
VLKEB: A Large Vision-Language Model Knowledge
Editing Benchmark

Han Huang1,2∗ Haitian Zhong2∗ Tao Yu2 Qiang Liu2†

Shu Wu2 Liang Wang2 Tieniu Tan2,3

1University of Chinese Academy of Sciences (UCAS)
2New Laboratory of Pattern Recognition (NLPR),

State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS),
Institute of Automation, Chinese Academy of Sciences (CASIA)

3Nanjing University

Abstract

Recently, knowledge editing on large language models (LLMs) has received con-
siderable attention. Compared to this, editing Large Vision-Language Models
(LVLMs) faces extra challenges from diverse data modalities and complicated
model components, and data for LVLMs editing are limited. The existing LVLM
editing benchmark, which comprises three metrics (Reliability, Locality, and Gener-
ality), falls short in the quality of synthesized evaluation images and cannot assess
whether models apply edited knowledge in relevant content. Therefore, we employ
more reliable data collection methods to construct a new Large Vision-Language
Model Knowledge Editing Benchmark, VLKEB, and extend the Portability metric
for more comprehensive evaluation. Leveraging a multi-modal knowledge graph,
our image data are bound with knowledge entities. This can be further used to
extract entity-related knowledge, which constitutes the base of editing data. We
conduct experiments of different editing methods on five LVLMs, and thoroughly
analyze how do they impact the models. The results reveal strengths and deficien-
cies of these methods and hopefully provide insights for future research. The codes
and dataset are available at: https://github.com/VLKEB/VLKEB.

1 Introduction

With the rapid advancement and widespread deployment of LLMs, knowledge editing has emerged
as an important topic [1–4]. The knowledge stored within LLMs can suffer from issues such as
errors, deficiencies and obsolescence. Knowledge editing aims to efficiently correct and update this
information while ensuring minimal impact on unrelated content. Numerous LLM editing methods
have been proposed [5–14] and benchmarks have been established to assess these approaches. Metrics
such as Reliability, Generality, Locality and Portability are commonly used [2] in these benchmarks.
Reliability defines a reliable edit where the post-edit model produces the target answer for a given
case. Generality requires the post-edit model to understand equivalent neighbors, such as rephrased
sentences. Locality emphasizes localized editing, ensuring that the output of unrelated knowledge is
retained. Portability evaluates whether models effectively apply edited knowledge to relevant content.
These methods and benchmarks have greatly advanced the research in LLM knowledge editing.

In contrast, the task of knowledge editing for LVLMs has not been extensively studied. Currently,
only one benchmark (MMEdit [15]) explores LVLM editing. This benchmark extends Reliability,

∗Equal contribution. # han.huang@cripac.ia.ac.cn # haitian.zhong@cripac.ia.ac.cn
†Corresponding author. # qiang.liu@nlpr.ia.ac.cn

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://github.com/VLKEB/VLKEB

Wichita Falls, Texas
(Original Entity)

Fort Smith, Arkansas
(Editing Target)

Question: Can you
identify the location
shown in the picture? LVLM

Edit

Unedited:
It is Wichita Falls in Texas.

Edited:
It is Fort Smith in Arkansas.

Fort Smith,
Arkansas

Image Input

Text
Input

Question: Which city is
featured in the image?

Generality

“Rephrased”
Image

Rephrased
Question

Locality

Unrelated Image
& Corresponding
Question

Which city straddling the state line
is represented in the image?

When did Prison Break
season 4 come out?

Unrelated
Question

Reliability

Portability
Fort
Smith The

USA

Central
Time
Zone

Time
Zone

Country

Knowledge
Graph

Sample (s,r,o)
from the
Knowledge
Graph

Question: In which state is the
location in the image situated?

Portability
Question

Figure 1: The image belongs to "Wichita Falls" originally and the editing target is to make LVLM
recognize it as "Fort Smith". The answer from LVLM measures the edit Reliability. The Generality
inputs are "rephrased" images (i.e. belong to the same entity but different in perspective or appearance)
and rephrased questions. Locality inputs are unrelated images and questions. Portability inputs are
generated from sampled triples containing editing entity ‘Fort Smith’ from the knowledge graph.

Generality and Locality, and adapts several editing methods from LLMs to LVLMs. However, it has
some limitations. First, it uses synthesized images in Generality evaluation, which are generated by
Stable Diffusion [16] from image captions. This could result in content inconsistency with original
images and side-effect of less accurate evaluations. Second, the lack of evaluation of Portability is
a significant gap, as effective use of edited knowledge is crucial to deploying an edited model in
realistic applications. Furthermore, the limited quantity of data in this field poses a challenge to the
progress of LVLM editing; therefore, additional data can greatly benefit the development of this area.

To address these issues, we have developed a new Large Vision-Language Model Knowledge Editing
Benchmark, named VLKEB, designed to assess and improve the capabilities of knowledge editing
methods in the field of LVLMs. An LVLM editing case using VLKEB is illustrated in Fig.1.

In our study, we source data from the multi-modal knowledge graph MMKG [17], which includes
images linked to knowledge entities. The presence of multiple images for each entity in MMKG
makes it practicable to selectively choose image pairs for assessing the Generality. During the
selection process, we choose clear and representative image pairs, ensuring that each pair contains a
same entity but presented in varied perspectives or appearances. For the Reliability test, corresponding
entities of chosen images are employed. Subsequently, we filter similar images from the remaining
entities (none of their images were chosen previously) to construct the image Locality test. We utilize
GPT to generate questions and answers during data construction.

Another important advancement of our work is the extension of the Portability metric for more
comprehensive evaluation. As shown in Fig.1, we sample relational triples (s, r, o) of editing-
involved entities from knowledge graphs to construct test examples. The edited entities serve as the
subjects of these sampled triples, which are then used to generate portability questions.

Compared with the MMEdit benchmark, our benchmark offers several advantages and exhibits key
differences. Firstly, our image selection prioritizes real images, mitigating potential flaws present
in synthesized images. Secondly, we extend Portability evaluation which reveals the ability of
methods to make edited model effectively use edited knowledge in related contents. Lastly, by
using a multi-modal knowledge graph as our source distinctly associates each image with a specific
entity, enhancing the clarity of what knowledge it carries, and is expansible by incorporating other
knowledge in diverse relation triples as test cases. The key differences are presented in Tab.1.

In summary, our main contributions are as follows:

2

Table 1: Differences between MMEdit and VLKEB. (Rel: Reliability; T-*: Text-*; I-*: Image-*.)

Comparison MMEdit VLKEB (Ours)

Metrics

Rel/T-Gen/T-Loc Yes Yes
I-Generality AI-Generated, less controllable Real images, manual check
I-Locality Random sample, easier evaluation Filtered sample, harder evaluation
Portability No Evaluation Yes

Construct
Data Source VQAv2 & COCO Caption; No en-

tity connections, No Portability
MMKG; extensive connections,
enhanced Portability evaluation

Image Quality Real & synthetic images; factual
flaws observed in synthetic images

Real images in the datasets; qual-
ity guarantee, factually accurate

• We introduce a new benchmark VLKEB, which is specifically designed for evaluating
LVLM knowledge editing. The quality of data is guaranteed and it mitigates the challenge
of limited data in this research area.

• Our work extends the pivotal metric of Portability into the field of LVLM knowledge editing,
providing a more comprehensive assessment of the models’ ability to transfer and apply
edited knowledge effectively.

• We conducted experiments on various LVLMs using different editing methods. These
experiments contribute valuable insights into the performance and limitations of existing
knowledge editing approaches on LVLMs.

2 Related Works

LLM Editing Benchmarks The widely used datasets for LLM editing are ZsRE [18] and COUN-
TERFACT [5]. ZsRE utilizes reading-comprehension examples for relation-slot filling tasks sourced
primarily from the WikiReading dataset [19]. The COUNTERFACT dataset evaluates the ability of
robustly learn new facts by challenging models with complex factual associations rather than simple
lexical changes. The MQuAKE [20] dataset further evaluates knowledge editing generalization
by focusing on multi-hop questions, which challenge models to navigate through interconnected
information accurately. RippleEdits [21] complements this by testing the consistency of knowledge
updates across related facts, highlighting the complexity of maintaining coherent knowledge.

