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Abstract
Neural network classifiers can largely rely on sim-
ple spurious features, such as backgrounds, to
make predictions. However, even in these cases,
we show that they still often learn core features
associated with the desired attributes of the data,
contrary to recent findings. Inspired by this in-
sight, we demonstrate that simple last layer re-
training can match or outperform state-of-the-art
approaches on spurious correlation benchmarks,
but with profoundly lower complexity and com-
putational expenses. Moreover, we show that
last layer retraining on large ImageNet-trained
models can also significantly reduce reliance on
background and texture information, improving
robustness to covariate shift, after only minutes
of training on a single GPU.

1. Introduction
Realistic datasets in machine learning are riddled with spuri-
ous correlations — patterns that are predictive of the target
in the train data, but that are irrelevant to the true labeling
function. For example, most of the images labeled as butter-
fly on ImageNet also show flowers (Singla & Feizi, 2021),
and most of the images labeled as tench show a fisherman
holding the tench (Brendel & Bethge, 2019). Deep neural
networks rely on these spurious features, and consequently
degrade in performance when tested on examples where the
spurious correlations break, for example, on images with un-
usual background contexts (Geirhos et al., 2020; Rosenfeld
et al., 2018; Beery et al., 2018). In an especially alarm-
ing example, CNNs trained to recognize pneumonia were
shown to rely on hospital-specific metal tokens in the chest
X-ray scans, instead of features relevant to pneumonia (Zech
et al., 2018). Furthermore, spurious correlations can dispro-
portionately affect different population groups (each with
their own data distribution), leading to poor performance
on the minority groups and unfair decisions (Buolamwini &
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Gebru, 2018; Hovy & Søgaard, 2015; Blodgett et al., 2016;
Tatman, 2017; Hashimoto et al., 2018; Datta et al., 2015;
Chouldechova, 2017; Rahmattalabi et al., 2019).

In this paper, we investigate what features are in fact learned
on datasets with spurious correlations. We find that even
when neural networks appear to heavily rely on spurious
features and perform poorly on minority groups where the
spurious correlation is broken, they still learn the core fea-
tures sufficiently well. These core features, associated with
the semantic structure of the problem, are learned even in
cases when the spurious features are much simpler than the
core features (Appendix B) and in some cases even when
no minority group examples are present in the training data
(Appendix D)! While both the relevant and spurious features
are learned, the spurious features can be highly weighted in
the final classification layer of the model, leading to poor
predictions on the minority groups.

Inspired by these observations, we propose Deep Feature
Reweighting (DFR), a simple and effective method for im-
proving worst-group accuracy of neural network classifiers
in the presence of spurious features. In DFR, we simply
retrain the last layer of a classification model trained with
standard Empirical Risk Minimization (ERM), using a small
set of reweighting data where the spurious correlation does
not hold. DFR achieves state-of-the-art performance on pop-
ular spurious correlation benchmarks by simply reweighting
the features of a trained ERM classifier, with no need to re-
train the feature extractor. Moreover, we show that DFR can
be used to reduce reliance on background and texture infor-
mation and improve robustness to certain types of covariate
shift in large-scale models trained on ImageNet, by simply
retraining the last layer of these models. We note that the
reason DFR can be so successful is because standard neural
networks are in fact learning core features, even if they do
not primarily rely on these features to make predictions, con-
trary to recent findings (Hermann & Lampinen, 2020; Shah
et al., 2020). Since DFR only requires retraining a last layer,
amounting to logistic regression, it is extremely simple,
easy to tune and computationally inexpensive relative to the
alternatives, yet can provide state-of-the-art performance.

The rest of this paper is structured is follows. In Section
2 we discuss the problem setting for group robustness. In
Section 3 we study how well ERM-trained models learn the
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core features on the Waterbirds dataset in the presence of
spurious correlations. In Section 4 we describe the proposed
method. We provide benchmark results in Section 5. Addi-
tionally, in the appendix we discuss the related work (App.
A), results on simplicity bias (App. B), background and tex-
ture reliance on ImageNet (App. E), and other experiments.

2. Problem Setting
We consider classification problems, where we assume that
the data consists of several groups Gi, which are often de-
fined by a combination of a label and spurious attribute.
Each group has its own data distribution pi(x, y), and the
training data distribution is a mixture of the group distribu-
tions p(x, y) =

∑
i αipi(x, y), where αi is the proportion

of group Gi in the data. We will consider the scenario when
the groups are not equally represented in the data. The larger
groups are referred to as majority groups and the smaller
groups are referred to as minority groups. As a result of
this imbalance, features that are predictive of the target on
the majority groups become spurious, i.e. features that are
correlated with the target on the train data, but not predic-
tive of the target on the minority groups. In the paper we
will discuss multiple examples of spurious correlations in
both natural and synthetic datasets. Ideally, we want to find
classifiers that rely on core features, i.e. features that are
predictive of the target on all the groups.

3. Understanding Representation Learning
with Spurious Correlations

In this section we investigate the solutions learned by stan-
dard ERM classifiers on datasets with spurious correlations.
We show that while these classifiers underperform on the
minority groups, they still learn the core features that can
be used to make correct predictions on the minority groups.

We first consider the Waterbirds dataset (Sagawa et al., 2019)
which is generated synthetically by combining images of
birds from the CUB dataset (Wah et al., 2011) and back-
grounds from the Places dataset (Zhou et al., 2017) (see
Sagawa et al. (2019) for a detailed description of the data
generation process). For the experiments in this section, we
generate several variations of the Waterbirds data following
the procedure analogous to Sagawa et al. (2019). The Origi-
nal dataset is analogous to the standard Waterbirds data, but
we vary the degree of spurious correlation between the back-
ground and the target: 50% (Balanced dataset), 95% (as
in Sagawa et al. (2019)) and 100% (no minority group ex-
amples in the train dataset). The FG-Only dataset contains
images of the birds on uniform grey background instead
of the Places background, removing the spurious feature.
We show examples of datapoints from each variation of the
dataset in Appendix Figure 1.

Train Data Spurious Test Data (Worst/Mean, %)
Corr. (%) Original FG-Only

Balanced 50 91.9/97.3 94.7/98.1
Original 95 73.8/90.7 93.7/96.4
Original 100 38.4/71.5 94.6/95
FG-Only - 75.2/82.5 95.5/98.2

Table 1. Feature learning on Waterbirds. ERM classifiers
trained on Waterbirds with Original and FG-Only images. All
the models trained on the Original data including the model trained
without any minority group examples (Spurious corr. 100%) un-
derperform on the worst-group accuracy on the Original data, but
perform well on the FG-Only data, almost matching the perfor-
mance of the FG-Only trained model.

We train a ResNet-50 model with ERM on each of the varia-
tions of the data and report the results in Table 1. Following
prior work (e.g., Sagawa et al., 2019; Idrissi et al., 2021), we
initialize the model with weights pretrained on ImageNet.
For the models trained on the Original data, there is a large
difference between the mean and worst group accuracy on
the Original test data: the model heavily relies on the back-
ground information in its predictions, so the performance
on minority groups is poor. The model trained without mi-
nority groups is especially affected, only achieving 38.4%
worst group accuracy. However, surprisingly, we find that
all the models trained on the Original data can make much
better predictions on the FG-Only test data: if we remove
the spurious feature (background) from the inputs at test
time, the models make predictions based on the core feature
(bird), and achieve worst-group1 accuracy close to 94%,
which is only slightly lower than the accuracy of a model
trained directly on the FG-Only data and comparable to the
accuracy of a model that was trained on balanced train data.

In Appendix B.1, we provide the full details of this exper-
iment, and also consider the reverse Waterbirds problem,
where instead of predicting the bird type, the task is to pre-
dict the background type. Notably, the results between the
standard and reverse Waterbirds problems are fairly symmet-
ric, e.g. in the case when the spurious correlation strength is
100%, the worst group accuracy for both problems is below
random guess. On the Waterbirds data, neural networks
do not appear to be particularly biased towards either the
background or the foreground, and treat them equally.

In Appendix B.3, we try to understand how the features
from the foreground and the background interact with each
other in a Waterbirds-trained neural network. We find a

1On the FG-Only data the groups only differ by the bird type,
as we remove the background. The difference between mean and
worst-group accuracy is because the target classes are not balanced
in the training data.
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phenomenon that we call logit additivity: the class logits on
a Waterbirds test image are well approximated as the sum of
the logits for the corresponding background image and the
logits for the corresponding foreground image. The logit
addivity suggests that the background and foreground are
processed mostly independently by the network.

In Appendix B.2, we perform a similar experiment in the
setting where the spurious feature is much simpler than the
core feature, and show that standard ERM models often still
learn a high quality representation of the core feature.

In summary, we conclude that while the models trained on
the Original data make use of background information to
make predictions, they still learn the features relevant to
classifying the birds almost as well as the models trained on
the data without spurious correlations. Later, we will see
that we can retrain just the last layer of the Original-trained
models and dramatically improve the worst-group perfor-
mance on the Original data, by emphasizing the features
relevant to the bird instead of the background.

4. Deep Feature Reweighting
In Section 3 we have seen that neural networks trained
with standard ERM learn multiple features relevant to the
predictive task, such as features of both the background
and the object represented in the image. Inspired by these
observations, we propose Deep Feature Reweighting (DFR),
a simple and practical method for improving robustness to
spurious correlations and distribution shift.

Let us assume that we have access to a dataset D = {xi, yi}
which can exhibit spurious correlations. Furthermore, we
assume that we have access to a (typically much smaller)
dataset D̂, where the groups are represented equally. D̂ can
be a subset of the train dataset D, or a separate set of data-
points. We will refer to D̂ as reweighting dataset. We start
by training a neural network on all of the available data D
with standard ERM without any group or class reweighting.
For this stage we do not need any information beyond the
training data and labels. Here, we assume that the network
consists of a feature extractor (such as a a sequence of con-
volutional layers or a vision transformer), followed by a
fully-connected classification layer mapping the features to
class logits. In the second stage of the procedure, we simply
discard the classification head and train a new classification
head from scratch on the available balanced data D̂. We use
the new classification head to make predictions on the test
data. We illustrate DFR in Appendix Figure 4. We will use
notation DFRD̂

D to specify the datasets used in each stage
of the DFR procedure: D is used to train the base feature
extractor model and D̂ is used to train the last linear layer.

