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ABSTRACT

Attribution methods compute importance scores for input features to explain the output predictions
of deep models. However, accurate assessment of the performance of attribution methods is chal-
lenged by the lack of ground truth along with other confounding factors such as attribution post-
processing and explanation objectives. In this paper, we first identify a set of fidelity criteria that
must be satisfied for reliable evaluation of attribution methods. Then, we introduce a Trojaned
model based benchmarking framework that adheres to the desired fidelity criteria. We theoretically
establish the superiority of our approach over existing benchmarks for well-founded attribution eval-
uation. With extensive analysis, we also identify a setup for a consistent and fair benchmarking of
attribution methods across different underlying methodologies. This setup is ultimately employed
for a comprehensive comparison of existing methods using our benchmark. Finally, our analysis
also provides guidance for defending against backdoor attacks using existing attribution methods.

1 INTRODUCTION

Deep learning models have made remarkable strides across diverse domains (He et al., 2016; Ren et al., 2015; Good-
fellow et al., 2014) owing to their capacity to learn intricate representations through numerous parameters. However,
the extensive parameter scale that contributes to their success also renders these models less interpretable for their
decisions, which limits their applicability in high-stake tasks (Gade et al., 2019; Tjoa & Guan, 2020).

In an effort to provide explanations for model predictions, attribution methods (Simonyan et al., 2014; Zeiler & Fergus,
2014; Sundararajan et al., 2017) ascribe importance scores, referred to as attributions, to the input features. However,
due to the absence of ground truth for attributions, the assessment of attribution methods relies on alternate techniques,
e.g., feature perturbations (Samek et al., 2016; Hooker et al., 2019; Rong et al., 2022). This compromises the reliability
of the evaluation of explanations. The problem exacerbates in the presence of other confounding factors, such as post-
processing of the attribution scores (Yang et al., 2023b). Challenges in assessing attribution methods has often led to
the development of additional explanatory techniques designed to clarify the explanations themselves (Rudin, 2019;
Han et al., 2022), which is counter-productive.

In this paper, we first define a set of clear fidelity criteria that Explainable Artificial Intelligence (XAI) benchmarks
should adhere to. We argue that these benchmarks should ensure fidelity to both the explained model and the input,
thereby satisfying both functional mapping invariance and input distribution invariance. Moreover, we stress that
attribution benchmarks should offer two essential components; namely, verifiable ground truth for attributions and
sensitive metrics for evaluating them. Our foundational criteria not only set a standard for benchmarking but also
facilitate a clear assessment of the existing XAI benchmarks. We then propose a new XAI benchmark for attribution
methods based on neural Trojan (Gu et al., 2019; Chen et al., 2019). Neural Trojans or backdoor attacks render a
model sensitive to a specific trigger pattern to control their predictions. We propose to leverage this explicit control to
establish ground truth attributions for the model. Through a theoretical analysis, we establish a superior fidelity of this
approach to the model and the input.

Currently, assessment of attribution methods is also confounded by the choices for post-processing of the com-
puted attributions and the selection of the output signal in attribution computation, which compromises its trans-
parency (Smilkov et al., 2017; Wang & Wang, 2022; Yang et al., 2023b). Through our well-founded benchmarking
approach, we reveal distinct properties of different attribution methods using different choices. Our analysis leads to a
consistent benchmarking setup across different types of the attribution methods. Using this consistent setup, we even-
tually assess a range of attribution methods using various trigger patterns for different Trojaned models under diverse
attacks. A by-product of this endeavor is that we are also able to reveal interesting guidance for defending against
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backdoor attacks using feature attribution methods. In summary, our paper contributes along the following three key
aspects.
1. It introduces fidelity criteria designed to create a trustworthy XAI benchmark, facilitating the assessment of existing

benchmarks against these criteria.
2. Exploiting controllable attributions in Trojaned models, it proposes a backdoor-based XAI benchmark for attribu-

tion methods. We substantiate the superior fidelity of this benchmark through theoretical analysis.
3. It identifies a consistent setup for a transparent assessment of different kinds of attribution methods, and performs

an extensive evaluation of existing methods with the proposed benchmark using this setup. In the process, it also
offers interesting guidance for defending against backdoor attacks.

2 RELATED WORK

Attribution Methods. To explain model predictions, attribution methods (Simonyan et al., 2014; Zeiler & Fergus,
2014) assign importance scores to input features. Deconvnet (Zeiler & Fergus, 2014) and Guided Backpropaga-
tion (Springenberg et al., 2015) utilize deconvolution technique to compute feature importance. CAM (Zhou et al.,
2016) and GradCAM (Selvaraju et al., 2017) calculate class activation maps during back-propagation for locating
class-specific input features. Compared to CAM-based methods, InputGrad (Simonyan et al., 2014) calculates gradi-
ents with respect to the input for model explanation. SmoothGrad (Smilkov et al., 2017) aggregates input gradients
across input samples with Gaussian noise, leading to a notable enhancement in localization ability. FullGrad (Srinivas
& Fleuret, 2019) further integrates gradients from model biases, satisfying additional axioms. To guarantee com-
pleteness, integrated gradients (IG) (Sundararajan et al., 2017) combines model gradients over a number of inputs
computed w.r.t. a reference, however, its performance depends on the choice of reference. IG-SG (Smilkov et al.,
2017), IG-SQ (Hooker et al., 2019) and IG-Uniform (Sturmfels et al., 2020) are proposed to redefine the reference
input as perturbed samples. EG (Erion et al., 2021) and LPI (Yang et al., 2023a) employ training samples as references
to maintain the distribution invariance. Pan et al. (2021) calculated class-specific adversarial samples as the reference
input. Yang et al. (2023b) recalibrated attributions by with valid references. Instead of explaining the model’s output,
Wang & Wang (2022) turned to explain a contrastive output, leading to class-contrastive attributions.

XAI Benchmarks. Numerous explaining methods have given rise to a multitude of XAI benchmarks. LeRF and
MoRF (Samek et al., 2016) are extended from pixel flipping (Bach et al., 2015), which perturbs input samples to test
output changes. However, Hooker et al. (2019) revealed that perturbed images cause input distribution shift, making
the benchmarking unreliable. Therefore, ROAR (Hooker et al., 2019) and DiffROAR (Shah et al., 2021) were proposed
to retrain models on the perturbed images, ensuring models are learned within the distribution. ROAD (Rong et al.,
2022) and DiffID (Yang et al., 2023a) offer alternative methods to mitigate input distribution shift without necessitating
costly model retraining. On the other hand, sensitivity-n (Ancona et al., 2018), SENSMAX and INFD (Yeh et al., 2019)
focus on testing the fidelity of attributions by perturbing the input. Adebayo et al. (2018) randomized the model
parameters and training labels to test the sanity of attributions. Other efforts have also been made to provide ground
truth for the estimated attributions. DiFull, DiPart (Rao et al., 2022) and Pointing Game (Zhang et al., 2018) employ
training annotations for attribution evaluation. Khakzar et al. (2022) used model-optimized features for attribution
ground truth. Additionally, Arras et al. (2022) employed the controlled VQA framework to generate synthetic images
for benchmarking.

Model Trojaning. Trojaning alters a model’s predictions by making it sensitive to certain trigger patterns. Gu et al.
(2019) introduced BadNet which mislabels and stamps trigger to poison the training samples. Blended attack (Chen
et al., 2019), ISSBA (Li et al., 2021) and WaNet (Nguyen & Tran, 2021) are proposed to generate more stealthy
triggers, achieving invisible poisoning. Adap-Blend (Qi et al., 2022) further enhances the stealthiness of attack in the
latent space. Due to the clear attribution of backdoor triggers, we benchmark the reliability of attribution methods on
such models. Given the wide applications of attribution methods in backdoor defense (Huang et al., 2019; Chou et al.,
2020), we also provide guidance for defense against backdoor attacks using attributions as part of this study.

3 BENCHMARK FIDELITY

In this section, we first put forth a set of criteria that a reliable explanation benchmark should adhere to. We then
compare the existing benchmarks on the proposed criteria.