LLM Editing Methods As the baseline, fine-tuning adjusts specific layers of language models or
vision modules. Cutting-edge methods offer efficient solutions for knowledge updates. For example,
MEND [6] leverages low-rank decomposition of gradients that enables rapid and targeted updates to
knowledge and minimizes degradation on other inputs. SERAC [7] introduces a novel approach by
integrating an explicit memory system. Using a scope classifier to determine the relevance of cached
edits, SERAC ensures dynamic updates while maintaining the integrity of the base model. IKE
(In-Context Knowledge Editing) [8] proposes an unsupervised retriever that constructs demonstrations
to inject new factual knowledge without direct parameter updates. By ranking demonstrations based
on their similarity to the editing target, IKE offers a scalable and efficient way to update information.
Some of the LLM editing methods are adapted to LVLM in this study.

Large Vision-Language Models LVLMs involve aligning modalities during pre-training and
refining response generation through instruction-based tuning, significantly improving their ability to
handle complex multi-modal tasks. For instance, mPLUG-Owl [22] enhances multi-modal capabilities
through a two-stage training approach and low-rank adaption [23], achieving superior performance.
LLaVA [24] emphasizes pre-training and fine-tuning an alignment network alongside Vicuna, while
Qwen-VL [25] introduces innovative features like a visual receptor and a three-stage training pipeline,
excelling in visual-centric tasks and dialogue communication. We conduct experiments on various
LVLMs to assess the performance of different editing methods.

3

3 Dataset Construction

Problem Formulation An LVLM editing dataset Dedit = {(ie, xe, ye, y
′
e)i} contains image input

ie, text input xe, ground truth ye and editing target y′e. Given ie and xe, an unedited LVLM produces
f(ie, xe; θ) = ye, where parameters θ = θvision × θtext. After knowledge editing, the edited LVLM
with θ′ are expected to successfully change the original outputs f(ie, xe; θ

′) = y′e.

3.1 Metrics: Reliability, Generality, Locality and Portability

To evaluate the knowledge editing methods, key evaluation criteria from prior work [15] are Reliability,
Generality and Locality. Besides, based on our benchmark, we introduced Portability metric.

Reliability measures the proportion of target answers that the edited model can produce correctly.

Generality assesses how well the model responds to neighboring concepts in two modalities.

Locality measures how much of the stored knowledge, unrelated to the edit cases, remains unchanged
in the edited model by comparing the outputs of the unedited and edited models.

Portability Knowledge is interconnected, so modifying one fact affects related facts, complicating
editing evaluation. Since model knowledge is not isolated, adjustments must consider broader
implications. Portability evaluates if edited knowledge can be effectively applied to related content:

Mportability = E
(ie,xe,ye,y

′
e)∼Dedit

(xp,yp)∼P(ie,xe,ye,y
′
e)

1 {f (ie, xp; θ
′) = yp} ,

where xp and yp are text inputs and outputs that belong to P(ie, xe, ye, y
′
e), which denotes the

portability scope given the input ie, xe, ye, and target output y′e.

3.2 Construction Process

Preparation The raw data in MMKG are knowledge triples (s, r, o), where s is the subject, r
is the relation, and o is the object, with image URLs for each entity. We start from an image i
and its corresponding entity e. The chosen LVLM is edited to associate i with another entity e′.
The editing process forms an editing triple (i, e → e′). In the example ([a picture of Messi],
Messi→Ronaldo), it aims to modify the knowledge within an LVLM to make it interpret the person
in the picture as Ronaldo. We manually construct a prompt template ti(e;R) for an image i and its
entity e and use GPT (see appendix) to generate a questions i with given relation set R (could be
empty), to which the answer is precisely e.

Image Selection We start from image selection, recognizing the significance of image quality in
evaluation. We retrieve the available images with URLs in MMKG and remove duplicates. We then
utilize the pre-trained CLIP model [26] as an image feature extractor to assess similarities within each
set of images corresponding to entities. Pairs of images with high similarity scores are then manually
inspected to confirm that they belong to the same entity but differ in perspective or appearance.

Reliability, Generality and Locality Evaluation Data Construction We choose Visual-Question-
Answering (VQA) as the evaluation task. We start by using maximum weight bipartite matching
to identify pairs of entities (e, e′) with the highest similarity based on their shared relations. These
chosen pairs form a set of editing triples (i, e → e′) as previously mentioned.

Next, we manually review generated QA to make sure the questions and answers match. For each
entity and image, we generate two questions q1 and q2, which can be viewed as rephrase of each other.
We put one in Reliability set Dedit = {(i, q1, e, e′)i} and another in Text Generality set. For Image
Generality test, the previous image pair selection enables us to get "rephrased" image of edited one.
For Text Locality, we follow MMEdit to choose NQ dataset [27] which contains unrelated QAs and
randomly put them in Dtext

loc . For Image Locality, we filter similar images for edit-involved images
from unedited entities. We then generate questions and answers for each filtered image and entity.
The test data in Dimage

loc are thus similar in both modalities to that in Dedit, making it more difficult
for LVLM editing methods to perform well than random image locality test.

4

Portability Evaluation Data Construction As mentioned, Portability represents whether editing
methods can apply edited knowledge within the portability scope P (ie, xe, ye, y

′
e). For example,

after performing the edit ([a picture of Messi], Messi→Ronaldo), we expect the LVLM to
understand that the individual in the image, now identified as C. Ronaldo, is playing in Saudi Arabia
instead of the USA. This means the model can apply the edited knowledge to related questions.

During the construction of the portability data, we select the connected triples of an edited entity,
forming one-hop reasoning portability queries. For example, given (i, e → e′) and (s1, r1, o1), where
e′ = s1, the connected triple could be formulated as ⟨(i, e → e′) , (s1, r1, o1)⟩. We then collect and
generate questions ti(o1; r1) to form one-hop Portability evaluation dataset.

Nevertheless, Under more complex scenarios, it remains uncertain if an edited model can effec-
tively process multi-hop reasoning tasks related to the edit. We suggest evaluating edited mod-
els with multi-hop reasoning VQA task by considering a connected chain of knowledge triples
C = ⟨(i, e → e′) , (s1, r1, o1), . . . , (sn, rn, on)⟩, where e′ = s1 and the object of the i-hop knowl-
edge should serve as the subject of the subsequent knowledge in the sequence, i.e., oi = si+1. We
then similarly generate questions ti(on; r1, . . . , rn) and incorporate them into the portability scope.

Dataset Summary In total, the dataset contains 8174 editing cases with 18434 images. We split
them into train and test set of 5000 and 3174 cases respectively. See appendix for more details.

4 Experiments

We conduct experiments on five LVLMs, which are BLIP2 [28], MiniGPT-4 [29], mPLUG-Owl2 [30],
Qwen-VL [25] and LLaVA-1.5 [24]. The detailed versions of these LVLMs are in appendix. We test
single editing and sequential editing[31, 11, 32]. Single editing updates a single knowledge once at a
time and then evaluates editing results. This is a common setting of knowledge editing. In contrast,
sequential editing continuously updates knowledge. Their difference is illustrated in Fig.2.

1 Test 1 2 Test 2

3 Test 3 … …

(a) Single Editing

1 2 3 … 11 12 …

Test 1 Test 2gap …Edit Timeline

(b) Sequential Editing

Figure 2: In Fig.2a, the single editing takes one edit at a time and evaluate immediately, while in
Fig.2b the sequential editing involves continuous edits and test after several other edits.

4.1 Editing Methods and Experiment Settings

Fine-tune (FT) We choose different parts of models during FT: the LLM layers or vision module.

Knowledge Editor (KE) [9] trains a bidirectional-LSTM as hyper network, which predicts weight
updates of specified model parameters with gradients and condition input {(ye → y′e) |xe}. We
choose last layers of LLMs as the parameters to be updated in editing process.

IKE [8] does not change model parameters. It retrieves and builds similar demonstrations from
training set, and inject new knowledge by prompting. This process is consistent across all models.

SERAC [7] is a memory-based method that has a scope classifier model and a counterfactual model.
In our experiments, the classifier is trained from a BERT model [33] and the counterfactual model
differs across LVLMs, which is set to be the LLM used by corresponding LVLM.

MEND [6] method enables models to efficiently update the parameters of the last layers in LLMs
within LVLMs, utilizing low-rank gradient decomposition coupled with predictive parameter updates.

