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ABSTRACT

We study reinforcement learning for global decision-making in the presence of
local agents, where the global decision-maker makes decisions affecting all local
agents, and the objective is to learn a policy that maximizes the joint rewards
of all the agents. Such problems find many applications, e.g. demand response,
EV charging, and queueing. In this setting, scalability has been a long-standing
challenge due to the size of the joint state space which can be exponential in the
number of agents. This work proposes the SUBSAMPLE-Q algorithm, where the
global agent subsamples k ≤ n local agents to compute a policy in time that
is polynomial in k. We show that this learned policy converges to the optimal
policy on the order of Õ(1/

√
k + ϵk,m) as the number of subsampled agents k

increases, where ϵk,m is the Bellman noise. Finally, we validate our theoretical
results through numerical simulations in demand-response and queueing settings.

1 INTRODUCTION

Global decision-making, where a global agent makes decisions that affect a large number of local
agents, is a classical problem that has been widely studied in many forms (Foster et al., 2022; Qin
et al., 2023; Foster et al., 2023) and can be found in many applications, e.g. network optimization,
power management, and electric vehicle (EV) charging (Kim & Giannakis, 2017; Zhang & Pavone,
2016; Molzahn et al., 2017). A critical challenge is the uncertain nature of the underlying system,
which is often difficult to model precisely. Reinforcement Learning (RL) has demonstrated an im-
pressive performance in a wide array of applications, such as the game of Go (Silver et al., 2016),
autonomous driving (Kiran et al., 2022), and robotics (Kober et al., 2013). More recently, RL has
emerged as a powerful tool for learning to control unknown systems (Ghai et al., 2023; Lin et al.,
2023; 2024a;b), and thus holds significant potential for decision-making in multi-agent systems,
including global decision making for local agents.

However, RL for multi-agent systems becomes intractable as the number of agents increases, due to
the curse of dimensionality. For instance, classical RL algorithms, such as tabular Q-learning and
temporal difference learning, require storing a Q-function (Bertsekas & Tsitsiklis, 1996; Powell,
2007) that scales with the size of the state-action space. Even if the individual agents’ state space
is small, the global state space can take values from a set of size exponentially large in the number
of agents. When the system’s rewards are not discounted, reinforcement learning for multi-agent
systems is provably NP-hard (Qu et al., 2020a; Blondel & Tsitsiklis, 2000), and this scalability issue
has been observed in a variety of settings Guestrin et al. (2003); Papadimitriou & Tsitsiklis (1999). A
promising line of research over recent years focuses on networked instances, where interactions are
restricted to local neighborhoods of agents (Lin et al., 2020; 2021; Qu et al., 2020b; Jing et al., 2022;
Chu et al., 2020). This approach has led to scalable algorithms where each agent only considers the
agents in its neighborhood to derive approximately optimal solutions. However, these results do not
apply to our setting, where one global agent interacts with many local agents. This can be viewed
as a star graph, where the neighborhood of the central decision-making agent is large.

Beyond the networked formulation, another exciting line of work addressing this intractability is
mean-field RL (Yang et al., 2018). Mean-field RL assumes that all agents are homogeneous in
their state and action spaces, enabling interactions to be approximated by a representative “mean”
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agent. This significantly reduces the complexity of Q-learning to a polynomial dependence on the
number of agents, and learns an approximately optimal policy where the approximation error decays
with the number of agents (Gu et al., 2021; 2022a). However, mean-field RL does not directly
transfer to our setting since the global decision-making agent violates the homogeneity assumption.
Moreover, when the number of local agents is large, storing a polynomially-largeQ-table (where the
polynomial’s degree depends on size of the state space for a single agent) can still be infeasible. This
motivates the following fundamental question: can we design a fast and competitive policy-learning
algorithm for a global decision-making agent in a system with many local agents?

Contributions. We answer this question affirmatively. Our key contributions are outlined below.

• Subsampling Algorithm. We propose SUBSAMPLE-Q, an algorithm designed to address the
challenge of global decision-making in systems with a large number of local agents. We model the
problem as a Markov Decision Process with a global decision-making agent and n local agents.
SUBSAMPLE-Q (Algorithms 1 to 3) begins by selecting k ≤ n local agents to learn a deterministic
policy π̂est

k,m, where m is the number of samples used to update the estimates of the Q-function, by
applying value iteration and mean-field value iteration on the k local agents to learn Q̂est

k,m, which
can be viewed as a smaller Q function. It then deploys a stochastic policy π̂k,m that uniformly
samples k local agents at each step and uses π̂k,m to determine an action for the global agent.

• Sample Complexity and Theoretical Guarantee. As the number of local agents increases, the
size of Q̂k,m scales polynomially with k, rather than polynomially with n as in mean-field RL.
When the size of the local agent’s state space grows, the size of Q̂k,m scales exponentially with
k, instead of exponentially with n as in traditional Q-learning). Theorem 3.4 demonstrates that
the performance gap between πest

k,m and the optimal policy π∗ is O(1/
√
k+ϵk,m), where ϵk,m

represents the Bellman noise in Q̂est
k,m. The choice of k reveals a fundamental trade-off between

the size of the Q-table and the optimality of πest
k,m. As n scales, setting k = O(log n) achieves

a runtime that is polylogarithmic in n, representing an exponential speedup over the previously
best-known polytime mean-field RL methods, while maintaining a decaying optimality gap.

• Numerical Simulations. We evaluate the effectiveness of SUBSAMPLE-Q in two scenarios: a
power system demand-response problem (Example 5.1) and a queueing problem (Example 5.2).
A key inspiration for our approach is the power-of-two-choices from queueing theory (Mitzen-
macher & Sinclair, 1996), where a dispatcher subsamples two queues to make decisions. Our
work generalizes this principle to a broader decision-making problem.

While our results are theoretical in nature, it is our hope that SUBSAMPLE-Q will lead to further
exploration into the potential of subsampling in Markov games and networked multi-agent rein-
forcement learning, and inspire the development of practical algorithms for multi-agent settings.

2 PRELIMINARIES

Notation. For k, n ∈ N where k ≤ n, let
(
[n]
k

)
denote the set of k-sized subsets of [n] = {1, . . . , n}.

For any vector z ∈ Rd, let ∥z∥1 and ∥z∥∞ denote the standard ℓ1 and ℓ∞ norms of z respectively.
Let ∥A∥1 denote the matrix ℓ1-norm of A ∈ Rn×m. Given a collection of variables s1, . . . , sn the
shorthand s∆ denotes the set {si : i ∈ ∆} for ∆ ⊆ [n]. We use Õ(·) to suppress polylogarithmic fac-
tors in all problem parameters except n. For a discrete measurable space (X ,F), the total variation
distance between probability measures ρ1, ρ2 is given by TV(ρ1, ρ2) =

1
2

∑
x∈X |ρ1(x)− ρ2(x)|.

Problem Statement. We consider a system of n+1 agents given byN = {0}∪ [n]. Let agent 0 be
the “global agent” decision-maker, and agents [n] be the “local” agents. In this model, each agent
i ∈ [n] is associated with a state si ∈ Sl, where Sl is the local agent’s state space. The global agent
is associated with a state sg ∈ Sg and action ag ∈ Ag , where Sg is the global agent’s state space and
Ag is the global agent’s action space. The global state of all agents is given by (sg, s1, . . . , sn) ∈
S := Sg × Snl . At each time-step t, the next state for all the agents is independently generated by
stochastic transition kernels Pg : Sg ×Sg ×Ag → [0, 1] and Pl : Sl ×Sl ×Sg → [0, 1] as follows:

sg(t+ 1) ∼ Pg(·|sg(t), ag(t)), (1)

si(t+ 1) ∼ Pl(·|si(t), sg(t)),∀i ∈ [n] (2)
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The global agent selects ag(t) ∈ Ag . Next, the agents receive a structured reward r : S ×Ag → R,
given by Equation (3), where the choice of functions rg and rl is flexible and application-specific.

r(s, ag) = rg(sg, ag)︸ ︷︷ ︸
global component

+
1

n

∑
i∈[n]

rl(si, sg)︸ ︷︷ ︸
local component

(3)

We define a policy π : S →P(Ag) as a map from states to distributions of actions such that ag ∼
π(·|s). When a policy is executed, it generates a trajectory (s0, a0g, r

0), . . . , (sT , aTg , r
T ) via the

process atg∼π(st), st+1∼(Pg, Pl)(s
t, atg), initialized at s0∼d0. We write Pπ[·] and Eπ[·] to denote

the law and corresponding expectation for the trajectory under this process. The goal of the problem
is to then learn a policy π that maximizes the value function V : π×S → R, the expected discounted
reward for each s ∈ S given by

V π(s) = Eπ

[ ∞∑
t=0

γtr(s(t), ag(t))|s(0) = s

]
, (4)

where γ ∈ (0, 1) is a discounting factor. We define π∗ as the optimal deterministic policy, which
maximizes V π(s) at all states. This model characterizes a crucial decision-making process in the
presence of multiple agents where the information from all local agents is concentrated towards the
decision maker, the global agent. The objective of the problem is to learn an approximately optimal
policy that jointly minimizes the sample and computational complexities of learning the policy.

We make the following standard assumptions:
Assumption 2.1 (Finite state/action spaces). We assume that the state spaces of all the agents and
the action space of the global agent are finite: |Sl|, |Sg|, |Ag| <∞.
Assumption 2.2 (Bounded rewards). The global and local components of the reward function are
bounded. Specifically, ∥rg(·, ·)∥∞ ≤ r̃g , and ∥rl(·, ·)∥∞ ≤ r̃l. Then, ∥r(·, ·)∥∞ ≤ r̃g + r̃l := r̃.
Definition 2.1 (ϵ-optimal policy). Given a policy simplex Π, a policy π ∈ Π is ϵ-optimal if for all
s ∈ S, V π(s) ≥ supπ∗∈Π V

π∗
(s)− ϵ.

Remark 2.2. Heterogeneity among the local agents can be captured by modeling agent types as part
of the agent state. Specifically, assign a type to each local agent by letting Sl = E × S̄l, where E
represents a set of different possible agent types, which are treated as part of the agent’s state. This
type remains fixed throughout the transitions, allowing the transition and reward functions to vary
depending on the agent’s type, and enabling the global agent to uniquely signal agents of each type.

Related Work. This paper relates to two major lines of work which we describe below.

Multi-agent RL (MARL). MARL has a rich history, starting with early works on Markov games
used to characterize the decision-making process (Shapley, 1953; Littman, 1994), which can be
regarded as a multi-agent extension of the Markov Decision Process (MDP). MARL has since been
actively studied (Zhang et al., 2021) in a broad range of settings, such as cooperative and competitive
agents. MARL is most similar to the category of “succinctly described” MDPs (Blondel & Tsitsiklis,
2000), where the state/action space is a product space formed by the individual state/action spaces of
multiple agents, and where the agents interact to maximize an objective function. Our work, which
can be viewed as an essential stepping stone to MARL, also shares the curse of dimensionality.

A line of celebrated works (Qu et al., 2020b; Chu et al., 2020; Lin et al., 2020; 2021; Jing et al., 2022)
constrain the problem to networked instances to enforce local agent interactions and find policies that
maximize the objective function, which is the expected cumulative discounted reward. By exploiting
Gamarnik’s spatial exponential decay property from combinatorial optimization (Gamarnik et al.,
2009), they overcome the curse of dimensionality by truncating the problem to only search over the
policy space derived from the local neighborhood of agents that are at most κ away from each other
to find an O(ρk+1)-approximation of the maximized objective function for ρ ∈ (0, 1). However,
since their algorithms have a complexity that is exponential in the size of the neighborhood, they
are only tractable for sparse graphs. Therefore, these algorithms do not apply to our decision-
making problem, which can be viewed as a dense star graph (see Appendix A). The recently popular
work on V-learning (Jin et al., 2021) reduces the dependence of the product action space to an
additive dependence. However, since our work focuses on the action of the global decision-maker,
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the complexity in the action space is already minimal. Instead, our work focuses on reducing the
complexity of the joint state space which has not been previously accomplished for dense networks.

Mean-Field RL. Under assumptions of homogeneity in the state/action spaces of the agents, the
problem of densely networked multi-agent RL was partially resolved in Yang et al. (2018); Gu
et al. (2021; 2022a;b); Subramanian et al. (2022) which approximates the learning problem through
mean-field control, where the approximation error scales as O(1/

√
n). To overcome the problem

of designing algorithms on probability measure spaces, they study MARL under Pareto optimality
and use the (functional) strong law of large numbers to consider a lifted state/action space with a
representative agent, where the rewards and dynamics of the system are aggregated. Cui & Koeppl
(2022); Hu et al. (2023); Carmona et al. (2023) introduce heterogeneity to the mean-field approach
using graphon mean-field games; however, there is a loss of topological information when using
graphons to approximate finite graphs, as graphons correspond to infinitely large adjacency matrices.
Additionally, graphon mean-field RL imposes a critical assumption of the existence of graphon
sequences that converge in cut-norm to the problem instance. Another mean-field RL approach that
partially introduces heterogeneity is in a line of work considering major and minor agents. This has
been well studied in the competitive setting (Carmona & Zhu, 2016; Carmona & Wang, 2016). In
the cooperative setting, Mondal et al. (2022); Cui et al. (2023) are most related to our work, as they
collectively consider a setting with k classes of homogeneous agents, but their mean-field analytic
approaches do not converge to the optimal policy upon introducing a global decision-making agent.
Furthermore, these works require Lipschitz continuity assumptions on the reward functions which
we relax in our work. Finally, the algorithms underlying mean-field RL have a runtime that is
polynomial in n, whereas our SUBSAMPLE-Q algorithm has a runtime that is polylogarithmic in n.

Other Related Works. A line of works has similarly exploited the star-shaped network in cooper-
ative multi-agent systems. Min et al. (2023); Chaudhari et al. (2024) studied the communication
complexity and mixing times of various learning settings with purely homogeneous agents, and
Do et al. (2023) studied the setting of heterogeneous linear contextual bandits to yield a no-regret
guarantee. We extend this work to the more challenging setting of reinforcement learning.