Let us consider an input sample x ∈ Rn with its label y ∈ Rc from a dataset D. A classifier denoted as f : Rn → Rc

is parameterized by θ. To explain the model’s prediction f(x), an attribution explaining tool ϕ : Rc → Rn is used
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Figure 1: Illustration of benchmark fidelity criteria. For explaining (a) the model, a faithful XAI benchmark should
avoid (b) Functional Mapping Shift, and (c) Input Distribution Shift, while ensuring (d) Attribution Verifiability, and
(e) Metric Sensitivity. See text in § 3.1 for explanation.

to generate the attribution map M , specifically M = ϕ(f(x)). An XAI benchmark intends to faithfully evaluate the
reliability of the explanation M . For a quick reference, we also provide a summary of notations in Appendix A.1.

3.1 FIDELITY CRITERIA

We introduce a set of fidelity criteria that attribution benchmarking should satisfy for reliable results. These criteria
are based on fundamental observations, hence they are intuitive in nature.

Functional Mapping Invariance. Given a model to be explained, e.g., Figure 1(a), functional mapping invariance
requires that attribution benchmarking does not cause a functional mapping shift, see Figure 1(b). Suppose a pertur-
bation ζ is imposed on model f , resulting in a functional mapping shift, i.e., ζ(f(x)) ̸= f(x). This shift introduces
divergent explanations, thus undermining the reliability of benchmarking results. The assurance of functional mapping
invariance (i.e., f(x) = ζ(f(x))) serves as a crucial criterion for upholding the fidelity of the explained model.

Input Distribution Invariance. Similar to functional mapping invariance, input distribution invariance mandates the
constancy of the input distribution PD. Assuming ζ represents an input perturbation that leads the input distribution
shift (i.e., PD ̸= Pζ(D)), this shift causes explanation variance of input samples (Hooker et al., 2019), see Figure 1(c).
Thus, maintaining input distribution invariance is crucial to ensuring the benchmark fidelity of the explained samples.

Attribution Verifiability. Attribution verifiability requires the estimated attributions to be verifiable. Given attribu-
tions M = ϕ(f(x)), a faithful benchmark is required to provide corresponding ground truth attributions M∗. The
ground truth attributions M∗ are crucial for the verification of the estimated attributions M . This criterion can be
observed in Figure 1(d), where the normal vector and its horizontal and vertical components extending from an input
sample to the decision boundary represent the ground truth attributions (i.e., M∗ = M∗

X +M∗
Y ), allowing estimated

attributions (i.e., M = MX +MY ) to be verified.

Metric Sensitivity. Metric sensitivity requires that the benchmark’s metric exhibits sensitivity to the attribution
change. Figure 1(e) shows examples of both sensitive and insensitive metrics. Given the estimated attributions M
with their corresponding ground truth M∗, an insensitive metric, such as the enclosed area defined by the normal
vector and its components, may yield identical evaluation results for both M∗ and M , failing to accurately capture
changes in attributions. In contrast, the attribution difference from estimated attributions M∗ to the ground truth M
(i.e., ∆MX and ∆MY ) serves as a sensitive metric, demonstrating faithful sensitivity to changes in attributions.

3.2 FIDELITY COMPARISON

In Table 1, we present a comparative analysis of different benchmarks with regard to their fidelity criteria guarantee.
Appendix A.3 provides a detailed discussion about the fulfillment of existing benchmarks. The attribution benchmarks
that rely on input perturbations, such as MoRF, LeRF (Samek et al., 2016), and Ins.&Del. Games (Petsiuk et al., 2018),
fail to ensure input distribution invariance. Despite the efforts made by ROAD (Rong et al., 2022) and DiffID (Yang
et al., 2023a) to mitigate the impact of shifts in input distribution, they are unable to guarantee input distribution
invariance. Other attempts, exemplified by ROAR (Hooker et al., 2019) and DiffROAR (Shah et al., 2021), involve
retraining models on perturbed input samples to maintain input distribution invariance. However, these approaches
introduce shifts in the functional mapping, thereby compromising functional mapping invariance. Existing sanity and
sensitivity checks (Adebayo et al., 2018; Ancona et al., 2018; Yeh et al., 2019) also test the fidelity of attribution
methods under model and input variations. Overall, perturbation-based attribution benchmarks and sanity checks
struggle to simultaneously ensure invariance to both functional mapping and input distribution.
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Table 1: Fidelity criterion fulfillment of XAI benchmarks.

Benchmark Fidelity Criteria XAI Benchmarks

MoRF, LeRF; Ins.& Del. Game

ROAR; DiffROAR

ROAD; DiffID

Sensitivity-n; SENSMAX , INFD

Model & label randomization

Pointing Game; DiFull & DiPart

Null Feature; CLEVR-XAI

Our Benchmark

Functional Mapping Invariance  #   # G#   
Input Distribution Invariance #  G# G#    G#
Attribution Verifiability # # # G# G# G# G#  
Metric Sensitivity     G# G# G#  

Desirability Score 2 2 2.5 3 2 2.5 3.0 3.5

 = Strong (1); G# = Weak (0.5); # = No fulfillment (0).

In Table 1, it is evident that a
full guarantee of attribution verifia-
bility presents a significant challenge.
In an effort to establish attribution
ground truth for verifiability, Pointing
Game (Zhang et al., 2018), DiFull &
DiPart (Rao et al., 2022) employ train-
ing annotations as attribution ground
truth. Khakzar et al. (2022) calcu-
lated Features with Null information
by model optimization to test the at-
tribution fidelity. CLEVR-XAI (Ar-
ras et al., 2022) generates synthetic im-
ages based on CLEVR dataset to pro-
vide controlled evaluations. However,
these benchmarks fail to provide full verifiable attributions. The challenge of offering precise attribution ground truth
also adds complexity to upholding metric sensitivity within such benchmarks. The perturbation-based benchmarks,
which place less emphasis on verifiability, commonly utilize element-wise metrics that can adequately guarantee met-
ric sensitivity. Overall, our benchmark stands out as more desirable than the existing techniques on the fidelity criteria.

4 BENCHMARKING EXPLANATIONS WITH TROJANED MODEL

We commence by illustrating the pipeline of our proposed benchmark and then introduce a collection of metrics
meticulously crafted to evaluate the diverse capabilities of attribution methods. Finally, we theoretically discuss the
assurance of established benchmark fidelity criteria within our proposed benchmark.

4.1 BENCHMARK FRAMEWORK

In Figure 2, we present an illustration of our benchmark pipeline. Given a clean training set D, we generate a poisoned
training set D̃ by incorporating a trigger v into certain portions of the clean samples and modifying the true label y with
the poisoned target label ỹ. Subsequently, we employ the poisoned training set to transform a benign model f into a
Trojaned model f̃ , as depicted in Step 1 of Figure 2. The Trojaned model is employed to generate predictions for both
clean and poisoned samples, as shown in Step 2 in Figure 2. Then, the output prediction f̃(x̃) of a poisoned sample
is explained using an attribution method ϕ, resulting in an attribution map M — Step 3 of Figure 2. Subsequently, a
mask S(k) ∈ {0, 1}n guided by the attribution map is computed, identifying the top k% most important input features
(e.g., input pixels). The mask is then utilized to recover a portion of the poisoned sample x̃, see Step 4 of Figure 2.
Specifically, a clean patch is extracted from the clean sample, guided by the mask. The recovery of the poisoned
sample is achieved by replacing the corresponding patch using the clean patch, yielding a recovered sample x̂, where
x̂ = x̃ ⊙ (1 − S) + x ⊙ S. Finally, we can benchmark attribution methods by assessing changes in the predictions
among clean, poisoned and recovered samples — Step 5 of Figure 2.

In our benchmark, we comprehensively test both visible and invisible trigger patterns for Trojaned models through
Blend (Chen et al., 2019) and ISSBA (Li et al., 2021). For a complete control, we modify the Blend attack from
encompassing the entire image to focusing solely on the trigger region to embed a watermark trigger. Given a trigger
mask denoted as S∗ ∈ {0, 1}n, we create the watermark trigger from a trigger v using the formula (x⊙ (1−α)+ v⊙
α)× S∗, where α ∈ [0, 1] represents the visibility of the trigger. Additionally, we utilize the ISSBA attack method to
generate input-specific invisible triggers. Trojaned models with different trigger patterns and corresponding training
details are presented in Appendix A.5.