4.2 Single Editing Results and Findings

High Reliability and Generality: In single editing, memory-based methods benefit from having
only one piece of new knowledge stored, while parameter-update methods fit the single new

5

Table 2: The single editing results of various editing methods applied to different LVLMs.
Rel.: Reliability; T/I-Gen.: Text/Image Generality; T/I-Loc.: Text/Image Locality; Port.: Portability

Model Method Rel.↑ T-Gen.↑ I-Gen.↑ T-Loc.↑ I-Loc.↑ Port.↑

BLIP2-OPT
(∼ 3.8 B)

FT (LLM) 99.75 99.08 98.95 71.10 19.90 17.13
FT (Vis) 99.33 96.68 99.13 99.99 5.30 27.22

KE 94.45 92.40 93.34 64.13 12.22 34.73
IKE 99.47 99.40 99.56 70.11 10.26 44.22
SERAC 96.02 95.99 96.01 100.0 2.40 15.25
MEND 98.52 98.42 98.47 99.34 89.05 28.80

MiniGPT-4
(∼ 7.8 B)

FT (LLM) 99.60 98.72 98.10 90.17 35.39 27.13
FT (Vis) 100.0 84.89 99.19 99.99 20.26 37.06

KE 98.47 97.89 98.11 75.47 16.14 48.06
IKE 99.98 99.68 99.98 59.25 9.73 54.30
SERAC 99.37 97.30 99.29 99.93 4.54 49.22
MEND 99.20 98.98 99.15 99.46 92.67 40.09

LLaVA-1.5
(∼ 7 B)

FT (LLM) 99.59 99.43 99.31 86.34 29.24 30.23
FT (Vis) 99.80 99.12 97.55 99.99 18.79 54.43

KE 99.07 97.59 98.65 77.36 15.25 48.62
IKE 99.99 99.66 100.0 68.65 14.25 63.33
SERAC 99.93 99.78 99.93 99.98 1.91 45.03
MEND 99.54 99.21 99.52 99.36 90.14 40.39

Qwen-VL
(∼ 9.7 B)

FT (LLM) 97.92 96.30 95.48 72.80 37.23 16.15
FT (Vis) 100.0 95.27 62.28 100.0 14.14 30.61

KE 98.71 98.70 98.26 72.09 52.63 42.10
IKE 99.01 98.85 99.01 57.97 10.48 57.99
SERAC 97.62 95.68 97.84 99.85 0.81 38.22
MEND 99.54 99.36 97.76 97.75 78.65 32.35

mPLUG-
Owl2
(∼ 8.2 B)

FT (LLM) 99.21 95.72 99.39 71.42 34.31 42.77
FT (Vis) 97.24 96.36 82.39 99.99 50.14 74.09
KE 89.10 88.37 88.62 55.80 21.07 46.82
IKE 99.98 99.93 100.0 64.88 16.59 64.83
SERAC 99.03 97.73 98.99 99.97 1.32 48.52
MEND 98.65 98.15 94.26 99.56 90.47 37.68

piece of knowledge well. In Tab.2, most methods and models achieve nearly 100% accuracy in
Reliability due to the single editing test setting. As each edit is separately tested and the test is right
after each edit, memory-based methods like SERAC retrieve the single new knowledge (with the
"highest" input similarity) and append it to the test inputs. Similarly, IKE appends the edit case as a
"New Fact" prompt before each test. Parameter-update methods like FT, KE, and MEND fit the new
knowledge at each edit, leading to high Reliability. Additionally, LLMs exhibit high Text Generality
due to their ability to handle rephrased questions, and the well pre-trained vision encoder ensures
high Image Generality by effectively handling similar images.

Varied Locality: Memory is a double-edged sword and parameter updates also harm models.
SERAC exhibits divergent Locality in text and image in Tab.2, with nearly 100% in T-Loc but the
highest I-Loc is merely 4.5%. The causes of this phenomenon are twofold. First, Text Locality data
is collected from another irrelevant dataset (Sec.3.2) which is totally different from the edit data;
therefore, it is classified to have very low similarity and processed by the original model. Second,
Image Locality involves similar texts to edit cases, causing SERAC to misclassify and forward them
to the counterfactual model, producing different outputs against the original model. IKE always builds
in-context examples and appends edit text as a new fact before the test, which greatly affects model
outputs. IKE’s lower I-Loc compared to T-Loc is due to appended edits misdirecting the models with

6

false facts. In FT, we observe that fine-tuning different parts yields distinct results. Fine-tuning vision
modules (FT-Vis) has higher T-Loc than fine-tuning LLM layers (FT-LLM), indicating that FT-LLM
has greater and more direct impact on model outputs as it modifies the final LLM layers. In contrast,
FT-Vis has lower I-Loc in because it changes the vision encoder or projector parameters, affecting the
visual ability to distinguish between similar images. Comparing MEND with KE, MEND has overall
better locality performance. This could be attributed to two reasons: First, KE predicts parameter
updates based on gradients and text condition input, while MEND relies directly on token-wise
activations and gradients, providing richer information about which parameters are crucial for an
update [6]. Second, MEND includes a locality constraint during training which KE lacks, helping to
maintain Locality. MEND shows the best average locality but it is imperfect as the outputs of edited
models still differ somewhat from unedited ones.

Portability: Can the model effectively apply the edited knowledge? From the Portability column
in Tab.2, we find that IKE generally achieves higher results than other methods, except in the case of
mPLUG-Owl2 where FT-Vis has highest results. This demonstrates how prompting with examples
and providing the necessary new knowledge can help models answer portability questions. In single
editing, SERAC always appends edited knowledge before test, effectively acting as if IKE has
only one demonstration. Consequently, SERAC shows inferior Portability results compared to IKE.
In contrast, FT, KE and MEND which change parameters related to edits, do not account for the
interconnected knowledge, resulting in generally poor results. The unsatisfactory outcomes suggest
that these editing methods can not effectively utilize edited knowledge, as SERAC and IKE rigidly
require edit texts as prompts, and FT, KE and MEND perform case-centric updates.

1hop 2hop 3hop 4hop
Hop Count

-40%

-20%

0%

20%

40%

60%

Re
la

tiv
e

Ch
an

ge
 (%

)

BLIP2-OPT

(a) BLIP2-OPT

1hop 2hop 3hop 4hop
Hop Count

-30%

-20%

-10%

0%

10%

20%

30%

Re
la

tiv
e

Ch
an

ge
 (%

)

MiniGPT-4

(b) MiniGPT-4

1hop 2hop 3hop 4hop
Hop Count

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

Re
la

tiv
e

Ch
an

ge
 (%

)

LLaVA-1.5

(c) LLaVA-1.5

1hop 2hop 3hop 4hop
Hop Count

-80%

-60%

-40%

-20%

0%

20%

40%

60%

Re
la

tiv
e

Ch
an

ge
 (%

)

Qwen-VL

(d) Qwen-VL

1hop 2hop 3hop 4hop
Hop Count

0%

20%

40%

60%

Re
la

tiv
e

Ch
an

ge
 (%

)

mPLUG-Owl2

(e) mPLUG-Owl2

FT(LLM)
FT(Vis)
KE
IKE
SERAC
MEND

Figure 3: Relative change (compared with unedited base model) of Multi-hop Portability results.

4.3 Multi-hop Portability: Performance Degradation Across Hops

Our experiments in Sec.4.2 evaluate the performance of edited models on the one-hop Portability
dataset. As described in Sec.3.2, the Portability dataset includes elements of multi-hop reasoning
VQA tasks. Consequently, we also conduct experiments on the multi-hop Portability evaluation
dataset to determine whether the edited models can utilize knowledge in more complex scenarios. As
illustrated in Fig.3, we displayed the multi-hop Portability results using the relative change compared
to base (unedited) model, i.e. Relative Change (%) = (Portability−Base Portability

Base Portability).

Portability Metrics Decline with Increasing Number of Hops In our experiments, we observe a
consistent decline in portability metrics as the number of hops increases. This decline is observed
across nearly all models and editing methods. This phenomenon can be attributed to the escalat-
ing complexity of reasoning required to accurately apply the edited knowledge across multiple
interconnected facts. Each additional hop introduces new intermediate entities and relationships,
compounding the difficulty for the model to maintain correct and consistent reasoning.

7

IKE performs well across all models, while Fine-tuning generally performs poorly, especially
Fine-tuning LLM heads. Since IKE consistently builds in-context examples and appends edit
text as a new fact before the test, it maintains a robust understanding of the edited knowledge
across different scenarios. This method’s strength lies in its ability to dynamically incorporate new
information in a contextually relevant manner, which enhances its performance even in multi-hop
reasoning tasks. The in-context learning approach allows IKE to adapt to the complexities introduced
by additional hops, thereby preserving the accuracy and consistency of the edited knowledge.