Q-learning. To provide background for the analysis in this paper, we review a few key tech-
nical concepts in RL. At the core of the standard Q-learning framework (Watkins & Dayan,
1992) for offline-RL is the Q-function Q : S ×Ag → R. Q-learning seeks to produce a pol-
icy π∗(·|s) that maximizes the expected infinite horizon discounted reward. For any policy π,
Qπ(s, ag) = Eπ[

∑∞
t=0 γ

tr(s(t), ag(t))|s(0) = s, ag(0) = a]. One approach to learning the optimal
policy π∗(·|s) is dynamic programming, where the Q-function is iteratively updated using value-
iteration: Q0(s, ag) = 0, for all (s, ag) ∈ S ×Ag . Then, for all t ∈ [T ], Qt+1(s, a) = T Qt(s, ag),
where T is the Bellman operator defined as

T Qt(s, ag) = r(s, ag) + γEs′g∼Pg(·|sg,ag),s
′
i∼Pl(·|si,sg),∀i∈[n] max

a′∈Ag

Qt(s′, a′g). (5)

The Bellman operator T satisfies a γ-contractive property, implying the existence of a unique
fixed-point Q∗ such that T Q∗ = Q∗, by the Banach-Caccioppoli fixed-point theorem (Banach,
1922). Here, the optimal policy is the deterministic greedy policy π∗ :Sg × Snl → Ag , where
π∗(s) = argmaxag∈Ag

Q∗(s, ag). However, the complexity of a single update to the Q-function
is O(|Sg||Sl|n|Ag|), which grows exponentially with n. As the number of local agents increases
(n≫ |Sl|), this exponential update complexity renders Q-learning impractical (see Example 5.2).

Mean-field Transformation. To address this, Yang et al. (2018) developed a mean-field approach
which, under homogeneity assumptions, considers the distribution function Fs[n]

:Sl → R given by

Fs[n]
(x) :=

1

n

n∑
i=1

1{si = x}, ∀x ∈ Sl. (6)

Let µn(Sl) = { b
n |b ∈ {0, . . . , n}}

|Sl| be the space of |Sl|-length vectors where each entry is an
element of {0, 1

n ,
2
n , . . . , 1}. In this space, Fs[n]

∈ µn(Sl) where Fs[n]
represents the proportion

of agents in each state. The Q-function is permutation-invariant in the local agents as they are
homogeneous, and permuting the labels of local agents with the same state will not change the
global agent’s decision. Thus, theQ-function only depends on the states s[n] through the distribution
function Fs[n]

:
Q(sg, s[n], ag)=Q̂(sg, Fs[n]

, ag). (7)
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Here, Q̂ : Sg × µn(Sl) × Ag → R is a reparameterized Q-function learned by mean-field value
iteration. We initialize Q̂0(sg, Fs[n]

, ag) = 0,∀(s, ag) ∈ Sg × Ag . For all t, we update Q̂ as
Q̂t+1(s, Fs[n]

, ag)= T̂ Q̂t(sg, Fs[n]
, ag), where T̂ is the Bellman operator in distribution space:

T̂ Q̂t(sg, Fs[n]
, ag) = r(s, ag) + γE s′g∼Pg(·|sg,ag),

s′i∼Pl(·|si,sg),∀i∈[n]

max
a′
g∈Ag

Q̂t(s′, F ′
s[n]

, a′g). (8)

T̂ is γ-contractive; hence, it has a unique fixed-point Q̂∗ where Q̂∗(sg, Fs[n]
, ag) = Q∗(sg, s[n], ag),

and the deterministic optimal (greedy) policy π̂∗ is π̂∗(sg, Fs[n]
) = argmaxag∈Ag Q̂

∗(sg, Fs[n]
, ag).

The update complexity to the Q̂-function is O(|Sg||Ag||Sl|n|Sl|), which scales polynomially in n.

Remark 2.3. The solution offered by mean-field value iteration and standard Q-learning requires a
sample complexity of min{Õ(|Sg||Ag||Sl|n), Õ(|Sg||Ag||Sl|n|Sl|)}, where one uses Q-learning if
|Sl|n−1<n|Sl|, and mean-field value iteration otherwise. In each of these regimes, as n scales, the
update complexity can become incredibly computationally intensive. Therefore, we introduce the
SUBSAMPLE-Q algorithm in Section 3 to mitigate the cost of scaling the number of local agents.

3 METHOD AND THEORETICAL RESULTS

3.1 PROPOSED METHOD: SUBSAMPLE-Q

In this work, we propose the SUBSAMPLE-Q algorithm to overcome the polynomial (in n) sample
complexity of mean-field value iteration and the exponential (in n) sample complexity of traditional
Q-learning. In our algorithm, the global agent randomly samples a subset of local agents ∆ ⊆ [n]
such that |∆| = k, for k ≤ n. It ignores all other local agents [n] \∆, and performs value iteration
to learn the Q-function Q̂∗

k and policy π̂∗
k,m for this surrogate subsystem of k local agents, where

m is the sample size in each iteration. When |Sl|k−1 < k|Sl|, the algorithm uses traditional value-
iteration, and when |Sl|k−1 > k|Sl|, it switches to mean-field value iteration. The surrogate reward
gained by the system at each time step is r∆ : S ×Ag → R, given by Equation (9):

r∆(s, ag) = rg(sg, ag) +
1

|∆|
∑
i∈∆

rl(sg, si). (9)

To convert the optimality of the global agent’s action on the k local-agent subsystem to an ap-
proximate optimality on the full n-agent system, we use a randomized policy πest

k,m which samples
∆ ∈ U

(
[n]
k

)
at each time-step to derive the action ag ← π̂est

k,m(sg, s∆). Finally, Theorem 3.4 shows
that the policy πest

k,m converges to the optimal policy π∗ as k → n and m→∞.

We present Algorithms 1 and 2 (SUBSAMPLE-Q: Learning) and Algorithm 3 (SUBSAMPLE-Q:
Execution), which we describe below. We first characterize the notion of the empirical distribution:
Definition 3.1 (Empirical Distribution Function). For any population (s1, . . . , sn) ∈ Snl , define the
empirical distribution function Fs∆ : Sl → R for ∆ ⊆ [n] such that |∆| = k by:

Fs∆(x) :=
1

|∆|
∑
i∈∆

1{si = x}. (10)

Let µk(Sl) :=
{

b
k |b ∈ {0, . . . , k}

}|Sl| be the space of |Sl|-length vectors where each entry in a vector
is an element of {0, 1k ,

2
k , . . . , 1} such that Fs∆∈ µk(Sl). Here, Fs∆ is the proportion of agents in

the k-local-agent subsystem at each state.

Algorithms 1 and 2 (Offline learning). Letm ∈ N denote the sample size for the learning algorithm
with sampling parameter k ≤ n. When |Sl|k−1≤k|Sl|, we empirically learn the optimal Q-function
for a subsystem with k-local agents denoted by Q̂est

k,m :Sg×Skl ×Ag → R: set Q̂0
k,m(sg, s∆, ag)=0

for all (sg, s∆, ag)∈Sg × Skl ×Ag . At time step t, set Q̂t+1
k,m(sg, s∆, ag) = T̃k,mQ̂t

k,m(sg, s∆, ag),
where T̃k,m is the empirically adapted Bellman operator in Equation (11).

5
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Algorithm 1 SUB-SAMPLE-Q: Learning (if |Sl|k−1 ≤ k|Sl|)

Require: A multi-agent system as described in Section 2. Parameter T for the number of iterations
in the initial value iteration step. Sampling parameters k ∈ [n] and m ∈ N. Discount parameter
γ ∈ (0, 1). Oracle O to sample s′g ∼ Pg(·|sg, ag) and s′i ∼ Pl(·|si, sg, ai) for all i ∈ [n].

1: Uniformly sample ∆ ⊆ [n] such that |∆| = k.
2: Initialize Q̂0

k,m(sg, s∆, ag) = 0 for (sg, s∆, ag) ∈ Sg × Skl ×Ag .
3: for t = 1 to T do
4: for (sg, s∆, ag) ∈ Sg × Skl ×Ag do
5: Q̂t+1

k,m(sg, s∆, ag) = T̃k,mQ̂t
k,m(sg, s∆, ag)

6: Return Q̂T
k,m. For all sg, s∆ ∈ Sg × Skl , let π̂est

k,m(sg, s∆) = argmaxag∈Ag
Q̂T

k,m(sg, s∆, ag).

When |Sl|k−1>k|Sl|, we empirically learn the optimal mean-field Q-function for a k local agent
system, denoted (with abuse of notation) by Q̂est

k,m :Sg×µk(Sl)×Ag→R. For (sg, Fs∆ , ag)∈Sg×
µk(Sl)×Ag , set Q̂0

k,m(sg, Fs∆ , ag)=0. At time t, set Q̂t+1
k,m(sg, Fs∆ , ag)= T̂k,mQ̂t

k,m(sg, Fs∆ , ag),
where T̂k,m is the empirically adapted mean-field Bellman operator in Equation (12).

Tk,m and T̂k,m draws m random samples sjg∼Pg(·|sg, ag) and sji ∼Pl(·|si, sg) for j∈ [m], i∈∆:

T̃k,mQ̂t
k,m(sg, s∆, ag) = r∆(s, ag) +

γ

m

∑
j∈[m]

max
a′
g∈Ag

Q̂t
k,m(sjg, s

j
∆, a

′
g). (11)

T̂k,mQ̂t
k,m(sg, Fs∆ , ag) = r∆(s, ag) +

γ

m

∑
j∈[m]

max
a′
g∈Ag

Q̂t
k,m(sjg, Fsj∆

, a′g). (12)

As in Equation (7), Q̂t
k,m only depends on s∆ through Fs∆ :

Q̂t
k,m(sg, s∆, ag) = Q̂t

k,m(sg, Fs∆ , ag). (13)

T̃k,m and T̂k,m are γ-contractive by Lemma A.10. Algorithms 1 and 2 apply value iter-
ation with their Bellman operator until Q̂k,m converges to a fixed point Q̂est

k,m satisfying
T̃k,mQ̂est

k,m=Q̂est
k,m and T̂k,mQ̂est

k,m=Q̂est
k,m, giving equivalent deterministic policies π̂est

k,m(sg, s∆) =

argmaxag∈Ag Q̂
est
k,m(sg, s∆, ag) and π̂est

k,m(sg, Fs∆) = argmaxag∈Ag Q̂
est
k,m(sg, Fs∆ , ag).

Algorithm 3 (Online implementation). Here, Algorithm 3 (SUBSAMPLE-Q: Execution) randomly
samples ∆∼U

(
[n]
k

)
at each time step and uses action ag∼ π̂est

k,m(sg, Fs∆) to get reward r(s, ag). This
procedure of first sampling ∆ and then applying π̂est

k,m is denoted by a stochastic policy πest
k,m(ag|s):

πest
k,m(ag|s) =

1(
n
k

) ∑
∆∈([n]

k )

1(π̂est
k,m(sg, Fs∆) = ag). (14)

Then, each agent transitions to their next state based on Equation (1).
Remark 3.2. Algorithm 2 assumes the existence of a generative modelO (Kearns & Singh, 1998) to
sample s′g ∼ Pg(·|sg, ag) and si ∼ Pl(·|si, sg). This may generalize to the online RL setting using
cold-start and no-regret techniques from (Jin et al., 2018), which we leave for future investigations.

3.2 THEORETICAL GUARANTEE

This subsection shows that the value of the expected discounted cumulative reward produced by
πest
k,m is approximately optimal, where the optimality gap decays as k→n and m→∞.

Bellman noise. We introduce the notion of Bellman noise, which is used in the main theorem.
Consider T̂k,m. Clearly, it is an unbiased estimator of the generalized adapted Bellman operator T̂k,

T̂kQ̂k(sg, Fs∆ , ag)=r∆(s, ag)+γEs′g∼Pg(·|sg,ag),s
′
i∼Pl(·|si,sg),∀i∈∆ max

a′
g∈Ag

Q̂k(s
′
g, Fs′∆

, a′g). (15)
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Algorithm 2 SUBSAMPLE-Q: Learning (if k|Sl| < |Sl|k)

Require: A multi-agent system as described in Section 2. Parameter T for the number of iterations
in the initial value iteration step. Sampling parameters k ∈ [n] and m ∈ N. Discount parameter
γ ∈ (0, 1). Oracle O to sample s′g ∼ Pg(·|sg, ag) and si ∼ Pl(·|si, sg) for all i ∈ [n].

1: Uniformly choose ∆ ⊆ [n] such that |∆| = k.
2: Set Q̂0

k,m(sg, Fs∆ , ag) = 0, for (sg, Fs∆ , ag) ∈ Sg × µk(Sl)×Ag

3: for t = 1 to T do
4: for (sg, Fs∆ , ag) ∈ Sg × µk(Sl)×Ag do
5: Q̂t+1

k,m(sg, Fs∆ , ag) = T̂k,mQ̂t
k,m(sg, Fs∆ , ag)

6: Return Q̂T
k,m. ∀(sg, Fs∆)∈Sg×µk(Sl), let π̂est

k,m(sg, Fs∆)=argmaxag∈Ag
Q̂T

k,m(sg, Fs∆ , ag).

Algorithm 3 SUBSAMPLE-Q: Execution

Require: A multi-agent system as described in Section 2. Parameter T ′ for the number of rounds
in the game. Hyperparameter k∈ [n]. Discount parameter γ. Policy π̂est

k,m(sg, Fs∆).
1: If |Sl|k−1 ≥ k|Sl|, learn π̂est

k,m from Algorithm 1.
2: If |Sl|k−1 < k|Sl|, learn π̂est

k,m from Algorithm 2.
3: Initialize (sg(0), s[n](0)) ∼ s0, where s0 is a distribution on the initial global state (sg, s[n]),
4: Initialize the total reward: R0 = 0.
5: Policy πest

k,m(s) is defined as follows:
6: for t = 0 to T ′ do
7: Sample ∆ uniformly at random from from

(
[n]
k

)
.