4.2 EVALUATION METRICS

In this section, we formulate a set of metrics for our benchmark. The metric definitions are specifically tailored to our
Trojan-based evaluation.

Attack Success Rate. Attack Success Rate (ASR) is a prevalent metric in backdoor attacks (Turner et al., 2019; Guo
et al., 2022). It records the success of target prediction label ỹ for the input samples with true label y when the trigger
is embedded in the input samples. The ASR is formally defined as

ASR = E
(x,y)∼D

I[ŷ = ỹ|y ̸= ỹ], ŷ = argmax
i

f̃i(x̃). (1)
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Figure 2: The proposed XAI benchmark pipeline. Step 1 embeds a backdoor into a benign model by retraining it on
a poisoned training set. Step 2 uses the Trojaned model to generate predictions. Step 3 applies attribution methods to
explain the predictions. Step 4 computes an attribution map-based mask to guide the recovery of the poisoned sample
from the clean sample. Step 5 assesses attribution methods by measuring the prediction change.

Here, the ASR is computed as an expectation over samples drawn from a dataset D through a boolean function I[·].
In our benchmark, we leverage ASR to evaluate the ability of attribution methods to successfully identify the trigger
with the recovered sample x̂.

Logit and Probability Fractional Change. Model’s output fractional change is a widely used metric for evaluating
attributions (Samek et al., 2016). To evaluate the detailed prediction change, we measure the fractional change in
both output logits and probabilities. Let p(x) = softmax(f(x)) denote the probability output through the softmax
function. We denote the logit and probability fractional change of target class ỹ as ∆fỹ(x̂) and ∆pỹ(x̂) respectively.
In our context, these measures quantify the extent to which the attribution method can help reduce the confidence
of the target class ỹ when recovery is made by replacing the features identified as trigger features by the attribution
method. We similarly denote the logit and probability fractional changes of the output for the true label y as ∆fy(x̂)
and ∆py(x̂). This serves to quantify the extent to which the attribution method can help restore the confidence in the
target class y. Concretely, the logit and probability fractional changes through the Trojaned model f̃ are defined as

∆f̃ỹ(x̂) =
f̃ỹ(x̂)− f̃ỹ(x)

f̃ỹ(x̃)
, ∆f̃y(x̂) =

f̃y(x̂)− f̃y(x̃)

f̃y(x)
, ∆pỹ(x̂) =

pỹ(x̂)− pỹ(x)

pỹ(x̃)
, ∆py(x̂) =

py(x̂)− py(x̃)

py(x)
. (2)

Trigger Recall. In addition to evaluating predictive performance, we assess the localization capability of attribution
methods. Trigger Recall (TR) is introduced to evaluate the ability of an attribution method to locate the embedded
triggers. Given the attribution and trigger masks S(k), S∗ ∈ {0, 1}n, TR is defined as the ratio between the area
intersection of S(k) and S∗ to the area of S∗, formally; TR = S(k) ∩ S∗/S∗. Here, k ∈ [0, 1] denotes the percentage
of the most important features identified by the attribution method in the input. It is worth noting that the recall rate of
the detected trigger equates to precision when the recovery rate k equals the proportion of the trigger.

4.3 BENCHMARK FIDELITY EXAMINATION

In this part, we closely examine the crucial aspect of our benchmark regarding satisfying the fidelity criteria set out in
§ 3.1. In what follows, we delve deeper into theoretical details only when a criterion fulfillment is not obvious.

By consistently employing the same Trojaned model f̃ throughout the benchmarking process, our proposed frame-
work inherently guarantees Functional Mapping Invariance. Additionally, the metrics we introduce are designed for
element-level benchmarking. This automatically ensures the preservation of Metric Sensitivity. Furthermore, the use
of Trojaned model and trigger enables access to the ground truth in our benchmark. However, ensuring Metric Sen-
sitivity also implies that the primary focus of our benchmarking is placed on the recovered samples. These samples
inadvertently hold information about the attribution mask used for image recovery — see Step 4 in Figure 2. This
can lead to unreliable benchmarking due to potential class information leakage through the mask (Rong et al., 2022).
This feature leakage can actually compromise the fidelity of the provided attribution ground truth. Therefore, we must
examine assurance of Attribution Verifiability during the benchmarking process more closely.

We commence by examining the entropy of a singular variable x, quantifying the amount of information by observing
x using the formula H(x) = −

∑
xi∈x P (xi)logP (xi). In the context of the leaked feature, we employ mutual infor-
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mation established on the entropy of two variables, measuring their mutual dependence. In a Bayesian classifier, the
classification performance is correlated with the mutual information I(x; c) between the input x and a class c (Hoque
et al., 2014). Without loss of generality, we can assume that attribution methods benchmarked using a masked sample
x̂ are intended to quantify the mutual information I(x̂; c). Assuming the attribution mask S operates as a patch that
directly removes features from the input sample, this process inevitably allows the leakage of class-related information
into the masked sample x̂, leading to a leakage of I(S; c). The leakage leads to the unfaithfulness of evaluation results
by introducing class information from S in x̂, i.e., I(x̂; c) ̸= I(c; x̂|S). To ensure the benchmarking fidelity, the leaked
features from the S can be addressed by minimizing the mutual information between the mask represented by S and
the class c, i.e., I(S; c) ≈ 0. This relation is formalized by the below proposition.

Proposition 1. By minimizing the mutual information I(S; c) between the mask S and a class c, the leaked information
from the attribution mask S to the masked sample x̂ can be alleviated, resulting in enhanced fidelity of the evaluation
results, expressed as I(c; x̂) ≈ I(c; x̂|S).
The proof is provided in Appendix A.2. In our benchmark, we evaluate the attribution methods via Trojaned models.
Assume a benign model f is trained to classify an input sample x to a label y within the boundary x ± δ, where this
boundary is bounded by a constraint ϵ, i.e., ||δ||p ≤ ϵ. In model Trojaning, a trigger v within the same constrain ϵ
is embedded into a clean sample to modify the prediction from label y to target label ỹ. In contrast to the prevalent
existing benchmarks that assess attributions through feature removal, our benchmark recovers the features of the
poisoned sample with those of the clean sample through the mask, i.e., S ⊙ x ∈ x. The recovered features which are
part of the clean sample x do not contain additional information related to the target class ỹ. As a result, the mutual
information I(S ⊙ x, c = ỹ) is essentially zero. Thus, the evaluation process within our benchmark can provide
assurance for both Attribution Verifiability and Metric Sensitivity. This fact highlights the inherent superiority of our
benchmark over the perturbation-based benchmarks that inadvertently leak features into the evaluation outcome.

In our benchmarking process, we utilize the recovered sample x̂ to convert a poisoned sample back to the clean state
x. This transformation is constrained by the limit of ϵ (i.e., ||x − x̂||p ≤ ϵ), thus largely preserving the benchmarked
samples within the original distribution. Whereas we acknowledge that our benchmark cannot perfectly eliminate the
influence of input distribution shift (Hooker et al., 2019), the resulting Input Distribution Invariance is only subtly
disturbed. It is noteworthy that our trigger recall metric offers a full guarantee of Input Distribution Invariance,
providing a trade-off with the fidelity of Metric Sensitivity. Overall, the above discussion provides clear evidence that
our benchmark offers a substantial assurance of fulfilling the fidelity criteria.

5 CONSISTENT ATTRIBUTION EVALUATION

Having established the foundations of a reliable benchmark for attribution methods, we analyze the existing techniques
to facilitate their transparent benchmarking. Currently, a diverse range of attribution methods is available in the litera-
ture. However, the reliability of their results and evaluation generally suffers from two common confounding factors,
(1) post-processing of the attributions (Smilkov et al., 2017; Yang et al., 2023b) and (2) the choice of output (Wang
& Wang, 2022). Our empirical analysis below is aimed at establishing a fair paradigm for a consistent benchmarking
that does not penalize an attribution method due to these confounding factors.

