYING THE REDUCTION: HYGLOW

We now apply H2O to give a hybrid counterpart to GLOW (Algorithm 1), using a variant of MABO
(Xie and Jiang, 2020) as the black box offline RL algorithm Algoff in H2O. Further examples, which
apply Fitted Q-Iteration (FQI) and Model-Based Maximum Likelihood Estimation as the black box,
are deferred to Appendix F.1.

More specifically, the offline RL algorithm we consider is a variant of MABO that incorporates
clipping and regularization in the same fashion as GLOW, which we call MABO.CR. Our algorithm
takes as input a dataset D = {Dh} with H · n samples, has parameters consisting of a value function
class F , a weight function classW , and a clipping scale γ, and computes the following estimator:

f̂ ∈ argmin
f∈F

max
w∈W

H∑
h=1

∣∣∣ÊDh

[
w̌h(xh, ah)[∆̂hf ](xh, ah, rh, x

′
h+1)

]∣∣∣− α(n)ÊDh

[
w̌2

h(xh, ah)
]
, (9)

where α(n) := 8/γ(n) and w̌h := clipγ(n) [wh]. By instantiating H2O with this algorithm, we obtain a
density ratio-based algorithm for the hybrid RL setting (HYGLOW; Algorithm 3) that is statistically
and computationally efficient.

Theorem 4.2 (Risk bound for HYGLOW). Let ε > 0 be given, let Doff consist of H · T
samples from data distribution ν, and suppose that ν satisfies C⋆-single-policy concentrabil-
ity. Suppose that Q⋆ ∈ F and that for all t ∈ [T ], π ∈ Π, and h ∈ [H], we have
dπ
h/µ(t)

h ∈ W , where µ(t)

h := 1/2(νh + 1/t
∑t

i=1 d
π(i)

h ). Then, HYGLOW (Algorithm 3) with
inputs T = Θ̃((H

4(Ccov+C⋆)/ε2) · log(|F||W|/δ)), F , augmented W defined in Eq. (34), γ =

Θ̃
(√

(C⋆+Ccov)/TH2 log(|F||W|/δ)

)
, and Doff returns an ε-suboptimal policy with probability at least

1− δT after collecting N = Õ
(

H2(Ccov+C⋆)
ε2 log(|F||W|/δ)

)
trajectories.

This result is obtained from Theorem 4.1 by showing that MABO.CR is CC-bounded under
Q⋆-realizability and a density ratio realizability assumption (cf. Theorem F.1). While the sample
complexity and realizability assumptions parallel those of GLOW, the computational efficiency is
improved because we remove the need for global optimism. More specifically, note that when clipping
and the absolute value signs are removed from Eq. (9), the optimization problem is concave-convex
in the function class F and weight function classW , a desirable property shared by standard density-
ratio based offline algorithms (Xie and Jiang, 2020; Zhan et al., 2022). To accommodate clipping
and the absolute value signs efficiently, we note that Eq. (9) can be written as a convex-concave
program in which the max player optimizes over the set W̃γ,h := {±clipγn[wh] | wh ∈ Wh} and
the result continues to hold if the max player optimizes over any expanded weight function class
W̃γ ⊆ W ′ such that ∥w∥∞ ≤ γn for all w ∈ W ′; we defer the details to Appendix F.1.2.

5 CONCLUSION

Our work shows for the first time that density ratio modeling has provable benefits for online rein-
forcement learning, and serves as step in a broader research program that aims to clarify connections
between online and offline reinforcement learning. On the theoretical side, promising directions for
future research include (i) resolving whether sample efficiency is possible under only coverability and
value function realizability, and (ii) generic reductions from offline to online RL (see Appendix F.3 for
a brief discussion). In addition, we are excited to explore the possibility of developing practical and
computationally efficient online reinforcement learning algorithms based on density ratio modeling.

8We define risk for the hybrid setting as in Eq. (1). Our result is stated as a bound on the risk to the optimal
policy π⋆, but extends to give a bound on the risk of any comparator π with C⋆ replaced by coverage for π.
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A ADDITIONAL RELATED WORK

Online reinforcement learning. Xie et al. (2023) introduce the notion of coverability and provide
regret bounds for online reinforcement learning under the assumption of access to a value function
class F satisfying Bellman completeness. Liu et al. (2023) extend their result to more general
coverage conditions under the same Bellman completeness assumption. Our work complements these
results by providing guarantees based on coverability that do not require Bellman completeness.

To the best of our knowledge, our work is the first to provide provable sample complexity guarantees
for online reinforcement learning that take advantage of the ability to model density ratios, but a
number of closely related works bear mentioning. Recent work of Huang et al. (2023) considers the
low-rank MDP model and provides an algorithms which takes advantage of a form of occupancy
realizability. Occupancy realizability, while related to density ratio realizability, is stronger assump-
tion in general: For example, the Block MDP model (Krishnamurthy et al., 2016; Du et al., 2019;
Misra et al., 2019; Zhang et al., 2022; Mhammedi et al., 2023) admits a density ratio class of low
complexity, but does not admit a small occupancy class. Overall, however, their results are somewhat
complementary, as they do not require any form of value function realizability. A number of other
recent works in online reinforcement learning also make use of occupancy measures, but restrict to
linear function approximation (Neu and Pike-Burke, 2020; Neu and Okolo, 2023). Lastly, a number
of works apply density ratio modeling in online settings with an empirical focus (Feng et al., 2019;
Nachum et al., 2019), but do not address the exploration problem.

Offline reinforcement learning. Within the literature on offline reinforcement learning theory,
density ratio modeling has been widely used as a means to avoid strong Bellman completeness
requirements, with theoretical guarantees for policy evaluation (Liu et al., 2018; Uehara et al., 2020;
Yang et al., 2020; Uehara et al., 2021) and policy optimization (Jiang and Huang, 2020; Xie and
Jiang, 2020; Zhan et al., 2022; Chen and Jiang, 2022; Rashidinejad et al., 2023; Ozdaglar et al., 2023).
A number of additional works investigate density ratio modeling with an empirical focus, and do
not provide finite-sample guarantees (Nachum et al., 2019; Kostrikov et al., 2019; Nachum and Dai,
2020; Zhang et al., 2020; Lee et al., 2021).

Hybrid reinforcement learning. Song et al. (2023) were the first to show, theoretically, that the
hybrid reinforcement learning model can lead to computational benefits over online and offline
RL individually. Our reduction, H2O, can be viewed as generalization of their Hybrid Q-Learning
algorithm, with their result corresponding to the special case in which FQI is applied as a the base
algorithm. Our guarantees under coverability complement their guarantees based on bilinear rank.
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Other recent works on hybrid reinforcement learning in specialized settings (e.g., tabular MDPs or
linear MDPs) include Wagenmaker and Pacchiano (2023); Li et al. (2023); Zhou et al. (2023).

B COMPARING WEIGHT FUNCTION REALIZABILITY TO ALTERNATIVE
REALIZABILITY ASSUMPTIONS

In this section, we compare the density ratio realizability assumption in Assumption 2.2 to a number
of alternative realizability assumptions.

Comparison to Bellman completeness. A traditional assumption in the analysis of value function
approximation methods is to assume that F satisfies a representation condition called Bellman
completeness, which asserts that ThFh+1 ⊆ Fh; this assumption is significantly stronger than just
assuming realizability of Q⋆ (Assumption 2.1), and has been used throughout offline RL (Antos et al.,
2008; Chen and Jiang, 2019), and online RL (Zanette et al., 2020; Jin et al., 2021a; Xie et al., 2023).

Bellman completeness is incomparable to our density ratio realizability assumption. For example,
the low-rank MDP model (Jin et al., 2020) in which Ph(x

′ | x, a) = ⟨ϕh(x, a), ψh(x
′)⟩ satisfies

Bellman completeness when the feature map ϕ is known to the learner even if ψ is unknown (but
may not satisfy it otherwise), and satisfies weight function realizability when the feature map ψ is
known even if ϕ is unknown (but may not satisfy it otherwise). Examples C.1 and C.2 in Appendix C
give further examples that satisfy weight function realizability but are not known to satisfy Bellman
completeness.

Comparison to model-based realizability. Weight function realizability is strictly weaker than
model-based realizability (e.g., Foster et al., 2021), in which one assumes access to a model class
M of MDPs that contains the true MDP.9 Since each MDP induces an occupancy for every policy,
it is straightforward to see that given such a class, we can construct a weight function classW that
satisfies Assumption 2.2 with

log|W| ≤ O(log|M|+ log|Π|),

as well as a realizable value function class with log|F| ≤ O(log|M|). On the other hand, weight
function realizability does not imply model-based realizability; a canonical example that witnesses
this is the Block MDP.

Example B.1 (Block MDP). In the well-studied Block MDP model (Krishnamurthy et al., 2016;
Jiang et al., 2017; Du et al., 2019; Misra et al., 2019; Zhang et al., 2022; Mhammedi et al., 2023),
there exists realizable value function class F and weight function classW with log|F|, log|W| ≲
poly(|S|, |A|, log|Φ|), where S is the latent state space and Φ is a class of decoder functions.
However, there does not exist a realizable model class with bounded statistical complexity (see
discussion in, e.g., Mhammedi et al. (2023)). ◁

Alternative forms of density ratio realizability.

Remark B.1 (Clipped density ratio realizability). Since GLOW only accesses the weight function
classW through the clipped weight functions, we can replace Assumption 2.2 with the assumption
that for all π, π′ ∈ Π, t ≤ T , we have clipγt

[
wπ;π′] ∈ W , where T ∈ N and γ ∈ [0, 1] are chosen

as in Theorem 3.2. Likewise, we can replace Assumption 2.2′ with the assumption that for all π ∈ Π,
and for all t ≤ T , and π1:t ∈ Πt, we have clipγt

[
wπ;π(1:t)] ∈ W , for T ∈ N and γ ∈ [0, 1] chosen

as in Theorem 3.1.

Remark B.2 (Density ratio realizability relative to a fixed reference distribution). Assumption 2.2 is
weaker than assuming access to a classW that can realize the ratio dπ

h/νh (or alternatively νh/dπ
h)

for all π ∈ Π, where νh is an arbitrary fixed distribution (natural choices might include νh = µ⋆
h

or νh = dπ
⋆

h ). Indeed, given access to such a class, the expanded classW ′ := {w/w′ | w,w′ ∈ W}
satisfies Assumption 2.2, and has log|W ′| ≤ 2 log|W|.

Remark B.3 (Connection to GOLF). Prior work (Xie et al., 2023) analyzed the GOLF algorithm of Jin
et al. and established positive results under coverability and Bellman completeness. We remark that

9Up to H factors, this is equivalent to assuming access to a class of transition distributions that can realize
the true transition distribution, and a class of reward distributions that can realize the true reward distribution.
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by allowing for weight functions that take negative values,10 GLOW can be viewed as a generalization
of GOLF, and can be configured to obtain comparable results. Indeed, given a value function class
F that satisfies Bellman completeness, the weight function classW := {f − f ′ | f, f ′ ∈ F} leads
to a confidence set construction at least as tight as that of GOLF. To see this, observe that if we
set γ ≥ 2 so that no clipping occurs, our construction for F (t) (Eq. (3)) implies (after standard
concentration arguments) that Q⋆ ∈ F (t) and that in-sample squared Bellman errors are small with
high probability. These ingredients are all that is required to repeat the analysis of GOLF from Xie
et al. (2023).

C EXAMPLES FOR GLOW

In this section, we give two new examples in which our main results for GLOW, Theorems 3.1 and 3.2,
can be applied: MDPs with low-rank density features and general value functions, and a class of
MDPs we refer to as Generalized Block MDPs.

Example C.1 (RealizableQ⋆ with low-rank density features). Consider a setting in which (i)Q⋆ ∈ F ,
and (ii), there is a known feature map ψh : X × A → Rd with ∥ψh(x, a)∥2 ≤ 1 such that for all
π ∈ Π, dπh(x, a) = ⟨ψh(x, a), θ

π⟩ for an unknown parameter θπ ∈ Rd with ∥θπ∥2 ≤ 1. This
assumption is sometimes referred to as low occupancy complexity (Du et al., 2021), and has been
studied with and without known features. In this case, we have Ccov ≤ d, and one can construct a
weight function classW that satisfies Assumption 2.2′ with log|W| ≤ Õ(dH) (Huang et al., 2023).11

As a result, Theorem 3.1 gives sample complexity Õ
(
H3d2 log|F|/ε2

)
. Note that while this setup

requires that the occupancies themselves have low-rank structure, the class F can consist of arbitrary,
potentially nonlinear functions (e.g., neural networks). We remark that when the feature map ψ is not
known, but instead belongs to a known class Ψ, the result continues to hold, at the cost of expanding
W to have size log|W| ≤ Õ

(
dH + log|Ψ|

)
.

This example is similar to but complementary to Huang et al. (2023), who give guarantees for
reward-free exploration under low-rank occupancies. Their results do not require any form of
value realizability, but require a low-rank MDP assumption (which, in particular, implies Bellman
completeness).12 ◁

Our next example concerns a generalization of the well-studied Block MDP framework (Krish-
namurthy et al., 2016; Jiang et al., 2017; Du et al., 2019; Misra et al., 2019; Zhang et al., 2022;
Mhammedi et al., 2023) that we refer to as the Generalized Block MDP.

Definition C.1 (Generalized Block MDP). A Generalized Block MDP M =
(X ,S,A, Platent, Rlatent, q,H, d1) is comprised of an observation space X , latent state space S,
action space A, latent space transition kernel Platent : S × A → ∆(S), and emission distribution
q : S → ∆(X ). The latent state space evolves based on the agent’s action ah ∈ A via the process

rh ∼ Rlatent(sh, ah), sh+1 ∼ Platent(· | sh, ah), (10)

with s1 ∼ d1; we refer to sh as the latent state. The latent state is not observed directly, and instead
we observe observations xh ∈ X generated by the emission process

xh ∼ q(· | sh). (11)

We assume that the emission process satisfies the decodability property:

supp q(· | s) ∩ supp q(· | s′) = ∅, ∀s′ ̸= s ∈ S. (12)

Decodability implies that there exists a (unknown to the agent) decoder ϕ⋆ : X → S such that
ϕ⋆(xh) = sh a.s. for all h ∈ [H], meaning that latent states can be uniquely decoded from observa-
tions. Prior work on the Block MDP framework (Krishnamurthy et al., 2016; Jiang et al., 2017; Du
et al., 2019; Misra et al., 2019; Zhang et al., 2022; Mhammedi et al., 2023) assumes that the latent

10In this context, W can be thought of more generally as a class of test functions.
11To be precise, W is infinite, and this result requires a covering number bound. We omit a formal treatment,

and refer to Huang et al. (2023) for details.
12The low-rank MDP assumption is incomparable to the assumption we consider here, as it implies that

dπh(x) = ⟨ψh(x), θ
π⟩, but does not necessarily imply that the state-action occupancies (i.e. dπh(x, a)) are

low-rank.
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space S and action space A are finite, but allow the observation space X to be large or potentially
infinite. They provide sample complexity guarantees that scale as poly(|S|, |A|, H, log|Φ|, ε−1),
where Φ is a known class of decoders that contains ϕ⋆. We use the term Generalized Block MDP to
refer to Block MDPs in which the latent space not tabular, and can be arbitrarily large.

Example C.2 (Generalized Block MDPs with coverable latent states). We can use GLOW to give
sample complexity guarantees for Generalized Block MDPs in which the latent space is large, but
has low coverability. Let Πlatent = (S × [H]→ ∆(A)) denote the set of all randomized policy that
operate on the latent space. Assume that the following conditions hold:

• We have a value function class Flatent such that Q⋆
latent ∈ F , where Q⋆

latent is the optimal
Q-function for the latent space.

• We have access to a class of latent space density ratiosWlatent such that for all h ∈ [H],
and all π, π′ ∈ Πlatent,

wπ,π′

latent,h(s, a) :=
dπlatent,h(s, a)

dπ
′

latent,h(s, a)
∈ Wlatent,

where dπlatent,h = Pπ(sh = s, ah = a) is the latent occupancy measure.