8: Let ag(t) = π̂est
k,m(sg(t), Fs∆(t)).

9: Let sg(t+ 1) ∼ Pg(·|sg(t), ag(t)) and si(t+ 1) ∼ Pl(·|si(t), sg(t)), for all i ∈ [n].
10: Rt+1 = Rt + γt · r(s, ag)

For all (sg, Fs∆ , ag)∈Sg ×µk(Sl) × Ag , set Q̂0
k(sg, Fs∆ , ag) = 0. For t ∈ N, let Q̂t+1

k = T̂kQ̂t
k,

where T̂k is defined for k ≤ n in Equation (15). Then, T̂k is also a γ-contraction (Lemma A.9) with
fixed-point Q̂∗

k. So, by the law of large numbers, limm→∞ T̂k,m= T̂k, and ∥Q̂est
k,m − Q̂∗

k∥∞ → 0 as
m→∞. For finite m, ∥Q̂est

k,m − Q̂∗
k∥∞ =: ϵk,m is the well-studied Bellman noise:

Lemma 3.3 (Theorem 1 of Li et al. (2022)). For k ∈ [n] and m ∈ N, where m is the number of
samples in Equation (12), there is a Bellman noise ϵk,m with ∥Q̂est

k,m− Q̂∗
k∥∞ ≤ ϵk,m ≤ O(1/

√
m).

With the above preparations, we are now primed to present our main result: a bound on the optimal-
ity gap, for our learned policy πest

k,m, that decays with k. Section 4 outlines the proof of Theorem 3.4.

Theorem 3.4. For any state s ∈ Sg × Snl ,

V π∗
(s)− V πest

k,m(s) ≤ 2r̃

(1− γ)2

(√
n− k + 1

2nk
ln(2|Sl||Ag|

√
k) +

1√
k

)
+

2ϵk,m
1− γ

.

Corollary 3.5. Theorem 3.4 implies an asymptotically decaying optimality gap for our learned
policy π̃est

k,m. Further, from Lemma 3.3, ϵk,m ≤ O(1/
√
m). Hence,

V π∗
(s)− V πest

k,m(s) ≤ Õ
(
1/
√
k + 1/

√
m
)
. (16)

Discussion 3.6. Between Algorithms 1 and 2, the sample complexity to learn π̂k,m for a fixed k
is min{O(|Sg||Ag||Sl|k), O(|Sg||Ag||Sl|k|Sl|)}. By Theorem 3.4, as k → n, the optimality gap
decays, revealing a fundamental trade-off in the choice of k: increasing k improves the policy, but
increases the size of the Q-function. We explore this trade-off further in our experiments. For
k = O(log n) and m → ∞, the runtime is min{O(|Sg||Ag|nlog |Sl|), O(|Sg||Ag||Sl|(log n)|Sl|)}.
This is an exponential speedup on the complexity from mean-field value iteration (from poly(n)
to poly(log n)), as well as over traditional value-iteration (from exp(n) to poly(n)). Further, the
optimality gap decays to 0 at the rate of O(1/

√
log n).
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Discussion 3.7. In the non-tabular setting with infinite state/action spaces, one could replace the
Q-learning algorithm with an arbitrary value-based RL method that learns Q̂k with function approx-
imation (Sutton et al., 1999a) such as deep Q-networks (Silver et al., 2016). Doing so introduces a
further error that factors into the bound in Theorem 3.5. We formalize this intuition in Appendix E.

4 PROOF OUTLINE

This section details an outline for the proof of Theorem 3.4, as well as some key ideas. At a high
level, our SUBSAMPLE-Q framework recovers exact mean-field Q learning and traditional value
iteration when k = n and as m → ∞. Further, as k→ n, Q̂∗

k should intuitively get closer to Q∗

from which the optimal policy is derived. Thus, the proof is divided into three major steps: firstly,
we prove a Lipschitz continuity bound between Q̂∗

k and Q̂∗
n in terms of the total variation (TV)

distance between Fs∆ and Fs[n]
. Next, we bound the TV distance between Fs∆ and Fs[n]

. Finally,
we bound the value differences between πest

k,m and π∗ by bounding Q∗(s, π∗(s)) −Q∗(s, πest
k,m(s))

and then using the performance difference lemma from Kakade & Langford (2002).

Step 1: Lipschitz Continuity Bound. To compare Q̂∗
k(sg, Fs∆ , ag) with Q∗(s, ag), we prove a

Lipschitz continuity bound between Q̂∗
k(sg, Fs∆ , ag) and Q̂∗

k′(sg, Fs∆′ , ag) with respect to the TV
distance measure between s∆ ∈

(s[n]

k

)
and s∆′ ∈

(s[n]

k′

)
:

Theorem 4.1 (Lipschitz continuity in Q̂∗
k). For all (s, ag) ∈ S ×Ag , ∆ ∈

(
[n]
k

)
and ∆′ ∈

(
[n]
k′

)
,

|Q̂∗
k(sg, Fs∆ , ag)− Q̂∗

k′(sg, Fs∆′ , ag)| ≤ 2(1− γ)−1∥rl(·, ·)∥∞ · TV
(
Fs∆ , Fs∆′

)
We defer the proof of Theorem 4.1 to Appendix C.6. See Figure 3 for a comparison between the Q̂∗

k
learning and estimation process, and the exact Q-learning framework.

Step 2: Bounding Total Variation (TV) Distance. We bound the TV distance between Fs∆ and
Fs[n]

, where ∆∈U
(
[n]
k

)
. This task is equivalent to bounding the discrepancy between the empirical

distribution and the distribution of the underlying finite population. Since each i∈∆ is uniformly
sampled without replacement, standard concentration inequalities do not apply as they require the
random variables to be i.i.d. Further, standard TV distance bounds using KL divergence produce
a suboptimal decay as |∆| → n (Lemma C.7). Hence, we prove the following probabilistic result
(which generalizes the Dvoretzky–Kiefer–Wolfowitz (DKW) concentration inequality (Dvoretzky
et al., 1956) to the regime of sampling without replacement:
Theorem 4.2. Given a finite population X = (x1, . . . , xn) for X ∈ Snl , let ∆ ⊆ [n] be a uniformly
random sample from X of size k chosen without replacement. Fix ϵ > 0. Then, for all x ∈ Sl:

Pr

[
sup
x∈Sl

∣∣∣∣ 1

|∆|
∑
i∈∆

1{xi = x} − 1

n

∑
i∈[n]

1{xi = x}
∣∣∣∣ ≤ ϵ] ≥ 1− 2|Sl|e−

2knϵ2

n−k+1 .

Then, by Theorem 4.2 and the definition of TV distance from Section 2, we have that for δ ∈ (0, 1],

Pr

(
TV(Fs∆ , Fs[n]

) ≤
√
n− k + 1

8nk
ln

2|Sl|
δ

)
≥ 1− δ. (17)

We then apply this result to our global decision-making problem by studying the rate of decay of the
objective function between our learned policy πest

k,m and the optimal policy π∗ (Theorem 3.4).

Step 3: Performance Difference Lemma to Complete the Proof. As a consequence of the prior
two steps and Lemma 3.3, Q∗(s, a′g) and Q̂est

k,m(sg, Fs∆ , a
′
g) become similar as k → n (see Theo-

rem C.6). We further prove that the value generated by their policies π∗ and πest
k,m must also be very

close (where the residue shrinks as k → n). We then use the well-known performance difference
lemma (Kakade & Langford, 2002) which we restate in Appendix D.2. A crucial theorem needed
to use the performance difference lemma is a bound on Q∗(s′, π∗(s′)) − Q∗(s′, π̂est

k,m(s′g, Fs′∆
)).

Therefore, we formulate and prove Theorem 4.3 which yields a probabilistic bound on this differ-
ence, where the randomness is over the choice of ∆ ∈

(
[n]
k

)
:

8
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Theorem 4.3. For a fixed s′ ∈ S := Sg×Snl and for δ ∈ (0, 1], with probability atleast 1−2|Ag|δ:

Q∗(s′, π∗(s′))−Q∗(s′, π̂est
k,m(s′g, Fs′∆

)) ≤ 2∥rl(·, ·)∥∞
1− γ

√
n− k + 1

2nk
ln

(
2|Sl|
δ

)
+ 2ϵk,m.

We defer the proof of Theorem 4.3 and finding optimal value of δ to D.5 in the Appendix. Using
Theorem 4.3 and the performance difference lemma leads to Theorem 3.4.

5 EXPERIMENTS

This section provides examples and numerical simulation results to validate our theoretical frame-
work. All numerical experiments were run on a 3-core CPU server equipped with a 12GB RAM. We
chose parameters with complexity sufficient to only validate the theory, such as the computational
speedups, pseudo-heterogeneity of each local agent, and the decaying optimality gap.
Example 5.1 (Demand-Response (DR)). DR is a pathway in the transformation towards a sustain-
able electricity grid where users (local agents) are compensated to lower their electricity consump-
tion to a level set by a regulator (global agent). DR has applications ranging from pricing strategies
for EV charging stations, regulating the supply of any product in a market with fluctuating demands,
and maximizing the efficiency of allocating resources. We ran a small-scale simulation with n = 8
local agents, and a large-scale simulation with n = 50 local agents, where the goal was to learn an
optimal policy for the global agent to moderate supply in the presence of fluctuating demand.

Let each local agent i ∈ [n] have a state si(t) = (εi, ci(t), di(t)) ∈ Sl := E × C × D ⊂ Z3.
Here, εi is the agent’s type, ci(t) is its consumption, and di(t) is its desired consumption level.
Let sg(t) ∈ Sg be the DR signal (target consumption set by the regulator). The global agent’s
transition is sg(t + 1) = ΠSg (sg(t) + ag(t)), i.e., ag(t) changes the DR signal. Then, si(t + 1) =
(εi, ci(t+ 1), di(t+ 1)), where di(t+ 1) fluctuates based on the agent’s type and prior demand:

ci(t+ 1) =

{
di(t), di(t) ≤ sg(t)
ΠC [di(t) + (sg(t)− ci(t))U{0, 1}], di(t) > sg(t)

,

di(t+ 1) =

{
di(t) + U{0, 1}, εi = 1

U [D], εi = 2
,

where ΠC denotes a projection onto C in ℓ1-norm. Intuitively, the local agent either chases its
desired consumption or reduces its consumption to match sg(t). The system’s reward at each step is
rg(sg, ag) = 15/sg − 1{ag = −1} and rl(si, sg) = ci − 1

21{ci > sg}. We set C = D = [3], E =
{1, 2}, γ = 0.9,m = 10, and the length of the decision game to be T ′ = 300. We use T = 300
iterations for the small-scale simulation, and T = 50 iterations for the large scale simulation.

For the small-scale simulation, Figure 1a illustrates the polynomial speedup of Algorithm 2 (note
that k = n exactly recovers mean-field value iteration (Yang et al., 2018), which we treat as our
benchmark for comparison). Figure 1b plots the reward-optimality gap for varying k. Figure 1c
plots the cumulative reward of the large-scale experiment. We observe that the rewards (on average)
grow monotonically as they obey our worst-case guarantee in Theorem 3.4.

Example 5.2 (Queueing). We model a system with n queues, where si(t) ∈ Sl := N at time t
denotes the number of jobs at time t for queue i ∈ [n]. We model the job allocation mechanism
as a global agent where sg(t) ∈ Sg = Ag = [n]. Here, sg(t) denotes the queue to which the next
job should be delivered. We choose the state transitions to capture the stochastic job arrival and
departure: sg(t+ 1) = ag(t), and si(t+ 1) = min{c,max{0, si(t) + 1{sg(t) = i} − Bern(p)}}.
For the rewards, we set rg(sg, ag) = 0 and rl(si, sg) = −si − 10 · 1{si > c}, where p = 0.8 is the
probability of finishing a job, c = 30 is the capacity of each queue, and γ = 0.9.

This simulation ran on a system of n = 50 local agents. The goal was to learn an optimal policy
for a dispatcher to send incoming jobs to. We ran Algorithm 2 for T = 300 empirical adapted
Bellman iterations with m = 30, and ran Algorithm 3 for T ′ = 100 iterations. Figure 2 illustrates
the log-scale reward-optimality gap for varying k, showing that the gap decreases monotonically as
k → n with a decay rate that is consistent with the O(1/

√
k) upper bound in Theorem 3.4.

9
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Figure 1: Demand-Response simulation. a) Computation time to learn π̂est
k,m for k ≤ n = 8. b)

Reward optimality gap (log scale) with πest
k,m running 300 iterations for k ≤ n = 8, c) Discounted

cumulative rewards for k≤n=50. We note that k=n recovers the mean-field RL iteration solution.

Figure 2: Reward optimality gap (log scale) with πest
k,m running 300 iterations.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Conclusion. This work considers a global decision-making agent in the presence of n local homo-
geneous agents. We propose SUBSAMPLE-Q which derives a policy πest

k,m where k ≤ n and m ∈ N
are tunable parameters, and show that πest

k,m converges to the optimal policy π∗ with a decay rate of
O(1/

√
k + ϵk,m), where ϵk,m is the Bellman noise. To establish the result, we develop an analytic

framework which constructs an adapted Bellman operator T̂k, shows a Lipschitz-continuity result
for Q̂∗

k, generalizes the DKW inequality, and proves a probabilistic bound on Q-functions with dif-
ferent actions. Further, we extend this result to the non-tabular setting with infinite state and action
spaces. Finally, we validate our theoretical result through numerical experiments.