To achieve our goal, we analyze nine diverse attribution methods including Grad-CAM (GCAM) (Selvaraju et al.,
2017), FullGrad (Srinivas & Fleuret, 2019), Input Gradients (Grad) (Simonyan et al., 2014), Guided GCAM
(GGCAM) (Selvaraju et al., 2017), SmoothGrad (SG) (Smilkov et al., 2017), Integrated Gradients (IG) (Sundararajan
et al., 2017), IG-Uniform (Sturmfels et al., 2020), AGI (Pan et al., 2021), and LPI (Yang et al., 2023a). We categorize
these techniques into three groups based on their distinct methodologies, namely; CAM-based, gradient-based, and
integration-based methods. We benchmark two CAM-based methods (GCAM and FullGrad), three gradient-based
methods (Grad, GGCAM and SG), and four integration-based methods (IG, IG-Uni, AGI and LPI). A comprehensive
discussion on the categories and distinctions among these methods is also provided in Appendix A.4.

5.1 POST-PROCESSING CHOICE

It is often the case that absolute values of attributions, instead of the original scores are used as the explanations of
predictions (Yang et al., 2023b). This begs for an enquiry into the right choice between the original and absolute
values for benchmarking. In Figure 3, we analyze the ASR and TR differences for the two choices under our Trojan-
based technique while fixing the image recovery equal to the trigger ratio. The analysis is performed for CIFAR-
10 (Krizhevsky et al., 2009), GTSRB (Houben et al., 2013) datasets, and ImageNet (Russakovsky et al., 2015). It
can be observed that GCAM maintains consistent results across the datasets and our metrics1. In contrast, FullGrad’s

1While ReLU is typically applied in CAM-based methods, we intentionally remove ReLU to preserve the original attributions.
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Figure 3: Comparison of existing methods performance on CIFAR-10, GTSRB and ImageNet using our Trojan-based
benchmark. (a) Difference between Attack Success Rate (ASR) when absolute value (abs.) is computed and original
(org.) output is used. (b) Trigger Recall (TR) difference with and without taking absolute values.

(Class num.: 43) (Class num.: 10) (Class num: 1000)

(b) Trigger recall difference(a) Attack success rate difference 

ImageNet ImageNetGTSRB GTSRBCIFAR-10 CIFAR-10

Figure 4: Comparison of performance for output choice. (a) Difference between ASR when attributions are computed
for softmax probabilities (prob.) and logits. (b) TR difference using softmax probabilities and logits.

integration of gradients from biases leads to fluctuations among the datasets. The gradient-based methods consistently
rely on taking absolute values across all the datasets for improved performance. On the other hand, integration-based
methods have a slightly more stable performance for different datasets. Their reliance on absolute values decreases
as the mean value of the image pixels decreases. This can be attributed to the fact that these techniques accumulate
gradients with respect to a reference. Images with lower mean values tend to reduce the undesired gradient fluctuations
due to their natural proximity to the reference. We draw the following observation from our analysis.

Observation 1 Basic CAM remains largely insensitive to post-processing with absolute values. Gradient-based attri-
bution methods consistently depend on computing absolute attributions, whereas for integration-based methods, this
reliance decreases as the mean pixel value of the images decreases.

Based on our observation, we choose the absolute attributions for gradient-based methods in the subsequent experi-
ments. CAM-based and integration-based methods employ the original attributions to ensure the satisfaction of impor-
tant axioms2. Further experiments on integration-based methods with re-calibrated attributions (Yang et al., 2023b) are
also reported in Appendix A.7. For consistency, we retain the use of original attributions in the integration methods.

5.2 OUTPUT CHOICE

In general, contemporary attribution methods lack a clear distinction between using model logits and softmax proba-
bilities as the model output for computing the attributions (Wang & Wang, 2022). This can compromise benchmarking
transparency. In Figure 4, we compare the ASR and TR under our benchmark when attributions use output logits and
probabilities on CIFAR-10, GTSRB, and ImageNet. Following the conventions from Figure 3, we report the differ-
ences between the values. The results demonstrate that CAM-based methods tend to rely on explaining probabilities to
achieve better performance, whereas integration-based methods prefer explaining output logits. Gradient-based meth-

2FullGrad and integration-based methods are able to satisfy the completeness axiom with their original attributions.
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Figure 5: Benchmarking of existing methods using ASR metric. Lower curves indicate better results.

ods exhibit a significant fluctuation between explaining logits and probabilities. In addition, explaining logits leads to
stronger localization capabilities in both gradient-based and integration-based attribution methods, as shown in Fig-
ure 4(b). However, it is worth noting that the attribution differences between the choices of logits and probabilities
become narrower as the number of classes increases. We make the following observation from the experiments.

Observation 2 CAM-based attribution methods rely on output probabilities to gather distinctive class information
for constructing accurate activation maps. In contrast to output probabilities, explaining logits enables attributions
to preserve unnormalized original activations for a class, leading to enhanced localization capability. However, the
disparities of attributions between explaining logits and probabilities diminish as the number of classes increases.

Guided by the above observation, we use CAM-based methods to explain output probabilities, while we apply both
gradient-based and integration-based attribution methods to explain logit outputs in our subsequent experiments. For
additional experiments on output choices, e.g., contrastive output (Wang & Wang, 2022), refer to Appendix 4. The
above discussion provides clear guidelines for a consistent and fair benchmarking of the considered methods.

6 BENCHMARKING

CIFAR-10 GTSRBImageNet

Figure 6: Blend attack TR results. Higher curves are more desirable.

In this section, we conduct an extensive
benchmarking of the attribution methods un-
der our reliable Trojan-based scheme.

In Figure 5(a), we provide results for Tro-
janed ResNet-18 models using the Blend at-
tack with trigger visibility of 0.5. We em-
ploy nine attribution methods with varying
image recovery rates across three datasets:
ImageNet, CIFAR-10 and GTSRB. The cor-
responding trigger recall as the image recov-
ery rate increases is illustrated in Figure 6. Our observations reveal that integration-based methods achieve superior
performance on GTSRB, while gradient-based methods outperform others on CIFAR-10. Importantly, integration-
based methods exhibit higher stability across different datasets. GGCAM significantly enhances CAM with element-
wise attributions by incorporating Grad into the attribution estimation process across all datasets. Furthermore,
perturbation-based attribution methods with steep slope curves, such as SG and AGI, demonstrate the best perfor-
mance in locating important features. However, AGI’s random class selection for calculating adversarial examples can
compromise its stability.

Figure 5(b) shows the attack success rate on a Trojaned model through ISSBA attack (Li et al., 2021) on CIFAR-10
and GTSRB. Due to input-specific triggers demonstrating weak attack capabilities on larger-scale input samples, as
they can be easily recovered by random attributions, we have excluded ImageNet from our experiments to simplify
comparisons. Fine-grained integration-based and gradient-based methods can achieve outstanding performance for
detecting invisible triggers. CAM-based attribution methods, which fails to capture element-wise triggers, still manage
to achieve competitive results compared to integration-based and gradient-based methods.

In Figure 7, we compare the fractional logit change for both the Blend and ISSBA attacks. We combine the fractional
logit change for both the true class y and the target class ỹ to create a bubble chart. A faithful attribution method
is expected to reduce the output of target class ỹ while recovering the output of true class y. We scale the different
attribution methods based on their distance from the bottom right corner of the chart. In this metric, integration-
based methods exhibit both high performance and consistency. Additionally, compared to recovering the output of the
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(a) Fractional logit change under Blend Attack (b) Fractional logit change under ISSBA Attack

Figure 7: Comparison of fractional logit change using (a) Blend attack and (b) ISSBA attack. Bubble size is scaled by
method’s overall performance. Bubbles approaching top left corner indicate better results.