• The latent coverability coefficient is bounded:

Ccov,latent := inf
µ1,...,µH∈∆(S×A)

sup
π∈Πlatent,h∈[H]

∥∥∥∥dπlatent,hµh

∥∥∥∥
∞
.

We claim that whenever these conditions hold, analogous conditions hold in observation space
(viewing the Generalized BMDP as a large MDP), allowing GLOW and Theorem 3.2 to be applied.
Namely, we have:

• There exists a class F satisfying Assumption 2.1 in observation space such that log|F| ≤
O(log|Flatent|+ log|Φ|).

• There exists a weight function classW satisfying Assumption 2.2 in observation space such
that log|W| ≤ O(log|Wlatent|+ log|Φ|).

• We have Ccov ≤ Ccov,latent.

As a result, GLOW attains sample complexity poly(Ccov.latent, H, log|Flatent|, log|Wlatent|, log|Φ|, ε−1).
This generalizes existing results for Block MDPs with tabular latent state spaces, which have
log|Flatent|, log|Wlatent|, Ccov,latent = poly(|S|, |A|, H). ◁
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D TECHNICAL TOOLS

Lemma D.1 (Azuma-Hoeffding). Let M ∈ N and (Ym)m≤M be a sequence of random variables
adapted to a filtration (Fm)m≤M . If |Ym| ≤ R almost surely, then with probability at least 1− δ,∣∣∣∣∣

M∑
m=1

Ym − Em−1[Ym]

∣∣∣∣∣ ≤ R ·√8M log(2δ−1).

Lemma D.2 (Freedman’s inequality (e.g., Agarwal et al., 2014)). Let M ∈ N and (Ym)m≤M be a
real-valued martingale difference sequence adapted to a filtration (Fm)m≤M . If |Ym| ≤ R almost
surely, then for any η ∈ (0, 1/R), with probability at least 1− δ,∣∣∣∣∣

M∑
m=1

Ym

∣∣∣∣∣ ≤ η
M∑

m=1

Em−1

[
(Ym)2

]
+

log(2δ−1)

η
.

The following lemma is a standard consequence of Lemma D.2 (e.g., Foster et al., 2021).

Lemma D.3. Let M ∈ N and (Ym)m≤M be a sequence of random variables adapted to a filtration
(Fm)m≤M . If 0 ≤ Ym ≤ R almost surely, then with probability at least 1− δ,

M∑
m=1

Ym ≤
3

2

M∑
m=1

Em−1[Ym] + 4R log(2δ−1),

and
M∑

m=1

Em−1[Ym] ≤ 2

M∑
m=1

Ym + 8R log(2δ−1).

D.1 REINFORCEMENT LEARNING PRELIMINARIES

Lemma D.4 (Jiang et al. (2017, Lemma 1)). For any value function f = (f1, . . . , fH),

Ex1∼d1
[f1(x1, πf1(x1))]− J(πf ) =

H∑
h=1

E
d
πf
h

[fh(xh, ah)− [Thfh+1](xh, ah)].

Lemma D.5 (Per-state-action elliptic potential lemma; Xie et al. (2023, Lemma 4)). Let d(1), . . . , d(T )

be an arbitrary sequence of distributions over a set Z , and let µ ∈ ∆(Z) be a distribution such that
d(t)(z)/µ(z) ≤ C for all z ∈ Z and t ∈ [T ]. Then, for all z ∈ Z , we have

T∑
t=1

d(t)(z)∑
i<t d

(m)(z) + Cµ(z)
≤ 2 log(1 + T ).
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E PROOFS FROM SECTION 3 (ONLINE RL)
This section of the appendix is organized as follows:

• Appendix E.1 gives a high-level sketch of the proof of Theorems 3.1 and 3.2, highlighting
the role of clipped density ratios and coverability.

• Appendix E.2 provides supporting technical results for GLOW, including concentration
guarantees.

• Appendix E.3 presents our main technical result for GLOW, Lemma E.4, which bounds
the cumulative suboptimality of the iterates π(1), . . . , π(T ) produced by the algorithm for
general choices of the parameters T , K, and γ > 0.

• Finally, in Appendices E.4 and E.5, we invoke with specific parameter choices to prove
Theorems 3.1 and 3.2, as well as more general results (Theorems 3.1′ and 3.2′) that allow
for misspecification error.

E.1 OVERVIEW OF PROOF TECHNIQUES

In this section we give a proof sketch for Theorem 3.1, highlighting the role of truncated weight
functions in addressing partial coverage. We focus on the regret bound; the sample complexity bound
in Eq. (5) is an immediate consequence.

By design, the constraint in Eq. (3) ensures that Q⋆ ∈ F (t) for all t ≤ T with high probability. Thus,
by a standard regret decomposition for optimistic algorithms (Lemma D.4), we have

Reg =

T∑
t=1

J(π⋆)− J(π(t)) ≲
T∑

t=1

H∑
h=1

E
d
(t)
h

[
f (t)

h (xh, ah)− [T f (t)

h+1](xh, ah)
]

︸ ︷︷ ︸
On-policy Bellman error for f(t) under π(t)

, (13)

up to lower-order terms, where we abbreviate d(t) = dπ
(t)

. Defining [∆hf
(t)](x, a) :=

f (t)

h (x, a) − [Thf (t)

h+1](x, a), it remains to bound the on-policy expected bellman error
E
d
(t)
h

[[∆hf
(t)](xh, ah)]. To do so, a natural approach is to relate this quantity to the weighted off-

policy Bellman error under d̄(t) := 1
t−1

∑
i<t d

π(i)

by introducing the weight function d(t)
/d̄(t) ∈ W:

E
d
(t)
h

[[∆hf
(t)](xh, ah)] ≈ E

d̄
(t)
h

[
[∆hf

(t)](xh, ah) ·
d(t)

h (xh, ah)

d̄(t)

h (xh, ah)

]
.

Unfortunately, this equality is not true as-is because the ratio d(t)
/d̄(t) can be unbounded. We address

this by replacing d̄(t) by d̄(t+1) throughout the analysis (at the cost of small approximation error),
and work with the weight function w(t)

h := d
(t)
h /d̄(t+1)

h ∈ W , which is always bounded in magnitude
t. However, while boundedness is a desirable property, the range t is still too large to obtain
non-vacuous concentration guarantees. This motivates us to introduce clipped/truncated weight
functions via the following decomposition.
E
d
(t)
h

[[∆hf
(t)](xh, ah)]︸ ︷︷ ︸

On-policy Bellman error

≤ E
d̄
(t+1)
h

[
[∆hf

(t)](xh, ah) · clipγ(t)

[
w(t)

h

]
(xh, ah)

]
︸ ︷︷ ︸

(At): Clipped off-policy Bellman error

+E
d
(t)
h

[
I
{
w(t)

h (xh, ah) ≥ γ(t)
}]

︸ ︷︷ ︸
(Bt): Loss due to clipping

.

Recall that w̌(t)

h := clipγ(t)

[
w(t)

h

]
(xh, ah). As w(t) ∈ W , it follows from the constraint in

Eq. (3) and Freedman-type concentration that the clipped Bellman error in term (At) has order
α(t) · Ed̄(t+1)

[
(w̌(t)

h )2
]
+ β(t), so that

∑T
t=1At ≤

∑T
t=1 α

(t) · Ed̄(t+1)

[
(w̌(t)

h )2
]
+ β(t). Since we

clip to γ(t) = γt, we have
∑T

t=1 β
(t) ≲ γ · T log(|F||W|/δ); bounding the sum of weight functions

requires a more involved argument that we defer for a moment.

We now focus on bounding the terms (Bt). Each term (Bt) captures the extent to which the weighted
off-policy Bellman error at iteration t fails to approximate the true Bellman error due to clipping.
This occurs when d̄(t+1) has poor coverage relative to d(t), which happens when π(t) visits a portion of
the state space not previously covered. We begin by applying Markov’s inequality (I{u ≥ v} ≤ u/v
for u, v ≥ 0) to bound

Bt ≤
1

γ(t)
E
d
(t)
h

[
w(t)

h (xh, ah)
]
=

1

γ(t)
E
d
(t)
h

[
d(t)

h (xh, ah)

d̄(t+1)

h (xh, ah)

]
=

1

γ
E
d
(t)
h

[
d(t)

h (xh, ah)

d̃(t+1)

h (xh, ah)

]
, (14)
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where the equality uses that γ(t) := γ · t and d̃(t+1) := d̄(t+1) · t. Our most important insight is that
even though each term in Eq. (14) might be large on a given iteration t (if a previously unexplored
portion of the state space is visited), coverability implies that on average across all iterations the error
incurred by clipping must be small. In particular, using a variant of a coverability-based potential
argument from Xie et al. (2023) (Lemma D.5), we show that

T∑
t=1

E
d
(t)
h

[
d(t)

h (xh, ah)

d̃(t+1)

h (xh, ah)

]
≤ O(Ccov · log(T )),

so that
∑T

t=1Bt ≤ Õ(Ccov/γ). To conclude the proof, we use an analogous potential argu-
ment to show the sum of weight functions in our bound on

∑T
t=1At also satisfies

∑T
t=1 α

(t) ·
Ed̄(t+1)

[
(w̌(t)

h )2
]
≤ Õ(Ccov/γ). The intuition is similar: the squared weight functions (corre-

sponding to variance of the weighted Bellman error) may be large in a given round, but cannot
be large for all rounds under coverability. Altogether, combining the bounds on At and Bt gives
Reg = Õ

(
H
(
Ccov

γ + γ · T log(|F||W|HTδ−1)
))

. The final result follows by choosing γ > 0 to
balance the terms.

We find it interesting that the way in which this proof makes use of coverability—to handle the
cumulative loss incurred by clipping—is quite different from the analysis in Xie et al. (2023), where
it more directly facilitates a change-of-measure argument.

E.2 SUPPORTING TECHNICAL RESULTS

For x, x′ ∈ X , a ∈ A, r ∈ [0, 1], and h ∈ [H], recall the notation

[∆̂hf ](x, a, r, x
′) = fh(x, a)− r −max

a′
fh(x

′, a′),

[∆hf ](x, a) = fh(x, a)− [Thfh+1](x, a),

w̌h(x, a) = clipγ(t) [wh](x, a).

Lemma E.1 (Basic concentration for GLOW). Let γ(t) ≥ 0 for t ∈ [T ]. With probability at least
1− δ, all of the following inequalities hold for all f ∈ F , w ∈ W , t ∈ [T ] and h ∈ [H]:

(a)
∣∣∣ÊD(t)

h

[
[∆̂hf ](xh, ah, rh, x

′
h+1) · w̌h(xh, ah)

]
− E

d̄
(t)
h

[[∆hf ](xh, ah) · w̌h(xh, ah)]
∣∣∣ ≤ 10

3γ(t) Ed̄
(t)
h

[
(w̌h(xh, ah))

2
]
+ β(t)

12 ,

(b) 1
γ(t) Ed̄

(t)
h

[
w̌2

h(xh, ah)
]
≤ 2

γ(t) ÊD(t)
h

[
w̌2

h(xh, ah)
]
+ 2β(t)

9 ,

(c) 1
γ(t) ÊD(t)

h

[
w̌2

h(xh, ah)
]
≤ 3

2γ(t) Ed̄
(t)
h

[
w̌2

h(xh, ah)
]
+ β(t)

9 ,

(d) J(π⋆) − Ex1∼d1
[f1(x1, πf1(x1))] ≤ Ê

x1∼D(t)
1
[maxaQ

⋆
1(x1, a1)− f1(x1, πf1(x1))] +√

8 log(6|F||W|TH/δ)
K(t−1) ,

where w̌h := clipγ(t) [wh] and β(t) := 36γ(t)

K(t−1) log(6|F||W|TH/δ).

Proof of Lemma E.1. Fix any h ∈ [H] and t ∈ [T ]. LetM = K(t−1) and recall that the datasetDt
h

consists of M tuples of the form {(x(m)

h , a(m)

h , r(m)

h , x(m)

h+1)}m≤M where x(m)

h+1 ∼ P (· | x(m)

h , a(m)

h ),
and a(m)

h = πτ(m)(x
(m)

h ) where τ(m) = ⌈m/K⌉. Fix any f ∈ F and w ∈ W .

Proof of (a). For each m ∈ [M ], define the random variable

Ym = [∆̂hf ](x
(m)

h , a(m)

h , r(m)

h , x(m)

h+1) · w̌h(x
(m)

h , a(m)

h )− E
d
(τ(m))
h

[[∆hf ](xh, ah) · w̌h(xh, ah)]

Clearly, Em−1[Ym] = 0 and thus {Ym}m≤M is a martingale difference sequence with

|Ym| ≤ 3 sup
xh,ah

|w̌h(xh, ah)| ≤ 3γ(t),
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since |[∆̂hf ](x
(m)

h , a(m)

h , r(m)

h , x(m)

h+1)| ≤ 2 and |[∆hf ](xh, ah)| ≤ 1. Furthermore,

M∑
m=1

Ym =

M∑
m=1

[∆̂hf ](x
(m)

h , a(m)

h , r(m)

h , x(m)

h+1) · w̌h(x
(m)

h , a(m)

h )−
M∑

m=1

E
d
(τ(m))
h

[[∆hf ](xh, ah) · w̌h(xh, ah)]

= K(t− 1)ÊD(t)
h

[
[∆̂hf ](xh, ah, rh, x

′
h+1) · w̌h(xh, ah)

]
−K

t−1∑
τ=1

E
d
(τ)
h

[[∆hf ](xh, ah) · w̌h(xh, ah)]

= K(t− 1)ÊD(t)
h

[
[∆̂hf ](xh, ah, rh, x

′
h+1) · w̌h(xh, ah)

]
−K(t− 1)E

d̄
(t)
h

[[∆hf ](xh, ah) · w̌h(xh, ah)].

Additionally, we also have that

Em−1

[
(Ym)2

]
≤ 2Em−1

[
([∆̂hf ](x

(m)

h , a(m)

h , r(m)

h , x(m)

h+1) · w̌h(x
(m)

h , a(m)

h ))2
]

+ 2Em−1

[(
E
d
(τ(m))
h

[[∆hf ](xh, ah) · w̌h(xh, ah)]
)2]

≤ Em−1

[
8w̌h(x

(m)

h , a(m)

h )
2
+ 2E

d
(τ(m))
h

[
([∆hf ](xh, ah) · w̌h(xh, ah))

2
]]

≤ Em−1

[
8w̌h(x

(m)

h , a(m)

h )
2
+ 2E

d
(τ(m))
h

[
(w̌h(xh, ah))

2
]]

= 10E
d
(τ(m))
h

[
(w̌h(xh, ah))

2
]

where the second line follows since |[∆̂hf ](x
(m)

h , a(m)

h , r(m)

h , x(m)

h+1)| ≤ 2 and by using Jensen’s
inequality, and the third line uses |[∆hf ](xh, ah)| ≤ 1.

Thus, using Lemma D.2 with η = 1/3γ(t), we get that with probability at least 1− δ′,∣∣∣∣∣
M∑

m=1

Ym

∣∣∣∣∣ = K(t− 1)
∣∣∣ÊD(t)

h

[
[∆̂hf ](xh, ah, rh, x

′
h+1) · w̌h(xh, ah)

]
− E

d̄
(t)
h

[[∆hf ](xh, ah) · w̌h(xh, ah)]
∣∣∣

≤ 10K

3γ(t)

t−1∑
τ=1

E
d
(τ)
h

[
(w̌h(xh, ah))

2
]
+ 3γ(t) log(2/δ′)

=
10K(t− 1)

3γ(t)
E
d̄
(t)
h

[
(w̌h(xh, ah))

2
]
+ 3γ(t) log(2/δ′).

The above bound implies that∣∣∣ÊD(t)
h

[
[∆̂hf ](xh, ah, rh, x

′
h+1) · w̌h(xh, ah)

]
− E

d̄
(t)
h

[[∆hf ](xh, ah) · w̌h(xh, ah)]
∣∣∣

≤ 10

3γ(t)
E
d̄
(t)
h

[
(w̌h(xh, ah))

2
]
+

3γ(t)

K(t− 1)
log(2/δ′).