Limitations and Future Work. We recognize several future directions. Firstly, this model studies
a ‘star-network’ setting to model a single source of density. It would be fascinating to extend this
subsampling framework to general networks. We believe expander-graph decompositions (Anand &
Umans, 2023; Reingold, 2008) are amenable for this. A second direction would be to find connec-
tions between our sub-sampling method to algorithms in federated learning, where the rewards can
be stochastic, and to incorporate learning rates (Lin et al., 2021) to attain numerical stability. A third
limitation of this work is that we have only partially resolved the problem for truly heterogeneous
local agents by adding a ‘type’ property to each local agent to model some pseudoheterogeneity in
the state space of each agent. Finally, it would be exciting to generalize this work to the online set-
ting without a generative oracle. For this, we conjecture that tools from recent works on stochastic
approximation (Chen & Theja Maguluri, 2022) and no-regret RL (Jin et al., 2021) might be valuable.
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Outline of the Appendices.

• Appendix A presents additional definitions and remarks that support the main body.
• Appendix B-C contains a detailed proof of the Lipschitz continuity bound in Theorem 4.1

and total variation distance bound in Theorem 4.2.
• Appendix D contains a detailed proof of the main result in Theorem 3.4.

Table 1: Important notations in this paper.

Notation Meaning
∥ · ∥1 ℓ1 (Manhattan) norm;
∥ · ∥∞ ℓ∞ norm;
Rd The set of d-dimensional reals;
[n] The set {1, . . . , n}, where n ∈ Z+;(
[n]
k

)
The set of k-sized subsets of {1, . . . , n};

ag ag ∈ Ag is the action of the global agent;
sg sg ∈ Sg is the state of the global agent;

s1, . . . , sn s1, . . . , sn ∈ Snl are the states of the local agents 1, . . . , n;
s s = (sg, s1, . . . , sn) ∈ Sg × Snl is the tuple of states of all agents;
s∆ For ∆ ⊆ [n], and a collection of variables {s1, . . . , sn}, s∆ := {si : i ∈ ∆};

σ(s∆, s
′
∆) Product sigma-algebra generated by sequences s∆ and s′∆;

µk(Sl) µk(Sl) := {0, 1/k, 2/k, . . . , 1}|Sl|;
µ(Sl) µ(Sl) := µn(Sl) := {0, 1/n, 2/n, . . . , 1}|Sl|;
π∗ π∗ is the optimal deterministic policy function such that a = π∗(s);
π̂est
k,m π̂est

k,m is the optimal deterministic policy function on a k local agent system;
πest
k,m πest

k,m is the stochastic policy mapping a ∼ π̃est
k,m(s) learned with parameter k;

Pg(·|sg, ag) Pg(·|sg, ag) is the stochastic transition kernel for the state of the global agent;
Pl(·|si, sg) Pl(·|si, sg) is the stochastic transition kernel for the state of any local agent i ∈ [n];
rg(sg, ag) rg is the global agent’s component of the reward;
rl(si, sg) rl is the component of the reward for local agent i ∈ [n];
r(s, a) r(s, a) := r[n](s, a) = rg(sg, ag) +

1
n

∑
i∈[n] rl(si, sg) is the reward of the system;

r∆(s, a) r∆(s, a)=rg(sg, ag)+
1

|∆|
∑

i∈∆ rl(si, sg) is the reward with |∆| = k local agents;
T T is the centralized Bellman operator;
T̂k T̂k is the Bellman operator on a constrained system of |∆| = k local agents;

ΠΘ(y) ℓ1 projection of y onto set Θ.

A MATHEMATICAL BACKGROUND AND ADDITIONAL REMARKS

Definition A.1 (Lipschitz continuity). Given two metric spaces (X , dX ) and (Y, dY) and a constant
L ∈ R+, a mapping f : X → Y is L-Lipschitz continuous if for all x, y ∈ X , dY(f(x), f(y)) ≤
L · dX (x, y).
Theorem A.2 (Banach-Caccioppoli fixed point theorem Banach (1922)). Consider the metric space
(X , dX ), and T : X → X such that T is a γ-Lipschitz continuous mapping for γ ∈ (0, 1). Then,
by the Banach-Cacciopoli fixed-point theorem, there exists a unique fixed point x∗ ∈ X for which
T (x∗) = x∗. Additionally, x∗ = lims→∞ T s(x0) for any x0 ∈ X .

For convenience, we restate below the various Bellman operators under consideration.
Definition A.3 (Bellman Operator T ).

T Qt(s, ag) := r[n](s, ag) + γE s′g∼Pg(·|sg,ag),

s′i∼Pl(·|si,sg),∀i∈[n]

max
a′
g∈Ag

Qt(s′, a′g) (18)

Definition A.4 (Adapted Bellman Operator T̂k). The adapted Bellman operator updates a smaller
Q function (which we denote by Q̂k), for a surrogate system with the global agent and k ∈ [n] local
agents, using mean-field value iteration:

T̂kQ̂t
k(sg, Fs∆ , ag) := r∆(s, ag) + γE s′g∼Pg(·|sg,ag),

s′i∼Pl(·|si,sg),∀i∈∆

max
a′
g∈Ag

Q̂t
k(s

′
g, Fs′∆

, a′g) (19)
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Definition A.5 (Empirical Adapted Bellman Operator T̂k,m). The empirical adapted Bellman opera-
tor T̂k,m empirically estimates the adapted Bellman operator update using mean-field value iteration
by drawing m random samples of sg ∼ Pg(·|sg, ag) and si ∼ Pl(·|si, sg) for i ∈ ∆, where for
j ∈ [m], the j’th random sample is given by sjg and sj∆:

T̂k,mQ̂t
k,m(sg, Fs∆ , ag) := r∆(s, ag) +

γ

m

∑
j∈[m]

max
a′
g∈Ag

Q̂t
k,m(sjg, Fsj∆

, a′g) (20)

Remark A.6. We remark on the following relationships between the variants of the Bellman oper-
ators from Theorems A.3 to A.5. First, by the law of large numbers, we have limm→∞ T̂k,m = T̂k,
where the error decays in O(1/

√
m) by the Chernoff bound. Secondly, by comparing Theorem A.4

and Theorem A.3, we have Tn = T .

Lemma A.7. For any ∆ ⊆ [n] such that |∆| = k, suppose 0 ≤ r∆(s, ag) ≤ r̃. Then, Q̂t
k ≤ r̃

1−γ .

Proof. We prove this by induction on t ∈ N. The base case is satisfied as Q̂0
k = 0. Assume that

∥Q̂t−1
k ∥∞ ≤ r̃

1−γ . We bound Q̂t+1
k from the Bellman update at each time step as follows, for all

sg ∈ Sg, Fs∆ ∈ µk(Sl|), ag ∈ Ag:

Q̂t+1
k (sg, Fs∆ , ag) = r∆(s, ag) + γE s′g∼Pg(·|sg,ag),

s′i∼Pl(·|si,sg),∀i∈∆

max
a′
g∈Ag

Q̂t
k(s

′
g, Fs′∆

, a′g)

≤ r̃ + γ max
a′
g∈Ag,s

′
g∈Sg,Fs′

∆
∈µk(Sl)

Q̂t
k(s

′
g, Fs′∆

, a′g) ≤
r̃

1− γ

Here, the first inequality follows by noting that the maximum value of a random variable is at least
as large as its expectation. The second inequality follows from the inductive hypothesis.

Remark A.8. Theorem A.7 is independent of the choice of k. Therefore, for k = n, this implies an
identical bound on Qt. A similar argument as Theorem A.7 implies an identical bound on Q̂t

k,m.

Recall that the original Bellman operator T satisfies a γ-contractive property under the infinity
norm. We similarly show that T̂k and T̂k,m satisfy a γ-contractive property under infinity norm in
Theorem A.9 and Theorem A.10.
Lemma A.9. T̂k satisfies the γ-contractive property under infinity norm:

∥T̂kQ̂′
k − T̂kQ̂k∥∞ ≤ γ∥Q̂′

k − Q̂k∥∞

Proof. Suppose we apply T̂k to Q̂k(sg, Fs∆ , ag) and Q̂′
k(sg, Fs∆ , ag) for |∆| = k. Then:

∥T̂kQ̂′
k − T̂kQ̂k∥∞

= γ max
sg∈Sg,
ag∈Ag,

Fs∆
∈µk(Sl)

∣∣∣∣∣∣∣∣Es′g∼Pg(·|sg,ag),

s′i∼Pl(·|si,sg),
∀s′i∈s′∆,

max
a′
g∈Ag

Q̂′
k(s

′
g, Fs′∆

, a′g)− Es′g∼Pg(·|sg,ag),

s′i∼Pl(·|si,sg),
∀s′i∈s′∆

max
a′
g∈Ag

Q̂k(s
′
g, Fs′∆

, a′g)

∣∣∣∣∣∣∣∣
≤ γ max

s′g∈Sg,Fs′
∆
∈µk(Sl),a

′
g∈Ag

∣∣∣Q̂′
k(s

′
g, Fs′∆

, a′g)− Q̂k(s
′
g, Fs′∆

, a′g)
∣∣∣

= γ∥Q̂′
k − Q̂k∥∞

The equality implicitly cancels the common r∆(s, ag) terms from each application of the adapted-
Bellman operator. The inequality follows from Jensen’s inequality, maximizing over the actions, and
bounding the expected value with the maximizers of the random variables. The last line recovers the
definition of infinity norm.
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Lemma A.10. T̂k,m satisfies the γ-contractive property under infinity norm.

Proof. Similarly to Theorem A.9, suppose we apply T̂k,m to Q̂k,m(sg, Fs∆ , ag) and
Q̂′

k,m(sg, Fs∆ , ag). Then:

∥T̂k,mQ̂k − T̂k,mQ̂′
k∥∞ =

γ

m

∥∥∥∥∥∥
∑
j∈[m]

( max
a′
g∈Ag

Q̂k(s
j
g, Fsj∆

, a′g)− max
a′
g∈Ag

Q̂′
k(s

j
g, Fsj∆

, a′g))

∥∥∥∥∥∥
∞

≤ γ max
a′
g∈Ag,s

′
g∈Sg,s∆∈Sk

l

|Q̂k(s
′
g, Fs′∆

, a′g)− Q̂′
k(s

′
g, Fs′∆

, a′g)|

≤ γ∥Q̂k − Q̂′
k∥∞

The first inequality uses the triangle inequality and the general property |maxa∈A f(a) −
maxb∈A f(b)| ≤ maxc∈A |f(a) − f(b)|. In the last line, we recover the definition of infinity
norm.

Remark A.11. Intuitively, the γ-contractive property of T̂k and T̂k,m causes the trajectory of two
Q̂k and Q̂k,m functions on the same state-action tuple to decay by γ at each time step such that
repeated applications of their corresponding Bellman operators produce a unique fixed-point from
the Banach-Cacciopoli fixed-point theorem which we introduce in Theorems A.12 and A.13.

Definition A.12 (Q̂∗
k). Suppose Q̂0

k := 0 and let Q̂t+1
k (sg, Fs∆ , ag) = T̂kQ̂t

k(sg, Fs∆ , ag) for
t ∈ N. Denote the fixed-point of T̂k by Q̂∗

k such that T̂kQ̂∗
k(sg, Fs∆ , ag) = Q̂∗

k(sg, Fs∆ , ag).

Definition A.13 (Q̂est
k,m). Suppose Q̂0

k,m := 0 and let Q̂t+1
k,m(sg, Fs∆ , ag) = T̂k,mQ̂t

k,m(sg, Fs∆ , ag)

for t ∈ N. Denote the fixed-point of T̂k,m by Q̂est
k,m such that T̂k,mQ̂est

k,m(sg, Fs∆ , ag) =

Q̂est
k,m(sg, Fs∆ , ag).

Furthermore, recall the assumption on our empirical approximation of Q̂∗
k:

Theorem 3.3. For all k ∈ [n] and m ∈ N, we assume that:

∥Q̂est
k,m − Q̂∗

k∥∞ ≤ ϵk,m (21)

Corollary A.14. Observe that by backpropagating results of the γ-contractive property for T steps:

∥Q̂∗
k − Q̂T

k ∥∞ ≤ γT · ∥Q̂∗
k − Q̂0

k∥∞ (22)

∥Q̂est
k,m − Q̂T

k,m∥∞ ≤ γT · ∥Q̂est
k,m − Q̂0

k,m∥∞ (23)

Further, noting that Q̂0
k = Q̂0

k,m := 0, ∥Q̂∗
k∥∞ ≤ r̃

1−γ , and ∥Q̂est
k,m∥∞ ≤ r̃

1−γ from Theorem A.7:

∥Q̂∗
k − Q̂T

k ∥∞ ≤ γT
r̃

1− γ
(24)

∥Q̂est
k,m − Q̂T

k,m∥∞ ≤ γT
r̃

1− γ
(25)

Remark A.15. Theorem A.14 characterizes the error decay between Q̂T
k and Q̂∗

k as well as between
Q̂T

k,m and Q̂est
k,m and shows that it decays exponentially in the number of corresponding Bellman

iterations with the γT multiplicative factor.

Furthermore, we characterize the maximal policies greedy policies obtained from Q∗, Q̂∗
k, and

Q̂est
k,m.

Definition A.16 (π∗). The greedy policy derived from Q∗ is

π∗(s) := arg max
ag∈Ag

Q∗(s, ag).
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Definition A.17 (π̂∗
k). The greedy policy from Q̂∗

k is

π̂∗
k(sg, Fs∆) := arg max

ag∈Ag

Q̂∗
k(sg, Fs∆ , ag).

Definition A.18 (π̂est
k,m). The greedy policy from Q̂est

k,m is given by

π̂est
k,m(sg, Fs∆) := arg max

ag∈Ag

Q̂est
k,m(sg, Fs∆ , ag).

Figure 3 details the analytic flow on how we use the empirical adapted Bellman operator to perform
value iteration on Q̂k,m to get Q̂est

k,m which approximates Q∗.