We will focus on DFRVal
Tr in the main text, where we use a

group-balanced subset of the validation data available for

each of the problems as the reweighting dataset D. We
consider other DFR variations in Appendix C.

5. Feature Reweighting Improves Robustness
In this section, we evaluate DFR on benchmarks with spuri-
ous correlations.

Data. Following Idrissi et al. (2021), we consider two
image classification and two text classification benchmarks:
Waterbirds, hair-color prediction on CelebA (Liu et al.,
2015), MultiNLI (Williams et al., 2017; Sagawa et al., 2019)
and CivilComments-Coarse (Borkan et al., 2019; Koh et al.,
2021). On CivilComments, following Idrissi et al. (2021)
we use a binary spurious attribute (coarse version of the
dataset), which corresponds to the mention of any one of
the protected identities (male, female, LGBT, black, white,
Christian, Muslim, other religion) in the comment. We pro-
vide a detailed description of all datasets in Appendix D.
See Figure Appendix 5 for a visualization of the data.

Baselines. We consider 5 baseline methods that work un-
der different assumptions on the information available at
the training time. Empirical Risk Minimization (ERM) rep-
resents conventional training without any procedures for
improving worst-group accuracies. Just Train Twice (JTT)
(Liu et al., 2021) is a method that detects the minority group
examples on train data, only using group labels on the vali-
dation set to tune hyper-parameters. Group-DRO (Sagawa
et al., 2019) is a state-of-the-art method, which uses group
information on train and adaptively upweights worst-group
examples during training. SUBG is ERM applied to a ran-
dom subset of the data where the groups are equally rep-
resented, which was recently shown to be a surprisingly
strong baseline (Idrissi et al., 2021; Sagawa et al., 2020).
Finally, Spread Spurious Attribute (SSA) (Nam et al., 2022)
is a method that attempts to fully exploit the group-labeled
validation data with a semi-supervised approach that propa-
gates the group labels to the the training data where group
information is not available. We discuss the assumptions on
the data for each of these baselines in Appendix F.1.

Hyper-parameters. For all DRF variations, the size of
the reweighting set D̂ is small relative to the number of
features produced by the feature extractor (2048). For this
reason, we use ℓ1-regularizaion to allow the model to learn
sparse solutions and drop irrelevant features. For DFRVal

Tr we
only tune a single hyper-parameter — the strength of the
regularization term. We tune all the hyper-parameters on
the validation data provided with each of the datasets. We
note that the prior work methods including Group-DRO,
JTT, SUBG and others extensively tune hyper-parameters
on the validation data. For DFRVal

Tr we split the validation
in half, and use one half to tune the regularization strength
parameter; then, we retrain the logistic regression with the
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Method Group Info Waterbirds CelebA MultiNLI CivilComments
Train Val Worst(%) Mean(%) Worst(%) Mean(%) Worst(%) Mean(%) Worst(%) Mean(%)

ERM ✗ ✓ 72.6/85.5 97.3 47.2/79.7 95.6 67.9/67.6 82.4 61.3 -
JTT ✗ ✓ 86.7/85.6 93.3 81.1/75.6 88.0 72.6/67.5 78.6 67.8 -

G-DRO ✓ ✓ 91.4/87.1 93.5 88.9/86.9 92.9 77.7/78.0/73.3 81.4 69.9/80.4 -
SUBG ✓ ✓ 89.1±1.1 - 85.6±2.3 - 68.9±0.8 - 71.8±1.4 -
SSA ✗ ✓✓ 89.0±0.6 92.2±0.9 89.8±1.3 92.8±0.1 76.6±0.7 79.9±0.9 - -

Base Model ✗ ✓ 74.9±2.4 98.1±0.1 44.0±2.1 95.4±0.0 67.5±1.1 82.1±0.2 61.0±0.3 92.1±0.1

DFRVal
Tr ✗ ✓✓ 92.9±0.2 94.2±0.4 89.4±0.9 91.5±0.2 72.6±0.3 81.8±0.2 78.8±0.5 86.3±0.4

Table 2. Spurious correlation benchmark results. Worst-group and mean test accuracy of DFR and baselines on the benchmark
problems. For the ERM, JTT and Group-DRO baselines, we provide the results reported in two papers: Liu et al. (2021) in green and
Idrissi et al. (2021) in blue. For the NLP datasets which are less standard than the image classification datasets, in order to ensure a fair
comparison, we reimplemented Group-DRO ourselves, and report the results in red. For SUBG, we provide the results from Idrissi et al.
(2021), which only reported worst-group accuracy, and for SSA, we provide the results from Nam et al. (2022). For mean accuracy, we
follow Liu et al. (2015) and Sagawa et al. (2019) and weight the group accuracies according to their prevalence in the training data. The
Group Info column shows whether group labels are available to the methods on train and validation datasets. For DFRVal

Tr , we use the
validation data to train the model parameters (last layer) in addition to hyper-parameter tuning, indicated with ✓✓; SSA also uses the
validation set to train the model. DFR is competitive with state-of-the-art across the board. For DFR we report the mean±std over 5
independent runs of the method.

optimal regularization on the full validation set. For more
details on the hyper-parameter tuning, see Appendix D.

Base models. Following prior work (e.g. Sagawa et al.,
2019; Liu et al., 2021; Idrissi et al., 2021), we use ResNet-
50 initialized with weights pretrained on ImageNet on the
vision datasets and a BERT model (Devlin et al., 2018)
pretrained on Book Corpus and English Wikipedia data
on the NLP data. We select the weight decay and initial
learning rate for the base model by choosing the hyper-
parameters that produce the base model with the best worst-
group accuracy on the validation data. Note that the base
model is tuned independently from DFR.

5.1. Results

We report the results for DFR and the baselines in Table 2.
On all datasets with DFRVal

Tr we obtain results competitive
with state-of-the-art Group-DRO results.

DFRVal
Tr achieves similar performance to SSA, a method

designed to make optimal use of the group information on
the validation data. Both methods use the same exact setting
and group information to train and tune the model.

In Appendix D we provide results for other DFR variations.
In particular, DFRTr

Tr-NM matches or outperforms the state-
of-the-art Group-DRO by using the same data to train and
tune the model. Notably, DFRTr

Tr-NM achieves these results
with the features extracted by the network trained without
seeing any examples from the minority groups! Even with-
out minority groups, ERM models extract the core features
sufficiently well to achieve state-of-the-art results.

To sum up, with DFR we can match the performance of the

best available method when group information is available
on just the validation set (with DFRVal

Tr ) or on both the train
and validation sets (with DFRTr

Tr-NM). This state-of-the-art
performance is achieved by simply reweighting the features
learned by standard ERM, with no need for advanced regu-
larization techniques.

6. Natural Spurious Correlations on ImageNet
In the previous section we focused on benchmark prob-
lems constructed to highlight the effect of spurious features.
However, neural networks are known to learn undesirable
patterns and rely on spurious features in real-world prob-
lems (see e.g. Rosenfeld et al., 2018; Geirhos et al., 2020).
In Appendix E we explore two prominent shortcomings
of ImageNet classifiers: background reliance (Xiao et al.,
2020) and texture bias (Geirhos et al., 2018).

7. Conclusion
We have shown that neural networks simultaneously learn
multiple different features that can achieve low training loss,
including relevant semantic structure, even in the presence
spurious correlations. By retraining the last layer of the
network with DFR, we can significantly reduce the impact
of spurious features and improve worst-group-performance
of the models. In particular, DFR achieves state-of-the-art
performance on spurious correlation benchmarks, and can
reduce the reliance of ImageNet trained models on back-
ground and texture information. We provide further discus-
sion in Appendix F.
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sonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J.,
Corlay, S., Ivanov, P., Avila, D., Abdalla, S., and Willing,
C. Jupyter notebooks – a publishing format for repro-
ducible computational workflows. In Loizides, F. and
Schmidt, B. (eds.), Positioning and Power in Academic
Publishing: Players, Agents and Agendas, pp. 87 – 90.
IOS Press, 2016.

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang,
M., Balsubramani, A., Hu, W., Yasunaga, M., Phillips,
R. L., Gao, I., et al. Wilds: A benchmark of in-the-
wild distribution shifts. In International Conference on
Machine Learning, pp. 5637–5664. PMLR, 2021.

Kolesnikov, A. and Lampert, C. H. Improving weakly-
supervised object localization by micro-annotation. arXiv
preprint arXiv:1605.05538, 2016.

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung,
J., Gelly, S., and Houlsby, N. Big transfer (bit): General
visual representation learning. In European conference
on computer vision, pp. 491–507. Springer, 2020.

Kornblith, S., Shlens, J., and Le, Q. V. Do better imagenet
models transfer better? In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 2661–2671, 2019.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Krueger, D., Caballero, E., Jacobsen, J.-H., Zhang, A., Bi-
nas, J., Zhang, D., Le Priol, R., and Courville, A. Out-
of-distribution generalization via risk extrapolation (rex).
In International Conference on Machine Learning, pp.
5815–5826. PMLR, 2021.

Kumar, A., Raghunathan, A., Jones, R., Ma, T., and
Liang, P. Fine-tuning can distort pretrained features
and underperform out-of-distribution. arXiv preprint
arXiv:2202.10054, 2022.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lee, Y., Yao, H., and Finn, C. Diversify and disam-
biguate: Learning from underspecified data. arXiv
preprint arXiv:2202.03418, 2022.

Li, Y., Tian, X., Gong, M., Liu, Y., Liu, T., Zhang, K.,
and Tao, D. Deep domain generalization via conditional
invariant adversarial networks. In Proceedings of the

European Conference on Computer Vision (ECCV), pp.
624–639, 2018.

Liu, E. Z., Haghgoo, B., Chen, A. S., Raghunathan, A.,
Koh, P. W., Sagawa, S., Liang, P., and Finn, C. Just train
twice: Improving group robustness without training group
information. In International Conference on Machine
Learning, pp. 6781–6792. PMLR, 2021.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning
face attributes in the wild. In Proceedings of the IEEE
international conference on computer vision, pp. 3730–
3738, 2015.