Plugging in the value of β(t) gives the desired bound. The final result follows by setting δ′ =
δ/3|F||W|TH, and taking another union bound over the choice of f, w, t and h.

Proof of (b) and (c). For each m ∈ [M ], define the random variable

Ym =
(
w̌h(x

(m)

h , a(m)

h )
)2
.

Clearly, the sequence {Ym}m≤M is adapted to an increasing filtration, with Yt ≥ 0 and |Yt| =
|(w̌h(x

(m)

h , a(m)

h ))2| ≤ (γ(t))2. Furthermore,

M∑
m=1

Em−1[Ym] = K

t−1∑
τ=1

E
d
(τ)
h

[
(w̌h(xh, ah))

2
]
= K(t− 1)E

d̄
(t)
h

[
(w̌h(xh, ah))

2
]
,

and,
M∑

m=1

Ym =
∑

(x,a)∈D(t)
h

(w̌h(xh, ah))
2 = K(t− 1)ÊD(t)

h

[
(w̌h(xh, ah))

2
]
.
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Thus, by Lemma D.3, we have that with probability at least 1− δ′,

E
d̄
(t)
h

[
(w̌h(xh, ah))

2
]
≤ 2ÊD(t)

h

[
(w̌h(xh, ah))

2
]
+

8(γ(t))2 log(2/δ′)

K(t− 1)
,

and

ÊD(t)
h

[
(w̌h(xh, ah))

2
]
≤ 3

2
E
d̄
(t)
h

[
(w̌h(xh, ah))

2
]
+

4(γ(t))2 log(2/δ′)

K(t− 1)
.

The final result follows by setting δ′ = δ/3|F||W|TH, and taking another union bound over the choice
of f, w, t and h.

Proof of (d). For each m ∈ [M ], define the random variable

Ym = max
a

Q⋆
1(x

(m)

1 , a)− f1(x(m)

1 , πf1(x
(m)

1 )).

Clearly, |Ym| ≤ 1. Thus, using Lemma D.1, we get that with probability at least 1− δ′,
M∑

m=1

Em−1[Ym] ≤
M∑

m=1

(
max

a
Q⋆

1(x
(m)

1 , a)− f1(x(m)

1 , πf1(x
(m)

1 ))
)
+
√
8M log(2/δ′).

Setting M = K(t− 1) and noting that Em−1[Ym] = J(π⋆)−Ex1∼d1
[f1(x1, πf1(x1)] since x(m)

1 ∼
d1 for any m ∈ [M ], we get that

J(π⋆)− Ex1∼d1
[f1(x1, πf1(x1)] ≤ E

x∼D(t)
1

[
max

a
Q⋆

1(x1, a)− f1(x1, πf1(x1))
]
+

√
8 log(2/δ′)

K(t− 1)

The final result follows by setting δ′ = δ/3|F||W|TH, and taking another union bound over the choice
of f, w, t and h.

Lemma E.2 (Properties of GLOW confidence set). Let γ(t) ≥ 0 for t ∈ [T ]. With probability at least
1− δ, all of the following events hold:

(a) For all t ≥ 1, Q⋆ ∈ F (t)

(b) For all t ≥ 2, h ∈ [H], f ∈ F (t), and w ∈ W , we have

E
d̄
(t)
h

[[∆hf ](xh, ah) · w̌h(xh, ah)] ≤
20

γ(t)
E
d̄
(t)
h

[
(w̌h(xh, ah))

2
]
+

7β(t)

18
.

Furthermore,

E
d̄
(t+1)
h

[[∆hf ](xh, ah) · w̌h(xh, ah)] ≤
40

γ(t)
E
d̄
(t+1)
h

[
(w̌h(xh, ah))

2
]
+

7β(t)

9
+

γ(t)

160t2
,

(c) For all t ≥ 2, we have

Ex1∼d1

[
max

a
Q⋆

1(x1, a)− f
(t)

1 (x1, π
(t)

1 (x1))
]
≤

√
8 log(6|F||W|TH/δ)

K(t− 1)
,

where w̌h := clipγ(t) [wh] and β(t) = 36γ(t)

K(t−1) log(6|F||W|TH/δ).

Proof of Lemma E.2. Using Lemma E.1, we have that with probability at least 1− δ, for all f ∈ F ,
w ∈ W , t ∈ [T ] and h ∈ [H],∣∣∣ÊD(t)

h

[
[∆̂hf ](xh, ah, rh, x

′
h+1) · w̌h(xh, ah)

]
− E

d̄
(t)
h

[[∆hf ](xh, ah) · w̌h(xh, ah)]
∣∣∣

≤ 10

3γ(t)
E
d̄
(t)
h

[
(w̌h(xh, ah))

2
]
+
β(t)

12
, (15)
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1

γ(t)
E
d̄
(t)
h

[
(w̌h(xh, ah))

2
]
≤ 2

γ(t)
ÊD(t)

h

[
(w̌h(xh, ah))

2
]
+

2β(t)

9
, (16)

1

γ(t)
ÊD(t)

h

[
(w̌h(xh, ah))

2
]
≤ 3

2γ(t)
E
d̄
(t)
h

[
(w̌h(xh, ah))

2
]
+
β(t)

9
, (17)

and,

J(π⋆)− Ed1
[f1(x1, πf1(x1)] ≤ ÊD(t)

1

[
max

a
Q⋆

1(x1, a)− f1(x1, πf1(x1))
]

+

√
8 log(6|F||W|TH/δ)

K(t− 1)
. (18)

For the rest of the proof, we condition on the event in which (15-18) hold.

Proof of (a). Consider any t ∈ [T ], and observe that the optimal state-action value function Q⋆

satisfies for any wh ∈ W ,

E
d̄
(t)
h

[
(Q⋆

h(xh, ah)− rh −max
a′

Q⋆
h+1(x

′
h+1, a

′)) · w̌h(xh, ah)
]
= 0,

where w̌h := clipγ(t) [wh]. Using the above relation with (15), we get that

ÊD(t)
h

[
(Q⋆

h(xh, ah)− rh −max
a′

Q⋆
h+1(x

′
h+1, a

′)) · w̌h(xh, ah)
]
≤ 10

3γ(t)
E
d̄
(t)
h

[
(w̌h(xh, ah))

2
]
+
β(t)

12

≤ 4

γ(t)
E
d̄
(t)
h

[
(w̌h(xh, ah))

2
]
+
β(t)

12

≤ 8

γ(t)
ÊD(t)

h

[
(w̌h(xh, ah))

2
]
+ β(t),

where the second-last inequality follows from (16).

Plugging in the values of α(t) and β(t), rearranging the terms, we get that

ÊD(t)
h

[
(Q⋆

h(xh, ah)− rh −max
a′

Q⋆
h+1(x

′
h+1, a

′)) · w̌h(xh, ah)− α(t)(w̌h(xh, ah))
2
]
≤ β(t).

Since the above inequality holds for all w ∈ W , we have that Q⋆ ∈ F (t).

Proof of (b). Fix any t, and note that by the definition of F (t), any f ∈ F (t) satisfies for any
w ∈ W , the bound

ÊD(t)
h

[
(fh(xh, ah)− rh −max

a′
fh+1(x

′
h+1, a

′)) · w̌h(xh, ah)
]
≤ 10

γ(t)
ÊD(t)

h

[
(w̌h(xh, ah))

2
]
+ β(t).

Using the above bound with (15), we get that

E
d̄
(t)
h

[[∆hf ](xh, ah) · w̌h(xh, ah)] ≤
10

3γ(t)
E
d̄
(t)
h

[
(w̌h(xh, ah))

2
]
+

10

γ(t)
ÊD(t)

h

[
(w̌h(xh, ah))

2
]
+

13

12
β(t).

Plugging the bound from (17) for the second term above, we get that

E
d̄
(t)
h

[[∆hf ](xh, ah) · w̌h(xh, ah)] ≤
20

γ(t)
E
d̄
(t)
h

[
(w̌h(xh, ah))

2
]
+

7β(t)

18
.

Finally, noting that d̄(t+1) = (t−1)d̄(t)+d(t)

t , we can further upper bound as:

E
d̄
(t+1)
h

[[∆hf ](xh, ah) · w̌h(xh, ah)]

≤ t− 1

t

(
20

γ(t)
E
d̄
(t)
h

[
(w̌h(xh, ah))

2
]
+

7β(t)

18

)
+

1

t
E
d
(t)
h

[[∆hf ](xh, ah) · w̌h(xh, ah)]

≤ 2

(
20

γ(t)
E
d̄
(t)
h

[
(w̌h(xh, ah))

2
]
+

7β(t)

18

)
+

1

t
E
d
(t)
h

[|w̌h(xh, ah)|]

≤ 40

γ(t)
E
d̄
(t)
h

[
(w̌h(xh, ah))

2
]
+

7β(t)

9
+

40

γ(t)
E
d
(t)
h

[
w̌h(xh, ah)

2
]
+

γ(t)

160t2

=
40

γ(t)
E
d̄
(t+1)
h

[
(w̌h(xh, ah))

2
]
+

7β(t)

9
+

γ(t)

160t2
,

where the second-to-last line follows from an application of AM-GM inequality.
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Proof of (c). Plugging in f = f (t) in (18) and noting that maxaQ
⋆
1(x1, a) = Q⋆

1(x, π
⋆(x)) for any

x ∈ X , we get that

J(π⋆)− Ex1∼d1

[
f (t)

1 (x1, πf(t)
1

(x1))
]
≤ Ê

x1∼D(t)
1

[
Q⋆

1(x1, π
⋆
1(x1))− f

(t)

1 (x1, πf(t)
1

(x1))
]
+

√
8 log(6|F||W|TH/δ)

K(t− 1)
.

However, note that by definition, f (t) ∈ argmaxf Ê[f1(x1, πf1(x1)], and using part-(a), Q⋆ ∈ F (t).

Thus, ÊD(t)
1

[
Q⋆

1(x1, π
⋆
1(x1))− f

(t)

1 (x1, πf(t)
1

(x1))
]
≤ 0, which implies that

J(π⋆)− Ex1∼d1

[
f (t)

1 (x1, πf(t)
1

(x1))
]
≤

√
8 log(6|F||W|TH/δ)

K(t− 1)
.

Lemma E.3 (Coverability potential bound). Let d(1), . . . , d(T ) be an arbitrary sequence of distribu-
tions over X ×A, such that there exists a distribution µ ∈ ∆(X ×A) that satisfies ∥d(t)

/µ∥∞ ≤ C
for all (x, a) ∈ X ×A and t ∈ [T ]. Then,

T∑
t=1

E(x,a)∼d(t)

[
d(t)(x, a)

d̃(t+1)(x, a)

]
≤ 5C log(T ),

where recall that d̃(t+1) :=
∑t

s=1 d
(t) for all t ∈ [T ].

Proof of Lemma E.3. Let τ(x, a) = min{t | d̃(t+1)(x, a) ≥ Cµ(x, a)}. With this definition, we
can bound

T∑
t=1

Ed(t)

[
d(t)(x, a)

d̃(t+1)(x, a)

]
=

T∑
t=1

Ed(t)

[
d(t)(x, a)

d̃(t+1)(x, a)
· I{t < τ(x, a)}

]

+

T∑
t=1

Ed(t)

[
d(t)(x, a)

d̃(t+1)(x, a)
· I{t ≥ τ(x, a)}

]

≤
T∑

t=1

Ed(t) [I{t < τ(x, a)}]︸ ︷︷ ︸
(I): burn-in phase

+

T∑
t=1

Ed(t)

[
d(t)(x, a)

d̃(t+1)(x, a)
· I{t ≥ τ(x, a)}

]
︸ ︷︷ ︸

(II): stable phase

,

where the second line uses that d(t)(x,a)/d̃(t+1)(x,a) ≤ 1.

For the burn-in phase, note that

T∑
t=1

Ed(t) [I{t < τ(x, a)}] =
∑
x,a

∑
t<τ(x,a)

dt(x, a) =
∑
x,a

d̃(τ(x,a))(x, a) ≤
∑
x,a

Cµ(x, a) = C,

where the last inequality uses that by definition, d̃t(x, a) ≤ Cµ(x, a) for all t ≤ τ(x, a).

For the stable phase, whenever t ≥ τ(x, a), by definition, we have d̃(t+1)(x, a) ≥ Cµ(x, a) which
implies that d̃(t+1)(x, a) ≥ 1

2 (d̃
(t+1)(x, a) + Cµ(x, a)). Thus,

(II) ≤ 2

T∑
t=1

Ed(t)

[
d(t)(x, a)

d̃(t)(x, a) + Cµ(x, a)

]
(19)

= 2
∑
x,a

T∑
t=1

d(t)(x, a) · d(t)(x, a)

d̃(t)(x, a) + Cµ(x, a)

≤ 2
∑
x,a

max
t′∈[T ]

d(t′)(x, a)max
x,a

(
T∑

t=1

d(t)(x, a)

d̃(t)(x, a) + Cµ(x, a)

)
.
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Using the per-state elliptical potential lemma (Lemma D.5) in the above inequality, we get that

(II) ≤ 4 log(T + 1)
∑
x,a

max
t′∈[T ]

d(t′)(x, a) ≤ 4C log(T + 1)
∑
x,a

µ(x, a) = 4C log(1 + T ), (20)

where the second inequality follows from the fact that
∥∥∥d(t)

µ

∥∥∥
∞
≤ C (by definition), and the last

equality uses that
∑

x,a µ(x, a) = 1. Combining the above bound, we get that

T∑
t=1

Ed(t)

[
d(t)(x, a)

d̃(t+1)(x, a)

]
≤ 5C log(T ).

E.3 MAIN TECHNICAL RESULT: BOUND ON CUMULATIVE SUBOPTIMALITY FOR GLOW

In this section we prove a key technical lemma, Lemma E.4, which gives a bound on the cumulative
suboptimality of the sequence of policies generated by GLOW. Both the proofs of Theorem 3.2 and
Theorem 3.1 build on this result. To facilitate more general sample complexity bounds that allow for
misspecification error inW . In particular, for each t ∈ [T ], we define ξt as the misspecification error
of the clipped density ratio d

(t)
h /d̄(t+1)

h in classWh, defined as

ξt := sup
h∈[H]

inf
w∈Wh

sup
π∈Π

∥∥∥∥clipγ(t)

[
d(t)

h

d̄(t+1)

h

]
− clipγ(t) [wh]

∥∥∥∥
1,d̄π

h

, (21)

where recall that for any function u : X × A 7→ R and distribution d ∈ ∆(X × A), the norm
∥u∥1,d := E(x,a)∼d[|u(x, a)|]. Note that under Assumption 2.2 or 2.2′, ξt = 0 for all t ∈ [T ].

Lemma E.4 (Bound on cumulative suboptimality). Let π(1), . . . , π(T ) be the sequence of policies
generated by GLOW, when executed on classes F andW with parameters T,K and γ. Then the
cumulative suboptimality of the sequence of policies {π(t)}t∈[T ] is bounded as

T∑
t=1

J(π⋆)− J(π(t)) = O

(
H

(
Ccov log(1 + T )

γ
+
γT log(|F||W|HTδ−1)

K
+

T∑
t=1

ξt + γ log(T )

))
.