Q̂0
k,m(sg, Fs∆ , ag)

Q̂est
k,m(sg, Fs∆ , ag) Q̂∗

k(sg, Fs∆ , ag) Q̂∗
n(sg, Fs[n]

, ag)

Q∗(sg, s[n], ag)

(1)

(2)
=

(3)
≈

(4)
=

Figure 3: Flow of the algorithm and relevant analyses in learning Q∗. Here, (1) follows by perform-
ing Algorithm 2 (SUBSAMPLE-Q: Learning) on Q̂0

k,m. (2) follows from Theorem 3.3. (3) follows
from the Lipschitz continuity and total variation distance bounds in Theorems 4.1 and 4.2. Finally,
(4) follows from noting that Q̂∗

n = Q∗.

Algorithm 4 provides a stable implementation of Algorithm 2: SUBSAMPLE-Q: Learning, where
we incorporate a sequence of learning rates {ηt}t∈[T ] into the framework (Watkins & Dayan, 1992).
Algorithm 4 is also provably numerical stable under fixed-point arithmetic (Anand et al., 2024).

Algorithm 4 Stable (Practical) Implementation of Algorithm 2: SUBSAMPLE-Q: Learning

Require: A multi-agent system as described in Section 2. Parameter T for the number of iterations
in the initial value iteration step. Hyperparameter k ∈ [n]. Discount parameter γ ∈ (0, 1).
OracleO to sample s′g ∼ Pg(·|sg, ag) and si ∼ Pl(·|si, sg) for all i ∈ [n]. Sequence of learning
rates {ηt}t∈[T ] where ηt ∈ (0, 1].

1: Choose any ∆ ⊆ [n] such that |∆| = k.
2: Set Q̂0

k,m(sg, Fs∆ , ag) = 0 for (sg, Fs∆ , ag) ∈ Sg × µk(Sl)×Ag .
3: for t = 1 to T do
4: for (sg, Fs∆) ∈ Sg × µk(Sl) do
5: for ag ∈ Ag do
6: Q̂t+1

k,m(sg, Fs∆ , ag)← (1− ηt)Q̂t
k,m(sg, Fs∆ , ag) + ηtT̂k,mQ̂t

k,m(sg, Fs∆ , ag)

7: For all (sg, Fs∆) ∈ Sg × µk(Sl), let the approximate policy be

π̂T
k,m(sg, Fs∆) = arg max

ag∈Ag

Q̂T
k,m(sg, Fs∆ , ag).

Notably, Q̂t
k,m in Algorithm 4 due to a similar γ-contractive property as in Theorem A.9, given an

appropriately conditioned sequence of learning rates ηt:

Theorem A.19. As T → ∞, if
∑T

t=1 ηt = ∞, and
∑T

t=1 η
2
t < ∞, then Q-learning converges to

the optimal Q function asymptotically with probability 1.

Furthermore, finite-time guarantees with the learning rate and sample complexity have been shown
recently in Chen & Theja Maguluri (2022), which when adapted to our Q̂k,m framework in Algo-
rithm 4 yields:
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Theorem A.20 (Chen & Theja Maguluri (2022)). For all t ∈ [T ] and ϵ > 0, if ηt = (1− γ)4ϵ2 and
T = k|Sl||Sg||Ag||Sl|/(1− γ)5ϵ2,

∥Q̂T
k,m − Q̂est

k,m∥ ≤ ϵ.

This global decision-making problem can be viewed as a generalization of the network setting to a
specific type of dense graph: the star graph (Figure 4). We briefly elaborate more on this connection
below.

Definition A.21 (Star Graph Sn). For n∈N, the star graph Sn is the complete bipartite graphK1,n.

Sn captures the graph density notion by saturating the set of neighbors for the central node. Fur-
thermore, it models interactions between agents identically to our setting, where the central node is
a global agent and the peripheral nodes are local agents. The cardinality of the search space simplex
for the optimal policy is |Sg||Sl|n|Ag|, which is exponential in n. Hence, this problem cannot be
naively modeled by an MDP: we need to exploit the symmetry of the local agents. This intuition
allows our subsampling algorithm to run in polylogarithmic time (in n). Further, works that lever-
age the exponential decaying property that truncates the search space for policies over immediate
neighborhoods of agents still rely on the assumption that the graph neighborhood for the agent is
sparse Lin et al. (2021); Qu et al. (2020a;b); Lin et al. (2020); however, the graph Sn violates this
local sparsity condition; hence, previous methods do not apply to this problem instance.

1 2

0

3

. . . n

Figure 4: Star graph Sn

B PROOF OF LIPSCHITZ-CONTINUITY BOUND

This section proves the Lipschitz-continuity bound Theorem 4.1 between Q̂∗
k and Q∗ in Theo-

rem B.2 and includes a framework to compare 1

(nk)

∑
∆∈([n]

k )
Q̂∗

k(sg, Fs∆ , ag) andQ∗(s, ag) in The-

orem B.12. The following definition will be relevant to the proof of Theorem 4.1.

Definition B.1. [Joint Stochastic Kernels]The joint stochastic kernel on (sg, s∆) for ∆ ⊆ [n] where
|∆| = k is defined as Jk : Sg × Skl × Sg ×Ag × Skl → [0, 1], where

Jk(s′g, s′∆|sg, ag, s∆) := Pr[(s′g, s
′
∆)|sg, ag, s∆] (26)

Theorem B.2 (Q̂T
k is (

∑T−1
t=0 2γt)∥rl(·, ·)∥∞-Lipschitz continuous with respect to Fs∆ in total vari-

ation distance). Suppose ∆,∆′ ⊆ [n] such that |∆| = k and |∆′| = k′. Then:

∣∣∣Q̂T
k (sg, Fs∆ , ag)− Q̂T

k′(sg, Fs∆′ , ag)
∣∣∣ ≤ (T−1∑

t=0

2γt

)
∥rl(·, ·)∥∞ · TV

(
Fs∆ , Fs∆′

)

Proof. We prove this inductively. Note that Q̂0
k(·, ·, ·) = Q̂0

k′(·, ·, ·) = 0 from the initialization step
in Algorithm 2, which proves the lemma for T = 0 since TV(·, ·) ≥ 0. For the remainder of this
proof, we adopt the shorthand Es′g,s

′
∆

to refer to Es′g∼Pg(·|sg,ag),s′i∼Pl(·|si,sg),∀i∈∆.
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Then, at T = 1:
|Q̂1

k(sg, Fs∆ , ag)− Q̂1
k′(sg, Fs∆′ , ag)|

=
∣∣∣T̂kQ̂0

k(sg, Fs∆ , ag)− T̂k′Q̂0
k′(sg, Fs∆′ , ag)

∣∣∣
= |r(sg, Fs∆ , ag) + γEs′g,s

′
∆

max
a′
g∈Ag

Q̂0
k(s

′
g, Fs′∆

, a′g)

− r(sg, Fs∆′ , ag)− γEs′g,s
′
∆′

max
a′
g∈Ag

Q̂0
k′(s′g, Fs′

∆′
, a′g)|

= |r(sg, Fs∆ , ag)− r(sg, Fs∆′ , ag)|

=

∣∣∣∣∣1k∑
i∈∆

rl(sg, si)−
1

k′

∑
i∈∆′

rl(sg, si)

∣∣∣∣∣
= |Esl∼Fs∆

rl(sg, sl)− Es′l∼Fs
∆′
rl(sg, s

′
l)|

In the first and second equalities, we use the time evolution property of Q̂1
k and Q̂1

k′ by applying
the adapted Bellman operators T̂k and T̂k′ to Q̂0

k and Q̂0
k′ , respectively, and expanding. In the third

and fourth equalities, we note that Q̂0
k(·, ·, ·) = Q̂0

k′(·, ·, ·) = 0, and subtract the common ‘global
component’ of the reward function.

Then, noting the general property that for any function f : X → Y for |X | < ∞ we can write
f(x) =

∑
y∈X f(y)1{y = x}, we have:

|Q̂1
k(sg, Fs∆ , ag)− Q̂1

k′(sg, Fs∆′ , ag)|

=

∣∣∣∣∣Esl∼Fs∆

[∑
z∈Sl

rl(sg, z)1{sl = z}

]
− Es′l∼Fs

∆′

[∑
z∈Sl

rl(sg, z)1{s′l = z}

]∣∣∣∣∣
= |

∑
z∈Sl

rl(sg, z) · (Esl∼Fs∆
1{sl = z} − Es′l∼Fs

∆′
1{s′l = z})|

= |
∑
z∈Sl

rl(sg, z) · (Fs∆(z)− Fs∆′ (z))|

≤ |max
z∈Sl

rl(sg, z)| ·
∑
z∈Sl

|Fs∆(z)− Fs∆′ (z)|

≤ 2∥rl(·, ·)∥∞ · TV(Fs∆ , Fs∆′ )

The second equality follows from the linearity of expectations, and the third equality follows by
noting that for any random variable X ∼ X , EX1[X = x] = Pr[X = x]. Then, the first inequality
follows from an application of the triangle inequality and the Cauchy-Schwarz inequality, and the
second inequality follows by the definition of total variation distance. Thus, when T = 1, Q̂ is
(2∥rl(·, ·)∥∞)-Lipschitz continuous with respect to total variation distance, proving the base case.

We now assume that for T ≤ t′ ∈ N:∣∣∣Q̂T
k (sg, Fs∆ , ag)− Q̂T

k′(sg, Fs∆′ , ag)
∣∣∣ ≤ (T−1∑

t=0

2γt

)
∥rl(·, ·)∥∞ · TV

(
Fs∆ , Fs∆′

)
Then, inductively we have:
|Q̂T+1

k (sg, Fs∆ , ag)− Q̂T+1
k′ (sg, Fs∆′ , ag)|

≤

∣∣∣∣∣ 1

|∆|
∑
i∈∆

rl(sg, si)−
1

|∆′|
∑
i∈∆′

rl(sg, si)

∣∣∣∣∣
+ γ

∣∣∣∣Es′g,s
′
∆

max
a′
g∈Ag

Q̂T
k (s

′
g, Fs′∆

, a′g)− Es′g,s
′
∆′

max
a′
g∈Ag

Q̂T
k′(s′g, Fs′

∆′
, a′g)

∣∣∣∣
≤ 2∥rl(·, ·)∥∞ · TV

(
Fs∆ , Fs∆′

)
+ γ

∣∣∣∣Es′g,s
′
∆

max
a′
g∈Ag

Q̂T
k (s

′
g, Fs′∆

, a′g)− Es′g,s
′
∆′

max
a′
g∈Ag

Q̂T
k′(s′g, Fs′

∆′
, a′g)

∣∣∣∣
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In the first equality, we use the time evolution property of Q̂T+1
k and Q̂T+1

k′ by applying the adapted-
Bellman operators T̂k and T̂k′ to Q̂T

k and Q̂T
k′ , respectively. We then expand and use the triangle

inequality. In the first term of the second inequality, we use our Lipschitz bound from the base case.
For the second term, we now rewrite the expectation over the states s′g, s

′
∆, s

′
∆′ into an expectation

over the joint transition probabilities Jk and Jk′ from Theorem B.1.

Therefore, using the shorthand E(s′g,s
′
∆)∼Jk

to denote E(s′g,s
′
∆)∼Jk(·,·|sg,ag,s∆), we have:

|Q̂T+1
k (sg, Fs∆ , ag)− Q̂T+1

k′ (sg, Fs∆′ , ag)|
≤ 2∥rl(·, ·)∥∞ · TV(Fs∆ , Fs∆′ )

+ γ|E(s′g,s
′
∆)∼Jk

max
a′
g∈Ag

Q̂T
k (s

′
g, Fs′∆

, a′g)−E(s′g,s
′
∆′ )∼Jk′ max

a′
g∈Ag

Q̂T
k′(s′g, Fs′

∆′
, a′g)|

≤ 2∥rl(·, ·)∥∞ · TV(Fs∆ , Fs∆′ )

+ γ max
a′
g∈Ag

|E(s′g,s
′
∆)∼Jk

Q̂T
k (s

′
g, Fs′∆

, a′g)− E(s′g,s
′
∆′ )∼Jk′ Q̂

T
k′(s′g, Fs′

∆′
, a′g)|

≤ 2∥rl(·, ·)∥∞ · TV(Fs∆ , Fs∆′ ) + γ

(
T−1∑
τ=0

2γτ

)
∥rl(·, ·)∥∞ · TV(Fs∆ , Fs∆′ )

=

(
T∑

τ=0

2γτ

)
∥rl(·, ·)∥∞ · TV(Fs∆ , Fs∆′ )

In the first inequality, we rewrite the expectations over the states as the expectation over the joint
transition probabilities. The second inequality then follows from Theorem B.9.

To apply it to Theorem B.9, we conflate the joint expectation over (sg, s∆∪∆′) and reduce it back to
the original form of its expectation. Finally, the third inequality follows from Theorem B.3.

Then, by the inductive hypothesis, the claim is proven.