CIFAR-10 GTSRB CIFAR-10 GTSRB

(b) Trigger recall change with poisoning rate(a) Triger recall change with trigger visibility

ImageNet

Figure 8: The results of trigger recall. (a) Trigger recall changes as trigger visibility. (b) Trigger recall changes as
poisoning rate. Higher curves indicate better results.

true class y, all attribution methods are effective at decreasing the output of the target class ỹ. Notably, CAM-based
attribution methods can achieve competitive results in recovering the output of y compared to ỹ, revealing the weak
attack capability of invisible attacks. The results indicate that the attribution methods tend to perturb the target class
rather than fully recover it. More results on fractional probability change and attribution visualizations are provided in
Appendix A.8. We make the following observation.

Observation 3 Gradient-based attribution methods tend to achieve better results, while integration-based attribu-
tion techniques exhibit more stability across different datasets. As compared to recovering the original class y, all
attribution methods are better at reducing the misclassification to target ỹ.

7 BACKDOOR DEFENSE WITH ATTRIBUTIONS

Here, we investigate the potential of the analyzed attribution methods for defending against backdoor attacks. In Fig-
ure 8(a), we assess the change in attribution performance, measured by trigger recall, across varying trigger visibility.
Counter to our intuition, we observe that attribution methods do not lead to better trigger localization with higher
visibility of the trigger. This unanticipated behavior can be attributed to the fact that learning a robust feature, such as
clear trigger, does not demand ‘finely tuning’ the model weights to attract its attention. In other words, better trigger
visibility actually leads to a relatively easier adversarial learning objective. Hence, trigger visibility fails to show a
positive correlation with trigger recall through attribution. Figure 8 also reports the change in trigger recall as the
poisoning rate varies. Interestingly, the poisoning rate also has only a limited effect on the performance of attribution
methods. We provide more experimental results in Appendix A.9 on the topic. Based on our experiments, we make
the following observation to provide guidance for employing attribution in defense against backdoor attacks.

Observation 4 Employing fixed or input-specific invisible attacks does not necessarily render defense more challeng-
ing. Fine-grained perturbation-based attribution methods, while incurring a higher computational cost, prove to be
more useful for backdoor defense. Additionally, CAM-based methods guided by fine-grained attributions result in a
significant enhancement in defense performance.

8 CONCLUSION

To establish a faithful XAI benchmark for attribution methods, we introduced a set of fidelity criteria and developed a
Tranjoned model based evaluation framework that satisfies those criteria. The framework is theoretically established
for its superior properties. We also perform an extensive analysis of the existing methods to derive a fair evaluation
setup. This setup is used by our framework for a comprehensive benchmarking of attribution techniques, revealing
interesting observations about the methods.
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In this research, all models are trained and explained using publicly available datasets. In light of the inherent chal-
lenges posed by black-box decision-making, our primary objective is to instill trust in deep learning models among
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shedding light on defenses against backdoor attacks, thereby enhancing the transparency and security of these models.

REPRODUCIBILITY STATEMENT
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Table 2: The used notations and the corresponding definition.

Notation Definition
x, x̃ ∈ Rn Input clean sample and poisoned sample within a n-dimensional input space
y, ỹ ∈ Rc True label and target label within a c-dimensional output space

f, f̃ Clean benign model and Trojaned model
f(x), p(x) Output logits and output probabilities

ϕ Attribution method
M,M∗ Estimated attributions and attribution ground truth

ζ Perturbation operator
D, D̃ Training set and poisoned training set
PD Input distribution

S(k), S∗ ∈ {0, 1}n Attribution mask indicating k% most important elements and a mask of a trigger pattern
x̂ Recovery sample
x′ Reference input

∇xf(x) Input gradients of output logits
v Trigger pattern
α Trigger visibility
I(·) Bool function
H(·) Entropy of a variable
I(·) Mutual information between variables
Ak

i,j (i-th,j-th) element of activations in k-th layer
wc

k activation weight of c-th class in k-th layer
Ψ Interpolated operator

A.1 NOTATION

In Table 2, we provide a summary of the notations used in the paper, along with their corresponding definitions.

A.2 PROOF

Below, we provide the proof of Proposition 1.

Proof of Proposition 1. Given a recovery image x̂, the performance of attribution methods for a target class c evaluated
in our benchmark can be represented as I(x̂; c). We follow the derivation on the multi-information as Vergara &
Estévez (2014); Rong et al. (2022). Assume an attribution mask S, the multi-information I(x̂; c;M) can be represented
as

I(c; x̂|S) = I(c; x̂|S)− I(x̂; c), (3)

I(x̂; c;S) = I(c;S|x̂)− I(S; c). (4)

By equating Equation 3 and Equation 4, we can derive

I(x̂; c) = I(c; x̂|S) + I(S; c)− I(c;S|x̂), (5)

where I(c; x̂|S) represents the target we aim to estimate, representing the mutual information between the recovery
input x̂ and a class c for a given mask S. I(S; c) represents the mutual information between S and c, which we aim to
eliminate. The last term I(c;S|x̂) indicates mutual information between S and c given x̂, compensating for I(S; c).

Minimizing the mutual information I(S; c) between the mask and the class label leads to the approximation that
I(S; c) approaches I(c;S|x̂), specifically I(S; c) ≈ I(c;S|x̂). Thus, this mitigation of the leaked information I(S; c)
from the mask S leads to an improvement in the reliability of the evaluation results for I(x̂; c), specifically I(x̂; c) ≈
I(c; x̂|S).
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A.3 BENCHMARK FIDELITY DISCUSSION

In this section, we provide a comprehensive discussion about the fidelity of attribution benchmarks. In Table 1,
we assessed different benchmarks based on their fulfillment of the fidelity criteria. In our comparison, we do not
religiously differentiate between the benchmarks regarding the extent to which they fulfill our provided fidelity criteria.
For each criterion, benchmarks that do not address it are considered non-fulfilling and receive a score of 0. For
benchmarks attempting to satisfy a criterion but falling short of a full guarantee, we label them as weakly fulfilling
and assign them a score of 0.5.

Perturbation-based Benchmarks. Since attribution maps are expected to highlight important input features, attri-
bution benchmarks, such as MoRF, LeRF (Samek et al., 2016), and Ins.&Del. Games (Petsiuk et al., 2018), assess
attribution methods by iteratively replacing pixels with zero or noise pixels. However, the input change will cause
an input distribution shift (Hooker et al., 2019), compromising the reliability of evaluation outcomes. To maintain
input distribution invariance, DiffID measures the difference in results between perturbed input samples, while ROAD
evaluates attributions on imputed input samples. However, both DiffID and ROAD still do not provide a full guarantee
of input distribution invariance. On the other hand, ROAR (Hooker et al., 2019) and DiffROAR (Shah et al., 2021) are
designed to retrain the model using perturbed input samples, ensuring full input distribution invariance. However, re-
training models violate the criterion of functional mapping invariance. Thus, perturbation-based benchmarks struggle
to simultaneously satisfy both input distribution invariance and functional mapping invariance.

Sanity and Sensitivity Checks. Sanity and sensitivity checks are proposed to test the fidelity of attribution methods
for the explained input samples and models. Benchmarks such as sensitivity-n (Ancona et al., 2018), SENSMAX, and
INFD (Yeh et al., 2019) aim to assess the sensitivity of attribution methods under input perturbations. While these
benchmarks provide valuable assessment targets, these targets cannot be achieved by attribution methods, resulting
in a partial guarantee of attribution verifiability. Additionally, Adebayo et al. (2018) randomized model parameters
and training labels to test the sanity of attributions for the explained models. However, this sanity check can lead to a
functional mapping shift. Overall, similar to input perturbation-based techniques, these benchmarks rely on input or
model perturbations, making it challenging to simultaneously satisfy both input distribution invariance and functional
mapping invariance.