Proof of Lemma E.4. Fix any t ≥ 2. We begin by establishing optimism as follows:

J(π⋆)− J(π(t)) = Ex1∼d1

[
max

a
Q⋆

1(x1, a)
]
− J(π(t))

= Ex1∼d1

[
max

a
Q⋆

1(x1, a)− f
(t)

1 (x1, π
(t)(x1))

]
+ Ex1∼d1

[
f (t)

1 (x1, π
(t)(x1))

]
− J(π(t))

≤

√
8 log(6|F||W|TH/δ)

K(t− 1)
+ Ex1∼d1

[
f (t)

1 (x1, π
(t)(x1))

]
− J(π(t)),

where the last line follows from Lemma E.2-(c). Using Lemma D.4 for the second term, we get that

J(π⋆)− J(π(t)) ≤

√
8 log(6|F||W|TH/δ)

K(t− 1)
+

H∑
h=1

E
(xh,ah)∼d

(t)
h

[[∆hf
(t)](xh, ah)],

where recall that [∆hf
(t)](xh, ah) := f (t)

h (xh, ah)− [Thf (t)

h+1](xh, ah). Thus,

T∑
t=1

J(π⋆)− J(π(t)) ≤ J(π⋆)− J(π(1)) +

T∑
t=2

J(π⋆)− J(π(t))

≤ 1 +

T∑
t=2

√
8 log(6|F||W|TH/δ)

K(t− 1)
+

T∑
t=2

H∑
h=1

E
(xh,ah)∼d

(t)
h

[[∆hf
(t)](xh, ah)],

(22)

where the second inequality uses that J(π⋆) ≤ 1 and J(π(1)) ≥ 0.
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We next bound the expected Bellman error terms that appear in the right-hand-side above. Consider
any t ≥ 2 and h ∈ [H], and note that via a straightforward change of measure,

E
d
(t)
h

[[∆hf
(t)](xh, ah)] = E

d̄
(t+1)
h

[
[∆hf

(t)](xh, ah) ·
d(t)

h (xh, ah)

d̄(t+1)

h (xh, ah)

]
Since u ≤ min{u, v}+ uI{u ≥ v} for any u, v, we further decompose as

E
d
(t)
h

[[∆hf
(t)](xh, ah)] ≤ E

d̄
(t+1)
h

[
[∆hf

(t)](xh, ah) ·min

{
d(t)

h (xh, ah)

d̄(t+1)

h (xh, ah)
, γ(t)

}]
︸ ︷︷ ︸

(A): Expected clipped Bellman error

+ E
d
(t)
h

[
I
{
d(t)

h (xh, ah)

d̄(t+1)

h (xh, ah)
≥ γ(t)

}]
︸ ︷︷ ︸

(B): clipping violation

,

where in the second term we have changed the measure back to d(t)

h and used that |[∆hf
(t)](xh, ah)| ≤

1. We bound the terms (A) and (B) separately below.

Bound on expected clipped Bellman error. Let w(t)

h (xh, ah) ∈ W denote a weight function which
satisfies

sup
π

∥∥∥∥clipγ(t)

[
d(t)

h

d̄(t+1)

h

]
− clipγ(t)

[
w(t)

h

]∥∥∥∥
1,dπ

h

≤ ξt, (23)

which is guaranteed to exist by the definition of ξt. Then, we have

(A) = E
d̄
(t+1)
h

[
[∆hf

(t)](xh, ah) · clipγ(t)

[
d(t)

h (xh, ah)

d̄(t+1)

h (xh, ah)

]]
≤ E

d̄
(t+1)
h

[
[∆hf

(t)](xh, ah) · clipγ(t)

[
w(t)

h (xh, ah)
]]

+

∥∥∥∥clipγ(t)

[
d(t)

h

d̄(t+1)

h

]
− clipγ(t)

[
w(t)

h

]∥∥∥∥
1,d̄

(t+1)
h

≤ E
d̄
(t+1)
h

[
[∆hf

(t)](xh, ah) · clipγ(t)

[
w(t)

h (xh, ah)
]]

+ ξt,

where the second line uses that |[∆hf
(t)](xh, ah)| ≤ 1, and the last line plugs in (23). Next, using

Lemma E.2-(b) in the above inequality, we get that

(A) ≤ 40

γ(t)
E
d̄
(t+1)
h

[(
clipγ(t)

[
w(t)

h (xh, ah)
])2]

+
7β(t)

9
+

γ(t)

160t2
+ ξt. (24)

Further splitting the first term, and using that (a+ b)2 ≤ 2a2 + 2b2 , we have that

E
d̄
(t+1)
h

[(
clipγ(t)

[
w(t)

h (xh, ah)
])2]

≤ 2E
d̄
(t+1)
h

[(
clipγ(t)

[
d(t)

h (xh, ah)

d̄(t+1)

h (xh, ah)

])2
]
+ 2

∥∥∥∥clipγ(t)

[
d(t)

h

d̄(t+1)

h

]
− clipγ(t)

[
w(t)

h

]∥∥∥∥2
2,d̄

(t+1)
h

≤ 2E
d̄
(t+1)
h

[(
clipγ(t)

[
d(t)

h (xh, ah)

d̄(t+1)

h (xh, ah)

])2
]
+ 2γ(t)

∥∥∥∥clipγ(t)

[
d(t)

h

d̄(t+1)

h

]
− clipγ(t)

[
w(t)

h

]∥∥∥∥
1,d̄

(t+1)
h

≤ 2E
d̄
(t+1)
h

[(
clipγ(t)

[
d(t)

h (xh, ah)

d̄(t+1)

h (xh, ah)

])2
]
+ 2γ(t)ξt,

where the second line holds since ∥w∥22,d ≤ ∥w∥∞∥w∥1,d and clipγ(t) [w] ≤ γ(t) for any w, and the
last line is due to (23). Using the above bound in (24), we get that

(A) ≤ 80

γ(t)
E
d̄
(t+1)
h

[(
min

{
d(t)

h (xh, ah)

d̄(t+1)

h (xh, ah)
, γ(t)

})2
]
+ 4ξt + 10β(t) +

γ(t)

80t2

≤ 80

γ(t)
E
d
(t)
h

[
d(t)

h (xh, ah)

d̄(t+1)

h (xh, ah)

]
+ 4ξt + 10β(t) +

γ(t)

80t2
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=
80

γ
E
d
(t)
h

[
d(t)

h (xh, ah)

d̃(t+1)

h (xh, ah)

]
+ 4ξt + 10β(t) +

γ

80t
,

where the second line simply follows from a change of measure, and the last line holds since γ(t) = γt,
and d̃(t+1) = td̄(t+1).

Bound on clipping violation. Since I{u ≥ v} ≤ u
v for any u, v ≥ 0, we get that

(B) ≤ 1

γ(t)
E
d
(t)
h

[
d(t)

h (xh, ah)

d̄(t+1)

h (xh, ah)

]
=

1

γ
E
d
(t)
h

[
d(t)

h (xh, ah)

d̃(t+1)

h (xh, ah)

]
,

where the last line holds since γ(t) = γt.

Combining the bounds on the terms (A) and (B) above, and summing over the rounds t = 2, . . . , T ,
we get

T∑
t=2

E
d
(t)
h

[[∆hf
(t)](xh, ah)] ≤

81

γ

T∑
t=2

E
d
(t)
h

[
d(t)

h (xh, ah)

d̃(t+1)

h (xh, ah)

]
+ 10

T∑
t=2

β(t) + 4

T∑
t=2

ξt +
γ

80
, (25)

For the first term, using Lemma E.3, along with the bound
∥∥d(t)

h /µ⋆
h

∥∥
∞ ≤ Ccov, we get that

T∑
t=2

E
d
(t)
h

[
d(t)

h (xh, ah)

d̃(t+1)

h (xh, ah)

]
≤ 5Ccov log(1 + T ).

For the second term, we have

T∑
t=2

β(t) =

T∑
t=2

36γt log(6|F||W|HTδ−1)

K(t− 1)
≤ 72γT log(6|F||W|HTδ−1)

K
.

Combining these bounds, we get that

T∑
t=2

E
d
(t)
h

[[∆hf
(t)](xh, ah)] = O

(
Ccov log(1 + T )

γ
+
γT log(|F||W|HTδ−1)

K
+

T∑
t=1

ξt + γ log(T )

)
,

(26)

Plugging this bound in to (22) for each h ∈ [H] gives the desired result.

E.4 PROOF OF THEOREM 3.1
In this section, we prove a generalization of Theorem 3.1 that accounts for misspecification error
when the classW can only approximately realize the density ratios of mixed policies. Formally, we
make the following assumption on the classW:

Assumption 2.2† (Density ratio realizability, mixture version, with misspecification error). Let
T be the parameter to GLOW (Algorithm 1). For all h ∈ [H], π ∈ Π, t ∈ [T ], and π(1:t) =

(π(1), . . . , π(t)) ∈ Π, there exists a weight function wπ;π(1:t)

h (x, a) ∈ Wh such that

sup
π̃∈Π

∥∥∥∥∥ dπh
dπ

(1:t)

h

− wπ;π(1:t)

h

∥∥∥∥∥
1,dπ̃

h

≤ εapx.

Note that setting εapx = 0 above recovers Assumption 2.2′ given in the main body.

Theorem 3.1′. Let ε > 0 be given, and suppose that Assumption 2.1 holds. Further, suppose that
Assumption 2.2† (above) holds with εapx ≤ ε/18H. Then, GLOW, when executed on classes F andW

27



Published as a conference paper at ICLR 2024

with hyperparameters T = Θ̃
(
(H

2Ccov/ε2) · log(|F||W|/δ)
)
, K = 1, and γ =

√
Ccov/(T log(|F||W|/δ))

returns an ε-suboptimal policy π̂ with probability at least 1− δ after collecting

N = Õ

(
H2Ccov

ε2
log(|F||W|/δ)

)
(27)

trajectories. In addition, for any T ∈ N, with the same choice for K and γ as above, the algorithm
enjoys a regret bound of the form

Reg :=

T∑
t=1

J(π⋆)− J(π(t)) = Õ
(
H
√
CcovT log(|F||W|/δ) +HTεapx

)
. (28)

Clearly, setting the misspecification error εapx = 0 above recovers Theorem 3.1.

Proof of Theorem 3.1′. First note that by combining Assumption 2.2† with the fact that clipγ [z] is
1-Lipschitz for any γ > 0, we have that for any h ∈ [H] and t ∈ [T ], there exists a weight function
w(t)

h ∈ Wh such that

sup
π∈Π

∥∥∥∥clipγ(t)

[
d(t)

h

d̄(t+1)

h

]
− clipγ(t)

[
w(t)

h

]∥∥∥∥
1,dπ

h

≤ εapx. (29)

Using this misspecification bound, and setting K = 1 in Lemma E.4, we get that with probability at
least 1− δ,

Reg =

T∑
t=1

J(π⋆)− J(π(t)) = O

(
HCcov log(1 + T )

γ
+ γHT log(6|F||W|HTδ−1) +HTεapx

)
.

Further setting γ =
√

Ccov/(T log(6|F||W|HTδ−1)) implies that

Reg ≤ O
(
H
√
CcovT log(T ) log(6|F||W|HTδ−1) +HTεapx

)
.

For the sample complexity bound, note that the returned policy π̂ is chosen via π̂ ∼
Unif({π(1), . . . , π(T )}), and thus

E[J(π⋆)− J(π̂)] = 1

T

T∑
t=1

J(π⋆)− J(π(t)) ≤ O

(
H

√
Ccov

T
log(T ) log(6|F||W|HTδ−1) +Hεapx

)
.

Hence, when εapx ≤ O(ε/H), setting T = Θ̃
(

H2Ccov

ε2 log(6|F||W|HTδ−1)
)

implies that the returned
policy π̂ satisfies

E[J(π⋆)− J(π̂)] ≤ ε.
The total number of trajectories collected to return an ε-suboptimal policy is given by

T ·K ≤ Õ
(
H2Ccov

ε2
log(6|F||W|Hδ−1)

)
.

E.5 PROOF OF THEOREM 3.2
In this section, we prove a generalization of Theorem 3.2 in Theorem 3.2′ (below) which accounts
for misspecification error when the classW can only approximately realize the density ratios of pure
policies. Formally, we make the following assumption on the classW .

Assumption 2.2‡ (Density ratio realizability, with misspecification error). For any policy pair
π1, π2 ∈ Π and h ∈ [H], there exists some weight function w(π1,π2)

h ∈ Wh such that

sup
π

∥∥∥∥dπ1

h

dπ2

h

− w(π1,π2)

h

∥∥∥∥
1,dπ

h

≤ εapx.
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Setting εapx = 0 above recovers Assumption 2.2 given in the main body.

Note that Assumption 2.2‡ only states that density ratios of pure policies are approximately realized by
Wh. On the other hand, the proof of Lemma E.4, our key tool in sample complexity analysis, requires
(approximate) realizability for the ratio d(t)

/d̄(t+1) inWh, which involves a mixture of occupancies.
We fix this problem by running GLOW on a larger classW that is constructed usingW and has small
misspecification error for d(t)

/d̄(t+1) for all t ≤ T . Before delving into the proof of Theorem 3.2′, we
first describe the classW .

Construction of the class W . Define an operator Mixture that takes in a sequence of weight
functions {w(1), . . . , w(t)} and a parameter t ≤ T , and outputs a function [Mixture(w(1), . . . , w(t); t)]
such that for any x, a ∈ X ×A,

[Mixture(w(1), . . . , w(t); t)]h(x, a) :=
1

Es∼Unif([t])

[
w(s)

h (x, a)
] .

Using the operator Mixture, we defineW (t) via

W (t) = {Mixture(w(1), . . . , w(t); t) | w(1), . . . , w(t) ∈ W},

and then define

W = ∪t≤TW (t). (30)

As a result of this construction, we have that

|W| ≤ (|W|+ 1)T ≤ (2|W|)T . (31)

In addition, we define Wh =
{
wh | w ∈ W

}
. The following lemma shows that W has small

misspecification error for density ratios of mixture policies.

Lemma E.5. Let t ≥ 0 be given, and suppose Assumption 2.2‡ holds. For any sequence of policies
π(1), . . . , π(t) ∈ Π, and h ∈ [H], there exists a weight function w̄h ∈ W (t)

h such that for any γ > 0,

sup
π

∥∥∥∥clipγ[ d(t)

h

d̄(t+1)

h

]
− clipγ [w̄h]

∥∥∥∥
1,dπ

h

≤ γ2εapx,

where recall that d̄(t+1)

h = 1
t

∑t
s=1 d

(s)

h .

The following theorem, which is our main sample complexity bound under misspecification error, is
obtained by running GLOW on the weight function classW .

Theorem 3.2′. Let ε > 0 be given, and suppose that Assumption 2.1 holds. Further, suppose that
Assumption 2.2‡ holds with εapx ≤ Õ(ε

5
/C3

covH
5). Then, GLOW, when executed on classes F and

W (defined in Eq. (30)) with hyperparameters T = Θ̃(H
2Ccov/ε2), K = Θ̃(T log(|F||W|/δ)), and

γ =
√

Ccov/T returns an ε-suboptimal policy π̂ with probability at least 1− δ after collecting

N = Õ
(H4C2

cov

ε4
log(|F||W|/δ)

)
.

trajectories.

Setting the misspecification error εapx = 0 above recovers Theorem 3.2 in the main body.

Proof of Theorem 3.2′. Using the misspecification bound from Lemma E.5 in Lemma E.4 implies
that with probability at least 1− δ,

T∑
t=1

J(π⋆)− J(π(t)) = O

(
HCcov log(1 + T )

γ
+
γHT log(6|F|

∣∣W∣∣HTδ−1)

K
+Hγ2T 3εapx + γH log(T )

)
.

Using the relation in Eq. (31), we get that |W| ≤ (2|W|)T and thus

T∑
t=1

J(π⋆)− J(π(t)) = O

(
HCcov log(1 + T )

γ
+
γHT log(6|F|

∣∣W∣∣HTδ−1)

K
+Hγ2T 3εapx + γH log(T )

)
.

29



Published as a conference paper at ICLR 2024

Setting K = 2T log(6|F||W|HTδ−1) and γ =
√

Ccov

T in the above bound, we get

T∑
t=1

J(π⋆)− J(π(t)) ≤ O
((
H
√
CcovT log(T ) +HCcovT

2εapx

))
.

Finally, observing that the returned policy π̂ ∼ Unif({π(1), . . . , π(T )}), we get
T∑

t=1

J(π⋆)− J(π(t)) ≤ O

((
H

√
Ccov

T
log(T ) +HCcovT

2εapx

))
.

Thus, when εapx ≤ Õ(ε
5
/C3

covH
5), setting T = Θ̃

(
Ccov

ε2 log2(Ccov

ε2 )
)

in the above bound implies that

E[J(π⋆)− J(π̂)] ≤ ε.
The total number of trajectories collected to return ε-suboptimal policy is given by:

T ·K = O

(
H4C2

cov

ε4
log(|F||W|HTδ−1)

)
.