Maddox, W., Tang, S., Moreno, P., Wilson, A. G., and Dami-
anou, A. Fast adaptation with linearized neural networks.
In International Conference on Artificial Intelligence and
Statistics, pp. 2737–2745. PMLR, 2021.

Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri,
M., Li, Y., Bharambe, A., and Van Der Maaten, L. Ex-
ploring the limits of weakly supervised pretraining. In
Proceedings of the European conference on computer
vision (ECCV), pp. 181–196, 2018.

Marcel, S. and Rodriguez, Y. Torchvision the machine-
vision package of torch. In Proceedings of the 18th ACM
international conference on Multimedia, pp. 1485–1488,
2010.

McKinney, W. Data structures for statistical computing
in python. In van der Walt, S. and Millman, J. (eds.),
Proceedings of the 9th Python in Science Conference, pp.
51 – 56, 2010.

Moayeri, M., Pope, P., Balaji, Y., and Feizi, S. A compre-
hensive study of image classification model sensitivity to
foregrounds, backgrounds, and visual attributes. arXiv
preprint arXiv:2201.10766, 2022.

Muandet, K., Balduzzi, D., and Schölkopf, B. Domain
generalization via invariant feature representation. In
International Conference on Machine Learning, pp. 10–
18. PMLR, 2013.

Nagarajan, V., Andreassen, A., and Neyshabur, B. Under-
standing the failure modes of out-of-distribution general-
ization. arXiv preprint arXiv:2010.15775, 2020.

Nam, J., Cha, H., Ahn, S., Lee, J., and Shin, J. Learning
from failure: De-biasing classifier from biased classifier.
Advances in Neural Information Processing Systems, 33:
20673–20684, 2020.

Nam, J., Kim, J., Lee, J., and Shin, J. Spread spurious
attribute: Improving worst-group accuracy with spuri-
ous attribute estimation. In International Conference on
Learning Representations, 2022.



Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations

Neyshabur, B., Sedghi, H., and Zhang, C. What is being
transferred in transfer learning? Advances in neural
information processing systems, 33:512–523, 2020.

Oren, Y., Sagawa, S., Hashimoto, T. B., and Liang, P. Dis-
tributionally robust language modeling. arXiv preprint
arXiv:1909.02060, 2019.

Pagliardini, M., Jaggi, M., Fleuret, F., and Karimireddy, S. P.
Agree to disagree: Diversity through disagreement for
better transferability. arXiv preprint arXiv:2202.04414,
2022.

Pan, S. J. and Yang, Q. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):
1345–1359, 2009.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.
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Appendix Outline
This appendix is organized as follows. In Section A we discuss the related work. In Section B we present details on the
experiments on feature learning in the presence of spurious correlations. In Section C we provide further discussion on the
proposed deep feature reweighting method. In Section D we provide details on the results for the benchmark datasets. We
provide details on the experiments on the reliance of ImageNet-trained models on the background in and on the texture-bias
in Appendix E. Finally, we provide a detailed discussion and conclusions in Appendix F.

Code references. Our code is available at github.com/PolinaKirichenko/deep feature reweighting.
In addition to the experiment-specific packages that we discuss throughout the appendix, we used the following libraries
and tools in this work: NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020), PyTorch (Paszke et al., 2017), Jupyter
notebooks (Kluyver et al., 2016), Matplotlib (Hunter, 2007), Pandas (McKinney, 2010).

A. Related Work
Spurious correlations are ubiquitous in real-world applications. There is hence an active research effort towards understanding
and reducing their effect on model performance. Here, we review the key methods and related work in this area.

Feature learning in the presence of spurious correlations. The poor performance of neural networks on datasets with
spurious correlations inspired research in understanding when and how the spurious features are learned. Geirhos et al. (2020)
provide a detailed survey of the results in this area. Several works explore the behavior of maximum-margin classifiers,
SGD training dynamics and inductive biases of neural network models in the presence of spurious features (Nagarajan et al.,
2020; Pezeshki et al., 2021; Rahaman et al., 2019). Shah et al. (2020) show empirically that in certain scenarios neural
networks can suffer from extreme simplicity bias and rely on simple spurious features, while ignoring the core features; in
Appendix B.2 we revisit these problems and provide further discussion. Hermann & Lampinen (2020) and Jacobsen et al.
(2018) also show synthetic and natural examples, where neural networks ignore relevant features, and Scimeca et al. (2021)
explore which types of shortcuts are more likely to be learned. Kolesnikov & Lampert (2016) on the other hand show that
on realistic datasets core and spurious features can often be distinguished from the latent representations learned by a neural
network in the context of object localization.

In an independent and concurrent work, Rosenfeld et al. (2022) show that standard ERM learns high quality representations
in the context of domain generalization, and by training the last layer on the target domain it is possible to achieve strong
results. The observations in our work are complimentary, as they focus on different settings.

Spurious correlations in natural image datasets. Multiple works demonstrated that natural image datasets contain
spurious correlations that hurt neural network models (Kolesnikov & Lampert, 2016; Xiao et al., 2020; Shetty et al.,
2019; Alcorn et al., 2019; Singla & Feizi, 2021; Singla et al., 2021; Moayeri et al., 2022). Notably, Geirhos et al. (2018)
demonstrated that ImageNet-trained CNNs are biased towards texture rather than shape of the objects. Follow-up work
explored this texture bias and showed that despite being texture-biased, CNNs still often represent information about the
shape in their feature representations (Hermann et al., 2020; Islam et al., 2021). In Section 6 we show that it is possible to
reduce the reliance of ImageNet-trained models on background context and texture information by retraining just the last
layer of the model.

Improving group robustness. The methods achieving the best worst-group performance typically build on the distribu-
tionally robust optimization (DRO) framework, where the worst-case loss is minimized instead of the average loss (Ben-Tal
et al., 2013; Hu et al., 2018; Sagawa et al., 2019; Oren et al., 2019; Zhang et al., 2020). Notably, Group-DRO (Sagawa
et al., 2019), which optimizes a soft version of the worst-group loss holds state-of-the-art results on multiple benchmarks
with spurious correlations. Several methods have been proposed for the scenario where group labels are not known, and
need to be inferred from the data; these methods typically train a pair of networks, where the first model is used to identify
the challenging minority examples and define a weighted loss for the second model (Liu et al., 2021; Nam et al., 2020;
Yaghoobzadeh et al., 2019; Utama et al., 2020; Zhang et al., 2021; Creager et al., 2021; Dagaev et al., 2021). Other works
proposed semi-supervised methods for the scenario where the group labels are provided for a small fraction of the train
datapoints (Sohoni et al., 2021; Nam et al., 2022). Idrissi et al. (2021) recently showed that with careful tuning simple
approaches such as data subsampling and reweighting can provide competitive worst-group performance. We note that all of
the methods described above use a validation set with a high representation of minority groups to tune the hyper-parameters
and optimize worst-group performance.

https://github.com/PolinaKirichenko/deep_feature_reweighting


Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations

Original FG-Only BG-Only

MNIST-MNIST MNIST-FashionMNIST MNIST-CIFAR

Figure 1. Data examples. Variations of the waterbirds (Top) and Dominoes (Bottom) datasets generated for the experiment in Section 3.

Another group of papers proposes regularization techniques to learn diverse solutions on the train data, focusing on different
groups of features (Teney et al., 2021; Lee et al., 2022; Pagliardini et al., 2022; Pezeshki et al., 2021). Xu et al. (2022)
show how to train orthogonal classifiers, i.e. classifiers invariant to given spurious features in the data. Other papers
proposed methods based on meta-learning the weights for a weighted loss (Ren et al., 2018) and group-agnostic adaptive
regularization (Cao et al., 2019; 2020). Related methods have been developed in several areas of machine learning, such as
ML Fairness (Dwork et al., 2012; Hardt et al., 2016; Kleinberg et al., 2016; Pleiss et al., 2017; Agarwal et al., 2018; Khani
et al., 2019), domain adaptation (Ganin & Lempitsky, 2015; Ganin et al., 2016) and domain generalization (Blanchard et al.,
2011; Muandet et al., 2013; Li et al., 2018; Gulrajani & Lopez-Paz, 2020; Ruan et al., 2021) including works on Invariant
Risk Minimization and causality (Peters et al., 2016; Arjovsky et al., 2019; Krueger et al., 2021; Aubin et al., 2021).

Transfer learning. Transfer learning (Pan & Yang, 2009; Sharif Razavian et al., 2014) is an extremely popular framework
in modern machine learning. Multiple works demonstrate its effectiveness in computer vision (e.g. Girshick, 2015; Huh
et al., 2016; He et al., 2017; Sun et al., 2017; Mahajan et al., 2018; Kolesnikov et al., 2020; Maddox et al., 2021), and
study when and why transfer learning can be effective (Zhai et al., 2019; Neyshabur et al., 2020; Abnar et al., 2021;
Kornblith et al., 2019; Kumar et al., 2022). Bommasani et al. (2021) provide a comprehensive discussion of modern transfer
learning with large-scale models. While algorithmically our proposed DFR method is related to transfer learning, it has a
different motivation and works on different problems. We discuss the relation between DFR and transfer learning in detail in
Appendix C.

Our work contributes to understanding how features are learned in the presence of spurious correlations. We show that
even in the cases when ERM-trained models rely heavily on spurious features and underperform on the minority groups,
they often still learn high quality representations of the core features. Based on this insight, we propose DFR — a simple
and practical method that achieves state-of-the art on popular benchmark datasets by simply reweighting the features in a
pretrained ERM classifier.

B. Details: Understanding Representation Learning with Spurious Correlations
Here we provide details on the experiments in Section 3. In Section B.2 we provide additional experiments on datasets
where the spurious feature is much simpler than the core feature, used in the simplicity bias literature (Shah et al., 2020).