Lemma B.3. For all T ∈ N, for any ag, a′g ∈ Ag, sg ∈ Sg, s∆ ∈ Skl , and for all joint stochastic
kernels Jk as defined in Theorem B.1, we have that E(s′g,s

′
∆)∼Jk(·,·|sg,ag,s∆)Q̂

T
k (s

′
g, Fs′∆

, a′g) is

(
∑t−1

t=0)2γ
t)∥rl(·, ·)∥∞)-Lipschitz continuous with respect to Fs∆ in total variation distance:

|E(s′g,s
′
∆)∼Jk(·,·|sg,ag,s∆)Q̂

T
k (s

′
g, Fs′∆

, a′g)− E(s′g,s
′
∆′ )∼Jk′ (·,·|sg,ag,s∆′ )Q̂

T
k′(s′g, Fs′

∆′
, a′g)|

≤

(
T−1∑
τ=0

2γτ

)
∥rl(·, ·)∥∞ · TV

(
Fs∆ , Fs∆′

)

Proof. We prove this inductively. At T = 0, the statement is true since Q̂0
k(·, ·, ·) = Q̂0

k′(·, ·, ·) = 0
and TV(·, ·) ≥ 0. For T = 1, applying the adapted Bellman operator yields:

|E(s′g,s
′
∆)∼Jk(·,·|sg,ag,s∆)Q̂

1
k(s

′
g, Fs′∆

, a′g)− E(s′g,s
′
∆′ )∼Jk′ (·,·|sg,ag,s∆′ )Q̂

1
k′(s′g, Fs′

∆′
, a′g)|

=

∣∣∣∣∣E(s′g,s
′
∆∪∆′ )∼J|∆∪∆′|(·,·|sg,ag,s∆∪∆′ )

[
1

|∆|
∑
i∈∆

rl(s
′
g, s

′
i)−

1

|∆′|
∑
i∈∆′

rl(s
′
g, s

′
i)

]∣∣∣∣∣
=

∣∣∣∣∣E(s′g,s
′
∆∪∆′ )∼J|∆∪∆′|(·,·|sg,ag,s∆∪∆′ )

[∑
z∈Sl

rl(s
′
g, z) · (Fs′∆

(z)− Fs′
∆′
(z))

]∣∣∣∣∣
Similarly to Theorem B.2, we implicitly write the result as an expectation over the reward func-
tions and use the general property that for any function f : X → Y for |X | < ∞, we
can write f(x) =

∑
y∈X f(y)1{y = x}. Then, taking the expectation over the indicator

variable yields the second equality. As a shorthand, let D denote the distribution of s′g ∼
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∑
s′
∆∪∆′∈S|∆∪∆′|

l

J|∆∪∆|(·, s′∆∪∆′ |sg, ag, s∆∪∆′). Then, by the law of total expectation,

|E(s′g,s
′
∆)∼Jk(·,·|sg,ag,s∆)Q̂

1
k(s

′
g, Fs′∆

, a′g)− E(s′g,s
′
∆′ )∼Jk′ (·,·|sg,ag,s∆′ )Q̂

1
k′(s′g, Fs′

∆′
, a′g)|

= |Es′g∼D

∑
z∈Sl

rl(s
′
g, z)Es′

∆∪∆′∼J|∆∪∆′|(·|s′g,sg,ag,s∆∪∆′ )(Fs′∆
(z)− Fs′

∆′
(z))|

≤ ∥rl(·, ·)∥∞ · Es′g∼D

∑
z∈Sl

|Es′
∆∪∆′∼J|∆∪∆′|(·|s′g,sg,ag,s∆∪∆′ )(Fs′∆

(z)− Fs′
∆′
(z))|

≤ 2∥rl(·, ·)∥∞ · Es′g∼DTV(Es′
∆∪∆′ |s′gFs′∆

,Es′
∆∪∆′ |s′gFs′

∆′
)

≤ 2∥rl(·, ·)∥∞ ·TV(Fs∆ , Fs∆′ )

In the ensuing inequalities, we first use Jensen’s inequality and the triangle inequality to pull out
Es′g

∑
z∈Sl

from the absolute value, and then use Cauchy-Schwarz to further factor ∥rl(·, ·)∥∞.
The second inequality follows from Theorem B.5 and does not have a dependence on s′g thus
eliminating Es′g

and proving the base case.

We now assume that for T ≤ t′ ∈ N, for all joint stochastic kernels Jk and Jk′ , and for all a′g ∈ Ag:

|E(s′g,s
′
∆)∼Jk(·,·|sg,ag,s∆)Q̂

T
k (s

′
g, Fs′∆

, a′g)− E(s′g,s
′
∆′ )∼Jk′ (·,·|sg,ag,s∆′ )Q̂

T
k′(s′g, Fs′

∆′
, a′g)|

≤

(
T−1∑
t=0

2γt

)
∥rl(·, ·)∥∞ · TV(Fs∆ , Fs∆′ )

For the remainder of the proof, we adopt the shorthand E(s′g,s
′
∆)∼J to denote

E(s′g,s
′
∆)∼J|∆|(·,·|sg,ag,s∆), and E(s′′g ,s

′′
∆)∼J to denote E(s′′g ,s

′′
∆)∼J|∆|(·,·|s′g,a′

g,s
′
∆).

Then, inductively, we have:

|E(s′g,s
′
∆)∼J Q̂

T+1
k (s′g, Fs′∆

, a′g)− E(s′g,s
′
∆′ )∼J Q̂

T+1
k′ (s′g, Fs′

∆′
, a′g)|

= |E(s′g,s
′
∆∪∆′ )∼J [r(s′g, s

′
∆, a

′
g)− r(s′g, s′∆′ , a′g)

+ γE(s′′g ,s
′′
∆∪∆′ )∼J [ max

a′′
g∈Ag

Q̂T
k (s

′′
g , Fs′′∆

, a′′g )− max
a′′
g∈Ag

Q̂T
k′(s′′g , Fs′′

∆′
, a′′g )]]|

≤ 2∥rl(·, ·)∥∞ · TV(Fs∆ , Fs∆′ )

+ γ|E(s′g,s
′
∆∪∆′ )∼J [E(s′′g ,s

′′
∆∪∆′ )∼J [ max

a′′
g∈Ag

Q̂T
k (s

′′
g , Fs′′∆

, a′′g )− max
a′′
g∈Ag

Q̂T
k′(s′′g , Fs′′

∆′
, a′′g )]]|

Here, we expand out Q̂T+1
k and Q̂T+1

k′ using the adapted Bellman operator. In the ensuing inequality,
we apply the triangle inequality and bound the first term using the base case. Then, note that

E(s′g,s
′
∆∪∆′ )∼J (·,·|sg,ag,s∆∪∆′ )E(s′′g ,s

′′
∆∪∆′ )∼J (·,·|s′g,a′

g,s
′
∆∪∆′ )

max
a′′
g∈Ag

Q̂T
k (s

′′
g , Fs′′∆

, a′′g )

is, for some stochastic function J ′
|∆∪∆′|, equal to

E(s′′g ,s
′′
∆∪∆′ )∼J ′

|∆∪∆′|(·,·|sg,ag,s∆∪∆′ ) max
a′′
g∈Ag

Q̂T
k (s

′′
g , Fs′′∆

, a′′g ),

where J ′ is implicitly a function of a′g which is fixed from the beginning.

In the special case where ag = a′g , we can derive an explicit form of J ′ which we show in Theo-
rem B.11. As a shorthand, we denote E(s′′g ,s

′′
∆∪∆′ )∼J ′

|∆∪∆′|(·,·|sg,ag,s∆∪∆′ ) by E(s′′g ,s
′′
∆∪∆′ )∼J ′ .
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Therefore,

|E(s′g,s
′
∆)∼J Q̂

T+1
k (s′g, Fs′∆

, a′g)− E(s′g,s
′
∆′ )∼J Q̂

T+1
k′ (s′g, Fs′

∆′
, a′g)|

≤ 2∥rl(·, ·)∥∞ · TV(Fs∆ , Fs∆′ ) + γ|E(s′′g ,s
′′
∆∪∆′ )∼J ′ max

a′′
g∈Ag

Q̂T
k (s

′′
g , Fs′′∆

, a′′g )

− E(s′′g ,s
′′
∆∪∆′ )∼J ′ max

a′′
g∈Ag

Q̂T
k′(s′′g , Fs′′

∆′
, a′′g )|

≤ 2∥rl(·, ·)∥∞ · TV(Fs∆ , Fs∆′ ) + γ max
a′′
g∈Ag

|E(s′′g ,s
′′
∆∪∆′ )∼J ′Q̂T

k (s
′′
g , Fs′′∆

, a′′g )

− E(s′′g ,s
′′
∆∪∆′ )∼J ′Q̂T

k′(s′′g , Fs′′
∆′
, a′′g )|

≤ 2∥rl(·, ·)∥∞ · TV(Fs∆ , Fs∆′ ) + γ

(
T−1∑
t=0

2γt

)
∥rl(·, ·)∥∞ · TV(Fs∆ , Fs∆′ )

=

(
T∑

t=0

2γt

)
∥rl(·, ·)∥∞ · TV(Fs∆ , Fs∆′ )

The second inequality follows from Theorem B.9 where we set the joint stochastic kernel to be
J ′
|∆∪∆′|. In the ensuing lines, we concentrate the expectation towards the relevant terms and use the

induction assumption for the transition probability functions J ′
k and J ′

k′ . This proves the lemma.

Remark B.4. Given a joint transition probability function J|∆∪∆′| as defined in Theorem B.1, we
can recover the transition function for a single agent i ∈ ∆ ∪ ∆′ given by J1 using the law of
total probability and the conditional independence between si and sg ∪ s[n]\i in Equation (27). This
characterization is crucial in Theorem B.5 and Theorem B.6.

J1(·|s′g, sg, ag, si) =
∑

s′
∆∪∆′\i∼S|∆∪∆′|−1

l

J|∆∪∆′|(s
′
∆∪∆′\i, s

′
i|s′g, sg, ag, s∆∪∆′) (27)

Lemma B.5. Given a joint transition probability J|∆∪∆′| as defined in Theorem B.1,

TV(Es′
∆∪∆′∼J|∆∪∆′|(·|s′g,sg,ag,s∆∪∆′ )Fs′∆

,Es′
∆∪∆′∼J|∆∪∆′|(·|s′g,sg,ag,s∆∪∆′ )Fs′

∆′
) ≤ TV(Fs∆ , Fs∆′ )

Proof. Note that from Theorem B.6:

Es′
∆∪∆′∼J|∆∪∆′|(·,·|s′g,sg,ag,s∆∪∆′ )Fs′∆

= Es′∆∼J|∆|(·,·|s′g,sg,ag,s∆)Fs′∆

= J1(·|sg(t+ 1), sg(t), ag(t), ·)Fs∆

Then, by expanding the TV distance in ℓ1-norm:

TV(Es′
∆∪∆′∼J|∆∪∆′|(·|s′g,sg,ag,s∆∪∆′ )Fs′∆

,Es′
∆∪∆′∼J|∆∪∆′|(·|s′g,sg,ag,s∆∪∆′ )Fs′

∆′
)

=
1

2
∥J1(·|sg(t+ 1), sg(t), ag(t), ·)Fs∆−J1(·|sg(t+ 1), sg(t), ag(t), ·)Fs∆′∥1

≤ ∥J1(·|sg(t+ 1), sg(t), ag(t), ·)∥1 ·
1

2
∥Fs∆−Fs∆′∥1

≤ 1

2
∥Fs∆−Fs∆′∥1

= TV(Fs∆ , Fs∆′ )

In the first inequality, we factorize ∥J1(·|sg(t + 1), sg(t), ag(t))∥1 from the ℓ1-normed expression
by the sub-multiplicativity of the matrix norm. Finally, since J1 is a column-stochastic matrix, we
bound its norm by 1 to recover the total variation distance between Fs∆ and Fs∆′ .
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Lemma B.6. Given the joint transition probability Jk from Theorem B.1:
Es∆∪∆′ (t+1)∼J|∆∪∆′|(·|sg(t+1),sg(t),ag(t),s∆∪∆′ (t))Fs∆(t+1) := J1(·|sg(t+ 1), sg(t), ag(t), ·)Fs∆(t)

Proof. First, observe that for all x ∈ Sl:
Es∆∪∆′ (t+1)∼J|∆∪∆′|(·|sg(t+1),sg(t),ag(t),s∆∪∆′ (t))Fs∆(t+1)(x)

=
1

|∆|
∑
i∈∆

Es∆∪∆′ (t+1)∼J|∆∪∆′|(·|sg(t+1),sg(t),ag(t),s∆∪∆′ (t))1(si(t+ 1) = x)

=
1

|∆|
∑
i∈∆

Pr[si(t+ 1) = x|sg(t+ 1), sg(t), ag(t), s∆∪∆′(t))]

=
1

|∆|
∑
i∈∆

Pr[si(t+ 1) = x|sg(t+ 1), sg(t), ag(t), si(t))]

=
1

|∆|
∑
i∈∆

J1(x|sg(t+ 1), sg(t), ag(t), si(t))

In the first line, we expand on the definition of Fs∆(t+1)(x). Finally, we note that si(t + 1) is
conditionally independent to s∆∪∆′\i, which yields the equality above. Then, aggregating across
every entry x ∈ Sl,

Es∆∪∆′ (t+1)∼J|∆∪∆′|(·|sg(t+1),sg(t),ag(t),s∆∪∆′ (t))Fs∆(t+1)

=
1

|∆|
∑
i∈∆

J1(·|sg(t+ 1), sg(t), ag(t), ·)1⃗si(t)

= J1(·|sg(t+ 1), sg(t), ag(t), ·)Fs∆

Notably, every x corresponds to a choice of rows in J1(·|sg(t + 1), sg(t), ag(t), ·) and every
choice of si(t) corresponds to a choice of columns in J1(·|sg(t + 1), sg(t), ag(t), ·), making
J1(·|sg(t+ 1), sg(t), ag(t), ·) column-stochastic. This yields the claim.