Proof of Lemma E.5. Fix any h ∈ [H] and t ∈ [T ]. Using Assumption 2.2‡, we have that for any
s ≤ t, there exists a function w(s,t)

h ∈ Wh such that

sup
π∈Π

∥∥∥∥d(s)

h

d(t)

h

− w(s,t)

h

∥∥∥∥
1,dπ

h

≤ εapx. (32)

Let w̄h =
[
Mixture(w(1,t), . . . , w(t,t); t)

]
h
∈ Wh, and recall that d̄(t+1) = Es∼Unif([t])

[
d(s)

h

]
. For any

x, a ∈ X ×A, define

ζ(x, a) :=

∣∣∣∣∣∣min

 1

Es∼Unif([t])

[
d
(s)
h (x,a)/d(t)

h (x,a)

] , γ
−min

{
1

Es∼Unif([t])[w(s,t)(x, a)]
, γ

}∣∣∣∣∣∣.
Using that the function g(z) = min

{
1
z , γ
}
= 1

max{z,γ−1} is γ2-Lipschitz, we get that

ζ(x, a) ≤ γ2 ·
∣∣∣∣Es∼Unif([t])

[
d(s)

h (x, a)

d(t)

h (x, a)

]
− Es∼Unif([t])

[
w(s,t)

h (x, a)
]∣∣∣∣

≤ γ2 Es∼Unif([t])

[∣∣∣∣d(s)

h (x, a)

d(t)

h (x, a)
− w(s,t)

h (x, a)

∣∣∣∣],
where the last inequality follows from the linearity of expectation, and by using Jensen’s inequality.

Thus,

sup
π∈Π

Exh,ah∼dπ
h

[∣∣∣∣min

{
d(t)

h (xh, ah)

d̄(t+1)

h (xh, ah)
, γ

}
−min{w̄h(xh, ah), γ}

∣∣∣∣]
= sup

π∈Π
Exh,ah∼dπ

h
[ζ(xh, ah)]

≤ γ2 sup
π∈Π

Es∼Unif([t])

[∥∥∥∥d(s)

h

d(t)

h

− w(s,t)

h

∥∥∥∥
1,dπ

h

]

≤ γ2 Es∼Unif([t]) sup
π∈Π

[∥∥∥∥d(s)

h

d(t)

h

− w(s,t)

h

∥∥∥∥
1,dπ

h

]
≤ γ2εapx,

where the second-to-last line is due to Jensen’s inequality, and the last line follows from the bound in
(32).
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F PROOFS AND ADDITIONAL RESULTS FROM SECTION 4 (HYBRID RL)
This section is organized as follows:

• Appendix F.1 gives additional details and further examples of offline algorithms with which
we can apply H2O, including an example that uses FQI as the base algorithm.

• Appendix F.2 includes a detailed comparison between HYGLOW and purely offline algo-
rithms based on single-policy concentrability.

• Appendix F.3 includes a discussion on generic reductions from offline to online RL using a
class of algorithms we call optimistic offline RL algorithms.

• Appendix F.4 contains the proof of the main result for H2O, Theorem 4.1.

• Appendix F.5 contains supporting proofs for the offline RL algorithms (Appendix F.1) we
use within H2O.

F.1 EXAMPLES FOR H2O
This section contains additional examples of base algorithms that can be applied within the H2O
reduction.

F.1.1 HYGLOW ALGORITHM

For completeness, we state full pseudocode for the HYGLOW algorithm described in Section 4.2 as
Algorithm 3. As described in the main body, this algorithm simply invokes H2O with a clipped and
regularized variant of the MABO algorithm (MABO.CR, Eq. (9)) as the base algorithm.

We will invoke MABO.CR with a certain augmented weight function classW , which we now define.
For any w ∈ W , let w(h) ∈ (X ×A× [H]→ R ∪ {+∞}) be defined by

w(h)

h′ (x, a) :=

{
wh(x, a) if h = h′

0 if h ̸= h′
, (33)

and letW (h) = {w(h) | w ∈ W}. Define the set

W :=W ∪ (−W) ∪h∈[H] (W (h) ∪ (−W (h))). (34)

Note that the size satisfiesW is
∣∣W∣∣ ≤ 2(H + 1)|W| ≤ 4H|W|.

We recall that the MABO.CR algorithm with dataset D and parameters γ,F ,W is defined via

f̂ ∈ argmin
f∈F

max
w∈W

H∑
h=1

∣∣∣ÊDh

[
w̌h(xh, ah)[∆̂hf ](xh, ah, rh, x

′
h+1)

]∣∣∣− α(n)ÊDh

[
w̌2

h(xh, ah)
]
, (35)

where α(n) := 8/γ(n) and w̌h := clipγ(n) [wh].

In Appendix F.5.2 we will prove the following result.

Theorem F.1 (MABO.CR is CC-bounded). Let D = {Dh}Hh=1 consist of H · n samples from
µ(1), . . . , µ(n). For any γ ∈ R+, the MABO.CR algorithm (Eq. (9)) with parameters F , augmented
classW defined in Eq. (34) in Appendix F.1.1, and γ is CC-bounded at scale γ under the Assumption
that Q⋆ ∈ F and that for all π ∈ Π and h ∈ [H], dπ

h/µ(1:n)
h ∈ W .

The risk bound for HYGLOW will follow by Theorem 4.1. Namely, we have the following.

Theorem 4.2 (Risk bound for HYGLOW). Let ε > 0 be given, let Doff consist of H · T
samples from data distribution ν, and suppose that ν satisfies C⋆-single-policy concentrabil-
ity. Suppose that Q⋆ ∈ F and that for all t ∈ [T ], π ∈ Π, and h ∈ [H], we have
dπ
h/µ(t)

h ∈ W , where µ(t)

h := 1/2(νh + 1/t
∑t

i=1 d
π(i)

h ). Then, HYGLOW (Algorithm 3) with
inputs T = Θ̃((H

4(Ccov+C⋆)/ε2) · log(|F||W|/δ)), F , augmented W defined in Eq. (34), γ =

Θ̃
(√

(C⋆+Ccov)/TH2 log(|F||W|/δ)

)
, and Doff returns an ε-suboptimal policy with probability at least

1− δT after collecting N = Õ
(

H2(Ccov+C⋆)
ε2 log(|F||W|/δ)

)
trajectories.
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Algorithm 3 HYGLOW: H2O + MABO.CR

input: Parameter T ∈ N, value function class F , weight function classW , parameter γ ∈ [0, 1],
offline datasets Doff = {Doff,h}h each of size T .

1: Set γ(t) = γ · t, α(t) = 4/γ(t) and β(t) = (12γ/K) · log(6|F||W|TH/δ).
2: Initialize D(1)

on,h = D(1)

hybrid,h = ∅ for all h ∈ [H].
3: for t = 1, . . . , T do
4: Compute value function f (t) such that

f (t) ∈ argmin
f∈F

max
w∈W

H∑
h=1

∣∣∣∣ÊD(t)
hybrid,h

[
w̌h(xh, ah)[∆̂hf ](xh, ah, rh, x

′
h+1)

]∣∣∣∣−α(n)ÊD(t)
hybrid,h

[
w̌2

h(xh, ah)
]
,

(36)
where w̌ := clipγ(t) [w] and [∆̂hf ](x, a, r, x

′) := fh(x, a)− r −maxa′ fh+1(x
′, a′).

5: Compute policy π(t) ← πf(t) .
6: Collect (x1, a1, r1), . . . , (xH , aH , rH) using π(t); D(t+1)

on,h := D(t)

on,h ∪ {(xh, ah, rh, xh+1)}.
7: Aggregate offline and online data: D(t+1)

hybrid,h := Doff,h

∣∣
1:t
∪ D(t+1)

on,h for all h ∈ [H].

8: output: π̂ = Unif(π(1), . . . , π(T )).

F.1.2 COMPUTATIONALLY EFFICIENT IMPLEMENTATION FOR HYGLOW

In the following, we expand on the discussion after Theorem F.1 regarding computationally efficient
implementation of the optimization problem in Eq. (9) and Eq. (36) via reparameterization. Let γ > 0
and n > 0 be given to the learner, and suppose that in addition to the classW , the learner has access
to a function classW (γ,n) that satisfies the following assumption.

Assumption F.1. The function classW (γ,n) satisfies

(a) For all w ∈ W (γ,n) and h ∈ [H], ∥wh∥∞ ≤ γn.

(b) For all h ∈ [H], {±clipγn[w] | w ∈ W} ⊆ W (γ,n).

(c) For all h ∈ [H], {±clipγn[w(h)] | w ∈ W} ⊆ W (γ,n), where w(h) is defined as in Eq. (33).

Note thatW (γ,n) also satisfies the density ratio realizability required by MABO.CR (cf. Theorem F.1).
We claim that optimizing directly over the classW (γ,n), which does not involve explicitly clipping,
leads to the same guarantee as solving Eq. (9). In more detail, consider the following offline RL
algorithm, which given offline datasets {Dh}h≤H , returns

f̂ ∈ argmin
f∈F

max
w∈W(γ,n)

H∑
h=1

ÊDh

[
wh(xh, ah)[∆̂hf ](xh, ah, rh, x

′
h+1)

]
− α(n)ÊDh

[
w2

h(xh, ah)
]
.

(37)
Using the next lemma, we show that the function obtained by solving Eq. (37) leads to the same
offline RL guarantee as MABO.CR when |log(W (γ,n))| = O(log(|W|) + poly(H)). In particular,
substituting the bound from Lemma F.1 in place of the corresponding bound from Lemma F.6 in
the proof of Theorem F.1, while keeping rest of the analysis same, shows that the above described
computationally efficient implementation of MABO.CR is also CC-bounded. Using this fact with
Theorem 4.1 implies the desired performance guarantee for HYGLOW (similar to Theorem 4.2).

Lemma F.1. Suppose F and W satisfy Assumption 2.1 and Assumption F.4. Additionally, let
γ ∈ (0, 1) and n > 0 be given constants, and for h ∈ [H], let Dh be datasets of size n sampled
from the offline distribution µ(1:n)

h . Furthermore, let W (γ,n) be a reparameterized function class
that satisfies Assumption F.1 w.r.t. W . Then, the function f̂ returned by Eq. (37), when executed
with datasets {Dh}h≤H , weight function class W (γ,n), and parameters α(n) = 8

γn , satisfies with
probability at least 1− δ,

H∑
h=1

∣∣∣Eµ
(1:n)
h

[
[∆hf̂ ](xh, ah) · w̌h(xh, ah)

]∣∣∣ ≤ O( H∑
h=1

1

γn
E
µ
(1:n)
h

[
(w̌h(xh, ah))

2
]
+H2β(n)

)
,

for all w ∈ W , where β(n) = O
(

γn
n−1 log(24|F||W|H

2/δ)
)

.
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Proof of Lemma F.1. Repeating the same arguments as in the proof of Lemma E.2 with K = 1 (we
avoid repeating the arguments for conciseness), along with the fact that ∥w′

h∥∞ ≤ γn for all h ∈ [H]

and w′ ∈ W (γ,n), we get that the returned function f̂ satisfies for all w′ ∈ W (γ,n),

H∑
h=1

E
µ
(1:n)
h

[
[∆hf̂ ](xh, ah) · w′

h(xh, ah)
]
≤ O

(
H∑

h=1

1

γn
E
µ
(1:n)
h

[
(w′

h(xh, ah))
2
]
+
Hγn

n− 1
log(|F||W (γ,n)|H/δ)

)
.

However, as in the proof of Lemma F.6, since for anyw ∈ W we have that both clipγn[w
(h)] ∈ W (γ,n)

h

and −clipγn[w(h)] ∈ W (γ,n)

h for every h ∈ [H], the above inequality immediately implies that for
every w ∈ W ,

H∑
h=1

∣∣∣Eµ
(1:n)
h

[
[∆hf̂ ](xh, ah) · w̌h(xh, ah)

]∣∣∣ ≤ O( H∑
h=1

1

γn
E
µ
(1:n)
h

[
(w̌h(xh, ah))

2
]
+
H2γn

n− 1
log(|F||W (γ,n)|H/δ)

)
,

where we used that the RHS is independent of the sign. The final statement follows by plugging in
that |log(W (γ,n))| = O(log(|W|) + poly(H)).

F.1.3 FITTED Q-ITERATION

In this section, we apply H2O with the Fitted Q-Iteration (FQI) algorithm (Munos, 2007; Munos and
Szepesvári, 2008; Chen and Jiang, 2019) as the base algorithm. For an offline dataset D and value
function class F , the FQI algorithm is defined as follows:

Algorithm F.2 (Fitted Q-Iteration (FQI)).

1. Set f̂H+1(x, a) = 0 for all (x, a)

2. For h = H, . . . , 1:

f̂h ∈ argmin
fh∈Fh

ÊDh

[
(fh(xh, ah)− rh −max

a′
f̂h+1(xh+1, a

′)))2
]
.

3. Output π̂ = πf̂ .

We analyze FQI under the following standard Bellman completeness assumption.

Assumption F.2 (Bellman completeness). For all h ∈ [H], we have that ThFh+1 ⊆ Fh

Theorem F.3. The FQI algorithm is CC-bounded under Assumption F.2 with scaling functions
aγ = 6

γ and bγ = 1024 log(2n|F|)γ, for all γ > 0 simultaneously. As a consequence, when invoked

within H2O, we have Risk ≤ Õ
(
H
√

(C⋆+Ccov) log(|F|δ−1)/T
)

with probability at least 1− δT .

The proof can be found in Appendix F.5.3.

The full pseudocode for H2O with FQI is essentially identical to the Hy-Q algorithm of Song et al.
(2023), except for a slightly different data aggregattion strategy in Line 7. Thus, Hy-Q can be
interpreted as a special case of the H2O algorithm when instantiated with FQI as a base algorithm.
The risk bounds in Song et al. (2023) are proven under an a structural condition known as bilinear
rank (Du et al., 2021), which is complementary to coverability. Our result recovers a special case of a
risk bound for Hy-Q given in the follow-up work of Liu et al. (2023), which analyzes Hy-Q under
coverability instead of bilinear rank.

F.1.4 MODEL-BASED MLE
In this section we apply H2O with Model-Based Maximum Likelihood Estimation (MLE) algorithm
as the base algorithm. The algorithm is parameterized by a model classM = {Mh}Hh=1, where
Mh ⊂ {Mh : X ×A → ∆(R×X )}. Each model M = {Mh}Hh=1 ∈M has the same state space,
action space, initial distribution, and horizon, and each Mh ∈Mh is a conditional distribution over
rewards and next states for layer h. For a dataset D, the algorithm proceeds as follows.

Algorithm F.4 (Model-Based MLE).

• For h ∈ [H]:
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– Compute the maximum likelihood estimator for layer h as

M̂h = argmax
Mh∈Mh

∑
(xh,ah,rh,xh+1)∈Dh

log(Mh(rh, xh+1 | xh, ah)) (38)

• Output π⋆
M̂

, the optimal policy for M̂ = {M̂h}h

We analyze Model-Based MLE under a standard realizability assumption.

Assumption F.3 (Model realizability). We have that M⋆ ∈M.

Theorem F.5. The model-based MLE algorithm is CC-bounded under Assumption F.3 for all γ > 0
simultaneously, with scaling functions aγ = 6

γ and bγ = 8 log(|M|H/δ)γ. As a consequence, when

invoked within H2O, we have Risk ≤ Õ
(
H
√

(C⋆+Ccov) log(|M|Hδ−1)/T
)

with probability at least
1− δT .

The proof can be found in Appendix F.5.4.

F.2 COMPARISON TO OFFLINE RL
In this section, we compare the performance of HYGLOW to existing results in purely offline RL
which assume access to a data distribution ν with single-policy concentrability (Definition 4.3)

Let µ be the offline data distribution. Let us write wπ := dπ
/µ, w⋆ := dπ⋆

/µ and V ⋆ for the
optimal value function . The most relevant work is the PRO-RL algorithm of Zhan et al. . Their
algorithm is computationally efficient and establishes a polynomial sample complexity bound under
the realizability of certain regularized versions of w⋆ and V ⋆. By contrast, our result requires
Q⋆-realizability and the density ratio realizability of wπ for all π ∈ Π, but for the unregularized
problem. These assumptions are not comparable, as either may hold without the other. Their sample

complexity result is also slightly larger, scaling roughly as Õ
(

H6C4
⋆C

2
⋆,ε

ε6

)
, where C⋆,ε is the single-

policy concentrability for the regularized problem, as opposed to our Õ
(
H2(C⋆+Ccov)/ε2

)
. However,

our approach requires additional online access while their algorithm does not.