In contrast, Fine-tuning LLM heads tends to perform poorly across all models. The process of
fine-tuning involves directly modifying the model parameters, which can lead to overfitting on the
edited examples and a failure to generalize to related but unedited contexts. As the number of hops
increases, the fine-tuned models struggle to apply the edited knowledge accurately due to the rigid
and localized nature of the parameter updates. Interestingly, while the fine-tuning of visual modules
(FT-Vis) also performs suboptimally, it does not suffer as severely as the fine-tuning of LLM heads.
The closer proximity of the LLM heads to the output layer increases the likelihood of overfitting, as
the updates directly impact the final predictions.

4.4 Sequential Editing: Performance Degradation Due to Forgetting and Confusion

Editing knowledge separately is impractical in real-world scenarios, as knowledge changes over time,
necessitating continuous updates to our models. We test sequential editing (Fig.2b) on FT-LLM,
FT-Vis, SERAC and MEND, while exclude KE and IKE because they require the edit data as part of
the input during test time, which is not feasible in practical applications. The results are in Fig.4.

99.14%

65.34% 62.79% 59.49%

55.64%

97.41%

49.70% 47.61% 44.76% 41.75%

96.11%
93.96% 93.94% 93.43% 93.01%

30%
40%
50%
60%
70%
80%
90%

100%

0 10 20 50 100

Reliability

FT-LLM FT-VIS SERAC

(a) Average Reliability

98.57%

62.44% 60.55% 57.14% 53.30%

87.45%

48.77% 45.32% 42.76% 39.63%

94.70%

58.21% 56.49% 54.86% 52.65%

30%
40%
50%
60%
70%
80%
90%

100%

0 10 20 50 100

T-Generality

FT-LLM FT-VIS SERAC

(b) Average Text Generality

98.86%

63.66% 60.81% 57.73% 54.47%

86.05%

48.02% 45.92% 42.21% 40.72%

95.59% 93.82% 93.85% 93.37% 93.03%

30%
40%
50%
60%
70%
80%
90%

100%

0 10 20 50 100

I-Generality

FT-LLM FT-VIS SERAC

(c) Average Image Generality

62.25%

41.43% 40.82% 38.21%
33.49%

100.00% 100.00% 100.00% 100.00% 100.00%
99.95% 99.94% 99.95% 99.96% 99.96%

30%
40%
50%
60%
70%
80%
90%

100%

0 10 20 50 100

T-Locality

FT-LLM FT-VIS SERAC

(d) Average Text Locality

20.30%

8.84% 8.47% 7.72% 6.50%

17.23% 12.04% 11.67% 11.51% 11.42%

2.24% 2.01% 2.03% 2.01% 2.00%
0%

5%

10%

15%

20%

25%

0 10 20 50 100

I-Locality

FT-LLM FT-VIS SERAC

(e) Average Image Locality

24.53%

15.94% 15.60% 14.75% 13.69%

44.01%

29.87% 28.61% 28.99% 28.46%

36.53%
33.80% 33.39% 33.72% 33.74%

10%
15%
20%
25%
30%
35%
40%
45%

0 10 20 50 100

Portability - 1 hop

FT-LLM FT-VIS SERAC

(f) Average Portability 1-hop

Figure 4: Average results in sequential editing. Horizontal axis is the test gap number in Fig.2b.

MEND is not included in these figures because, after a certain number of edits, we observed "NaN"
values in the logits of model outputs, indicating a collapse. For example, Blip2-OPT outputs "NaN"
after 50 edits, MiniGPT-4 after around 14 edits and LLaVA after around 20 edits. MEND learns
to predict parameter updates based on gradients of edits and parameters of original model during
training. However, in sequential editing, the corresponding LLM parameters change continuously
and differ from the unedited model in the training phase, making MEND unable to predict precise
updates, ultimately leading to collapse. Similar findings were observed by Han et al. [32].

Apart from MEND, other methods exhibit different characteristics compared to single editing. First,
FT tends to forget previous edits as model parameters change. The downward trends in Reliability
and Generality for FT in Fig.4a4b4c indicate that preserving previous edits becomes increasingly
difficult with a larger test gap. On the contrary, SERAC does not forget due to explicit memory
cache but becomes confused when memory is filled with more edits. SERAC maintains consistency
in Reliability and Image Generality because exact test texts are stored from previous edits. However,

8

Text Generality involves rephrased text that is not stored, challenging the similarity retrieval within
SERAC and leading to incorrect results due to false retrievals.

Fig.4d shows that FT-Vis tends to preserve model outputs in unrelated test text, as it leaves the LLM
layer unchanged, while FT-LLM does the opposite. In Fig.4e, both FT-Vis and FT-LLM exhibit low
scores since the test texts are similar to edits, with FT-LLM declining further as the gap increases.
These Locality results suggest that parameter updates can harm the model, and updating the
LLM has greater impact than updating the vision module.

In Fig.4f, Portability also decreases with an increasing gap. As shown in Sec.4.3, the unedited
model can predict some correct logits according to input texts through a forward pass. The average
Portability of base models is 36.80%, and the FT Portability drops lower after gap = 10, indicating
that edited models cannot effectively apply edited knowledge to related content. Therefore, to
investigate if Portability can be improved, we experiment with 1-hop portability in Sec.4.5.

4.5 Edit One-Hop Knowledge: Room for Portability Improvement

Table 3: Portability increases after additionally edit corresponding one-hop knowledge.
Portability FT (LLM) FT (Vis) SERAC MEND
Blip2-OPT 17.13→46.71 (↑ 29.58) 27.22→39.00 (↑ 11.78) 16.16→32.12 (↑ 15.96) 28.75→68.18 (↑ 39.43)
MiniGPT-4 27.13→44.65 (↑ 17.52) 37.06→56.91 (↑ 19.85) 47.49→51.10 (↑ 3.61) 39.19→53.83 (↑ 14.64)
LLaVA-1.5 30.23→74.79 (↑ 44.56) 54.43→84.81 (↑ 30.38) 45.03→72.75 (↑ 27.72) 40.39→70.73 (↑ 30.34)
Qwen-VL 16.15→88.88 (↑ 72.73) 30.61→55.15 (↑ 24.54) 38.22→54.44 (↑ 16.22) 32.35→69.41 (↑ 37.06)
mPLUG-Owl2 42.77→59.37 (↑ 16.60) 74.09→93.80 (↑ 19.71) 48.52→67.91 (↑ 19.39) 37.68→70.71 (↑ 33.03)

In this tentative exploration, we consider editing the second triple (Sec.3.2) of Portability data (i.e.
first edit (i, e → e′) and then edit (e′, r, o)).We generate QAs for the triples and the model twice
before conducting the Portability test, and the results are in Tab.3.The table displays Portability
before and after additionally editing 1-hop knowledge, indicated by the arrows. All Portability results
improved, with some showing huge gains. We investigate the improvement of SERAC by comparing
retrieved results. We find that after editing 1-hop knowledge, some Portability test texts have higher
similarity to 1-hop knowledge QA stored in memory. In these cases, the 1-hop knowledge is appended
before the test text, leading to higher Portability. In other words, SERAC does not actually apply
the first edit (i, e → e′) to the model but only the second triple (e′, r, o) that contains Portability
answers. This unintended behavior means that the models are not aware of the first edit and are
indeed given a "cheat sheet" in Portability test. For FT and MEND, parameter updates fit the 1-hop
knowledge and help the model provide more correct answers. This may suggest that Portability
can be improved by explicitly incorporating it into the training phase. However, the challenges
faced by these parameter-update methods in sequential editing still need careful consideration.

5 Conclusion, Limitation and Future Direction

We establish a knowledge editing benchmark for LVLMs and evaluate diverse editing methods across
various models. Our analysis delves into the impact of these methods on the models, revealing both
strengths and weaknesses. These findings offer valuable insights for potential future directions.

Direct LVLM Editing In this work, we evaluate LLM editing methods, but the the search for an
efficient LVLM editing method is ongoing. These methods are adapted from LLM techniques and are
not specifically designed for LVLMs, as they do not account for the interaction between modalities.
research could explore direct LVLM editing methods to address this gap.

Sequential Editing in LVLM We have observed performance degradation across methods in
sequential editing. Since this test closely mirrors real-world scenarios, future work on LVLM editing
should focus on mitigating these issues.