B.1. Details: Feature learning on Waterbirds

Inverse problem. In Table 3 we present the results on the inverted Waterbirds problem, where the goal is to predict
the background type while the bird type serves as a spurious feature. The results for the inverted problem are analogous
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Train Data Spurious Test Data (Worst/Mean, %)
Corr. (%) Original BG-Only

Balanced 50 93.2/95.6 93.6/96.0
Original 95 77.4/91.2 93.1/95.7
Original 100 36.1/77.5 92.7/94.8

Place-Only - 91.8/94.2 92.4/95.2

Table 3. Feature learning on Inverted Waterbirds. ERM classifiers trained on Inverted Waterbirds with Original and BG-Only images.
Here the target is associated with the background type, and the foreground (bird type) serves as the spurious feature. All the models
trained on the Original data including the model trained without any minority group examples (Spurious corr. 100%) underperform on the
worst-group accuracy on the Original data, but perform well on the BG-Only data, almost matching the performance of the BG-Only
trained model.

to the results for the standard Waterbirds (Table 1): models trained on the Original data learn the background features
sufficiently well to predict the background type with high accuracy when the spurious foreground feature is not present,
but perform poorly when presented with conflicting background and foreground features. While it is often suggested than
neural networks are biased to learn the background (Xiao et al., 2020), we see that in fact the network relies on the spurious
foreground feature (bird) when trained to predict the background.

Data. We show examples of Original, FG-Only and BG-Only Waterbirds images in Figure 1. To generate the data, we
follow the instructions at github.com/kohpangwei/group_DRO#waterbirds, but in addition to the Original
data we save the backgrounds and foregrounds separately. Consequently, the FG-Only data contains the same exact birds
images as the Original data, and the BG-Only data contains the same exact places images as the Original data. For the 100%
spurious correlation strength we simply discard all the minority groups data from the Original (95% spurious correlation)
training dataset. For the Balanced data, we start with the Original data with 95% spurious correlation and replaced the
background in the smallest possible number of images (chosen randomly) to achieve a 50% spurious correlation strength.

Hyper-parameters. For the experiments in this section we use a ResNet-50 model pretrained on ImageNet, imported from
the torchvision package: torchvision.models.resnet50(pretrained=True) (Marcel & Rodriguez,
2010). We train the models for 50 epochs with SGD with a constant learning rate of 10−3, momentum decay of 0.9,
batch size 32 and a weight decay of 10−2. We use random crops (RandomResizedCrop(224, scale=(0.7,
1.0), ratio=(0.75, 4./3.), interpolation=2)) and horizontal flips (RandomHorizontalFlip())
implemented in torchvision.transforms as data augmentation.

B.2. Simplicity bias

Shah et al. (2020) showed that neural networks can suffer from extreme simplicity bias, a tendency to completely rely on the
simple features, while ignoring similarly predictive (or even more predictive) complex features. In this section, we explore
whether the neural networks can still learn the core features in the extreme simplicity bias scenarios, where the spurious
features are simple and highly correlated with the target. Following Shah et al. (2020) and Pagliardini et al. (2022), we
consider Dominoes binary classification datasets, where the top half of the image shows MNIST digits (LeCun et al., 1998)
from classes {0, 1}, and the bottom half shows MNIST images from classes {7, 9} (MNIST-MNIST), Fashion-MNIST (Xiao
et al., 2017) images from classes {coat, dress} (MNIST-Fashion) or CIFAR-10 (Krizhevsky et al., 2009) images from classes
{car, truck} (MNIST-CIFAR). In all Dominoes datasets, the top half of the image (MNIST 0− 1 images) presents a linearly
separable feature; the bottom half of the image presents a harder to learn feature. See Appendix B.2 for more details about
the experimental set-up and datasets, and Appendix Figure 1 for image examples.

We use the simple feature (top half of the images) as a spurious feature and the complex feature (bottom half) as the core
feature; we generate datasets with 100%, 99% and 95% correlations between the spurious feature and the target in train data,
while the core feature is perfectly aligned with the target2. We then define 4 groups Gi based on the values of the spurious
and core features, where the minority groups correspond to images with top and bottom halfs that do not match. The groups
on validation and test are balanced. We show data examples from Dominoes datasets in Figure 1. 20% of the training data

2Shah et al. (2020) and Pagliardini et al. (2022) only considered Dominoes data where both the simple and complex features are
perfectly predictive of the target, corresponding to a 100% spurious correlation.

https://www.github.com/kohpangwei/group_DRO#waterbirds
github.com/kohpangwei/group_DRO#waterbirds
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Figure 2. Feature learning and simplicity bias. ResNet-20 ERM classifiers trained on Dominoes data with varying levels of spurious
correlation between core and spurious features. We show worst-group test accuracy for: Original data, data with only core features present
(Core-Only), and accuracy of decoding the core feature from the latent representations of the Original data with logistic regression. We
additionally report optimal accuracy: accuracy of a model trained and evaluated on the Core-Only data. Even in cases when the model
achieves 0% accuracy on the Original data, the core features can still be decoded from latent representations.

was reserved for validation or reweighting dataset (see Section 4) where each group is equally represented.

We train a ResNet-20 model on each variation of the dataset. In Figure 2 we report the worst group performance for each of
the datasets and each spurious correlation strength. In addition to the worst-group accuracy on the Original test data, we
report the Core-Only worst-group accuracy, where we evaluate the model on datapoints with the spurious top half of the
image replaced with a black image. Similarly to Shah et al. (2020) and Pagliardini et al. (2022), we observe that when the
spurious features are perfectly correlated with the target on Dominoes datasets, the model relies just on the simple spurious
feature to make predictions and achieves 0% worst-group accuracy. However, with 99% and 95% spurious correlation levels
on train, we observe that models learned the core features well, as indicated both by their performance on the Original test
data and especially increased performance on Core-Only test data where spurious features are absent.

For reference, on each dataset we also report the Optimal accuracy, which is the accuracy of a model trained and evaluated
on the Core-Only data. The optimal accuracy provides an upper bound on the accuracy that we can expect on each of the
datasets.

Decoding feature representations. The performance on the Original and even Core-Only data might not be fully
representative of whether or not the network learned a high-quality representation of the core features. Indeed, even if we
remove the MNIST digit from the top half of the image, the network can still primarily rely on the (empty) top half in its
predictions: an empty image may be more likely to come from class 1, which typically has fewer white pixels than class
0. To see how much information about the core feature is contained in the latent representation, we evaluate the decoded
accuracy: for each problem we train a logistic regression classifier on top of features extracted by the final convolutional
layer of the network. We use a balanced3 validation set to train the logistic regression model, and then report the worst-group
accuracy on a test set. In Figure 2, we observe that for MNIST-MNIST and MNIST-FashionMNIST even when the spurious
correlation is 100%, reweighting the features leads to high test accuracy. Moreover, on all Dominoes datasets for 99% and
95% spurious correlations level the core features can be decoded with high accuracy and almost match the optimal accuracy.
This decoding serves as a basis of our DFR method, which we describe in detail in Section 4.

In Appendix B.2 we report an additional baseline and verify that the model indeed learns a non-trivial representation of the
core feature, especially for spurious correlation strengths 99% and 95%.

Relation to prior work. With the same Dominoes datasets that we consider in this section, Shah et al. (2020) showed that
neural networks tend to rely entirely on the simple features. However, they only considered the 100% spurious correlation
strength and accuracy on the Original test data. Our results do not contradict their findings but provide new insights:
even in these most challenging cases, the networks still represent information about the complex core feature. Moreover,
this information can be decoded to achieve high accuracy on the mixed group examples. Hermann & Lampinen (2020)
considered a different set of synthetic datasets, showing that in some cases neural networks fail to represent information
about some of the predictive features. In particular, they also considered decoding the information about these features from
the latent representations and different spurious correlation strengths. Our results add to their observations and show that
while it is possible to construct examples where predictive features are suppressed, in many challenging practical scenarios,

3A balanced validation set contains the same number of datapoints from each of the groups in the dataset.
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Figure 3. Logit additivity. Distribution of logits for the negative class on the test data for a model trained on Waterbirds dataset. We
show scatter plots of the logits for the Original, FG-Only and BG-Only images. The logits on Original images are well aligned with
sums of logits on the corresponding FG and BG images (rightmost panel), suggesting that the foreground and background features are
processed close to independently in the network.

neural networks learn a high quality representation of the core features relevant to the problem even if they rely on the
spurious features. Finally, in a concurrent work, Rosenfeld et al. (2022) show that ERM can learn features sufficient for
strong performance in the domain generalization setting, adding further support to the results presented in this section.

In summary, we find that, surprisingly, if (1) the strength of the spurious correlation is lower than 100% or (2) the difference
in complexity between the core and spurious features is not as stark as on MNIST-CIFAR, the core feature can be decoded
from the learned embeddings with high accuracy.

Hyper-parameters. We used a randomly initialized ResNet-20 architecture for this set of experiments. We trained the
network for 500 epochs with SGD with batch size 32, weight decay 10−3, initial learning rate value 10−2 and a cosine
annealing learning rate schedule. For the logistic regression model, we first extract the embeddings from the penultimate layer
of the network, then use the logistic regression implementation (sklearn.linear model.LogisticRegression)
from the scikit-learn package (Pedregosa et al., 2011). We use ℓ1 regularization and tune the inverse regularization
strength parameter C in the range {0.1, 10, 100, 1000}. For more details on Deep Feature Reweighting implementation and
tuning, see section D.

Transfer from simple to complex features. In addition to the results presented in Figure 2, we measure the decoded
accuracy using the model trained just on the spurious simple features: the top half of the image showing an MNIST digit.
After training, we retrain the last layer of the model using a validation split of the corresponding Dominoes dataset which has
both top and bottom parts. In this case, we measure the transfer learning performance with the features learned on the binary
MNIST classification problem applied to the more complex bottom half of the image. We obtain the following transfer
accuracy results: 92.5% on MNIST-MNIST, 92.1% on MNIST-Fashion and 61.4% on MNIST-CIFAR. On all datasets, the
decoded accuracy reported in Figure 2 for the spurious correlation levels 99% and 95% is better than the transfer accuracy.
For the 100% spurious correlation, transfer achieves comparable results on MNIST-Fashion and MNIST-CIFAR, but on
MNIST-MNIST the decoded accuracy with a model trained on the data with the core feature is significantly higher (99%
vs 92%). These results confirm that for the spurious correlation strength below 100%, the model learns a high quality
representation of the core features, which cannot be explained by transfer learning from the spurious feature.