To the best of our knowledge, all other algorithms for the purely offline setting that only require
single-policy concentrability either need stronger representation conditions (such as value-function
completeness Xie et al. (2021a)), or are not known to be computationally efficient in the general
function approximation setting due to the need for implementing pessimism (e.g., Chen and Jiang
(2022)).

F.3 GENERIC REDUCTIONS FROM ONLINE TO OFFLINE RL?
Our hybrid-to-offline reduction H2O and the CC-boundedness definition also shed light on the
question of when offline RL methods can be lifted to the purely online setting. Indeed, observe that
any offline algorithm which satisfies CC-boundedness (Definition 4.2) with only a π̂-coverage term,
namely which satisfies an offline risk bound of the form

Riskoff ≤
H∑

h=1

aγ
n

Eπ̂∼p[CCh(π̂, µ
(1:n), γn)] + bγ , (39)

can be repeatedly invoked within H2O (with Doff = ∅) to achieve a small
√

Ccov/T -type risk bound
for the purely online setting, with no hybrid data. This can be seen immediately by inspecting our
proof for the hybrid setting (Theorem F.6 and Theorem 4.1).

We can think of algorithms satisfying Eq. (39) as optimistic offline RL algorithms, since their risk only
scales with a term depending on their own output policy; this is typically achieved using optimism.
In particular, it is easy to see, that GLOW and GOLF (Jin et al., 2021a; Xie et al., 2023) can be
interpreted as repeatedly invoking such an optimistic offline RL algorithm within the H2O reduction.
This class of algorithms has not been considered in the offline RL literature since they inherit both
the computational drawbacks of pessimistic algorithms and the statistical drawbacks of “neutral” (i.e.
non-pessimistic) algorithms (at least, when viewed only in the context of offline RL).

In more detail, as with pessimism, optimism is often not computationally efficient, although it
furthermore requires all-policy concentrability (as opposed to single-policy concentrability) to
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obtain low offline risk. On the other hand, neutral (non-pessimistic) algorithms such as FQI (Chen
and Jiang, 2019) and MABO (Xie and Jiang, 2020) also require all-policy concentrability, but
are more computationally efficient. However, our reduction shows that these algorithms might
merit further investigation. In particular, it uncovers that they can automatically solve the online
setting (without hybrid data) under coverability and when repeatedly invoked on datasets generated
from their previous policies. We find that this reduction advances the fundamental understanding
of sample-efficient algorithms in both the online and offline settings, and are optimistic that this
understanding can be used for future algorithm design.

F.4 PROOFS FOR H2O (THEOREM 4.1)
The following theorem is a slight generalization of Theorem 4.1. In the sequel, we prove Theorem 4.1
as a consequence of this result.

Theorem F.6. Let T ∈ N be given, let Doff consist of H · T samples from data distribution
ν. Let Algoff be CC-bounded at scale γ ∈ [0, 1] under Assumption(·), with parameters aγ and
bγ . Suppose that ∀ t ∈ [T ] and π(1), . . . , π(t) ∈ Π, Assumption(µ(t),M⋆) holds for µ(t) :=

{1/2(νh+ 1/t
∑t

i=1 d
π(i)

h )}Hh=1. Then, with probability at least 1− δT , the risk of H2O (Algorithm 2)
with T , Algoff , and Doff is bounded as13

Risk ≤ 2aγ
T

H∑
h=1

T∑
t=1

1

t
CCh(π

⋆, ν, γ(t)) + Õ

(
H

(
Ccovaγ
N

+ bγ

))
︸ ︷︷ ︸

=:erroff

. (40)

Proof of Theorem F.6. Recall the definitions d(t)

h := dπ
(t)

h , d̃(t)

h :=
∑t−1

s=1 d
(t)

h , and d̄(t)

h := 1
t−1 d̃

(t)

h .
Furthermore, let d⋆h := dπ

⋆

h for all h ≤ H . Note that the data distribution for D(t)

hybrid is µ(t) =

{µ(t)

h }Hh=1 where µ(t)

h = 1
2 (νh+ d̄

(t)

h ), where νh is the offline distribution. As a result of Definition 4.2,
the offline algorithm Algoff invoked on the dataset D(t)

hybrid outputs a distribution pt ∼ ∆(Π) that
satisfies the bound:

Eπ(t)∼pt
[J(π⋆)− J(π(t))] ≤

H∑
h=1

aγ
t

(
CCh(π

⋆, µ(t), γt) + Eπ(t)∼pt
[CCh(π

(t), µ(t), γt)]
)
+ bγ ,

(41)

with probability at least 1 − δ, where aγ and bγ are the scaling functions for which Algoff is CC-
bounded at scale γ. By taking a union bound over T , the number of iterations, we have that the event
in Eq. (41) occurs for all t ≤ T with probability greater than 1− δT .

Plugging in the definition for the clipped concentrability coefficient above and summing over t from
1, . . . , T , we get that

Reg = E

[
T∑

t=1

J(π⋆)− J(π(t))

]

≤
H∑

h=1

(
T∑

t=1

aγ
t

∥∥∥∥clipγt[dπ⋆

h

µ(t)

h

]∥∥∥∥
1,d⋆

h︸ ︷︷ ︸
(I)

+

T∑
t=1

aγ
t
Eπ(t)∼pt

[∥∥∥∥clipγt[ d(t)

h

µ(t)

h

]∥∥∥∥
1,d

(t)
h

]
︸ ︷︷ ︸

(II)

)
+HTbγ .

For each h ∈ [H], we bound the two terms I and II separately below.

Term (I). Note that µ(t)

h (x, a) ≥ νh(x, a)/2 for any x, a. Thus,

(I) ≤ 2aγ

T∑
t=1

1

t

∥∥∥∥clipγt[dπ⋆

h

νh

]∥∥∥∥
1,dπ⋆

h

= 2aγ

T∑
t=1

1

t
CCh(π

⋆, ν, γt).

13We define risk for the hybrid setting as in Eq. (1). Our result is stated as a bound on the risk to the optimal
policy π⋆, but extends to give a bound on the risk of any comparator π with C⋆ replaced by coverage for π.
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Term (II). We bound this term uniformly for any π(t) ∼ pt. So, fix π(t) and note that

(II) = aγ

T∑
t=1

1

t
E
d
(t)
h

[
min

{
d(t)

h (x, a)

µ(t)

h (x, a)
, γt

}]

= aγ

(
T∑

t=1

1

t
E
d
(t)
h

[
d(t)(x, a)

µ(t)

h (x, a)
I
{
d(t)(x, a)

µ(t)

h (x, a)
≤ γt

}]
︸ ︷︷ ︸

(II.A)

+

T∑
t=1

1

t
E
d
(t)
h

[
γt · I

{
d(t)(x, a)

µ(t)

h (x, a)
> γt

}]
︸ ︷︷ ︸

(II.B)

)
,

where the second line holds since min{u, v} = uI{u ≤ v}+ vI{v < u} for all u, v ∈ R.

In order to bound the two terms appearing above, we use certain properties of coverability, similar to
the analysis of GLOW (Appendix E). For a parameter λ ∈ (0, 1), let us define a burn-in time

τ (λ)

h (x, a) = min

{
t | d̃(t)

h (x, a) ≥ Ccov · µ⋆
h(x, a)

λ

}
, (42)

and observe that
T∑

t=1

E
d
(t)
h

[I
{
t < τ (λ)

h (x, a)
}
] =

∑
x,a

∑
t<τ

(λ)
h (x,a)

d(t)

h (x, a) ≤ 2Ccov

λ
, (43)

which holds for any λ ∈ (0, 1). This bound can be derived by noting that∑
x,a

∑
t<τ

(λ)
h (x,a)

d(t)

h (x, a) =
∑
x,a

d̃(τ
(λ)
h

(x,a))(x, a)

=
∑
x,a

d̃(τ
(λ)
h

(x,a)−1)(x, a) +
∑
x,a

d(τ
(λ)
h

(x,a))(x, a)

≤
∑
x,a

Ccov

λ
µ⋆
h(x, a) +

∑
x,a

Ccovµ
⋆
h(x, a)

≤ Ccov

(
1

λ
+ 1

)
≤ 2Ccov

λ
.

We also recall the follow bound, which is a corollary of the elliptical potential lemma (Lemma D.5):

T∑
t=1

∑
x,a

d(t)

h (x, a)
d(t)

h (x, a)

d̃(t)(x, a)
I
{
t > τ (λ)

h (x, a)
}
≤

T∑
t=1

∑
x,a

d(t)

h (x, a)
d(t)

h (x, a)

d̃(t)(x, a)
I
{
t > τ (1)

h (x, a)
} (i)

≤ 5 log(T )Ccov.

(44)
The inequality (i) can be seen derived by noting that, under the event in the indicator, we have
d̃(t)

h (x, a) ≥ Ccovµ
⋆
h(x, a) and thus d̃(t)

h (x, a) ≥ 1
2 (Ccovµ

⋆
h(x, a) + d̃(t)(x, a)). This gives

T∑
t=1

∑
x,a

d(t)

h (x, a)
d(t)

h (x, a)

d̃(t)(x, a)
I
{
t > τ (1)

h (x, a)
}
≤ 2

T∑
t=1

∑
x,a

d(t)

h (x, a)
d(t)

h (x, a)

d̃(t)(x, a) + Ccovµ⋆
h(x, a)

,

from which we can repeat the steps from Eq. (19) to Eq. (20).

Term (II.A). To bound this term, we introduce a split according to the burn-in time τ (1)

h (x, a), i.e.

(II.A) =

T∑
t=1

1

t
E
d
(t)
h

[
d(t)

h (x, a)

µ(t)

h (x, a)
I
{
d(t)

h (x, a)

µ(t)

h (x, a)
≤ γt

}(
I
{
t ≤ τ (1)

h (x, a)
}
+ I
{
t > τ (1)

h (x, a)
})]

.

The first term is bounded via
T∑

t=1

1

t
E
d
(t)
h

[
d(t)

h (x, a)

µ(t)

h (x, a)
I
{
d(t)

h (x, a)

µ(t)

h (x, a)
≤ γt

}
I
{
t ≤ τ (1)

h (x, a)
}]
≤ γ

T∑
t=1

E
d
(t)
h

[
I
{
t ≤ τ (1)

h (x, a)
}]

≤ 2γCcov,

36



Published as a conference paper at ICLR 2024

by Eq. (43) with λ = 1. The second term is bounded via:

T∑
t=1

1

t
E
d
(t)
h

[
d(t)

h (x, a)

µ(t)

h (x, a)
I
{
d(t)(x, a)

µ(t)

h (x, a)
≤ γt

}
I
{
t > τ (1)

h (x, a)
}]
≤ 2

T∑
t=1

1

t
E
d
(t)
h

[
d(t)

h (x, a)

d̄(t)

h (x, a)
I
{
t > τ (1)

h (x, a)
}]

≤ 2

T∑
t=1

E
d
(t)
h

[
d(t)

h (x, a)

d̃(t)

h (x, a)
I
{
t > τ (1)

h (x, a)
}]

≤ 10 log(T )Ccov,

by using that µ(t)

h (x, a) ≥ d̄
(t)
h (x,a)

2 and Equation (44).

Adding these two terms together gives us the upper bound (II.A) ≤ 2γCcov + 10 log(T )Ccov.

Term (II.B). We have

T∑
t=1

1

t
E
d
(t)
h

[
γtI
{
d(t)

h (x, a)

µ(t)

h (x, a)
> γt

}]
= γ

T∑
t=1

E
d
(t)
h

[
I
{
d(t)

h (x, a)

µ(t)

h (x, a)
> γt

}]
(i)

≤ γ

T∑
t=1

E
d
(t)
h

[
I

{
Ccovµ

⋆
h(x, a)

d̃(t)

h (x, a)
>
γ

2

}]
(ii)
= γ

T∑
t=1

E
d
(t)
h

[
I
{
t ≤ τ (γ/2)

h (x, a)
}]

≤ γ · 4Ccov

γ
= 4Ccov,

where the inequality (i) follows from applying the upper bounds d(t)

h (x, a) ≤ Ccovµ
⋆
h(x, a) and

µ(t)

h (x, a) ≥ 1
2 d̄

(t)

h (x, a), and the inequality (ii) follows from the definition of the burn-in time
(Eq. (42)) with λ = γ/2.

Combining all the bounds above, we get that

(II) ≤ 2aγ (2γCcov + 10 log(T )Ccov + 2Ccov)

= 4aγCcov (γ + 10 log(T ) + 1) .

Adding together the terms so far, we can conclude the regret bound:

Reg ≤ 2aγ

H∑
h=1

T∑
t=1

1

t
CCh(π

⋆, ν, γt) +H (4aγCcov (γ + 10 log(T ) + 1) + Tbγ) .

It follows that the policy π̂ = Unif(π(1), . . . , π(T )) satisfies the risk bound

Risk ≤ 2aγ
T

H∑
h=1

T∑
t=1

1

t
CCh(π

⋆, ν, γt) +H

(
4
aγCcov

T
(γ + 10 log(T ) + 1) + bγ

)
︸ ︷︷ ︸

:=erroff

=
2aγ
T

H∑
h=1

T∑
t=1

1

t
CCh(π

⋆, ν, γt) + Õ

(
H

(
Ccovaγ
T

+ bγ

))
,

with probability at least 1− δT , where in the last line we have used that γ ∈ [0, 1].

We now prove Theorem 4.1 as a consequence of Theorem F.6.

Theorem 4.1 (Risk bound for H2O). Let T ∈ N be given, let Doff consist of H · T samples from
data distribution ν, and suppose that ν satisfies C⋆-single-policy concentrability. Let Algoff be CC-
bounded at scale γ ∈ (0, 1) under Assumption(·), with parameters aγ and bγ . Suppose that ∀ t ∈
[T ] and π(1), . . . , π(t) ∈ Π, Assumption(µ(t),M⋆) holds for µ(t) := {1/2(νh + 1/t

∑t
i=1 d

π(i)

h )}Hh=1.

37



Published as a conference paper at ICLR 2024

Then, with probability at least 1 − δT , the risk of H2O (Algorithm 2) with T , Algoff , and Doff is
bounded as14

Risk ≤ Õ
(
H

(
aγ(C⋆ + Ccov)

T
+ bγ

))
. (8)

Proof of Theorem 4.1. Under the assumptions in the theorem statement, Theorem F.6 implies that

Risk ≤ 2aγ
T

H∑
h=1

T∑
t=1

1

t
CCh(π

⋆, ν, γt) +H

(
4
aγCcov

T
(γ + 10 log(T ) + 1) + bγ

)
.

Since maxh maxx,a

∣∣∣dπ⋆

h (x,a)
νh(x,a)

∣∣∣ ≤ C⋆, we have CCh(π
⋆, ν, γt) ≤ C⋆, so we can simplify the first

term above to

2aγ
T

H∑
h=1

T∑
t=1

1

t
CCh(π

⋆, ν, γt) ≤ 2aγC⋆

T
H

T∑
t=1

1

t
≤ 6aγC⋆

T
H log(T ),

using the bound on the harmonic number
∑T

t=1
1/t ≤ 3 log(T ). Combining with the remainder of

the risk bound in Theorem F.6 gives us

Risk ≤ Haγ
T

(6C⋆ log(T ) + 4Ccov(γ + 10 log(T ) + 1))+Hbγ = Õ

(
H

(
aγ(C⋆ + Ccov)

T
+ bγ

))
,

where we have used the fact that γ ∈ [0, 1].