Portability Evaluation Current methods do not adequately consider Portability, resulting in un-
satisfactory evaluation results. Our preliminary experiments show that there is room for Portability
improvement. Future research should further emphasize Portability as an important aspect.

9

Acknowledgments and Disclosure of Funding

This work is jointly sponsored by National Natural Science Foundation of China (62236010,
62141608, 62206291).

References
[1] Peng Wang, Ningyu Zhang, Xin Xie, Yunzhi Yao, Bozhong Tian, Mengru Wang, Zekun Xi,

Siyuan Cheng, Kangwei Liu, Guozhou Zheng, et al. Easyedit: An easy-to-use knowledge
editing framework for large language models. arXiv preprint arXiv:2308.07269, 2023.

[2] Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen,
and Ningyu Zhang. Editing large language models: Problems, methods, and opportunities.
arXiv preprint arXiv:2305.13172, 2023.

[3] Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowledge
editing for large language models: A survey. ACM Comput. Surv., October 2024. ISSN
0360-0300. doi: 10.1145/3698590. URL https://doi.org/10.1145/3698590.

[4] Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun
Xi, Shengyu Mao, Jintian Zhang, Yuansheng Ni, et al. A comprehensive study of knowledge
editing for large language models. arXiv preprint arXiv:2401.01286, 2024.

[5] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. Advances in Neural Information Processing Systems, 36, 2022.

[6] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast
model editing at scale. In International Conference on Learning Representations, 2022. URL
https://openreview.net/pdf?id=0DcZxeWfOPt.

[7] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning.
Memory-based model editing at scale. In International Conference on Machine Learning, 2022.
URL https://arxiv.org/pdf/2206.06520.pdf.

[8] Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao
Chang. Can we edit factual knowledge by in-context learning? In Houda Bouamor, Juan
Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4862–4876, Singapore, December 2023. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.296. URL
https://aclanthology.org/2023.emnlp-main.296.

[9] Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models.
In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors,
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pages 6491–6506, Online and Punta Cana, Dominican Republic, November 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.522. URL https://
aclanthology.org/2021.emnlp-main.522.

[10] Chenmien Tan, Ge Zhang, and Jie Fu. Massive editing for large language models via meta
learning. arXiv preprint arXiv:2311.04661, 2023.

[11] Thomas Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh
Ghassemi. Aging with grace: Lifelong model editing with discrete key-value adaptors. In
Advances in Neural Information Processing Systems, 2023.

[12] Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong.
Transformer-patcher: One mistake worth one neuron. arXiv preprint arXiv:2301.09785, 2023.

[13] Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu, Zhifang Sui, and Lei Li. Calibrating
factual knowledge in pretrained language models. arXiv preprint arXiv:2210.03329, 2022.

[14] Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons
in pretrained transformers. arXiv preprint arXiv:2104.08696, 2021.

10

https://doi.org/10.1145/3698590
https://openreview.net/pdf?id=0DcZxeWfOPt
https://arxiv.org/pdf/2206.06520.pdf
https://aclanthology.org/2023.emnlp-main.296
https://aclanthology.org/2021.emnlp-main.522
https://aclanthology.org/2021.emnlp-main.522

[15] Siyuan Cheng, Bozhong Tian, Qingbin Liu, Xi Chen, Yongheng Wang, Huajun Chen, and
Ningyu Zhang. Can we edit multimodal large language models? In Houda Bouamor, Juan
Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 13877–13888, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.856. URL https://
aclanthology.org/2023.emnlp-main.856.

[16] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models, 2021.

[17] Ye Liu, Hui Li, Alberto Garcia-Duran, Mathias Niepert, Daniel Onoro-Rubio, and David S
Rosenblum. Mmkg: multi-modal knowledge graphs. In European Semantic Web Conference,
pages 459–474. Springer, 2019.

[18] Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction
via reading comprehension. In Roger Levy and Lucia Specia, editors, Proceedings of the 21st
Conference on Computational Natural Language Learning (CoNLL 2017), pages 333–342,
Vancouver, Canada, August 2017. Association for Computational Linguistics. doi: 10.18653/
v1/K17-1034. URL https://aclanthology.org/K17-1034.

[19] Daniel Hewlett, Alexandre Lacoste, Llion Jones, Illia Polosukhin, Andrew Fandrianto, Jay
Han, Matthew Kelcey, and David Berthelot. WikiReading: A novel large-scale language
understanding task over Wikipedia. In Katrin Erk and Noah A. Smith, editors, Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1535–1545, Berlin, Germany, August 2016. Association for Computational
Linguistics. doi: 10.18653/v1/P16-1145. URL https://aclanthology.org/P16-1145.

[20] Zexuan Zhong, Zhengxuan Wu, Christopher Manning, Christopher Potts, and Danqi Chen.
MQuAKE: Assessing knowledge editing in language models via multi-hop questions. In Houda
Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 15686–15702, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.971. URL
https://aclanthology.org/2023.emnlp-main.971.

[21] Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple
effects of knowledge editing in language models. arXiv preprint arXiv:2307.12976, 2023.

[22] Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang,
Anwen Hu, Pengcheng Shi, Yaya Shi, Chaoya Jiang, Chenliang Li, Yuanhong Xu, Hehong
Chen, Junfeng Tian, Qi Qian, Ji Zhang, and Fei Huang. mplug-owl: Modularization empowers
large language models with multimodality, 2023.

[23] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=nZeVKeeFYf9.

[24] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023. URL https://arxiv.org/abs/2304.08485.

[25] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding,
localization, text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023.

[26] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[27] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the

11

https://aclanthology.org/2023.emnlp-main.856
https://aclanthology.org/2023.emnlp-main.856
https://aclanthology.org/K17-1034
https://aclanthology.org/P16-1145
https://aclanthology.org/2023.emnlp-main.971
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2304.08485

Association for Computational Linguistics, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
https://aclanthology.org/Q19-1026.

[28] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: bootstrapping language-image
pre-training with frozen image encoders and large language models. In ICML, 2023.

[29] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

[30] Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Anwen Hu, Haowei Liu, Qi Qian, Ji Zhang, Fei
Huang, and Jingren Zhou. mplug-owl2: Revolutionizing multi-modal large language model
with modality collaboration, 2023.

[31] Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong.
Transformer-patcher: One mistake worth one neuron, 2023.

[32] Xiaoqi Han, Ru Li, Hongye Tan, Wang Yuanlong, Qinghua Chai, and Jeff Pan. Improving
sequential model editing with fact retrieval. In Houda Bouamor, Juan Pino, and Kalika Bali,
editors, Findings of the Association for Computational Linguistics: EMNLP 2023, pages 11209–
11224, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/
v1/2023.findings-emnlp.749. URL https://aclanthology.org/2023.findings-emnlp.
749.

[33] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association
for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.
org/N19-1423.

12

https://aclanthology.org/Q19-1026
https://aclanthology.org/2023.findings-emnlp.749
https://aclanthology.org/2023.findings-emnlp.749
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Sec.5.
(c) Did you discuss any potential negative societal impacts of your work? [No] We use

publicly available data that do not have negative societal impacts.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] In supplemental
material and Github repository.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In appendix and config file in code.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] Included in repository.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

In supplemental material and as Dataset URL.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] We use publicly available multi-model knowledge graph.
(e) Did you discuss whether the data you are using/curating contains personally identifi-

able information or offensive content? [No] We use publicly available multi-model
knowledge graph.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

A Dataset Details

Dataset and Croissant metadata are available at https://www.kaggle.com/datasets/hymanh/vlkeb-data.
The images are sorted by entity IDs in subfolders. Additionally, four JSON files of text inputs are
provided, along with descriptions on the site. The license is also included.

The statistics for VLKEB are presented in Tab.4. VLKEB includes a total of 8174 edits, divided into
5000 for training and 3174 for evaluation. There are 18434 images used in the Reliability, Generality,
and Locality tests. The Portability test utilizes the same images as the Reliability test and comprises
a total of 4819 cases. These cases are distributed among 1-hop, 2-hop, 3-hop, and 4-hop categories,
with 1278, 1238, 1193, and 1110 cases, respectively. The comparison with MMEdit is in Tab.5.

Table 4: Statistics of VLKEB.
All (train/eval) Rel. Gen. Loc.