B.3. Logit additivity

To better understand why the models trained on the Original Waterbirds data perform well on FG-Only images, in Figure 3
we inspect the logits of a trained model. We show scatter plots of logits for the negative class (logits for the positive class
behave analogously) on the Original, FG-Only and BG-Only test data. Both logits on FG-Only and BG-Only data correlate
with the logits on the Original images, and FG-Only show a higher correlation. The FG-Only and BG-Only logits are not
correlated with each other, as in test data the groups are balanced and the foreground and background are independent.

We find that the sum of the logits for the BG-Only and the logits for the FG-Only images provides a good approximation of
the logits on the corresponding Original image (combining the foreground and the background). We term this phenomenon
logit additivity: on Waterbirds, logits for the different predictive features (both core and spurious) are computed close to
independently and added together in the last classification layer.
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Figure 4. Deep feature reweighting (DFR). An illustration of the DFR method on the Waterbirds dataset, where the background (BG)
is spuriously correlated with the foreground (FG). Standard ERM classifiers learn both features relevant to the background and the
foreground, and weight them in a way that the model performs poorly on images with confusing backgrounds. With DFR, we simply
reweight these features by retraining the last linear layer on a small dataset where the backgrounds are not spuriously correlated with
the foreground. The resulting DFR model primarily relies on the foreground, and performs much better on images with confusing
backgrounds.

C. Details: Deep Feature Reweighting
We illsutrate DFR in Figure 4.

DFR versions. We consider three variations of DFRD̂
D, which differ by the way we construct the training dataset D and the

balanced set D̂. In DFRTr
Tr , we use a random group-balanced subset of the train data as D̂, i.e. we keep all of the data from

the smallest group, and subsample the data from the other groups to the same size. In DFRVal
Tr , we use a balanced subset of

the validation data available for each of the problems. For both DFRTr
Tr and DFRVal

Tr we use the standard training dataset (with
group imbalance) as D. Finally, with DFRTr

Tr-NM (NM stands for “No Minority”) we use a random group-balanced subset of
the train data as D̂, but remove the minority groups (G2,G3 on Waterbirds and G4 on CelebA) from the data D used to train
the feature extractor. In order to make use of more of the available data, we train logistic regression 10 times using different
random balanced subsets of the data, and average the weights of the learned models. Here we can safely average the weights
of the learned models because the models are linear. By averaging, we are able to incorporate more of the majority group
data without under-weighting the minority groups. Full details are available in Appendix D.

Relation to transfer learning Algorithmically, DFR is a special case of transfer learning, where D serves as the source
data, and D̂ is the target data (Sharif Razavian et al., 2014). However, the motivation of DFR is different from that of
standard transfer learning: in DFR we are trying to correct the behavior of a pretrained model, and reduce the effect of
spurious features, while in transfer learning the goal is to learn general features that generalize well to diverse downstream
tasks. For example, we can use DFR to reduce the reliance of ImageNet-trained models on the background or texture and
improve their robustness to covariate shift (see Section 6), while in standard transfer learning we would typically use a
pretrained model as initialization or a feature extractor to learn a good solution on a new dataset. In the context of spurious
correlations, one would not expect DFR to work as well as it does: the only reason DFR is successful is because, contrary to
conventional wisdom, neural network classifiers are in fact learning substantial information about core features, even when
they seem to rely on spurious features to make predictions. Moreover, in Appendix Table 5 we show that transfer learning
with features learned ImageNet does not work nearly as well as DFR on the spurious correlation benchmarks.

D. Additional Benchmark Results
In Table 4 we provide the results for all the DFR variations introduced in Appendix C. We focus on the image classification
datasets for these experiments.

D.1. Datasets

Waterbirds. The Waterbirds dataset is described in Figure 5. The dataset contains images of birds from the CUB dataset
(Wah et al., 2011) pasted on the backgrounds from the Places dataset (Zhou et al., 2017). The spurious attribute s describes
the type of background (water or land) and the core feature associated with the target y is the type of the bird (waterbird or



Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations

Waterbirds dataset
G1 G2 G3 G4

Image
Examples

Description landbird
on land

landbird
on water

waterbird
on land

waterbird
on water

Class Label 0 0 1 1
# Train data 3498 (73%) 184 (4%) 56 (1%) 1057 (22%)
# Val data 467 466 133 133

Target: bird type; Spurious feature: background type; Minority: G2,G3

CelebA hair color dataset
G1 G2 G3 G4

Image
Examples

Description Non-blond
woman

Non-blond
man

Blond
woman

Blond
man

Class Label 0 0 1 1
# Train data 71629 (44%) 66874 (41%) 22880 (14%) 1387 (1%)
# Val data 8535 8276 2874 182

Target: hair color; Spurious feature: gender; Minority: G4

Figure 5. Waterbirds and CelebA data. Dataset descriptions and example images from each group on Waterbirds and CelebA datasets.

landbird). For a detailed description of the data generating process, see Sagawa et al. (2019). The background is spuriously
correlated with the bird type in the training datasets: waterbirds are more likely to be placed on a water background, and
landbirds are more likely to be placed on a land background. There are 4 groups defined to the tuples (y, s).

CelebA. The CelebA hair color dataset is described in Figure 5. The dataset contains photos of celebrities from the CelebA
dataset Liu et al. (2015). The core attribute associated with the target y is the hair color (blond vs non-blond). The gender
serves as a spurious feature s: the vast majority of blond people in CelebA are female. There are 4 groups defined to the
tuples (y, s).

Civil Comments The dataset was originally collected in Borkan et al. (2019) and is a part of the WILDS benchmark (Koh
et al., 2021). This dataset contains comments that are classified as toxic or not toxic. We use the coarse version of the dataset,
following Idrissi et al. (2021). The spurious attribute s determines whether or not the comment mentions one of the following
protected attributes: male, female, LGBT, black, white, Christian, Muslim, other religion. These protected attributes are
mentioned more frequently in toxic comments compared to neutral comments, constituting a spurious correlation. There are
4 groups corresponding to the pairs (y, s).

MultiNLI The MultiNLI dataset contains pairs of sentences, and the label y describes the relationship between the
sentences: contradiction, entailment or neutral. The spurious attribute s describes the presence of negation words, which
appear much more frequently in the examples from the negation class. There are 6 groups corresponding to the pairs (y, s).
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Method Group Info Waterbirds CelebA
Train Val Worst(%) Mean(%) Worst(%) Mean(%)

ERM ✗ ✓ 72.6/85.5±1.0 97.3 47.2/79.7±3.7 95.6
JTT ✗ ✓ 86.7/85.6±0.2 93.3 81.1/75.6±7.7 88.0

Group-DRO ✓ ✓ 91.4/87.1±3.4 93.5 88.9/86.9±1.1 92.9
SUBG ✓ ✓ 89.1±1.1 - 85.6±2.3 -
SSA ✗ ✓✓ 89.0±0.55 92.2±0.87 89.8±1.28 92.8±0.11

Base Model ✗ ✓ 74.9±2.4 98.1±0.1 46.9±2.8 95.3±0

DFRTr
Tr ✓ ✓ 90.2±0.8 97.0±0.3 80.7±2.4 90.6±0.7

DFRVal
Tr ✗ ✓✓ 92.9±0.2 94.2±0.4 89.4±0.9 91.5±0.2

Base Model trained without minority groups

Base Model ✗ ✓ 31.9±3.6 96.0±0.2 21.7±3.2 95.2±0.1

DFRTr
Tr-NM ✓ ✓ 89.9±0.6 94.3±0.5 89.0±1.1 91.6±0.4

Table 4. Spurious correlation benchmark results. Worst-group and mean test accuracy of DFR variations and baselines on Waterbirds
and CelebA hair color prediction problems. For the ERM, JTT and Group-DRO baselines, we provide the results reported in two papers:
Liu et al. (2021) in green and Idrissi et al. (2021) in blue. For SUBG, we provide the results from Idrissi et al. (2021), which only reported
worst-group accuracy, and for SSA, we provide the results from Nam et al. (2022). For mean accuracy, we follow Liu et al. (2015) and
Sagawa et al. (2019) and weight the group accuracies according to their prevalence in the training data. The Group Info column shows
whether group labels are available to the methods on train and validation datasets. For DFRVal

Tr , we use the validation data to train the model
parameters (last layer) in addition to hyper-parameter tuning, indicated with ✓✓; SSA also uses the validation set to train the model. DFR
is competitive with state-of-the-art on both datasets. For DFR we report the mean±std over 5 independent runs of the method.

D.2. Details: Spurious Correlation Benchmarks

Here we provide details on the experiments in Section 5 and Table 4.

Base model hyper-parameters. For the experiments presented in Table 6 we use a ResNet-50 model pretrained on
ImageNet, imported from the torchvision package: torchvision.models.resnet50(pretrained=True).
We use random crops (RandomResizedCrop(224, scale=(0.7, 1.0), ratio=(0.75,
4./3.), interpolation=2)) and horizontal flips (RandomHorizontalFlip()) implemented in
torchvision.transforms as data augmentation. We train all models with SGD with momentum decay of
0.9 and a constant learning rate. On Waterbirds, we train the models for 100 epochs with weight decay 10−3, learning rate
10−3 and batch size 32. On CelebA, we train the models for 50 epochs with weight decay 10−4, learning rate 10−3 and
batch size 128. We use cosine annealing learning rate schedule. We do not use early stopping.