Corollary F.1. Let T ∈ N and Doff consist of H · T samples from data distribution ν. Suppose
that for all t ∈ [T ] and π(1), . . . , π(t) ∈ Π, Assumption(µ(t),M⋆) holds for µ(t) := {1/2(νh +
1/t
∑t

i=1 d
π(i)

h )}Hh=1. Let Algoff be CC-bounded at scale γ ∈ [0, 1] under Assumption(·) and with
parameters aγ = a

γ and bγ = bγ. Consider the H2O algorithm with inputs T , Algoff , and Doff .
Then,

• If Algoff is CC-bounded at scale γ = Θ̃
(√

aCcov/bT
)

and T is such that γ ∈ [0, 1], we have

Risk ≤ 2

√
ab

TCcov

H∑
h=1

T∑
t=1

1

t
CCh(π

⋆, ν, γ(t)) + Õ

(
H

√
Ccovab

T

)
.

with probability greater than 1− δT .

• If ν satisfies C⋆-single-policy concentrability and Algoff is CC-bounded at scale γ =

Θ̃
(√

a(C⋆+Ccov)/bT
)

and T is such that γ ∈ [0, 1], then

Risk ≤ Õ
(
H
√

(C⋆+Ccov)ab/T
)
,

with probability greater than 1− δT .

Proof of Corollary F.1. We start with the first case. We recall the definition of erroff appearing in
Theorem F.6:

erroff := H

(
4aγCcov

T
(γ + 8 log(T ) + 1) + bγ

)
= Õ

(
H

(
Ccovaγ
T

+ bγ

))
.

and the risk bound from Theorem F.6.

Risk ≤ 2aγ
T

H∑
h=1

T∑
t=1

1

t
CCh(π

⋆, ν, γ(t)) + erroff . (45)

14We define risk for the hybrid setting as in Eq. (1). Our result is stated as a bound on the risk to the optimal
policy π⋆, but extends to give a bound on the risk of any comparator π with C⋆ replaced by coverage for π.
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Plugging in aγ = a
γ and bγ = bγ into erroff gives

erroff = H

(
4

a

γT
Ccov (γ + 8 log(T ) + 1) + bγ

)
.

The above is optimized by picking γ = 2
√

a
b
Ccov

T (8 log(T ) + 1). Plugging this in gives us

erroff = H

(
4

√
abCcov(8 log(T ) + 1)

T
+ 4

aCcov

T

)
= Õ

(
H

√
abCcov

T

)
,

as desired. For the second result, recall from Theorem 4.1 that the risk bound when ν satisfied
C⋆-policy-concentrability is

Risk ≤ Haγ
T

(6C⋆ log(T ) + 4Ccov(γ + 8 log(T ) + 1)) +Hbγ .

Plugging in aγ = a
γ and bγ = bγ gives us

Risk ≤ Ha

Tγ
(6C⋆ log(T ) + 4Ccov(γ + 8 log(T ) + 1)) +Hbγ.

This expression is optimized by γ =
√

a(6C⋆ log(T )+4Ccov(γ+8 log(T )+1))
Tb , which when substituted

gives us the risk bound

Risk ≤ 2H

√
ab (6C⋆ log(T ) + 4Ccov(γ + 8 log(T ) + 1))

T
= Õ

(
H

(√
(C⋆ + Ccov)ab

T

))
,

as desired.

F.5 PROOFS FOR H2O EXAMPLES (APPENDIX F.1)
F.5.1 SUPPORTING TECHNICAL RESULTS

Lemma F.2 (Telescoping Performance Difference (Xie and Jiang (2020, Theorem 2); Jin et al. (2021b,
Lemma 3.1))). For any f ∈ F , we have that

J(π⋆)− J(πf ) ≤
H∑

h=1

Edπ⋆

h
[Thfh+1(xh, ah)− fh(xh, ah)] +E

d
πf
h

[fh(xh, ah)−Thfh+1(xh, ah)].

This bound follows from a straightforward adaptation of the proof of Xie and Jiang (2020, Theorem
2) to the finite horizon setting.

Lemma F.3. For all policy π ∈ Π, value function f ∈ F , timestep h ∈ [H], data distribution
µ = {µh}Hh=1 where µh ∈ ∆(X ×A), and γ ∈ R+, we have

Edπ
h
[[∆hf ](xh, ah)] ≤ Eµh

[
[∆hf ](xh, ah) · clipγ

[
dπh(xh, ah)

µh(xh, ah)

]]
+ 2Pπ

[
dπh(xh, ah)

µh(xh, ah)
> γ

]
.

Similarly,

Edπ
h
[−[∆hf ](xh, ah)] ≤ Eµh

[
(−[∆hf ](xh, ah)) · clipγ

[
dπh(xh, ah)

µh(xh, ah)

]]
+ 2Pπ

[
dπh(xh, ah)

µh(xh, ah)
> γ

]
,

where recall that [∆hf ](x, a) := fh(x, a)− [Thfh+1](x, a).

Proof of Lemma F.3. In the following, we prove the first inequality. The second inequality follows
similarly. Using that |[∆hf ](x, a)| ≤ 1 for any x, a ∈ X ×A, we have

Edπ
h
[[∆hf ](xh, ah)] ≤ Edπ

h
[[∆hf ](xh, ah) · I{µh(xh, ah) ̸= 0}] + Edπ

h
[I{µh(xh, ah) = 0}].

For the second term, for any γ > 0,

Edπ
h
[I{µh(xh, ah) = 0}] ≤ Edπ

h

[
I
{
dπh(xh, ah)

µh(xh, ah)
> γ

}]
= Pπ

[
dπh(xh, ah)

µh(xh, ah)
> γ

]
.
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For the first term, using that u ≤ min{u, v}+uI{u ≥ v} for all u, v ≥ 0, and that |[∆hf ](x, a)| ≤ 1
for any x, a ∈ X ×A, we get that

Edπ
h
[[∆hf ](xh, ah) · I{µh(xh, ah) ̸= 0}]

= Eµh

[
[∆hf ](xh, ah) ·

dπh(xh, ah)

µh(xh, ah)
I{µ(xh, ah) ̸= 0}

]
≤ Eµh

[
[∆hf ](xh, ah) · clipγ

[
dπh(xh, ah)

µh(xh, ah)

]
I{µh(xh, ah) ̸= 0}

]
+ Eµh

[
dπh(xh, ah)

µh(xh, ah)
I
{
dπh(xh, ah)

µh(xh, ah)
> γ

}
I{µh(xh, ah) ̸= 0}

]
= Eµh

[
[∆hf ](xh, ah) · clipγ

[
dπh(xh, ah)

µh(xh, ah)

]
I{µh(xh, ah) ̸= 0}

]
+ Edπ

h

[
I
{
dπh(xh, ah)

µh(xh, ah)
> γ

}]
.

Furthermore, also note that

Eµh

[
[∆hf ](xh, ah) · clipγ

[
dπh(xh, ah)

µh(xh, ah)

]
I{µh(xh, ah) = 0}

]
=

∑
(xh,ah) s.t. µh(xh,ah)=0

µh(xh, ah) · [∆hf ](xh, ah) · clipγ
[
dπh(xh, ah)

µh(xh, ah)

]
= 0.

The final bound follows by combining the above three terms.

Lemma F.4. For any policy π, data distribution µ = {µh}Hh=1 where µh ∈ ∆(X ×A), scale γ ∈ R+

and horizon h ∈ [H], we have

Pπ

[
dπh(xh, ah)

µh(xh, ah)
> γ

]
≤ 2

γ

∥∥∥∥clipγ[dπhµh

]∥∥∥∥
1,dπ

h

.

Proof of Lemma F.4. Note that

Pπ

[
dπh(xh, ah)

µh(xh, ah)
> γ

]
= Edπ

h

[
I
{
dπh(xh, ah)

µh(xh, ah)
> γ

}]
≤ Edπ

h

[
I
{

dπh(xh, ah)

µh(x, a) + γ−1dπh(xh, ah)
>
γ

2

}]
≤ 2

γ
Edπ

h

[
dπh(xh, ah)

µh(xh, ah) + γ−1dπh(xh, ah)

]
≤ 2

γ
Edπ

h

[
clipγ

[
dπh(xh, ah)

µh(xh, ah)

]]
=

2

γ

∥∥∥∥clipγ[dπhµh

]∥∥∥∥
1,dπ

h

,

where the first inequality follows from

γ−1dπh(x, a) > µh(x, a) =⇒ γ−1dπh(x, a) >
1

2
(µh(x, a) + γ−1dπh(x, a)),

and the second inequality follows by Markov’s inequality.

Lemma F.5. For any policy π, data distribution µ = {µh}Hh=1 where µh ∈ ∆(X × A), scale
γ ∈ R+, and horizon h ∈ [H], we have∥∥∥∥clipγ[dπhµh

]∥∥∥∥2
2,µh

≤ 2

∥∥∥∥clipγ[dπhµh

]∥∥∥∥
1,dπ

h

.

Proof of Lemma F.5. Beginning with the left-hand side, we have,

Eµh

[
min

{
dπh(xh, ah)

µh(xh, ah)
, γ

}2
]

(i)

≤ 2Eµh

[(
dπh(xh, ah)

µh(xh, ah)

)2

I
{
dπh(xh, ah)

µh(xh, ah)
≤ γ

}]
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+ 2Eµh

[
γ · d

π
h(xh, ah)

µh(xh, ah)
· I
{
dπh(xh, ah)

µh(xh, ah)
> γ

}]
(ii)

≤ 2Edπ
h

[
dπh(xh, ah)

µh(xh, ah)
I
{
dπh(xh, ah)

µh(xh, ah)
≤ γ

}]
+ 2Edπ

h

[
γ · I

{
dπh(xh, ah)

µh(xh, ah)
> γ

}]
(iii)

≤ 2Edπ
h

[
min

{
dπh(xh, ah)

µh(xh, ah)
, γ

}]
.

In (i), we have used that for all u, v ∈ R+, min{u, v} ≤ uI{u ≤ v} +
√
uvI{v < u} and that

(u+v)2 ≤ 2(u2+v2), thus that min{u, v}2 ≤ 2(u2I{u ≤ v}+uvI{v < u}). In (ii), we have done
a change of measure from µh to dπh . In (iii), we have used that min{u, v} = uI{u ≤ v}+vI{v < u}.

F.5.2 PROOFS FOR MABO.CR (PROOF OF THEOREM F.1)
Suppose the dataset D = {Dh}h≤H is sampled from the offline distribution µ(1:n). In this section,
we analyze our regularized and clipped variant of MABO (Eq. (9)). We analyze MABO.CR under the
following density ratio assumption. Recall for any sequence of data distributions µ(1), . . . µ(n), we
denote the mixture distribution by µ(1:n) = {µ(1:n)

h }Hh=1, defined by µ(1:n)

h := 1
n

∑n
i=1 µ

(i)

h .

Assumption F.4. For a given sequence of data distributions µ(1), . . . µ(n), we have that for all π ∈ Π,
and for all h ∈ [H],

dπh
µ(1:n)

h

∈ W.

We first note the following bound for the hypothesis f̂ returned by MABO.CR.

Lemma F.6. LetD = {Dh}Hh=1 be a dataset consisting ofH ·n samples from µ(1), . . . , µ(n). Suppose
that F satisfies Assumption 2.1 and thatW satisfies Assumption F.4 with respect to µ(1:n). Let f̂ be
the function returned by MABO.CR, given in Eq. (9), when executed on {Dh}h≤H with parameters
γ,F , and the augmented weight function classW defined in Eq. (34). Then, with probability at least
1− δ, we have

H∑
h=1

∣∣∣Eµ
(1:n)
h

[
[∆hf̂ ](xh, ah) · w̌h(xh, ah)

]∣∣∣ ≤ H∑
h=1

20

γ(n)
E
µ
(1:n)
h

[
(w̌h(xh, ah))

2
]
+

7

18
H2β(n), (46)

for all w ∈ W , where β(n) := 36γ(n)

n−1 log(24|F||W|H2/δ).

Proof of Lemma F.6. Repeating the argument of Lemma E.2 (a), we can establish that Q⋆ satisfies
the following bound for all h ∈ [H], w ∈ W:

ÊDh

[(
[∆̂hQ

⋆](xh, ah, rh, x
′
h+1)

)
· w̌h(xh, ah)

]
≤ ÊDh

[
α(n) ·

(
w̌h(xh, ah)

)2]
+ β(n), (47)

with probability at least 1 − δ, where α(n) = 8/γ(n) and β(n) = 36γ(n)
/n−1 log(6|F||W|H/δ) ≤

36γ(n)
/n−1 log(24|F||W|H2/δ). Going forward, we condition on the event that this holds. Now,

since the right-hand side of Eq. (47) is independent of the sign of w̌h, we can apply this to −w̌ ∈ W
to conclude that∣∣∣ÊDh

[(
[∆̂hQ

⋆](xh, ah, rh, x
′
h+1)

)
· w̌h(xh, ah)

]∣∣∣ ≤ ÊDh

[
α(n) ·

(
w̌h(xh, ah)

)2]
+ β(n).

Summing over h ∈ [H] and taking the max over w ∈ W , we can conclude that:

max
w∈W

H∑
h=1

∣∣∣ÊDh

[(
[∆̂hQ

⋆](xh, ah, rh, x
′
h+1)

)
· w̌h(xh, ah)

]∣∣∣−ÊDh

[
α(n) ·

(
w̌h(xh, ah)

)2] ≤ Hβ(n).

By Assumption 2.1 and the definition of the hypothesis f̂ returned by MABO.CR, we have:

max
w∈W

H∑
h=1

∣∣∣ÊDh

[(
[∆̂hf̂ ](xh, ah, rh, x

′
h+1)

)
· w̌h(xh, ah)

]∣∣∣− ÊDh

[
α(n) ·

(
w̌h(xh, ah)

)2] ≤ Hβ(n),
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and in particular the bound that for all w ∈ W
H∑

h=1

ÊDh

[(
[∆̂hf̂ ](xh, ah, rh, x

′
h+1) · w̌h(xh, ah)

)]
≤

H∑
h=1

ÊDh

[
α(n) ·

(
w̌h(xh, ah)

)2]
+Hβ(n).

Repeating the argument for Lemma E.2 (b), we can conclude that for all w ∈ W
H∑

h=1

E
µ
(1:n)
h

[
[∆hf̂ ](xh, ah) · w̌h(xh, ah)

]
≤

H∑
h=1

20

γ(n)
E
µ
(1:n)
h

[
(w̌h(xh, ah))

2
]
+

7Hβ(n)

18
.

Applying this to w(h) ∈ W and to −w(h) ∈ W , and again noting that the right-hand side is
independent of the sign of w̌, we can conclude that for each h ∈ [H], w ∈ W:∣∣∣Eµ

(1:n)
h

[
[∆hf̂ ](xh, ah) · w̌h(xh, ah)

]∣∣∣ ≤ 20

γ(n)
E
µ
(1:n)
h

[
(w̌h(xh, ah))

2
]
+

7Hβ(n)

18
,

Summing over h ∈ [H] gives the desired bound.

Theorem F.1 (MABO.CR is CC-bounded). Let D = {Dh}Hh=1 consist of H · n samples from
µ(1), . . . , µ(n). For any γ ∈ R+, the MABO.CR algorithm (Eq. (9)) with parameters F , augmented
classW defined in Eq. (34) in Appendix F.1.1, and γ is CC-bounded at scale γ under the Assumption
that Q⋆ ∈ F and that for all π ∈ Π and h ∈ [H], dπ

h/µ(1:n)
h ∈ W .

Proof of Theorem F.1. Let π̂ = πf̂ . Using the performance difference lemma (Lemma F.2), we note
that

J(π⋆)− J(π̂) ≤
H∑

h=1

Edπ⋆

h
[−[∆hf̂ ](xh, ah)] +

H∑
h=1

Edπ̂
h
[[∆hf̂ ](xh, ah)]. (48)

However, note that due to Lemma F.3 and Lemma F.4, we have that

Edπ̂
h
[([∆hf̂ ](xh, ah))] ≤ E

µ
(1:n)
h

[
([∆hf̂ ](xh, ah))clipγn

[
dπ̂h(xh, ah)

µ(1:n)

h (xh, ah)

]]
︸ ︷︷ ︸

(I)

+
4

γn

∥∥∥∥clipγn[ dπ̂h
µ(1:n)

h

]∥∥∥∥
1,dπ̂

h

,

(49)

and,

Edπ⋆

h
[(−[∆hf̂ ](xh, ah))] ≤ E

µ
(1:n)
h

[
(−[∆hf̂ ](xh, ah))clipγn

[
dπ

⋆

h (xh, ah)

µ(1:n)

h (xh, ah)

]]
︸ ︷︷ ︸

(II)

+
4

γn

∥∥∥∥clipγn[ dπ⋆

h

µ(1:n)

h

]∥∥∥∥
1,dπ⋆

h

.