#Edits 8174 (5000/3174) #Images 8172 6627 3635

All (eval only) 1-hop 2-hop 3-hop 4-hop
#Port. 4819 1278 1238 1193 1110

Table 5: Comparison of statistics between MMEdit and VLKEB (ours).
MMEdit VLKEB

#Edits (VQA) 8439 8174
#Edits (Image Caption) 3849 -
#Portability - 4819
#Real Images 11857 18436
#Synthesized Images 12288 -

VLKEB contains a total of 8796 entities (in edits and Image Locality). Since each entity can belong
to multiple classes, we provide the proportion of each class in Fig.5. These entities belong to different
categories, contributing to the diversity of the data.

film
22%

people
18%

location
9%

tv
8%

med
ia

co
mmon

7%

ot
he

r
cl
as

se
s

6%

or
ga

ni
za

tio
n

5% music
5%

sports
4%

influence

3%

government
3%

education2%

business2%

soccer2%

celebrities
1%

military
1%

olympics
1%

Figure 5: The class proportions of entities.

14

https://www.kaggle.com/datasets/hymanh/vlkeb-data

B Experiment Details

B.1 Metrics

To evaluate the knowledge editing methods, we used key evaluation criteria from prior work [15]:
Reliability, Generality and Locality. Also, we introduced Portability metric.

In the following formulas, f is the LVLM model that maps the input (text and image) to the output
parameterized by θ, while θ′ refers to the edited model parameters.

Reliability
Mreliability = E

(ie,xe,ye,y′
e)∼Dedit

1 {f (ie, xe; θ
′) = ye} ,

where Dedit represents the original editing dataset.

Generality
Mtext

generality = E
(ie,xe,ye,y

′
e)∼Dedit

xr∼N (xe)

1 {f (ie, xr; θ
′) = ye} ,

Mimage
generality = E

(ie,xe,ye)∼Dedit
ir∼N (ie)

1 {f (ir, xe; θ
′) = ye} ,

where the N (xe) and N (ie) stand for the rephrased neighborhood of input text and image respectively.

Locality
Mtext

locality = E
(xl,yl)∼Dtext

loc

1 {f (xl; θ
′) = f(x1; θ)} ,

Mimage
locality = E

(il,xl,yl)∼Dimage
loc

1 {f (il, xl; θ
′) = f(il, xl; θ)} ,

where Dtext
loc and Dimage

loc are locality datasets.

Portability
Mportability = E

(ie,xe,ye,y
′
e)∼Dedit

(xp,yp)∼P(ie,xe,ye,y
′
e)

1 {f (ie, xp; θ
′) = yp} ,

where P (ie, xe, ye, y
′
e) denotes the Portability scope given input ie, xe, ye and target output y′e.

B.2 The versions of LVLMs

We conduct experiments on five LVLMs, and their specific version are in Tab.6.

Table 6: LVLM versions in experiments. (Vis.: Vision Encoder)
LVLM BLIP2-OPT MiniGPT-4 LLaVA-1.5 mPLUG-Owl2 Qwen-VL
LLM OPT-2.7B Vicuna-7B Vicuna-7B-v1.5 LLaMA-2-7B Qwen-7B
Vis. ViT-g (1B) ViT-g (1B) ViT-L (0.3B) ViT-L (0.3B) ViT-G (1.9B)

BLIP2-OPT BLIP2-OPT is a variant of the BLIP2 framework that leverages the power
of large language models with 2.7 billion parameters (opt-2.7b). It is a pre-trained model
specifically designed for image description and related tasks. The model is available at:
https://github.com/salesforce/LAVIS/tree/main/projects/blip2.

MiniGPT-4 MiniGPT-4 is an open-source chatbot with image understanding capabilities. It is built
upon the foundation of the LLM like Vicuna and the BLIP-2 LVLM. By aligning a frozen visual
encoder with a frozen LLM, Minigpt4 achieves efficient multi-modal capabilities. The model is
available at: https://github.com/Vision-CAIR/MiniGPT-4.

15

https://github.com/salesforce/LAVIS/tree/main/projects/blip2
https://github.com/Vision-CAIR/MiniGPT-4

LLaVA-1.5 LLaVA-1.5 is a multi-modal pre-trained model that demonstrates exceptional capabili-
ties in cross-modal understanding and generation. It marks a significant advancement over previous
versions, enabling it to handle a wider range of tasks with higher complexity. The model is available
at: https://github.com/haotian-liu/LLaVA.

Qwen-VL Qwen-VL is a visual-language model developed by Alibaba. It aims to provide advanced
capabilities in visual understanding, localization, text reading, and beyond. The model is available at:
https://github.com/QwenLM/Qwen-VL.

mPLUG-Owl2 mPLUG-Owl2 is a multi-modal large language model developed by Alibaba. This
advanced model leverages modality collaboration to significantly enhance the performance of both
text-based and multi-modal tasks. Its unique modular design and modality adaptation mechanism
make it stand out among its peers. The model is available at: https://github.com/X-PLUG/mPLUG-
Owl/tree/main/mPLUG-Owl2.

B.3 Knowledge Editing Methods

FT (Fine-tune) updates model parameters by performing gradient descent on the chosen model
parameters. We save the target layers’ current weights for later restoration at single editing. An
AdamW optimizer is configured to ensure that only those target fine-tuning parameters’ gradients are
computed and updated.

MEND (Model Editor Networks with Decomposition) [6] enables efficient update of the param-
eters in LLMs within LVLMs. It operates by training a set of small auxiliary networks, or model
editor networks, that use a single desired input-output pair to make targeted, local adjustments to a
model’s behavior without affecting its overall performance on unrelated tasks. MEND leverages the
low-rank structure of fine-tuning gradients, allowing it to parameterize the gradient transformation in
a computationally efficient manner, even for models with billions of parameters.

SERAC (Semi-Parametric Editing with a Retrieval-Augmented Counterfactual) [7] is a
memory-based method that has a scope classifier and a counterfactual model. The scope clas-
sifier is trained to classify if an input falls into the editing scope. If so, the cached memory of related
edit is put together into the counterfactual model; otherwise, the input is sent to the original model.
In our experiments, the classifier is trained from a BERT model [33] and the counterfactual model
differs across LVLMs, which is set to be the LLM used by corresponding LVLM.

KE (Knowledge Editor) [9] trains a bidirectional-LSTM as hyper network, which predicts weight
updates of specified model parameters with gradients and condition input {(ye → y′e) |xe}. The
hyper-network takes the input of the original model’s parameters, along with the fact to be modified,
and predicts the required updates to these parameters. We choose last layers of LLMs in editing.

IKE (In-Context Knowledge Editing) [8] does not change model parameters. It retrieves and
builds similar demonstrations from training set, and inject new knowledge by prompting. This
process is consistent across all models. The text in training set is formatted to "New Fact: {question}
{answer}\nPrompt: {question} {answer}\n\n" and preprocessed into embeddings.

B.4 Experiment Resources and Parameters

In this study, we utilize an internal cluster equipped with NVIDIA A100 80GB GPUs, and we employ
PyTorch in our experiments. The parameters are in the following and in config files in code repository.

FT-LLM
Models Steps Edit Layer Optimizer Edit LR
BLIP2-OPT 15 31st layer of Transformer Module AdamW 2e− 4
MiniGPT-4 15 31st layer of Transformer Module AdamW 1e− 4
LLaVA-1.5 10 31st layer of Transformer Module AdamW 1e− 4
Qwen-VL 20 31st layer of Transformer Module AdamW 1e− 4
mPLUG-Owl2 20 31st layer of Transformer Module AdamW 1e− 4

16

https://github.com/haotian-liu/LLaVA
https://github.com/QwenLM/Qwen-VL
https://github.com/X-PLUG/mPLUG-Owl/tree/main/mPLUG-Owl2
https://github.com/X-PLUG/mPLUG-Owl/tree/main/mPLUG-Owl2
https://github.com/VLKEB/VLKEB/tree/main/hparams

FT-Vis
Models Steps Edit Layer Optimizer Edit LR
BLIP2-OPT 15 Qformer AdamW 2e− 4
MiniGPT-4 15 Qformer AdamW 1e− 4
LLaVA-1.5 10 mm_projector AdamW 1e− 4
Qwen-VL 25 47th layer of ViT Module AdamW 2e− 3
mPLUG-Owl2 25 Visual Encoder AdamW 1e− 3

MEND
Models MaxIter Edit Layer Optimizer LR
BLIP2-OPT 40000 layer 29, 30, 31 of Transformer Module Adam 1e− 6
MiniGPT-4 40000 layer 29, 30, 31 of Transformer Module Adam 1e− 6
LLaVA-1.5 40000 layer 29, 30, 31 of Transformer Module Adam 1e− 6
Qwen-VL 40000 layer 29, 30, 31 of Transformer Module Adam 1e− 6
mPLUG-Owl2 45000 layer 29, 30, 31 of Transformer Module Adam 1e− 6