Lemma B.7. The total variation distance between the expected empirical distribution of s∆(t+ 1)
and s∆′(t+ 1) is linearly bounded by the total variation distance of the empirical distributions of
s∆(t) and s∆′(t), for ∆,∆′ ⊆ [n]:

TV

(
Esi(t+1)∼Pl(·|si(t),sg(t)),

∀i∈∆

Fs∆(t+1),Esi(t+1)∼Pl(·|si(t),sg(t)),
∀i∈∆′

Fs∆′ (t+1)

)
≤ TV

(
Fs∆(t), Fs∆′ (t)

)
Proof. We expand the total variation distance measure in ℓ1-norm and utilize the result from Theo-
rem B.10 that Esi(t+1)∼Pl(·|si(t),sg(t))

∀i∈∆

Fs∆(t+1) = Pl(·|sg(t))Fs∆(t) as follows:

TV

(
Esi(t+1)∼Pl(·|si(t),sg(t))

∀i∈∆

Fs∆(t+1),Esi(t+1)∼Pl(·|si(t),sg(t))
∀i∈∆′

Fs∆′ (t+1)

)

=
1

2

∥∥∥∥∥Esi(t+1)∼Pl(·|si(t),sg(t))
∀i∈∆

Fs∆(t+1) − Esi(t+1)∼Pl(·|si(t),sg(t))
∀i∈∆′

Fs∆′ (t+1)

∥∥∥∥∥
1

=
1

2

∥∥Pl(·|·, sg(t))Fs∆(t) − Pl(·|·, sg(t))Fs∆′ (t)

∥∥
1

≤ ∥Pl(·|·, sg(t))∥1 ·
1

2
|Fs∆(t) − Fs∆′ (t)|1

= ∥Pl(·|·, sg(t))∥1 · TV(Fs∆(t), Fs∆′ (t))

In the last line, we recover the total variation distance from the ℓ1 norm. Finally, by the column
stochasticity of Pl(·|·, sg), we have that ∥Pl(·|·, sg)∥1 ≤ 1, which then implies

TV

(
Esi(t+1)∼Pl(·|si(t),sg(t))

∀i∈∆

Fs∆(t+1),Esi(t+1)∼Pl(·|si(t),sg(t))
∀i∈∆′

Fs∆′ (t+1)

)
≤ TV(Fs∆(t), Fs∆′ (t))

This proves the lemma.
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Remark B.8. Theorem B.7 can be viewed as an irreducibility and aperiodicity result on the
finite-state Markov chain whose state space is given by S = Sg × Snl . Let {st}t∈N denote the
sequence of states visited by this Markov chain where the transitions are induced by the transition
functions Pg, Pl. Through this, Theorem B.7 describes an ergodic behavior of the Markov chain.

Lemma B.9. The absolute difference between the expected maximums between Q̂k and Q̂k′ is
atmost the maximum of the absolute difference between Q̂k and Q̂k′ , where the expectations are
taken over any joint distributions of states J , and the maximums are taken over the actions.

|E(s′g,s
′
∆∪∆′ )∼J|∆∪∆′|(·,·|sg,ag,s∆∪∆′ )[ max

a′
g∈Ag

Q̂T
k (s

′
g, Fs′∆

, a′g)− max
a′
g∈Ag

Q̂T
k′(s′g, Fs′

∆′
, a′g)]|

≤ max
a′
g∈Ag

|E(s′g,s
′
∆∪∆′ )∼J|∆∪∆′|(·,·|sg,ag,s∆∪∆′ )[Q̂

T
k (s

′
g, Fs′∆

, a′g)− Q̂T
k′(s′g, Fs′

∆′
, a′g)]|

Proof.
a∗g := arg max

a′
g∈Ag

Q̂T
k (s

′
g, Fs′∆

, a′g), ã∗g := arg max
a′
g∈Ag

Q̂T
k′(s′g, Fs′

∆′
, a′g)

For the remainder of this proof, we adopt the shorthand Es′g,s
′
∆∪∆′

to refer to
E(s′g,s

′
∆∪∆′ )∼J|∆∪∆′|(·,·|sg,ag,s∆∪∆′ ).

Then, if Es′g,s
′
∆∪∆′

maxa′
g∈Ag Q̂

T
k (s

′
g, Fs′∆

, a′g) − Es′g,s
′
∆∪∆′

maxa′
g∈Ag Q̂

T
k′(s′g, Fs′

∆′
, a′g) > 0, we

have:
|Es′g,s

′
∆∪∆′

max
a′
g∈Ag

Q̂T
k (s

′
g, Fs′∆

, a′g)− Es′g,s
′
∆∪∆′

max
a′
g∈Ag

Q̂T
k′(s′g, Fs′

∆′
, a′g)|

= Es′g,s
′
∆∪∆′

Q̂T
k (s

′
g, Fs′∆

, a∗g)− Es′g,s
′
∆∪∆′

Q̂T
k′(s′g, Fs′

∆′
, ã∗g)

≤ Es′g,s
′
∆∪∆′

Q̂T
k (s

′
g, Fs′∆

, a∗g)− Es′g,s
′
∆∪∆′

Q̂T
k′(s′g, Fs′

∆′
, a∗g)

≤ max
a′
g∈Ag

|Es′g,s
′
∆∪∆′

Q̂T
k (s

′
g, Fs′∆

, a′g)− Es′g,s
′
∆∪∆′

Q̂T
k′(s′g, Fs′

∆′
, a′g)|

Similarly, if Es′g,s
′
∆∪∆′

maxa′
g∈Ag

Q̂T
k (s

′
g, Fs′∆

, a′g) − Es′g,s
′
∆∪∆′

maxa′
g∈Ag

Q̂T
k′(s′g, Fs′

∆′
, a′g) < 0,

an analogous argument by replacing a∗g with ã∗g yields an identical bound.

Lemma B.10. For all t ∈ N and ∆ ⊆ [n],
Esi(t+1)∼Pl(·|si(t),sg(t))

∀i∈∆

[Fs∆(t+1)] = Pl(·|·, sg(t))Fs∆(t)

Proof. For all x ∈ Sl:

Esi(t+1)∼Pl(·|si(t),sg(t))
∀i∈∆

[Fs∆(t+1)(x)] :=
1

|∆|
∑
i∈∆

Esi(t+1)∼Pl(si(t),sg(t))[1(si(t+ 1) = x)]

=
1

|∆|
∑
i∈∆

Pr[si(t+ 1) = x|si(t+ 1) ∼ Pl(·|si(t), sg(t))]

=
1

|∆|
∑
i∈∆

Pl(x|si(t), sg(t))

In the first line, we are writing out the definition of Fs∆(t+1)(x) and using the conditional indepen-
dence in the evolutions of ∆\i and i. In the second line, we use the fact that for any random variable
X ∈ X , EX1[X = x] = Pr[X = x]. In line 3, we observe that the above probability can be written
as an entry of the local transition matrix Pl. Then, aggregating across every entry x ∈ Sl, we have
that:

Esi(t+1)∼Pl(·|si(t),sg(t))
∀i∈∆

[Fs∆(t+1)] =
1

|∆|
∑
i∈∆

Pl(·|si(t), sg(t))

=
1

|∆|
∑
i∈∆

Pl(·|·, sg(t))1⃗si(t) =: Pl(·|·, sg(t))Fs∆(t)
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Here, 1⃗si(t) ∈ {0, 1}|Sl| such that 1⃗si(t) is 1 at the index corresponding to si(t), and is 0 everywhere
else. The last equality follows since Pl(·|·, sg(t)) is a column-stochastic matrix which yields that
Pl(·|·, sg(t))1⃗si(t) = Pl(·|si(t), sg(t)), thus proving the lemma.

Lemma B.11. For any joint transition probability function on sg, s∆, where |∆| = k, given by
Jk : Sg × S |∆|

l × Sg ×Ag × S |∆|
l → [0, 1], we have:

E(s′g,s
′
∆)∼Jk(·,·|sg,ag,s∆)

[
E(s′′g ,s

′′
∆)∼Jk(·,·|s′g,ag,s′∆) max

a′′
g∈Ag

Q̂T
k (s

′′
g , Fs′′∆

, a′′g )

]
= E(s′′g ,s

′′
∆)∼J 2

k (·,·|sg,ag,s∆) max
a′′
g∈Ag

Q̂T
k (s

′′
g , Fs′′∆

, a′′g )

Proof. We start by expanding the expectations:

E(s′g,s
′
∆)∼Jk(·,·|sg,ag,s∆)

[
E(s′′g ,s

′′
∆)∼Jk(·,·|s′g,ag,s′∆) max

a′
g∈Ag

Q̂T
k (s

′′
g , Fs′′∆

, a′g)

]
=

∑
(s′g,s

′
∆)∈Sg×S|∆|

l

∑
(s′′g ,s

′′
∆)∈Sg×S|∆|

l

Jk[s′g, s′∆, sg, ag, s∆]Jk[s′′g , s′′∆, s′g, ag, s′∆] max
a′
g∈Ag

Q̂T
k (s

′′
g , Fs′′∆

, a′g)

=
∑

(s′′g ,s
′′
∆)∈Sg×S|∆|

l

J 2
k [s

′′
g , s

′′
∆, sg, ag, s∆] max

a′
g∈Ag

Q̂T
k (s

′′
g , Fs′′∆

, a′g)

= E(s′′g ,s
′′
∆)∼J 2

k (·,·|sg,ag,s∆) max
a′
g∈Ag

Q̂T
k (s

′′
g , Fs′′∆

, a′g)

The right-stochasticity of Jk implies the right-stochasticity of J 2
k . Further, observe that

Jk[s′g, s′∆, sg, ag, s∆]Jk[s′′g , s′′∆, s′g, ag, s′∆] denotes the probability of the transitions (sg, s∆) →
(s′g, s

′
∆)→ (s′′g , s

′′
∆) with actions ag at each step, where the joint state evolution is governed by Jk.

Thus,
∑

(s′g,s
′
∆)∈Sg×S|∆|

l

Jk[s′g, s′∆, sg, ag, s∆]Jk[s′′g , s′′∆, s′g, ag, s′g] is the stochastic probability

function corresponding to the two-step evolution of the joint states from (sg, s∆) to (s′′g , s
′′
∆) un-

der the action ag , which is equivalent to J 2
k [s

′′
g , s

′′
∆, sg, ag, s∆]. In the third equality, we recover the

definition of the expectation, where the joint probabilities are taken over J 2
k .

The following lemma bounds the average difference between Q̂T
k (across every choice of ∆ ∈

(
[n]
k

)
)

and Q∗ and shows that the difference decays to 0 as T →∞.

Lemma B.12. For all s ∈ Sg × S[n], and for all ag ∈ Ag , we have:

Q∗(s, ag)−
1(
n
k

) ∑
∆∈([n]

k )

Q̂T
k (sg, Fs∆ , ag) ≤ γT

r̃

1− γ

Proof. We bound the differences between Q̂T
k at each Bellman iteration of our approximation toQ∗.

Q∗(s, ag)−
1(
n
k

) ∑
∆∈([n]

k )

Q̂T
k (sg, Fs∆ , ag)

= T Q∗(s, ag)−
1(
n
k

) ∑
∆∈([n]

k )

T̂kQ̂T−1
k (sg, Fs∆ , ag)

= r[n](sg, s[n], ag) + γE s′g∼Pg(·|sg,ag),

s′i∼Pl(·|si,sg),∀i∈[n])

max
a′
g∈Ag

Q∗(s′, a′g)

− 1(
n
k

) ∑
∆∈([n]

k )

[r[∆](sg, s∆, ag) + γE s′g∼Pg(·|sg,ag)

s′i∼Pl(·|si,sg),∀i∈∆

max
a′
g∈Ag

QT
k (s

′
g, Fs′∆

, a′g)]
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Next, observe that r[n](sg, s[n], ag) = 1

(nk)

∑
∆∈([n]

k )
r[∆](sg, s∆, ag). To prove this, we write:

1(
n
k

) ∑
∆∈([n]

k )

r[∆](sg, s∆, ag) =
1(
n
k

) ∑
∆∈([n]

k )

(rg(sg, ag) +
1

k

∑
i∈∆

rl(si, sg))

= rg(sg, ag) +

(
n−1
k−1

)
k
(
n
k

) ∑
i∈[n]

rl(si, sg)

= rg(sg, ag) +
1

n

∑
i∈[n]

rl(si, sg) := r[n](sg, s[n], ag)

In the second equality, we reparameterized the sum to count the number of times each rl(si, sg) was
added for each i ∈ ∆, and in the last equality, we expanded and simplified the binomial coefficients.

Therefore:

sup
(s,ag)∈S×Ag

[Q∗(s, ag)−
1(
n
k

) ∑
∆∈([n]

k )

Q̂T
k (sg, Fs[n]

, ag)]

= sup
(s,ag)∈S×Ag

[T Q∗(s, ag)−
1(
n
k

) ∑
∆∈([n]

k )

T̂kQ̂T−1
k (sg, Fs[n]

, ag)]

= γ sup
(s,ag)∈S×Ag

[Es′g∼P (·|sg,ag)

s′i∼Pl(·|si,sg)
∀i∈[n]

max
a′
g∈Ag

Q∗(s′, a′g)−
1(
n
k

) ∑
∆∈([n]

k )

Es′g∼Pg(·|sg,ag)

s′i∼Pl(·|si,sg)
∀i∈∆

max
a′
g∈Ag

Q̂T−1
k (s′g, Fs′∆

, a′g)]

= γ sup
(s,ag)∈S×Ag

E s′g∼Pg(·|sg,ag),

s′i∼Pl(·|si,sg),∀i∈[n]

[ max
a′
g∈Ag

Q∗(s′, a′g)−
1(
n
k

) ∑
∆∈([n]

k )

max
a′
g∈Ag

Q̂T−1
k (s′g, Fs′∆

, a′g)]

≤ γ sup
(s,ag)∈S×Ag

E s′g∼Pg(·|sg,ag),

s′i∼Pl(·|si,sg),∀i∈[n]

max
a′
g∈Ag

[Q∗(s′, a′g)−
1(
n
k

) ∑
∆∈([n]

k )

Q̂T−1
k (s′g, Fs′∆

, a′g)]

≤ γ sup
(s′,a′

g)∈S×Ag

[Q∗(s′, a′g)−
1(
n
k

) ∑
∆∈([n]

k )

Q̂T−1
k (s′g, Fs′∆

, a′g)]

We justify the first inequality by noting the general property that for positive vectors v, v′ for which
v ⪰ v′ which follows from the triangle inequality:

∥v − 1(
n
k

) ∑
∆∈([n]

k )

v′∥∞ ≥ |∥v∥∞ − ∥
1(
n
k

) ∑
∆∈([n]

k )

v′∥∞|

= ∥v∥∞ − ∥
1(
n
k

) ∑
∆∈([n]

k )

v′∥∞

≥ ∥v∥∞ −
1(
n
k

) ∑
∆∈([n]

k )

∥v′∥∞

Therefore:

Q∗(s, ag)−
1(
n
k

) ∑
∆∈([n]

k )

Q̂T
k (sg, Fs∆ , ag)

≤ γT sup
(s′,ag)∈S×Ag

[Q∗(s′, a′g)−
1(
n
k

) ∑
∆∈([n]

k )

Q̂0
k(s

′
g, Fs′∆

, a′g)]

=
γT r̃

1− γ
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The first inequality follows from the γ-contraction property of the update procedure, and the ensuing
equality follows from our bound on the maximum possible value ofQ from Theorem A.7 and noting
that Q̂0

k := 0.