(50)

We bound the terms (I) and (II) separately below. Before we delve into these bounds, note that using
Lemma F.6, we have with probability at least 1− δ,

max
w∈W

H∑
h=1

(∣∣∣Eµ
(1:n)
h

[
w̌h([∆hf̂ ](xh, ah))

]∣∣∣− 20

γ(n)
E
µ
(1:n)
h

[
(w̌h(xh, ah))

2
])
≤ 7

18
H2β(n), (51)

where β(n) := 36γn
n−1 log(24|F||W|H2/δ). Moving forward, we condition on the event under which

Eq. (51) holds.

Bound on Term (I). Define w via wh :=
dπ̂
h

µ
(1:n)
h

and w̌h := clipγn

[
dπ̂
h

µ
(1:n)
h

]
, and note that due to

Assumption F.4, we have that w ∈ W . Thus, using (51), we get that

H∑
h=1

E
µ
(1:n)
h

[(−[∆hf̂ ](xh, ah))w̌h(xh, ah)] ≤
H∑

h=1

∣∣∣Eµ
(1:n)
h

[(−[∆hf̂ ](xh, ah))w̌h(xh, ah)]
∣∣∣
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≤
H∑

h=1

20

γ(n)
E
µ
(1:n)
h

[
(w̌h(xh, ah))

2
]
+

7

18
H2β(n)

=

H∑
h=1

20

γ(n)

∥∥clipγn[wh]
∥∥2
2,µ

(1:n)
h

+
7

18
H2β(n)

≤
H∑

h=1

40

γ(n)

∥∥clipγn[wh]
∥∥
1,dπ̂

h

+
7

18
H2β(n),

where the last step follows by Lemma F.5 and the definition of wh.

Bound on Term (II). Define w⋆
h :=

dπ⋆

h

µ
(1:n)
h

and w̌⋆
h := clipγn

[
dπ⋆

h

µ
(1:n)
h

]
, and again note that due to

Assumption F.4, we have that wh ∈ Wh. Thus, using (51), and repeating the same arguments as
above, we get that

(II) ≤
H∑

h=1

40

γ(n)

∥∥clipγn[w⋆
h]
∥∥
1,dπ⋆

h

+
7

18
H2β(n),

Plugging the two bounds above in (53) and (54), and then further in (52), and using the definitions
for wh and w⋆

h, we get that with probability at least 1− δ,

J(π⋆)− J(π̂) ≤
H∑

h=1

40

γn

∥∥∥∥clipγn[ dπ⋆

h

µ(1:n)

h

]∥∥∥∥
1,dπ⋆

h

+

H∑
h=1

5

γn

∥∥∥∥clipγn[ dπ̂h
µ(1:n)

h

]∥∥∥∥
1,dπ̂

h

+
14

18
H2β(n)

=

H∑
h=1

40

γ(n)

(∥∥∥∥clipγn[ dπ⋆

h

µ(1:n)

h

]∥∥∥∥
1,dπ⋆

h

+

∥∥∥∥clipγn[ dπ̂h
µ(1:n)

h

]∥∥∥∥
1,dπ̂

h

)
+

14

18
H2β(n)

=

H∑
h=1

40

γ(n)
(CCh(π

⋆, µ(1:n), γn) + CCh(π̂, µ
(1:n), γn)) + 28H2γ

n

n− 1
log(24|F||W|H2/δ)

≤
H∑

h=1

40

γn
(CCh(π

⋆, µ(1:n), γn) + CCh(π̂, µ
(1:n), γn)) + 56H2γ log(24|F||W|H2/δ),

which establishes that the algorithm is CC-bounded for scale γ, with scaling functions aγ = 40
γ and

bγ = 56H2γ log(24|F||W|H2/δ).

Theorem 4.2 (Risk bound for HYGLOW). Let ε > 0 be given, let Doff consist of H · T
samples from data distribution ν, and suppose that ν satisfies C⋆-single-policy concentrabil-
ity. Suppose that Q⋆ ∈ F and that for all t ∈ [T ], π ∈ Π, and h ∈ [H], we have
dπ
h/µ(t)

h ∈ W , where µ(t)

h := 1/2(νh + 1/t
∑t

i=1 d
π(i)

h ). Then, HYGLOW (Algorithm 3) with
inputs T = Θ̃((H

4(Ccov+C⋆)/ε2) · log(|F||W|/δ)), F , augmented W defined in Eq. (34), γ =

Θ̃
(√

(C⋆+Ccov)/TH2 log(|F||W|/δ)

)
, and Doff returns an ε-suboptimal policy with probability at least

1− δT after collecting N = Õ
(

H2(Ccov+C⋆)
ε2 log(|F||W|/δ)

)
trajectories.

Proof of Theorem 4.2. This follows by combining Theorem F.1 with Corollary F.1.

F.5.3 PROOFS FOR FITTED Q-ITERATION (FQI)
In this section we prove Theorem F.3.

We quote the following generalization bound for least squares regression in the adaptive setting.
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Lemma F.7 (Least squares generalization bound; Song et al. (2023, Lemma 3)). LetR > 0, δ ∈ (0, 1),
andH : X 7→ [−R,R] a class of real-valued functions. LetD = {(x1, y1) . . . (xT , yT )} be a dataset
of T points where xt ∼ ρt(x1:t−1, y1:t−1) and yt = h⋆(xt) + εt for some realizable h⋆ ∈ H and εt
is conditionally mean-zero, i.e. E[yt | xt] = h⋆(xt). Suppose maxt |yt| ≤ R and maxx |h⋆(x)| ≤ R.
Then the least squares solution ĥ ∈ argminh∈H

∑T
t=1(h(xt)− yt)2 satisfies that with probability

at least 1− δ,
T∑

t=1

Ex∼ρt

[
(ĥ(x)− h⋆(x))2

]
≤ 256R2 log(2|H|/δ).

Using the above theorem, we can show the following concentration result for FQI.

Lemma F.8 (Concentration bound for FQI). With probability at least 1 − δ, we have that for all
h ∈ [H],

E
µ
(1:n)
h

[
([∆hf̂ ](xh, ah))

2
]
=

1

n

n∑
i=1

E
(xh,ah)∼µ

(i)
h

[(
f̂h(xh, ah)− [Thf̂h+1](xh, ah)

)2]
≤ 1024

log(2|F|H/δ)
n

.

Proof of Lemma F.8. Fix h + 1. Consider the regression problem induced by the dataset Dh =

{(z(i)

h , y(i)

h )}ni=1 where z(i)

h = (x(i)

h , a
(i)

h ) ∼ µ(i)

h and y(i)

h = r(i) + maxa′ f̂h+1(x
(i)

h+1, a
′). This

problem is realizable via the regression function E[y(i)

h | z
(i)

h ] = h⋆(z(i)

h ) = T f̂h+1(z
(i)

h ) ∈ F , and
satisfies that |y(i)

h | ≤ 2, |h⋆(z(i)

h )| ≤ 2. In this regression problem, the least squares solution from
Lemma F.7 is precisely the FQI solution, so by Lemma F.7 we have

E
(xh,ah)∼µ

(1:n)
h

(
f̂h(xh, ah)− [T f̂h+1](xh, ah))

)2
=

1

n

n∑
i=1

E
(xh,ah)∼µ

(i)
h

(
f̂h(xh, ah)− [T f̂h+1](xh, ah)

)2
≤ 1024

log(2|F|/δ)
n

,

with high probability. Taking a union bound over h ∈ [H] gives the desired result.

Theorem F.3. The FQI algorithm is CC-bounded under Assumption F.2 with scaling functions
aγ = 6

γ and bγ = 1024 log(2n|F|)γ, for all γ > 0 simultaneously. As a consequence, when invoked

within H2O, we have Risk ≤ Õ
(
H
√

(C⋆+Ccov) log(|F|δ−1)/T
)

with probability at least 1− δT .

Proof of Theorem F.3. Let π̂ = πf̂ . Using the performance difference lemma (given in Lemma F.2),
we note that

J(π⋆)− J(π̂) ≤
H∑

h=1

Edπ⋆

h
[−[∆hf̂ ](xh, ah)] +

H∑
h=1

Edπ̂
h
[[∆hf̂ ](xh, ah)]. (52)

However, note that due to Lemma F.3 and Lemma F.4, we have that

Edπ̂
h
[([∆hf̂ ](xh, ah))] ≤ E

µ
(1:n)
h

[
([∆hf̂ ](xh, ah))clipγn

[
dπ̂h(xh, ah)

µ(1:n)

h (xh, ah)

]]
︸ ︷︷ ︸

(I)

+
4

γn

∥∥∥∥clipγn[ dπ̂h
µ(1:n)

h

]∥∥∥∥
1,dπ̂

h

,

(53)

and,

Edπ⋆

h
[(−[∆hf̂ ](xh, ah))] ≤ E

µ
(1:n)
h

[
(−[∆hf̂ ](xh, ah))clipγn

[
dπ

⋆

h (xh, ah)

µ(1:n)

h (xh, ah)

]]
︸ ︷︷ ︸

(II)

+
4

γn

∥∥∥∥clipγn[ dπ⋆

h

µ(1:n)

h

]∥∥∥∥
1,dπ⋆

h

.

(54)
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Bound on Term (I). Note that

E
µ
(1:n)
h

[
([∆hf̂ ](xh, ah))clipγn

[
dπ̂h(xh, ah)

µ(1:n)

h (xh, ah)

]]
≤

√√√√E
µ
(1:n)
h

[(
[∆hf̂ ](xh, ah)

)2]
E
µ
(1:n)
h

[(
clipγn

[
dπ̂h(xh, ah)

µ(1:n)

h (xh, ah)

])2
]

≤
√

2048
log(2|F|H)

n

∥∥∥∥clipγn[ dπ̂h
µ(1:n)

h

]∥∥∥∥
2,µ

(1:n)
h

,

where the second line follows from Cauchy-Schwarz and the last line follows by Lemma F.8. AM-GM
inequality implies that√

2048 log(2|F|H)

n

∥∥∥∥clipn[ dπ̂h
µ(1:n)

h

]∥∥∥∥
2,µ

(1:n)
h

≤ 1

2

(
1

γn

∥∥∥∥clipγn[ dπ̂h
µ(1:n)

h

]∥∥∥∥2
2,µ

(1:n)
h

+ 2048 log(2|F|H)γ

)

≤ 1

2

(
4

γn

∥∥∥∥clipγn[ dπ̂h
µ(1:n)

h

]∥∥∥∥
1,dπ̂

h

+ 2048 log(2|F|H)γ

)
,

where the last line is due to Lemma F.5.

Bound on Term (II). Repeating the same argument above for π⋆, we get that

(II) ≤ 2

γn

∥∥∥∥clipγn[ dπ⋆

h

µ(1:n)

h

]∥∥∥∥
1,dπ⋆

h

+ 1024 log(2|F|H)γ.

Combining the above bounds implies that

J(π⋆)− J(π̂) ≤
H∑

h=1

2

γn

(∥∥∥∥clipγn[ dπ⋆

h

µ(1:n)

h

]∥∥∥∥
1,dπ⋆

h

+

∥∥∥∥clipγn[ dπ̂h
µ(1:n)

h

]∥∥∥∥
1,dπ̂

h

)
+ 2048 log(2|F|H)γ

=

H∑
h=1

2

γn
(CCh(π

⋆, µ(1:n), γ) + CCh(π̂, µ
(1:n), γ)) + 2048 log(2|F|H)γ,

which shows that FQI is CC-bounded at scale γ under Assumption F.2, with scaling functions aγ = 2
γ

and bγ = 2048 log(2|F|H)γ.

It remains to show the stated risk bound when FQI is applied within H2O. This follows by applying
Corollary F.1.

F.5.4 PROOFS FOR MODEL-BASED MLE
In this section we prove Theorem F.5. We quote the following generalization bound for maximum
likelihood estimation (MLE) in the adaptive setting.

Lemma F.9 (MLE generalization bound; Agarwal et al. (2020, Theorem 18)). Consider a sequential
conditional probability estimation setting with an instance space Z and a target space Y and
conditional density p(y | z). We are given F : (Z × Y) → R. We are given a dataset D =
{(zt, yt)}Tt=1 where zt ∼ Dt = Dt(z1:t−1, y1:t−1) and yt ∼ p(· | zt). Fix δ ∈ (0, 1), assume
|F| < ∞ and there exists f⋆ ∈ F such that f⋆(y | z) = p(y | z). Then, with probability at least
1− δ,

T∑
t=1

Ez∼ρt

∥∥∥f̂(· | z)− f⋆(· | z)∥∥∥2
tv
≤ 2 log(|F|/δ),

where

f̂ ∈ argmax
f∈F

T∑
t=1

log f(yt | zt).

Recall the notation that each model M ∈M defines a conditional probability distribution of the form
M(r, x′ | x, a). We apply the above generalization bound to our setting to obtain the following.
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Corollary F.2. Under Assumption F.3, we have that the model-based maximum likelihood estimator
of Equation (38) satisfies

∀h ∈ [H] : E
µ
(1:n)
h

[∥∥∥M̂h(· | xh, ah)−M⋆
h(· | xh, ah)

∥∥∥2
tv

]
≤ 2

log(|M|H/δ)
n

.

Note that we have taken an extra union bound over H so that the MLE succeeds at each layer.

This is easily seen to imply an error bound between the associated Bellman operators.

Corollary F.3. Let [T̂ f ](x, a) = E
(r,x′)∼M̂(·|x,a)[r +maxa′ f(x′, a′)] denote the Bellman optimal-

ity operator of M̂ , and T denote the Bellman optimality operator of M⋆. Then we have that for all
h ∈ [H] and for all f : X ×A → [0, 1],

E
µ
(1:n)
h

[(
[T̂hf ](xh, ah)− [Thf ](xh, ah)

)2]
≤ 8

log(|M|H/δ)
n

.

Proof of Corollary F.3. Notice that

[T̂hf ](x, a)− [Thf ](x, a) = E
(r,x′)∼M̂(x,a)

[
r +max

a′
f(x′, a′)

]
− E(r,x′)∼M⋆(x,a)

[
r +max

a′
f(x′, a′)

]
≤ 2
∥∥∥M̂h(· | x, a)−M⋆

h(· | x, a)
∥∥∥
tv
.

Theorem F.5. The model-based MLE algorithm is CC-bounded under Assumption F.3 for all γ > 0
simultaneously, with scaling functions aγ = 6

γ and bγ = 8 log(|M|H/δ)γ. As a consequence, when

invoked within H2O, we have Risk ≤ Õ
(
H
√

(C⋆+Ccov) log(|M|Hδ−1)/T
)

with probability at least
1− δT .

Proof of Theorem F.5. We note that Corollary F.2 implies a squared Bellman error bound for Q⋆
M̂

,

the optimal value function for M̂ , since

∀x, a :
(
[T̂hQ⋆

M̂,h+1
](x, a)− [ThQ⋆

M̂,h+1
](x, a)

)2
=
(
Q⋆

M̂,h
(x, a)− [ThQ⋆

M̂,h+1
](x, a)

)2
,

by the optimality equation for Q⋆
M̂

. Thus we have

∀h ∈ [H] : E
µ
(1:n)
h

[(
Q⋆

M̂,h
(xh, ah)− [ThQ⋆

M̂,h+1
](xh, ah)

)2]
≤ 8

log(|M|H/δ)
n

. (55)

This is enough to repeat the proof of CC-boundedness for FQI (Theorem F.3), with Q⋆
M̂

taking

the place of the FQI solution f̂ . Indeed, the only algorithmic property that we used for FQI was
Lemma F.8, which also holds for Q⋆

M̂
by Equation (55). Tracking the slightly different constants

resulting gives us the desired values for aγ and bγ .
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