SERAC
Models MaxIter Edit Layer Optimizer LR
BLIP2-OPT 50000 all layers of OPT-125M Adam 1e− 5
MiniGPT-4 50000 31st layer of Vicuna-7B Adam 5e− 5
LLaVA-1.5 50000 31st layer of Vicuna-7B-v1.5 Adam 1e− 5
Qwen-VL 20000 31st layer of Qwen-7B Adam 5e− 5
mPLUG-Owl2 20000 31st layer of LLaMA-2-7B Adam 5e− 5

KE
Models MaxIter Edit Layer Optimizer LR
BLIP2-OPT 30000 layer 29, 30, 31 of Transformer Module RMSprop 3e− 4
MiniGPT-4 30000 layer 29, 30, 31 of Transformer Module RMSprop 3e− 4
LLaVA-1.5 30000 layer 29, 30, 31 of Transformer Module RMSprop 3e− 4
Qwen-VL 30000 31st layer of Transformer Module RMSprop 3e− 4
mPLUG-Owl2 30000 31st layer of Transformer Module RMSprop 3e− 4

IKE Use the sentence-transformers model all-MiniLM-L6-v2 to embed texts and retrieve similar
edits in training set. The number of demonstrations is set to 32 for all models.

C More Details of Dataset Construction

C.1 Construction Process

Image Selection In the image selection process (Sec.3.2), we write a simple tool to show image
pairs with high similarity, as shown in Fig.6. Then we manually check if they belong to a same entity
and have different views. The result is recorded each time one of the buttons is clicked.

Identify Similar Entities In Sec.3.2, we explain that we identify pairs of entities with the highest
similarity. The purpose of this process is to ensure e and e′ belong to the same class so that an edit
(i, e → e′) makes sense. We extract the relation set for each entity from the FB15K knowledge graph
and count the number of shared relations between every pair of entities. These counts become the
weights of the edges in a bipartite graph, where both sets of nodes represent all entities. We then use a
maximum weight bipartite matching algorithm to determine the optimal way to match these entities.

Portability Construction The knowledge triples for Portability test are extracted from DB15K
knowledge graph and the relations of these extracted triples are presented in Tab.7.

17

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

Figure 6: A simple tool to select similar image pairs for Image Generality test.

Table 7: Relations in Portability data construction.
affiliation countySeat headquarter musicSubgenre presenter
almaMater creator hometown narrator producer
associatedBand currency instrument nationality region
birthPlace deathCause language network religion
campus deathPlace largestCity occupation residence
capital distributingCompany leaderName officialLanguage spouse
channel distributor leaderParty owner state
child editing location owningCompany timeZone
citizenship education locationCity parentCompany writer
city executiveProducer locationCountry party
company foundationPlace musicComposer place
country genre musicFusionGenre position

C.2 Prompt Template for QA Generation

The prompt template for QA generation is in Tab.8 and Tab.9. We use gpt-3.5-turbo and gpt-4-turbo
for the QA generation respectively.

C.3 Examples of Each Test

Here we provide examples for single editing, multi-hop portability and edit one-hop knowledge.

Fig.7 shows three examples of single editing. The Text Generality input differs from Reliability input
in question, while Image Generality differs in image. Text Locality input has text only, while Image
Locality input has both image and text. Tab.10 shows an example of multi-hop Portability. Tab.11
shows an example of edit one-hop knowledge.

18

Table 8: The template of using ChatGPT (gpt-3.5-turbo) to generate Q&As for entities.

System:
You are a powerful question and answer generator. Users have an image
and corresponding entity. Given only the entity name, you should ask two
proper questions of what entity (person, location, sign, scene, poster,
logo, sight, occupation and so on) is shown in image, and the answer should
be exactly the entity name. Output Format: ‘Q: question1\nQ: question2\nA:
answer’.
Example User: Entity: Denton,_Texas
Example Assistant: Q: What city of Texas is depicted in the image?\nQ: Which
Texas city is seen in the picture?\nA: Denton

[4 in-context demonstrations abbreviated]

User:
Entity: University_of_New_Mexico

System:

Q1: What university is featured in the image?
Q2: Which educational institution is depicted in the picture?
A: University of New Mexico.

Table 9: An example template of using ChatGPT (gpt-4-turbo-2024-04-09) to generate three-hop
Q&As from MMKG triples. We manually write 2 demonstrations as the prompt.

System:
You are a powerful three-hop question generator. Users will provide a
chain of Multimodal Knowledge Graph (MMKG) triples, and you will help write
questions to ask about the entity in the picture based on the relation
chains. You should choose one entity from the list if multiple entities
are present at the end. The questions should focus on the head entity and
should not mention any of the entities in the triples explicitly. Write
down the question and answer in the format: ‘Q: question\nA: answer.’

[2 in-context demonstrations abbreviated]

User:
Given MMKG triples (Christina Aguilera; Katy Perry) (Katy Perry; spouse;
Russell Brand) (Russell Brand; birthPlace; United Kingdom) (United Kingdom;
language; English language). Choose one entity from the list if multiple
entities at the end: English language. Ask questions about Christina
Aguilera in the picture without mentioning Christina Aguilera or Katy Perry
or Russell Brand or United Kingdom or English language. Write down one
question and answer in natural English. Format: ‘Q: question\nA: answer.’

System:

Q: What is the country associated with the birthplace of the spouse of the
person shown in the picture?
A: English language

19

Q: What is the name
of the film depicted
in the image?
Original: Good Will
Hunting
Target: The Taking
of Pelham 123

Q: Which movie is
represented by this
picture?
Target: The Taking
of Pelham 123

Q: What is the name of
the film depicted in the
image?
Target: The Taking of
Pelham 123

Q: Who won between
the packers and the bears?
A: The Packers

Q: What film is being
depicted in the image?
A: Titanic (1997 film)

Reliability input Text Generality input Image Generality input Text Locality input Image Locality input

Q: What Irish county is
depicted in the image?
Original: County
Tipperary
Target: County
Waterford

Q: Which Irish county
is seen in the picture?
Target: County
Waterford

Q: What Irish county is
depicted in the image?
Target: County
Waterford

Q: Which of Jupiter‘s
moons is the largest in
the solar system?
A: Ganymede

Q: What county in
Ireland is depicted in
the image?
A: County Wicklow

Q: Which actor is
featured in this
image?
Original: Lucy Liu
Target: Jeremy
Piven

Q: Who is the
person shown in this
picture?
Target: Jeremy
Piven

Q: Which actor is
featured in this image?
Target: Jeremy Piven

Q: Where's the rose
bowl played this year?
A: Rose Bowl

Q: What event is
depicted in the image?
A: 71st Academy
Awards

Figure 7: Three examples of single editing.

20

Table 10: An example of multi-hop Portability.

Edit
Q: Who is the actor featured in this image?
Target: Andre Braugher

1-hop triple: (Andre Braugher, birthPlace, Chicago)
Q: What city is the birth place of the person in the picture?
A: Chicago

2-hop triples: (Andre Braugher, almaMater, Juilliard School), (Juilliard School, location, New York
City)
Q: Where is the alma mater of the person associated with the person in the
picture located?
A: New York City

3-hop triples: (Andre Braugher, almaMater, Juilliard School), (Juilliard School, location, New York
City), (New York City, timeZone, Eastern Time Zone)
Q: What is the time zone of the city where the alma mater of the person
connected to the individual in the picture is located?
A: Eastern Time Zone

4-hop triples: (Andre Braugher, residence, Chicago), (Chicago, country, United States), (United
States, largestCity, New York City), (New York City, timeZone, Eastern Time Zone)
Q: What is the time zone of the largest city in the country where the
residence of the person associated with the entity shown in the picture
is located?
A: Eastern Time Zone

Table 11: An example of edit one-hop knowledge.

<Same Image as Tab.10>
Edit
Q: Who is the actor featured in this image? Target: Andre Braugher

Edit 1-hop triple: (Andre Braugher, birthPlace, Chicago)
Edit Q: In which city was Andre Braugher born?
Target: Chicago

Test 1-hop Portability:
Test Q: What city is the birth place of the person in the picture?
A: Chicago

21

D Original Results of Multi-hop Portability and Sequential Editing

In Sec.4.3, we present the results of multi-hop Portability in figures. Here we provide the original
results in Tab.12. In Sec.4.4, we present the results of sequential editing in figures. Here we provide
the original results in Tab.13.