Benchmark with Attribution Ground Truth. Other attribution benchmarks have made efforts to establish attribution
ground truth for assessing attribution methods. Pointing Game (Zhang et al., 2018), DiFull & DiPart (Rao et al., 2022)
utilize training annotations as attribution ground truth. However, training annotations only offer partial ground truth
information for attributions. Khakzar et al. (2022) calculated null features without class information through model
optimization as the ground truth for attributions, but it still lacks evidence for the features generated by model opti-
mization and feature attributions. CLEVR-XAI (Arras et al., 2022) employs a visual question-answering framework
to generate synthetic images based on CLEVR dataset to provide controlled evaluations. However, these synthetic im-
ages fail to fully eliminate shadows of objects (Arras et al., 2022), compromising the reliability of the benchmarking.
Moreover, due to the lack of faithful attributions, these benchmarks fail to fully guarantee both attribution verifiability
and metric sensitivity. In contrast, our method strictly satisfies both attribution verifiability and metric sensitivity.
Furthermore, our approach offers the flexibility to balance the trade-off between ensuring metric sensitivity and input
distribution invariance.

A.4 CLASSIFICATION OF ATTRIBUTION METHODS

In our experiments, nine attribution methods are benchmarked including GCAM (Selvaraju et al., 2017), Full-
Grad (Srinivas & Fleuret, 2019), Grad (Simonyan et al., 2014), GGCAM (Selvaraju et al., 2017), SG (Smilkov et al.,
2017), IG (Sundararajan et al., 2017), IG-Uniform (Sturmfels et al., 2020), AGI (Pan et al., 2021), and LPI (Yang
et al., 2023a). We categorize these attribution methods into three groups based on their distinct explaining processes:
CAM-based, gradient-based, and integration-based methods. The basis behind categorizing attribution methods into
different categories, along with a brief overview of other methods not included in our experiments, is discussed below.

CAM-Based Attribution Methods. Zhou et al. (2016) proposed a class activation mapping (CAM) technique to
localize the class-specific features of input samples. In our experiments, we test two CAM-based attribution methods
including GCAM and FullGrad. Assuming a feature map Ak of the k-th convolutional layer before a softmax layer,
CAM-based attribution methods M c

CAM (e.g., GCAM) calculate a weighted combination of activation maps Ak for a
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class c as
M c

CAM (x) = Ψ(ReLU(
∑
k

wc
kA

k)), (6)

where wc
k = avg(

∑
i

∑
j ∂fc(x)/∂A

k
i,j) indicates the activation weight by applying a global average pooling on

the activation map Ak, and Ψ indicates an interpolation operator to estimate an attribution map with the same scale
as x from a down-sampled activation map. In contrast to GCAM, FullGrad integrates gradients of model biases to
ensure the completeness axiom(Sundararajan et al., 2017). Since FullGrad retains a similar process of utilizing an
interpolated activation map, we categorize it alongside GGCAM as a CAM-based attribution method. Despite there
are numerous CAM-based attribution methods available (Jiang et al., 2021; Muhammad & Yeasin, 2020), we tested
two representative ones in our experiments due to their similar class activation map generation process.

Although FullGrad retains the fundamental concept of utilizing an interpolated activation map, we classify it in the
same category as GGCAM as a CAM-based attribution method. While there are numerous CAM-based attribution
methods available (Jiang et al., 2021; Muhammad et al., 2020), we conducted experiments with two representative
ones due to their similar class activation map generation process.

Gradient-Based Attribution Methods. Gradient-based attribution methods, such as Grad (Simonyan et al., 2014),
employ a first-order Taylor expansion to approximate the non-linear model: fc(x) ≈ wT ∗ x+ b. Thus, the attribution
of an input sample x for a class c, can be computed using the gradients with respect to the input as

M c
Grad.(x) = ∂fc(x)/∂x. (7)

In contrast with CAM-based attribution methods, gradient-based attribution methods are capable of estimating attri-
bution values at the element level for each input feature, eliminating the need for interpolation operators. Notably,
GGCAM leverages Grad to guide GCAM by calculating their production, resulting in element-wise attribution maps.
Thus, we categorize GGCAM alongside Grad and SG as gradient-based attribution methods in our experiments.

Integrateion-Based Attribution Methods. Compared to gradient-based attribution methods, integration-based attri-
bution methods integrate input gradients from a reference input x′ to the presence features x along the integral path.
Taking IG as an example, the attribution of an input feature xi for a class c can be estimated as

M c
i Int.(x, x

′) = (xi − x′
i)×

∫ 1

α=0

∂fc(x̃)

∂x̃i

∣∣∣∣
x̃=x′+α(x−x′)

dα, (8)

where α indicates a linear integraion path from the reference input x′ to the input x, and x′ is typically set as a zero
vector in IG. Different integrate-based attribution methods (IG-Uni, IG-SG (Smilkov et al., 2017), AGI, and LPI) are
proposed to redefine the reference and the integral path. Due to their shared approach of estimating integrals to provide
explanations, we categorize these methods as integration-based attribution methods, which satisfy both completeness
and implementation invariance axioms due to the nature of integration estimation (Sundararajan et al., 2017).

Other Methods. In contrast to integration-based attribution methods, popular alternatives like LRP (Binder et al.,
2016) and DeepLift (Shrikumar et al., 2017) fail to simultaneously satisfy completeness and implementation invari-
ance, leading us to exclusively evaluate integration-based attribution methods. On the other hand, a variety of attri-
bution methods have been proposed for providing explanations through feature removal (e.g., LIME (Ribeiro et al.,
2016), occlusion (Zeiler & Fergus, 2014), and mask (Fong & Vedaldi, 2017)). However, not only did our benchmark-
ing reveal that their performance falls short of outperforming back-propagation-based attribution methods, but they
also entail a significant computational cost (Ancona et al., 2018). As a result, these attribution methods are not within
the scope of our paper.

A.5 EXPERIMENTAL SETUP

In this section, we present a comprehensive experimental setup and hyperparameter choice for Trojaned models and
benchmarked attribution methods, as well as details of the used experimental software and platform.

A.5.1 TRIGGER PATTERNS AND POISONED SAMPLES

In our benchmark, we incorporate both visible and invisible trigger patterns to provide a comprehensive evaluation,
which allows us to thoroughly assess the capability of attribution methods in detecting both fixed visible patterns and
input-specific invisible triggers. Figure 9 provides examples of the trigger patterns utilized in our experiments and
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Input Samples Trigger Patterns Poisoned Samples

Figure 9: Illustrations of input samples, trigger patterns and poisoned samples. The top arrow depicts fixed trigger
patterns and corresponding poisoned samples with triggers in varying visibility (α) used in the Blend attack. The
bottom arrow illustrates invisible input-specific trigger patterns and corresponding poisoned samples generated using
the ISSBA attack.

Table 3: Comparison of accuracy among various ResNet-18 models Trojaned through Blend attack with triggers of
varying visibility on CIFAR-10. The accuracy of the benign model (N/A) is also reported.

Test set Trigger visibility (α)

N/A 0.1 0.3 0.5 0.7 0.9 1.0
Poisoned 0.008 0.993 0.999 1.000 1.000 1.000 1.000
Clean 0.943 0.936 0.933 0.928 0.935 0.937 0.933

the corresponding poisoned samples. In the Blend attack (Chen et al., 2019), we utilize fixed visible trigger patterns,
consistent with Qi et al. (2022). In addition, we employ a pre-trained encoder network to generate input-specific
invisible trigger patterns in the ISSBA attack (Li et al., 2021). The trigger patterns used in these attacks are depicted
in the middle column of Figure 9. Given a set of input samples, as shown in the first column of Figure 9, the resulting
poisoned samples are presented in the last column of Figure 9.

A.5.2 PERFORMANCE COMPARISON OF EXPLAINED MODELS

In this part, we show the detailed performance of used models trained on different datasets. For all the Trojaned
models under comparison, we select the target label as the first class for a single target backdoor attack on both the
CIFAR-10 and ImageNet datasets, and the third class for the GTSRB dataset followed by Qi et al. (2022).

Tables 3 and 4 display the accuracy comparison of Trojaned ResNet-18 models as the visibility of the Trojan trigger
varies on the CIFAR-10 and GTSRB datasets. Similarly, Table 5 compares the accuracy of different Trojaned ResNet-
32 models on ImageNet. In all cases, a consistent poisoning rate of 0.1 was employed during model Trojaning.
Notably, these tables illustrate that changes in trigger visibility do not lead to a marked decrease in accuracy on the
clean dataset. Additionally, there is a minor reduction in accuracy on the poisoned dataset to ensure a fair comparison.
These results provide compelling evidence that a sample containing the Trojan trigger can completely alter the model’s
predictions, providing the ground truth of attributions. The first column in each table compares the accuracy of
the benign model on the respective datasets, highlighting that Trojaned models only exhibit a slight performance
compromise compared to their benign counterparts.