DFR details. For DFR, we first extract and save the embeddings (inputs to the classification layer of the base model) of the
training, validation and testing data using the base model. We then preprocess the embeddings to have zero mean and unit stan-
dard deviation using the standard scaler sklearn.preprocessing.StandardScaler from the scikit-learn
package. In each case, we compute the preprocessing statistics on the reweighting data used to train the last layer. To retrain
the last layer, we use the logistic regression implementation (sklearn.linear model.LogisticRegression)
from the scikit-learn package. We use ℓ1 regularization. For DFRVal

Tr and DFRTr
Tr-NM we only tune the inverse regular-

ization strength parameter C: we consider the values in range {1., 0.7, 0.3, 0.1, 0.07, 0.03, 0.01} and select the value that
leads to the best worst-group performance on the available validation data (as described in Section 5, for DFRVal

Tr we use
half of the validation to train the logistic regression model and the other half to tune the parameters at the tuning stage).
For DFRTr

Tr we additionally tune the class weights: we set the weight for one of the classes to 1 and consider the weights
for the other class in range {1, 2, 3, 10, 100, 300, 1000}; we then switch the classes and repeat the procedure. For the final
evaluation, we use the best values of the hyper-parameters obtained during the tuning phase and train a logistic regression
model on all of the available reweighting data. We train the logistic regression model on the reweighting data 10 times with
random subsets of the data (we take all of the data from the smallest group, and subsample the other groups randomly to
have the same number of datapoints) and average the weights of the learned models. We report the model with averaged
weights.
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Method ImageNet Dataset Waterbirds CelebA
Pretrain Fine-tune Worst(%) Mean(%) Worst(%) Mean(%)

Base Model ✓ ✓ 74.9±2.4 98.1±0.1 46.9±2.8 95.3±0

DFRTr
Tr ✓ ✓ 90.2±0.8 97.0±0.3 80.7±2.4 85.4±0.4

DFRVal
Tr ✓ ✓ 92.9±0.2 94.2±0.4 88.3±1.1 89.6±0.4

Base Model ✗ ✓ 6.9±3.0 88.0±1.1 39.8±2.0 95.7±0.1

DFRTr
Tr ✗ ✓ 45.4±4.1 69.8±7.0 83.4±2.6 87.5±0.3

DFRVal
Tr ✗ ✓ 53.9±1.8 62.6±2.2 85.0±2.1 87.6±0.3

DFRVal
IN ✓ ✗ 88.7±0.4 89.7±0.1 73.1±2.6 80.9±0.5

Table 5. Effect of ImageNet pretraining and dataset fine-tuning. Results for DFR on the Waterbirds and CelebA datasets when using
an ImageNet-trained model as a feature extractor, training the feature extractor from random initialization or initializing the feature
extractor with ImageNet-trained weights and fine-tuning on the target data. The models without target dataset finetuning (DFRTr

IN and
DFRVal

IN ) lead to relatively poor performance on both datasets. On Waterbirds, both ImageNet pretraining and dataset finetuning are needed
to achieve strong performance. On CelebA, we can achieve competitive resutls training the feature extractor from a random initialization.
All methods in Table 2 use ImageNet-trained models as initialization and finetune on the target dataset.

Do we need ImageNet pretraining? DFR relies on the ability of the feature extractor to learn diverse features, which may
suggest that ImageNet pretraining is crucial. In Table 5, we report the results on the same problems, but training the feature
extractor from scratch. We find that on Waterbirds, ImageNet pretraining indeed has a dramatic effect on the performance
of DFR as well as the base feature extractor model. However, on CelebA DFR shows strong performance regardless of
pretraining. The difference between Waterbirds and CelebA is that Waterbirds contains only 4.8k training points, making it
difficult to learn a meaningful feature extractor from scratch. Furthermore, on both datasets, finetuning the feature extractor
on the target data is crucial: just using the features extracted by an ImageNet-trained model leads to poor results. We note
that all the baselines considered in Table 2 use ImageNet pretraining.

What if we just use ImageNet features? As a baseline, we apply DFR to features extracted by a model pretrained on
ImageNet with no fine-tuning on CelebA and Waterbirds data. We report the results in Table 5 (DFRTr

IN and DFRVal
IN lines).

The results suggest that both ImageNet pretraining and fine-tuning on the target data are needed to train the best feature
extractor. However, we note that on Waterbirds the ImageNet features provide fairly strong performance.

Robustness to base model hyper-parameters In Table 6 we report the results of DFRVal
Tr for a range of configurations of

the baseline model hyper-parameters. While the quality of the base model clearly has an effect on DFR performance, we
achieve competitive results for all the hyper-parameter configurations that we consider, even when the base model performs
poorly. For example, on Waterbirds with data augmentation, learning rate 10−3 and weight decay 10−2 the base model
achieves worst group accuracy of 24.1%, but by retraining the last layer of this model with DFRVal

Tr we still achieve 88%
worst group accuracy.
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Base Model Hypers Method Waterbirds
lr wd batch size aug Worst(%) Mean(%)

10−3 10−3 32 ✓
Base Model 74.9±2.4 98.1±0.1

DFRVal
Tr 92.9±0.2 94.2±0.4

10−3 10−3 32 ✗
Base Model 73.4 97.7

DFRVal
Tr 90.9 92.2

10−3 10−2 32 ✓
Base Model 24.1 94.4

DFRVal
Tr 88.0 88.6

10−3 10−2 32 ✗
Base Model 66.4 97.1

DFRVal
Tr 90.1 90.5

3 · 10−3 10−3 32 ✓
Base Model 71.5 98.1

DFRVal
Tr 91.9 93.5

3 · 10−3 10−3 32 ✗
Base Model 76.5 98.0

DFRVal
Tr 89.5 94.5

10−3 10−3 64 ✓
Base Model 73.5 98.0

DFRVal
Tr 93.1 95.0

10−3 10−3 64 ✗
Base Model 69.5 97.4

DFRVal
Tr 89.0 93.6

Base Model Hypers Method CelebA
lr wd batch size aug Worst(%) Mean(%)

10−3 10−4 128 ✓
Base Model 46.9±2.8 95.3±0

DFRVal
Tr 88.3±1.1 91.3±0.3

10−3 10−3 128 ✓
Base Model 44.3±6.4 95.2±0.1

DFRVal
Tr 86.2±1.2 90.8±0.7

10−3 10−4 128 ✗
Base Model 46.7±0.0 95.3±0.1

DFRVal
Tr 86.9±1.1 91.6±0.2

10−3 10−3 128 ✗
Base Model 40.6±8.7 95.1±0.2

DFRVal
Tr 85.6±1.4 91.8±0.5

Table 6. Effect of base model hyper-parameters. We report the results of DFRVal
Tr for a range of base model hyper-parameters on

Waterbirds and CelebA as well as the performance of the corresponding base models. While the quality of the base model has an effect on
DFR, the results are fairly robust. For a subset of configurations we report the mean and standard deviation over 3 independent runs of the
base model and DFR.
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Figure 6. DFR Variations. Visualization of the features extracted from the reweighting dataset D̂ and the test data for different variations
of DFR on the Waterbirds data. We show projections of the 2048-dimensional features on the top-2 principal components extracted
from D̂. With DFRVal

Tr and DFRTr
Tr-NM , the distribution of the features for the minority groups G2 and G3 does not change between the

reweighting and test data, while with DFRTr
Tr we see significant distribution shift.

D.3. Why is DFRTr
Tr-NM better than DFRTr

Tr ?

Let us consider the second stage of DFRD̂
D, where we fix the feature encoder f(·), and train a logistic regression model L on

the dataset f(D̂), where by f(D̂) we denote the dataset with labels from the reweighting dataset D̂ and features from D̂
extracted by f . We then evaluate the logistic regression model L on the features extracted from the test data, f(DTest).

Let us use M̂ to denote a minority group in the reweighting dataset D̂, and MTest to denote the same minority group in the
test data. For DFRTr

Tr-NM and DFRVal
Tr , the model f is trained without observing any data from M̂ or MTest. Assuming the

datapoints in M̂ and MTest are iid samples from the same distirbution, the distribution of features in f(M̂) and f(MTest)
will also be identical.

On the other hand, with DFRTr
Tr , the minority group datapoints M̂ are used to train the feature extractor f . In this case, we

can no longer assume that the distribution of features f(M̂) will be the same as the distribution of f(MTest). Consequently,
in DFRTr

Tr , the logistic regression model L will be evaluated under distribution shift, which makes the problem much more
challenging and leads to inferior performance of DFRTr

Tr on the Waterbirds data. We verify this intuition in Figure 6, where
we visualize the feature embeddings for the reweighting dataset D̂ and the test data. We see that as we predicted, the
distribution of the minority group features coincides between D̂ and test data for DFRTr

Tr-NM and DFRVal
Tr , while DFRTr

Tr shows
significant distribution shift.

What D̂ should be used in practice? In Table 2, the best performance is achieved by DFRTr
Tr-NM and DFRVal

Tr , which
retrain the last layer on data that was not used in training the feature extractor. In practice, we recommend collecting a
group-balanced validation set, which can be used both to tune the hyper-parameters and re-train the last layer of the model,
as we do in DFRVal

Tr .
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Figure 7. ImageNet variations. Examples of datapoints from the ImageNet variations used in the experiments.
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E. Natural Spurious Correlations on ImageNet
E.1. Background reliance

Prior work has demonstrated that computer vision models such as ImageNet classifiers can rely on background to make their
predictions (Zhang et al., 2007; Ribeiro et al., 2016; Shetty et al., 2019; Xiao et al., 2020; Singla & Feizi, 2021). Here, we
show that it is possible to reduce the background reliance of ImageNet-trained models by simply retraining their last layer
with DFR.

Xiao et al. (2020) proposed several datasets in the Backgrounds Challenge to study the effect of the backgrounds on
predictions of ImageNet models. The datasets in the Backgrounds Challenge are based on the ImageNet-9 dataset, a subset
of ImageNet structured into 9 coarse-grain classes (see Xiao et al. (2020) for details). ImageNet-9 contains 45k training
images and 4050 validation images. We consider three datasets from the Backgrounds Challenge: (1) Original contains the
original images; (2) Mixed-Rand contains images with random combinations of backgrounds and foregrounds (objects); (3)
FG-Only contains images showing just the object with a black background. We additionally consider Paintings-BG using
paintings from Kaggle’s painter-by-numbers dataset4 as background for the ImageNet-9 validation data. Finally, we
consider the ImageNet-R dataset (Hendrycks et al., 2021) restricted to the ImageNet-9 classes. See below for details and
Appendix Figure 7 for example images.

We use an ImageNet-trained ResNet-50 as a feature extractor and train DFR with different reweighting datasets. As a
Baseline, we train DFR on the Original 45k training datapoints5. We train DFRMR and DFROG+MR on Mixed-Rand training
data and a combination of Mixed-Rand and Original training data respectively. In Figure 8, we report the predictive accuracy
of these methods on different validation datasets as a function of the number of Mixed-Rand data observed. We select the
observed subset of the data randomly; for DFROG+MR, in each case we use the same amount of Mixed-Rand and Original
training datapoints. We repeat this experiment with a VIT-B-16 model (Dosovitskiy et al., 2020) pretrained on ImageNet-21k
and report the results in the Appendix Figure 9.