Table 12: Original data of multi-hop Portability results.
LVLM method 1-hop 2-hop 3-hop 4-hop

BLIP2-OPT

base 26.72 27.25 26.20 29.49
FT (LLM) 17.46 20.43 19.43 24.28
FT (Vis) 27.84 29.89 24.84 31.95
KE 35.90 34.46 33.32 35.89
IKE 43.65 37.25 38.83 38.43
SERAC 16.16 20.35 21.11 24.44
MEND 28.75 29.04 27.34 31.11

MiniGPT-4

base 38.36 38.26 40.88 42.12
FT (LLM) 28.09 26.07 26.55 27.22
FT (Vis) 37.00 35.35 35.47 37.98
KE 46.10 45.92 47.97 50.01
IKE 51.94 43.73 43.26 44.61
SERAC 47.49 43.42 40.71 42.96
MEND 39.19 38.42 39.34 41.03

LLaVA-1.5

base 40.38 38.06 36.58 36.25
FT (LLM) 32.46 32.65 29.47 33.13
FT (Vis) 53.67 53.51 51.04 53.05
KE 48.62 47.91 47.71 50.26
IKE 63.33 55.59 56.01 53.71
SERAC 45.03 41.23 39.78 39.32
MEND 40.39 39.53 38.22 42.19

Qwen-VL

base 34.32 35.06 36.29 42.50
FT (LLM) 16.15 12.09 9.90 10.14
FT (Vis) 30.61 31.74 32.23 36.82
KE 42.10 42.34 42.16 47.72
IKE 57.99 55.15 53.29 56.23
SERAC 38.22 40.16 38.58 42.41
MEND 32.35 34.91 35.98 42.19

mPLUG-Owl2

base 44.25 40.18 38.68 38.27
FT (LLM) 42.77 41.63 39.75 40.16
FT (Vis) 74.09 68.55 56.76 52.44
KE 46.82 45.79 47.23 48.64
IKE 64.83 55.25 52.84 50.27
SERAC 48.52 48.36 47.70 50.56
MEND 37.68 40.39 38.76 38.92

22

Table 13: Original data of equential editing results.

LVLM method gap Rel. T-Gen. I-Gen. T-Loc. I-Loc. Port.

BLIP2-OPT

FT (LLM)

- 99.95 99.23 100.00 72.20 20.18 17.50
10 57.52 56.12 57.18 34.74 4.40 15.04
20 54.84 53.64 54.19 32.56 3.89 14.16
50 51.25 50.44 50.51 27.27 2.54 13.47
100 47.18 46.61 46.34 18.49 1.17 10.04

FT (Vis)

- 99.53 96.89 99.27 100.00 5.87 27.90
10 27.99 29.42 27.86 100.00 1.33 21.76
20 30.31 29.52 30.31 100.00 1.36 21.70
50 30.09 28.94 30.01 100.00 1.27 24.35
100 30.80 29.69 30.67 100.00 1.23 23.59

SERAC

- 90.42 89.23 90.50 100.00 2.47 12.62
10 90.30 41.34 90.25 100.00 2.47 13.19
20 90.47 38.81 90.58 100.00 2.58 12.49
50 90.43 35.71 90.43 100.00 2.52 12.81
100 90.54 35.43 90.54 100.00 2.46 13.30

MEND N/A

MiniGPT-4

FT (LLM)

- 100.00 100.00 100.00 90.38 35.74 27.73
10 74.52 72.70 71.60 67.73 10.06 21.83
20 70.83 70.48 68.97 67.76 9.38 21.01
50 66.34 65.86 64.63 63.57 8.03 20.79
100 62.75 62.46 61.76 59.70 6.00 19.79

FT (Vis)

- 99.77 87.46 99.77 100.00 21.62 42.16
10 45.47 47.04 45.57 100.00 16.01 37.53
20 44.55 47.17 44.50 100.00 15.96 36.28
50 41.02 45.21 41.77 100.00 15.79 37.27
100 40.12 43.16 40.33 100.00 15.75 36.53

SERAC

- 96.24 95.30 96.18 99.90 4.46 40.50
10 96.12 58.38 96.05 99.90 4.49 40.38
20 96.02 56.77 95.95 99.90 4.47 39.44
50 96.02 55.58 95.95 99.93 4.44 39.31
100 95.52 54.72 95.42 99.93 4.45 40.20

MEND N/A

LLaVA-1.5

FT (LLM)

- 99.85 99.30 99.80 86.96 30.35 30.70
10 88.58 81.63 83.94 62.99 14.66 29.06
20 85.20 77.98 80.65 63.19 14.17 29.38
50 76.75 70.15 71.59 60.34 13.36 28.65
100 72.27 65.90 68.28 56.97 11.80 28.85

FT (Vis)

- 100.00 98.98 98.75 100.00 19.87 55.48
10 95.55 93.61 88.33 100.00 3.08 47.98
20 91.46 88.53 83.66 100.00 2.89 46.75
50 83.08 80.78 71.70 100.00 2.64 47.00
100 69.58 67.28 66.68 100.00 2.53 45.93

SERAC

- 98.56 97.46 98.56 99.96 1.94 41.46
10 98.56 74.64 98.56 99.96 1.93 40.63
20 98.56 72.97 98.56 99.96 1.92 40.43
50 98.56 72.36 98.56 99.96 1.92 40.80
100 98.56 70.32 98.56 99.96 1.91 41.08

MEND N/A

23

Qwen-VL

FT (LLM)

- 96.26 96.64 95.21 70.33 35.46 15.95
10 61.50 57.98 60.60 11.53 1.68 7.11
20 57.96 55.99 56.49 10.34 1.49 5.56
50 54.07 52.17 52.97 8.95 1.18 5.61
100 49.06 46.59 48.57 6.92 0.80 5.18

FT (Vis)

- 100.00 94.96 61.87 100.00 14.52 31.83
10 39.04 35.02 39.27 100.00 2.79 27.71
20 33.82 33.44 33.99 100.00 2.82 27.11
50 31.96 33.16 32.46 100.00 2.89 27.23
100 33.17 33.87 32.97 100.00 2.96 27.86

SERAC

- 96.45 93.75 94.12 99.89 0.85 37.21
10 92.83 43.10 92.48 99.85 0.77 33.67
20 92.96 41.36 92.61 99.90 0.77 33.40
50 92.96 41.40 92.61 99.91 0.76 33.96
100 92.73 40.04 92.61 99.92 0.76 32.35

MEND N/A

mPLUG-Owl2

FT (LLM)

- 99.59 97.62 99.31 70.03 35.17 40.01
10 44.57 43.79 44.99 30.15 13.38 6.65
20 45.12 44.65 43.75 30.23 13.44 7.89
50 49.06 47.10 48.96 30.92 13.48 5.21
100 46.96 44.92 47.38 25.38 12.74 4.60

FT (Vis)

- 99.97 97.42 82.31 99.99 50.37 74.06
10 40.43 38.78 39.06 100.00 36.97 14.39
20 37.89 27.93 37.16 100.00 35.34 11.22
50 37.63 25.71 35.12 100.00 34.96 9.10
100 35.09 24.15 32.97 100.00 34.61 8.41

SERAC

- 98.89 97.76 98.61 99.98 1.46 50.87
10 91.98 73.58 91.78 100.00 0.40 41.11
20 91.68 72.53 91.54 100.00 0.39 41.19
50 89.19 69.23 89.30 100.00 0.40 41.70
100 87.68 62.76 88.01 100.00 0.41 41.76

MEND N/A

24

	Introduction
	Related Works
	Dataset Construction
	Metrics: Reliability, Generality, Locality and Portability
	Construction Process

	Experiments
	Editing Methods and Experiment Settings
	Single Editing Results and Findings
	Multi-hop Portability: Performance Degradation Across Hops
	Sequential Editing: Performance Degradation Due to Forgetting and Confusion
	Edit One-Hop Knowledge: Room for Portability Improvement

	Conclusion, Limitation and Future Direction
	Dataset Details
	Experiment Details
	Metrics
	The versions of LVLMs
	Knowledge Editing Methods
	Experiment Resources and Parameters

	More Details of Dataset Construction
	Construction Process
	Prompt Template for QA Generation
	Examples of Each Test

	Original Results of Multi-hop Portability and Sequential Editing