Table 4: Comparison of accuracy among various ResNet-18 models Trojaned through Blend attack with triggers of
varying visibility on GTSRB. The accuracy of the benign model (N/A) is also reported.

Test set Trigger visibility (α)

N/A 0.1 0.3 0.5 0.7 0.9 1.0
Poisoned 0.001 0.992 0.999 1.000 1.000 1.000 1.000
Clean 0.973 0.967 0.965 0.970 0.971 0.967 0.969
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Table 5: Comparison of accuracy among various ResNet-34 models Trojaned through Blend attack with triggers of
varying visibility on ImageNet. The accuracy of the benign model (N/A) is also reported.

Test set Trigger visibility (α))

N/A 0.3 0.5 0.7 0.9 1.0
Poisoned 0.000 0.987 0.998 0.995 0.999 1.000
Clean 0.724 0.713 0.717 0.715 0.714 0.716

Table 6: Comparison of accuracy among various
ResNet-18 models Trojaned through Blend attack with
different poisoning rates on CIFAR-10.

Test set Poisoning rate

0.001 0.005 0.01 0.05 0.1
Poisoned 0.975 1.000 0.999 1.000 1.000
Clean 0.937 0.938 0.936 0.939 0.928

Table 7: Comparison of accuracy among various
ResNet-18 models Trojaned through Blend attack with
different poisoning rates on GTSRB.

Test set Poisoning rate

0.001 0.005 0.01 0.05 0.1
Poisoned 0.745 0.997 0.998 1.000 1.000
Clean 0.969 0.966 0.971 0.970 0.970

Table 8: Comparison of accuracy among
various ResNet-18 models Trojaned through
ISSBA attack on CIFAR-10 and ISSBA.

Test set Dataset

CIFAR-10 ISSBA
Poisoned 1.000 1.000
Clean 0.938 0.972

Table 9: Accuracy comparison of ResNet-18, ResNet-32, ResNet-
50 and ResNet-101 models Trojaned through Blend attack on Ima-
geNet.

Test set Model

ResNet-18 ResNet-34 ResNet-50 ResNet-101
Poisoned 0.998 0.998 0.993 0.990
Clean 0.682 0.717 0.728 0.749

Table 6 and Table 7 present the accuracy changes in models Trojaned with different poisoning rates, ranging from
0.001 to 0.1, on the CIFAR-10 and GTSRB datasets. These tables demonstrate that models Trojaned with various
poisoning rates only result in a subtle reduction in clean accuracy. It enables our experiments to maintain relatively
consistent accuracy levels across different poisoning rates.

In Table 8, we show the accuracy comparison of ResNet models Trojaned through the ISSBA attack with a poisoning
rate of 0.05 on both CIFAR-10 and GTSRB datasets. We have ensured consistent standard accuracy and high accuracy
on the poisoned dataset to enable a fair comparison. Furthermore, Table 9 compares accuracy on both the poisoned
and clean datasets across three different models.

The results highlight that Trojaned models exhibit the ability to adapt and fit the input distribution when optimizing the
poisoned samples. As these Trojaned models converge during training on these samples, we are now equipped with
the capacity to conduct a comprehensive and rigorous evaluation of attribution methods specifically within the context
of Trojaned models. While other studies have demonstrated the presence of feature disparities in the hidden layers of
Trojaned models within the latent space (Qi et al., 2022), our findings suggest that these models can still be considered
reliable for evaluating explanations related to the model’s output layer. However, further exploring the impact of the
disparity in evaluating attribution methods is left in our future work.

A.5.3 HYPERPARAMETER CHOICE

Model Training and Evaluation. In our experiments, we trained ResNet-18 on CIFAR-10 for 100 epochs, starting
with an initial learning rate of 0.1. We applied a learning rate decay by a factor of 10 at the 50-th and 75-th epochs
separately. On GTSRB, ResNet-18 was trained for a total of 100 epochs, with a learning rate of 0.1, and we applied
a learning rate decay at the 30-th and 60-th epochs. Additionally, we trained ResNet-18, ResNet-34, ResNet-50, and
ResNet-101 on ImageNet 2012 training set for a total of 90 epochs, with an initial learning rate of 10−2, which was
decayed at the 30-th and 60-th epochs. This setup was consistent for models subjected to both Blend attack and ISSBA
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(a) Attack success rate of different models (b) Trigger recall of different models

Figure 10: The comparison of (a) attack success rate and (b) trigger recall across different model architectures using
different attribution methods on ImageNet. A lower attack success rate indicates better results, while a higher trigger
recall indicates better results.

attack. In the benchmarking, we use the test sets of both the CIFAR-10 and GTSRB datasets. For the ImageNet 2012
dataset, attribution methods are assessed on the ImageNet 2012 Validation set.

Attribution Methods. In our experiments, we test three groups of attribution methods including CAM-bsaed,
gradient-based and integration-based attribution methods. In two CAM-based attribution methods, GCAM and Full-
Grad, we remove the ReLU layer that is typically applied in activation calculation, ensuring the original activations.
In addition, we applied two CAM-based attributions to explain model output probabilities. For all gradient-based
attribution methods, the attributions are calculated by explaining output logits. In addition, we take the absolute
values of the calculated attributions of gradient-based methods. In SG, we integrate gradients of 50 perturbed input
samples that are added Gaussian noise with a standard deviation of 0.15. In integrated-based attribution methods,
we retain the original values of estimated attributions by explaining output probabilities. Specifically, we sample 50
interpolations x̄ from the reference x′ to the input x in IG for attribution estimation. In IG-Uni, IG-SG and LPI, we
employ 10 references and 5 interpolations to maintain the same total number of interpolations of 50 for a fair compar-
ison. Specifically, IG-SG employs the same deviation in Gaussian noise as SG. References of LPI are sampled from
the training set by one central clustering. In contrast, we select 5 references and 10 interpolations in AGI for a higher
performance due to its reliance on more interpolation points for estimating adversarial examples.

A.5.4 EXPERIMENTAL SOFTWARE AND PLATFORM

All experiments were performed on a Linux-based system equipped with an NVIDIA GTX 3090Ti GPU boasting
24GB of memory, complemented by a 16-core 3.9GHz Intel Core i9-12900K CPU and 128GB of main memory. For
both testing and training purposes, all attribution methods were implemented and evaluated within the PyTorch deep
learning framework (version 1.12.1), utilizing the Python programming language.

A.6 EXPERIMENTS OF MODEL ARCHITECTURES

In Figure 10, we conduct a comparison of both attack success rate and trigger recall across different model archi-
tectures using various attribution methods. All three models were trained on ImageNet with a Trojan trigger of 0.5
visibility and a 0.1 poisoning rate. Table 9 shows the detailed performance comparison of the three models. It can
be observed that two CAM-based attribution methods and Grad exhibit sensitivity to changes in model architecture,
indicating weaker stability. Conversely, most attribution methods show consistent performance across varying model
architectures, demonstrating a stable behavior.

A.7 EXTENDED EXPERIMENTS OF POST-PROCESSING AND OUTPUT CHOICE

In this part, we provide more experimental results of attribution methods in using different post-processing techniques
and explaining different objects.

In Figure 11, we compare the recalibrated attributions (Yang et al., 2023b) and original attributions on integration-
based attribution methods including IG-SG, IG-Uni, AGI and LPI. On CIFAR-10 and ImageNet datasets, recalibrated
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(a) Attack success rate difference 

CIFAR-10 ImageNet CIFAR-10 ImageNet

(b) Trigger recall difference

Figure 11: The comparison of (a) attack success rate difference and (b) trigger recall difference between original
attributions and attributions recalibrated by valid references. Four integration-based attribution methods are compared
to explain the model’s output logit.