First, we notice that the baseline model provides significantly better performance on FG-Only (92%) than on the Mixed-Rand
(86%) validation set, suggesting that the feature extractor learned the features needed to classify the foreground, as well as
the background features. With access to Mixed-Rand data, we can reweight the foreground and background features with
DFR and significantly improve the performance on mixed-rand, FG-Only and Paintings-BG datasets. At the same time,
DFROG+MR is able to mostly maintain the performance on the Original ImageNet-9 data; the small drop in performance is
because the background is relevant to predicting the class on this validation set. Finally, on ImageNet-R, DFR provides a
small improvement when we use all of 45k datapoints; the covariate shift in ImageNet-R is not primarily background-based,
so reducing background reliance does not provide a big improvement.

Results for VIT-B-16. We report the results for the VIT-B-16 base model in Figure 9. The results are generally analogous
to the results for ResNet-50: it is possible to significantly reduce the reliance of the model on the background by retraining the
last layer with DFR. For the VIT, removing the background dependence hurts the performance on the Original data slightly,
but greatly improves the performance on the images with unusual backgrounds (Mixed-Rand, FG-Only, Paintings-BG).
Removing the background dependence does not improve the performance on ImageNet-R.

Data. We use the ImageNet-9 dataset (Xiao et al., 2020). To test whether our models can generalize to unusual backgrounds,
we additionally generate Paintings-BG data shown in Figure 7. For the Paintings-BG data we use the Original images
and segmentation masks for ImageNet-9 data provided by Xiao et al. (2020), and combine them with random paintings
from Kaggle’s painter-by-numbers dataset available at kaggle.com/c/painter-by-numbers/ as backgrounds. For the
ImageNet-R dataset (Hendrycks et al., 2021), we only use the images that fall into one of the ImageNet-9 categories, and
evaluate the accuracy with respect to these categories. We show examples of images from different dataset variations in
Figure 7.

Base model hyper-parameters. We use a ResNet-50 model pretrained on ImageNet and a VIT-B-16 model pre-
trained on ImageNet-21k and finetuned on ImageNet. The ResNet-50 model is imported from the torchvision
package: torchvision.models.resnet50(pretrained=True). The VIT-B-16 model is imported
from the lukemelas/PyTorch-Pretrained-ViT package available at github.com/lukemelas/PyTorch-
Pretrained-ViT; we use the command: ViT(’B 16 imagenet1k’, pretrained=True) to load the model.

4https://www.kaggle.com/c/painter-by-numbers/
5We cannot use the original ImageNet-trained ResNet-50 last layer, as ImageNet-9 has a different set of classes.

https://www.kaggle.com/c/painter-by-numbers/
https://www.github.com/lukemelas/PyTorch-Pretrained-ViT
https://www.github.com/lukemelas/PyTorch-Pretrained-ViT
https://www.kaggle.com/c/painter-by-numbers/
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Figure 8. ImageNet background reliance (ResNet-50). Performance of DFR trained on MixedRand data and MixedRand + Original
data on different ImageNet-9 validation splits. All methods use an ImageNet-trained ResNet-50 feature extractor. DFR can reduce
background reliance with a minimal drop in performance on the Original data.
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Figure 9. ImageNet background reliance (VIT-B-16). Performance of DFR trained on MixedRand data and MixedRand + Original
data on different ImageNet-9 validation splits. All methods use an VIT-B-16 feature extractor trained on ImageNet21k and finetuned on
ImageNet. DFR can reduce background reliance with a minimal drop in performance on the Original data. See Figure 8 for analogous
results with a ResNet-50 feature extractor.

To extract the embeddings, we remove the last linear classification layer from each of the models. We pre-
process the data using the torchvision.transforms paclage Compose([ Resize(resize size),
CenterCrop(crop size), ToTensor(), Normalize([0.485, 0.456, 0.406], [0.229, 0.224,
0.225])]), where (resize size, crop size) are equal to (256, 224) for the ResNet-50 and (384, 384) for the
VIT-B-16. We do not apply any data augmentation.

DFR details. We Train DFR on random subsets of the Mixed-Rand train data of different sizes (DFRMR) or combinations
of the Mixed-Rand and Original data (DFROG+MR). For DFROG+MR we use the same number of Original and Mixed-
Rand datapoints in all experiments. As the full ImageNet-9 contains 50k datapoints, we train the logistic regression on
GPU with a simple implementation in PyTorch (Paszke et al., 2017). We then preprocess the embeddings to have zero
mean and unit standard deviation using the standard scaler sklearn.preprocessing.StandardScaler from the
scikit-learn package. In each case, we compute the preprocessing statistics on the reweighting data used to train the
last layer. For the experiments in this section we use ℓ2 regularization (as the number of datapoints is large relative to the
number of observations, we do not have to use ℓ1). We set the regularization coefficient λ to be 100 and train the logistic
regression model with the loss

∑
x,y∈D′ L(y, wx+ b) + λ

2 ∥w∥2, where L(·, ·) is the cross-entropy loss. We use full-batch
SGD with learning rate 1 and no momentum to train the model for 1000 epochs. We did not tune the λ parameter or SGD
hyper-parameters.

E.2. Texture-vs-shape bias

Geirhos et al. (2018) showed that when presented with images with conflicting texture and shape, ImageNet-trained CNNs
tend to make predictions based on the texture, while humans usually predict based on the shape of the object. The authors
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Method Training
Data

Shape
bias (%)

Top-1 Acc (%) / Top-5 Acc (%)

ImageNet ImageNet-R ImageNet-C

RN-50
IN 21.4 76.0/92.9 23.8/36.6 39.8/60.7

SIN 81.4 60.3/82.7 26.9/42.1 38.1/59.7
IN+SIN 34.7 74.6/92.1 27.6/42.5 45.7/67.4

Shape-RN-50 IN+SIN 20.5 76.8/93.3 25.6/39.8 42.3/63.3

DFR
IN 20.8 74.5/92.2 22.6/36.1 36.8/57.2

SIN 34.0 65.1/85.7 24.6/39.4 36.7/56.7
IN+SIN 30.6 74.5/91.8 27.2/42.4 40.7/61.3

Table 7. Shape bias. Shape bias and accuracy on ImageNet validation set variations for ResNet-50 trained on different datasets and DFR
with an ImageNet-trained ResNet-50 as a feature extractor. For each metric, we show the best result in bold and underline the best result
among DFR methods. By retraining just the last layer with DFR, we can significantly increase the shape bias compared to the base model
(21.4% → 34% for DFR(SIN)) and improve robustness to covariate shift on ImageNet-R/C.

designed the GST dataset with conflicting cues, and proposed the term texture bias to refer to the fraction of datapoints on
which a model (or a human) makes predictions based on texture; conversely, shape bias is the fraction of the datapoints on
which prediction is made based on the shape of the object. Geirhos et al. (2018) showed that it is possible to increase the
shape bias of CNNs by training on Stylized ImageNet (SIN), a dataset obtained from ImageNet by removing the texture
information via style transfer (see Appendix Figure 7 for example images). Using SIN in combination with ImageNet
(SIN+IN), they also obtained improved robustness to corruptions. Finally, they proposed the Shape-RN-50 model, a ResNet-
50 (RN-50) trained on SIN+IN and finetuned on IN, which outperforms the ImageNet-trained ResNet-50 on in-distribution
data and out-of-distribution robustness.

In this section, we explore whether it is possible to change the shape bias of ImageNet-trained models by simply retraining
the last layer with DFR. Intuitively, we expect that the standard ImageNet-trained model already learns both the shape
and texture features. Indeed, Hermann et al. (2020) showed that shape information is decodable from the features of
ImageNet-trained models on the GST dataset to a certain extent. Here, instead of directly targeting the GST dataset, we
apply DFR to the large-scale SIN dataset, and explore both the shape bias and the predictive performance of the resulting
models. See below for details.

In Table 7, we report the shape bias, as well as predictive accuracy of ResNet-50 models trained on ImageNet (IN), SIN,
IN+SIN and the Shape-RN-50 model, and the DFR models trained on IN, SIN and IN+SIN. The DFR models use an
IN-trained ResNet-50 model as a feature extractor.

First, we observe that while the SIN-trained RN-50 achieves a shape-bias of 81.4%, as reported by Geirhos et al. (2018), the
models trained on combinations of IN and SIN are still biased towards texture. Curiously, the Shape-RN-50 model proposed
by Geirhos et al. (2018) has almost identical shape bias to a standard IN-trained RN-50! At the same time, Shape-RN-50
outperforms IN-trained RN-50 on all the datasets that we consider, and Geirhos et al. (2018) showed that Shape-RN-50
significantly outperforms IN-trained RN-50 in transfer learning to a segmentation problem, suggesting that it learned better
shape-based features. The fact that the shape bias of this model is lower than that of an IN-trained RN-50, suggests that
the shape bias is largely affected by the last linear layer of the model: even if the model extracted high-quality features
capturing the shape information, the last layer can still assign a higher weight to the texture information.

Next, DFR can significantly increase the shape bias of an IN-trained model. DFRSIN
IN achieves a comparable shape-bias to

that of a model trained from scratch on a combination of IN and SIN datasets. Finally, DFRIN+SIN
IN improves the performance

on both ImageNet-R and ImageNet-C (Hendrycks & Dietterich, 2019) datasets compared to the base RN-50 model. In the
Appendix Table 8 we show similar results for a VIT-B-16 model pretrained on ImageNet-21k and finetuned on ImageNet;
there, DFRIN+SIN

IN can also improve the shape-bias and performance on ImageNet-C, but does not help on ImageNet-R. To
sum up, by reweighting the features learned by an ImageNet-trained model, we can significantly increase its shape bias
and improve robustness to certain corruptions. However, to achieve the highest possible shape bias, it is still preferable to
re-train the model from scratch, as RN-50(SIN) achieves a much higher shape bias compared to all other methods.

Results for VIT-B-16. We report the results for the VIT-B-16 base model in Table 8. For this model, baselines trained from
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Method Training
Data

Shape
bias (%)

Top-1 Acc (%) / Top-5 Acc (%)

ImageNet ImageNet-R ImageNet-C

VIT-B-16 IN21k + IN 36 79.2/95.0 29.1/42.0 49.7/69.3
DFR IN+SIN 39.9 79.7/94.5 29.0/41.4 52.0/71.0

Table 8. Texture-vs-shape bias results for VIT-B-16. Shape bias, top-1 and top-5 accuracy on ImageNet validation set variations for
VIT-B-16 pretrained on ImageNet21k and finetuned on ImageNet and DFR using this model as a feature extractor and reweighting the
features on combined ImageNet and Stylized ImageNet datasets. By retraining just the last layer with DFR, we can increase the shape
bias compared to the feature extractor model and improve robustness to covariate shift on ImageNet-C.

scratch on IN+SIN and SIN are not available so we only report the results for the standard model trained on ImageNet21k
and finetuned on ImageNet; for DFR we report the results using IN+SIN as the reweighting dataset. Despite the large-scale
pretraining on ImageNet21k, we find that we can still improve the shape bias (36% → 39.9%) as well as robustness to
ImageNet-C corruptions (49.7% → 52% Top-1 accuracy). On the original ImageNet and ImageNet-R the performance of
DFR is similar to that of the baseline model.

Data. We generate the stylized ImageNet (SIN) data following the instructions at github.com/rgeirhos/Stylized-ImageNet
(Geirhos et al., 2018). For evaluation, we use ImageNet-C (Hendrycks & Dietterich, 2019) and ImageNet-R datasets
(Hendrycks et al., 2021). For ImageNet-C we report the average performance across all 19 corruption types and 5 corruption
intensities. We show examples of stylized ImageNet images in Figure 7.

Base model hyper-parameters. We use the same ResNet-50 and VIT-B-16 models as described in the previous subsection.

DFR details. We train DFR using the embeddings of the original ImageNet (IN), stylized ImageNet (SIN) and their
combination (IN+SIN) as the reweighting dataset. We preprocess the base model embeddings by manually subtracting
the mean and dividing by standard deviation computed on the reweighting data used to train DFR; we did not use
sklearn.preprocessing.StandardScaler due to the large size of the datasets (1.2M datapoints for IN and
SIN; 2.4M datapoints for IN+SIN). We train the logistic regression for the last layer on a single GPU with a simple
implementation in PyTorch. We use SGD with learning rate 1, no momentum, no regularization and batch size of 104 to
train the model for 100 epochs. We tuned the batch size (in the range {103, 104, 105}) and picked the batch size that leads
to the best performance on the ImageNet validation set (104). We did not tune the other hyper-parameters.

Detailed texture bias evaluation. To provide further insight into the texture bias of the models trained with DFR, in
Figure 10 we report the fraction of shape and texture decisions for different classes following Geirhos et al. (2018). We
produce the figure using the modelvshuman codebase available at github.com/bethgelab/model-vs-human (Geirhos et al.,
2021). We report the results for both DFR models and models trained from scratch on IN, SIN and IN+SIN as well as the
ShapeResNet-50 model and humans (results from Geirhos et al. (2018)). When trained on the same data, models trained
from scratch achieve a higher shape bias than DFR models, but DFR can still significantly improve the shape bias compared
to the base model trained on IN.

Detailed ImageNet-C results. In Figure 11, we report the Top-1 accuracy for DFR models and models trained from
scratch on IN, SIN and IN+SIN on individual ImageNet-C datasets. We use the ResNet-50 base model. The model trained
from scratch on IN+SIN provides the best robustness across the board, but DFR trained on IN+SIN also provides an
improvement over the baseline RN50(IN) model on many corruptions.

https://www.github.com/rgeirhos/Stylized-ImageNet
https://www.github.com/bethgelab/model-vs-human
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Figure 10. Shape-texture bias report. Detailed report of the shape-texture bias generated using the model-vs-human codebase
(https://github.com/bethgelab/model-vs-human) (Geirhos et al., 2021). The plot shows the fraction of the decisions
made based on shape and texture information respectively on examples with conflicting cues (Geirhos et al., 2018). The brown diamonds
(⋄) show human predictions and the circles (◦) show the performance of ResNet-50 models trained on different datasets: ImageNet
(IN, yellow), Stylized ImageNet (SIN, blue), ImageNet + Stylized ImageNet (IN+SIN, red), ImageNet + Stylized ImageNet Finetuned
on ImageNet (IN+SIN→IN, pink); these models are provided in the model-vs-human codebase. For each dataset (except for
IN+SIN→IN) we report the results for DFR using an ImageNet-trained ResNet-50 model as a feature extractor with squares □ of the
corresponding colors. Reweighting the features in a pretrained model with DFR we can significatly increase the shape bias: DFR trained
on SIN (blue squares) virtually matches the shape bias of the model trained from scratch on IN+SIN (red circles). However, the model
trained just on SIN (blue circles) from scratch still provides a significantly higher shape bias, that we cannot match with DFR.

https://github.com/bethgelab/model-vs-human
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Figure 11. ImageNet-C results. Results of ResNet-50 models trained on different ImageNet variations (shown in circles) and DFR using
an ImageNet-trained ResNet-50 model as a feature extractor on ImageNet-C and ImageNet-R datasets. Each panel corresponds to a
different corruption, and the horizontal axis represents the corruption intensity. Retraining the last layer on ImageNet-Stylized (DFR(SIN),
red squares) improves robustness to ImageNet-C corruptions compared to the base model (RN50(IN), blue circles), but does not match the
robustness of a model trained from scratch on SIN or IN+SIN.
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F. Discussion
Spurious correlations and representation learning. Prior work has often associated poor robustness to spurious
correlations with the quality of representations learned by the model (Arjovsky et al., 2019; Bahng et al., 2020; Ruan et al.,
2021) and suggested that the entire model needs to be carefully trained to avoid relying on spurious features (e.g. Sagawa
et al., 2019; Idrissi et al., 2021; Liu et al., 2021; Zhang et al., 2021; Sohoni et al., 2021; Pezeshki et al., 2021; Lee et al.,
2022). Our work presents a different view: representations learned with standard ERM even without seeing any minority
group examples are sufficient to achieve state-of-the-art performance on popular spurious correlation benchmarks. The
issue of spurious correlations is not in the features extracted by the models (though the representations learned by ERM can
be improved (e.g., Hermann & Lampinen, 2020; Pezeshki et al., 2021)), but in the weights assigned to these features. Thus
we can simply re-weight these features for substantially improved robustness.

Practical advantages of DFR. DFR is extremely simple, cheap and effective. In particular, DFR has only one tunable
hyper-parameter — the strength of regularization of the logistic regression. Furthermore, DFR is highly robust to the choice
of base model, as we demonstrate in Appendix Table 6, and does not require early stopping or other highly problem-specific
tuning such as in Idrissi et al. (2021) and other prior works. Moreover, as DFR only requires re-training the last linear
layer of the model, it is also extremely fast and easy to run. For example, we can train DFR on the 1.2M -datapoint
Stylized ImageNet dataset in Section 6 on a single GPU in a matter of minutes, after extracting the embeddings on all of the
datapoints, which only needs to be done once. On the other hand, existing methods such as Group-DRO (Sagawa et al.,
2019) require training the model from scratch multiple times to select the best hyper-parameters, which may be impractical
for large-scale problems.

On the need for reweighting data in DFR. Virtually all methods in the spurious correlation literature, even the ones that
do not explicitly use group information to train the model, use group-labeled data to tune the hyper-parameters (we discuss
the assumptions of different methods in prior work in Appendix F.1). If a practitioner has access to group-labeled data, we
believe that they should leverage this data to find a better model instead of just tuning the hyper-parameters. Finally, we note
that DFR can be easily combined with methods that automatically estimate group labels (e.g. Liu et al., 2021; Creager et al.,
2021; Sohoni et al., 2021): we can retrain the last layer using these estimated labels instead of ground truth.

Future work. There are many exciting directions for future research. DFR largely reduces the issue of spurious
correlations to a linear problem: how do we train an optimal linear classifier on given features to avoid spurious correlations?
In particular, we can try to avoid the need for a balanced reweighting dataset by carefully studying this linear problem
and only using the features that are robustly predictive across all of the training data. We can also consider other types of
supervision, such as saliency maps (Singla & Feizi, 2021) or segmentation masks to tell the last layer of the model what to
pay attention to in the data. Finally, we can leverage better representation learning methods (Pezeshki et al., 2021), including
self-supervised learning methods (e.g. Chen et al., 2020; He et al., 2021), to further improve the performance of DFR.

F.1. Prior work assumptions

In Section 5 we compare DFR to ERM, Group-DRO (Sagawa et al., 2019), JTT (Liu et al., 2021), SUBG (Idrissi et al.,
2021) and SSA (Nam et al., 2022). These methods differ in assumptions about the amount of group information available.

Group-DRO and SUBG assume that both train and validation data have group labels, and the hyper-parameters are tuned
using worst-group validation accuracy. DFRTr

Tr and DFRTr
Tr-NM match the setting of these methods and use the same data and

group information; in particular, these methods only use the validation set with group labels to tune the hyper-parameters.

A number of prior works (e.g. Liu et al., 2021; Creager et al., 2021) sidestep the assumption of knowing the group labels on
train data, but still rely on tuning hyper-parameters using worst-group accuracy on validation, and thus, having group labels
on validation data. In fact, Idrissi et al. (2021) showed that ERM is a strong baseline when tuned with worst-group accuracy
on validation.

Lee et al. (2022) explore the setting where they do not necessarily require group labels on validation data, but their method
implicitly relies on the presence of sufficiently many minority examples in the validation set such that different prediction
heads would disagree on those examples to choose the most reliable classifier.

Recent works Nam et al. (2022) and Sohoni et al. (2021) explore the setting where the group information is available on a
small subset of the data (e.g. on the validation set), and the goal is to use the available data optimally, both to train the model
and to tune the hyper-parameters. These methods use semi-supervised learning to extrapolate the available group labels to
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the rest of the training data. We consider this same setting with DFRVal
Tr , where we use the validation data to retrain the last

layer of the model.