CIFAR-10 GTSRB ImageNet

Figure 12: The comparison of fractional logit change between explaining logits and probabilities on attack success rate
and trigger recall. Methods approaching the top-left corner indicate superior results. ( : Probabilities are explained
with attribution methods. ▲: Logits are explained with attribution methods.)

attributions can outperform the original attributions. In addition, the performance of recalibrated attributions is also
degraded with the mean values of attributions, which may reveal that darker images lead to more valid references.

In Figure 12 and Figure 13, we show more comparisons of fractional logit and probability change between attributions
in explaining logits and probabilities across three datasets. For the two figures, we combine fractional logit change
of both y and ỹ to compare the capability of attribution methods in reducing output of ỹ and recovering output of y.
All methods are scaled with their distance to the bottom left corner. Attribution methods are indicated with a circle
( ) and a triangle (▲) to indicate attributions generated by explaining output probabilities and logits separately. It
can be observed that there is no significant difference between explaining probabilities and logits in both fractional
logit and probability change. However, the results of Grad and IG in explaining logits show a salient improvement on
CIFAR-10 and GTSRB. The results reveal that the two methods rely on explaining logits to locate important features,
showing their less stability across datasets.

Figure 14 offers a further comparison between our established consistent setup and contrastive outputs on CIFAR-
10, GTSRB, and ImageNet. It is noticeable that explaining the contrastive output can achieve similar performance
when compared to our selected objects, especially in the case of FullGrad and all Integration-based methods. This
observation highlights the superiority of contrastive output over mutual selection. However, it’s worth noting that
explaining contrastive output in GCAM and Gradient-based methods doesn’t achieve comparable performance. Given
its transparency, the exploration of more contrastive explanation objectives represents a promising direction for future
research.

A.8 EXTENDED EXPERIMENTS OF OVERALL BENCHMARKS

In this part, we provide more overall benchmarking experimental results. In addition, more visualization examples are
presented for a visual inspection.
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CIFAR-10 GTSRB ImageNet

Figure 13: The comparison of fractional probability change between explaining logits and probabilities on attack
success rate and trigger recall. Methods approaching the top-left corner indicate superior results. ( : Probabilities are
explained with attribution methods. ▲: Logits are explained with attribution methods.)

(a) Attack success rate difference (b) Trigger recall difference

ImageNet ImageNetGTSRB GTSRBCIFAR-10 CIFAR-10

Figure 14: The comparison of (a) attack success rate difference and (b) trigger recall difference between attributions
estimated from our established consistent setup and attributions calculated by explaining the contrastive output.

A.8.1 RESULTS OF FRACTIONAL PROBABILITY CHANGE.

Figure 15 presents a comparison of fractional probability change across attribution methods for both Blend and ISSBA
attacks. It is evident that gradient-based and integration-based attribution methods consistently exhibit the highest
performance and stability in reducing the output of ỹ and recovering the output of y. CAM-based methods, including
GGCAM, also demonstrate high performance, relying on a combination of fine-grained attributions.

CIFAR-10 GTSRBImageNet CIFAR-10 GTSRB

(a) Fractional probability change under Blend Attack (b) Fractional probability change under ISSBA Attack

Figure 15: The comparison of fractional probability change for (a) Blend attack and (b) ISSBA attack. Different
attribution methods are scaled according to their performance. Methods approaching the top-left corner indicate
superior results.

A.8.2 VISUAL INSPECTION OF ATTRIBUTIONS

In Figure 16, we evaluate two visualization techniques using absolute and original attributions, respectively. It is evi-
dent that attributions highlight different regions of input samples when using these different visualization techniques.
As a result, the visualized outcomes can be misleading, emphasizing the need for quantitative results to provide clarity
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Figure 16: Visualization of attribution maps using absolute and original techniques on input samples from GTSRB,
CIFAR-10 and ImageNet respectively. The predictions made by models Trojaned through Blend attack with a trigger
visibility of 0.5 are explained using attribution methods.

and context. Furthermore, this phenomenon is more pronounced in small datasets due to the limited number of input
pixels. However, in the case of larger-scale input samples, while they may yield more consistent attribution maps,
their abundance of features can be perturbed to the extent that these attributions no longer accurately correspond to the
trigger region.

In Figure 18 and Figure 19, we provide visualization examples for explaining models Trojaned through Blend at-
tack using attribution methods across three datasets: CIFAR-10, GTSRB and ImageNet. Three groups of attribution
methods are compared including CAM-based, Gradient-based and Integration-based methods. In the visualization
experiments, original attributions of output logits are used in CAM-based and integration-based attribution methods.
In addition, absolute attributions of output probabilities are visualized in gradient-based attribution methods as the es-
tablished consistent setup. It can be observed that absolute attributions are good at generating plausible visualization
examples. Similar to our observation, GCAM relies on other information to generate fine-grained attributions (e.g. FG
and GGCAM).

Figure 20 presents visualization examples for explaining ResNet-18 models Trojaned through ISSBA attack using
attribution methods of three groups on both CIFAR-10 and GTSRB datasets. We can observe that attributions with
high variations are also effective in identifying invisible patterns in comparison with fixed patterns.

A.9 EXTENDED EXPERIMENTS OF BACKDOOR DEFENSE

In this part, more experiments are provided for defending against backdoor attacks using attribution methods. In
addition, more visualization examples for detecting various triggers are provided for visual inspection.

A.9.1 RESULTS OF ATTACK SUCCESS RATE.

In Figure 17, we compare the results of attack success rate on models Trojaned through Blend attack with different
trigger visibilities and poisoning rates. It can be observed that the visibility of the trigger is not positively related to
attribution performance. In contrast, the higher visibility trigger sometimes causes a higher attack success rate, which
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(b) Attack success rate change with poisoning rate(a) Attack success rate change with trigger visibility

Figure 17: The results of attack success rate. (a) Trigger recall changes as trigger visibility. (a) Trigger recall changes
as poisoning rate. Lower curves indicate better results.

aligns with our observation. In addition, different poisoning rates show less impact on the ease of defense, as shown
in Figure 17(b).

A.9.2 VISUAL INSPECTION FOR BACKDOOR ATTACK

In Figure 21, we assess the attribution performance in detecting triggers with varying degrees of visibility. Contrary
to our initial expectations, it becomes evident that attribution methods face greater difficulty in identifying triggers
with higher visibility, which also aligns with our observation. Consequently, this finding prompts us to reconsider our
intuition about feature learning in model optimization.

Figure 22 presents visualization examples of attribution maps with changes in the poisoning rate. Notably, it is apparent
that attributions exhibit a relatively minor impact on models that have been Trojaned with different poisoning rates.
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CIFAR-10 GTSRB

Figure 18: Visual comparison of attribution methods on CIFAR-10 and GTSRB datasets. Predictions made by ResNet-
18 models Trojaned through the Blend attack with a trigger visibility of 0.5 are explained using three groups of
attribution methods including CAM-based, Gradient-based, and Integration-based methods.
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Figure 19: Visual comparison of attribution methods on ImageNet 2012. Predictions made by ResNet-34 models
Trojaned through the Blend attack with a trigger visibility of 0.5 are explained using three groups of attribution
methods including CAM-based, Gradient-based, and Integration-based methods.
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Figure 20: Visual comparison of attribution methods on CIFAR-10 and GTSRB datasets. Predictions made by ResNet-
18 models Trojaned through the ISSBA attack with a trigger visibility of 0.5 are explained using three groups of
attribution methods including CAM-based, Gradient-based, and Integration-based methods.
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Figure 21: Visual comparison of attribution methods on CIFAR-10 and GTSRB datasets. Predictions made by ResNet-
18 models Trojaned through the Blend attack with triggers of varying visibilities are explained using attribution meth-
ods including FG, GGCAM, SG, AGI and LPI.
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Figure 22: Visual comparison of attribution methods on CIFAR-10 and GTSRB datasets. Predictions made by ResNet-
18 models Trojaned through the Blend attack of different poisoning rates are explained using three groups of attribution
methods including FG, GGCAM, SG, AGI and LPI.
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