Therefore, as T →∞,

Q∗(s, ag)−
1(
n
k

) ∑
∆∈([n]

k )

Q̂T (sg, Fs∆ , ag)→ 0,

which proves the lemma.

C BOUNDING TOTAL VARIATION DISTANCE

As |∆| → n, the total variation (TV) distance between the empirical distribution of s[n] and s∆ goes
to 0. We formalize this notion and prove this statement by obtaining tight bounds on the difference
and showing that this error decays quickly.
Remark C.1. First, observe that if ∆ is an independent random variable uniformly supported on(
[n]
k

)
, then s∆ is also an independent random variable uniformly supported on the global state

(s[n]

k

)
.

To see this, let ψ1 : [n] → Sl where ψ(i) = si. This naturally extends to ψk : [n]k → Skl
given by ψk(i1, . . . , ik) = (si1 , . . . , sik), for all k ∈ [n]. Then, the independence of ∆ implies the
independence of the generated σ-algebra. Further, ψk (which is a Lebesgue measurable function of
a σ-algebra) is a sub-algebra, implying that s∆ must also be an independent random variable.

For reference, we present the multidimensional Dvoretzky-Kiefer-Wolfowitz (DKW) inequality
Dvoretzky et al. (1956); Massart (1990); Naaman (2021) which bounds the difference between an
empirical distribution function for s∆ and s[n] when each element of ∆ for |∆| = k is sampled
uniformly randomly from [n] with replacement.
Theorem C.2 (Dvoretzky-Kiefer-Wolfowitz (DFW) inequality Dvoretzky et al. (1956)). By the
multi-dimensional version of the DKW inequality Naaman (2021), assume that Sl ⊂ Rd. Then,
for any ϵ > 0, the following statement holds for when ∆ ⊆ [n] is sampled uniformly with replace-
ment.

Pr

[
sup
x∈Sl

∣∣∣∣∣ 1

|∆|
∑
i∈∆

1{si = x} − 1

n

n∑
i=1

1{si = x}

∣∣∣∣∣ < ϵ

]
≥ 1− d(n+ 1)e−2|∆|ϵ2 ·

We give an analogous bound for the case when ∆ is sampled uniformly from [n] without replace-
ment. However, our bound does not have a dependency on d, the dimension of Sl which allows us
to consider non-numerical state-spaces.

Before giving the proof, we add a remark on this problem. Intuitively, when samples are chosen
without replacement from a finite population, the marginal distribution, when conditioned on the
random variable chosen, takes the running empirical distribution closer to the true distribution with
high probability. However, we need a uniform probabilistic bound on the error that adapts to worst-
case marginal distributions and decays with k.

Recall the landmark results of Hoeffding and Serfling in Hoeffding (1963) and Serfling (1974) which
we restate below.
Lemma C.3 (Lemma 4, Hoeffding). Given a finite population, note that for any convex and con-
tinuous function f : R → R, if X = {x1, . . . , xk} denotes a sample with replacement and
Y = {y1, . . . , yk} denotes a sample without replacement, then:

Ef

(∑
i∈X

i

)
≤ Ef

(∑
i∈Y

i

)
Lemma C.4 (Corollary 1.1, Serfling). Suppose the finite subset X ⊂ R such that |X | = n is
bounded between [a, b]. Then, let X = (x1, . . . , xk) be a random sample of X of size k chosen
uniformly and without replacement. Denote µ := 1

n

∑n
i=1 xi. Then:

Pr

[∣∣∣∣∣1k
k∑

i=1

xi − µ

∣∣∣∣∣ > ϵ

]
< 2e

− 2kϵ2

(b−a)2(1− k−1
n

)

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

We now present a sampling without replacement analog of the DKW inequality.

Theorem C.5 (Sampling without replacement analogue of the DKW inequality). Consider a finite
population X = (x1, . . . , xn) ∈ Snl . Let ∆ ⊆ [n] be a random sample of size k chosen uniformly
and without replacement.

Then, for all x ∈ Sl:

Pr

 sup
x∈Sl

∣∣∣∣∣∣ 1

|∆|
∑
i∈∆

1{xi = x} − 1

n

∑
i∈[n]

1{xi = x}

∣∣∣∣∣∣ < ϵ

 ≥ 1− 2|Sl|e−
2|∆|nϵ2

n−|∆|+1

Proof. For each x ∈ Sl, define the “x-surrogate population” of indicator variables as
X̄x = (1{x1=x}, . . . ,1{xn=x}) ∈ {0, 1}n (28)

Since the maximal difference between each element in this surrogate population is 1, we set b−a = 1
in Theorem C.4 when applied to X̄x to get:

Pr

∣∣∣∣∣∣ 1

|∆|
∑
i∈∆

1{xi = x} − 1

n

∑
i∈[n]

1{xi = x}

∣∣∣∣∣∣ < ϵ

 ≥ 1− 2e−
2|∆|nϵ2

n−|∆|+1

In the above equation, the probability is over ∆ ⊆
(
[n]
k

)
and it holds for each x ∈ Sl. Therefore, the

randomness is only over ∆.

Then, by a union bounding argument, we have:

Pr

[
sup
x∈Sl

∣∣∣∣ 1

|∆|
∑
i∈∆

1{xi = x}− 1

n

∑
i∈[n]

1{xi = x}
∣∣∣∣ < ϵ

]

= Pr

 ⋂
x∈Sl


∣∣∣∣∣∣ 1

|∆|
∑
i∈∆

1{xi = x}− 1

n

∑
i∈[n]

1{xi = x}

∣∣∣∣∣∣ < ϵ




= 1−
∑
x∈Sl

Pr

∣∣∣∣∣∣ 1

|∆|
∑
i∈∆

1{xi = x}− 1

n

∑
i∈[n]

1{xi = x}

∣∣∣∣∣∣ ≥ ϵ


≥ 1−2|Sl|e−
2|∆|nϵ2

n−|∆|+1

This proves the claim.

Then, combining the Lipschitz continuity bound from Theorem 4.1 and the total variation distance
bound from Theorem 4.2 yields Theorem C.6.

Theorem C.6. For all sg∈Sg, s1,. . ., sn∈Snl , ag∈Ag , we have that with probability atleast 1− δ:

|Q̂T
k (sg, Fs∆ , ag)− Q̂T

n (sg, Fs[n]
, ag)| ≤

2∥rl(·, ·)∥∞
1− γ

√
n− |∆|+ 1

8n|∆|
ln(2|Sl|/δ)

Proof. By the definition of total variation distance, observe that
TV(Fs∆ , Fs[n]

) ≤ ϵ ⇐⇒ sup
x∈Sl

|Fs∆ − Fs[n]
| < 2ϵ (29)

Then, let X = Sl be the finite population in Theorem C.5 and recall the Lipschitz-continuity of Q̂T
k

from Theorem B.2:∣∣∣Q̂T
k (sg, Fs∆ , ag)− Q̂T

n (sg, Fs[n]
, ag)

∣∣∣ ≤ (T−1∑
t=0

2γt

)
∥rl(·, ·)∥∞ · TV(Fs∆ , Fs[n]

)

≤ 2

1− γ
∥rl(·, ·)∥∞ · ϵ

29
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By setting the error parameter in Theorem C.5 to 2ϵ, we find that Equation (29) occurs with proba-
bility at least 1− 2|Sl|e−2|∆|nϵ2/(n−|∆|+1).

Pr

[∣∣∣Q̂T
k (sg, Fs∆ , ag)− Q̂T

n (sg, Fs[n]
, ag)

∣∣∣ ≤ 2ϵ

1− γ
∥rl(·, ·)∥∞

]
≥ 1− 2|Sl|e−

8n|∆|ϵ2
n−|∆|+1

Finally, we parameterize the probability to 1− δ to solve for ϵ, which yields

ϵ =

√
n− |∆|+ 1

8n|∆|
ln(2|Sl|/δ).

This proves the theorem.

The following lemma is not used in the main result; however, we include it to demonstrate why
popular TV-distance bounding methods using the Kullback-Liebler (KL) divergence and the
Bretagnolle-Huber inequality (Tsybakov, 2008) only yield results with a suboptimal subtractive
decay of

√
|∆|/n. In comparison, Theorem 4.2 achieves a stronger multiplicative decay of 1/

√
|∆|.

Lemma C.7.
TV(Fs∆ , Fs[n]

) ≤
√
1− |∆|/n

Proof. By the symmetry of the total variation distance, we have TV(Fs[n]
, Fs∆) = TV(Fs∆ , Fs[n]

).

From the Bretagnolle-Huber inequality Tsybakov (2008) we have that TV(f, g) =√
1− e−DKL(f∥g). Here, DKL(f∥g) is the Kullback-Leibler (KL) divergence metric between prob-

ability distributions f and g over the sample space, which we denote by X and is given by

DKL(f∥g) :=
∑
x∈X

f(x) ln
f(x)

g(x)
(30)

Thus, from Equation (30):

DKL(Fs∆∥Fs[n]
) =

∑
x∈Sl

(
1

|∆|
∑
i∈∆

1{si = x}

)
ln

n
∑

i∈∆ 1{si = x}
|∆|
∑

i∈[n] 1{si = x}

=
1

|∆|
∑
x∈Sl

(∑
i∈∆

1{si = x}

)
ln

n

|∆|

+
1

|∆|
∑
x∈Sl

(∑
i∈∆

1{si = x}

)
ln

∑
i∈∆ 1{si = x}∑
i∈[n] 1{si = x}

= ln
n

|∆|
+

1

|∆|
∑
x∈Sl

(∑
i∈∆

1{si = x}

)
ln

∑
i∈∆ 1{si = x}∑
i∈[n] 1{si = x}

≤ ln(n/|∆|)

In the third line, we note that
∑

x∈Sl

∑
i∈∆ 1{si = x} = |∆| since each local agent contained

in ∆ must have some state contained in Sl. In the last line, we note that
∑

i∈∆ 1{si = x} ≤∑
i∈[n] 1{si = x}, for each x ∈ Sl, and hence the summation of logarithmic terms in the third line

is negative.

Finally, using this bound in the Bretagnolle-Huber inequality yields the lemma.
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D USING THE PERFORMANCE DIFFERENCE LEMMA TO BOUND THE
OPTIMALITY GAP

Recall from Theorem A.13 that the fixed-point of the empirical adapted Bellman operator T̂k,m is
Q̂est

k,m. Further, recall from Theorem 3.3 that ∥Q̂∗
k − Q̂est

k,m∥∞ ≤ ϵk,m.

Lemma D.1. Fix s ∈ S := Sg × Snl . Suppose we are given a T -length sequence of i.i.d. random
variables ∆1, . . . ,∆T , distributed uniformly over the support

(
[n]
k

)
. Further, suppose we are given

a fixed sequence δ1, . . . , δT ∈ (0, 1). Then, for each action ag ∈ Ag and for i ∈ [T ], define events
B

ag

i such that:

B
ag

i :=

∣∣∣Q∗(sg, s[n], ag)−Q̂est
k,m(sg, Fs∆i

, ag)
∣∣∣>
√
n− k + 1

8kn
ln

2|Sl|
δi
· 2

1− γ
∥rl(·, ·)∥∞ + ϵk,m


Next, for i ∈ [M ], we define “bad-events” Bi such that Bi =

⋃
ag∈Ag

B
ag

i . Next, denote B =

∪Ti=1Bi. Then, the probability that no “bad event” occurs is:

Pr
[
B̄
]
≥ 1− |Ag|

T∑
i=1

δi

Proof.∣∣∣Q∗(sg, s[n], ag)− Q̂est
k,m(sg, Fs∆ , ag)

∣∣∣ ≤ ∣∣∣Q∗(sg, s[n], ag)− Q̂∗
k(sg, Fs∆ , ag)

∣∣∣
+
∣∣∣Q̂∗

k(sg, Fs∆ , ag)− Q̂est
k,m(sg, Fs∆ , ag)

∣∣∣
≤
∣∣∣Q∗(sg, s[n], ag)− Q̂∗

k(sg, Fs∆ , ag)
∣∣∣+ ϵk,m

The first inequality above follows from the triangle inequality, and the second inequality uses
|Q∗(sg, s[n], ag)− Q̂∗

k(sg, Fs∆ , ag)| ≤ ∥Q∗(sg, s[n], ag)− Q̂∗
k(sg, Fs∆ , ag)∥∞ ≤ ϵk,m, where ϵk,m

is defined in Theorem 3.3. Then, from Theorem C.6, we have that with probability at least 1− δi,∣∣∣Q∗(sg, s[n], ag)− Q̂∗
k(sg, Fs∆ , ag)

∣∣∣ ≤
√
n− k + 1

8nk
ln

2|Sl|
δi
· 2

1− γ
∥rl(·, ·)∥∞

So, event Bi occurs with probability atmost δi. Thus, by repeated applications of the union bound,
we get:

Pr[B̄] ≥ 1−
T∑

i=1

∑
ag∈Ag

Pr[B
ag

i ]

≥ 1− |Ag|
T∑

i=1

Pr[B
ag

i ]

Finally, substituting Pr[B̄
ag

i ] ≤ δi yields the lemma.

Recall that for any s ∈ S := Sg × Snl ∼= Sg , the policy function πest
k,m(s) is defined as a uniformly

random element in the maximal set of π̂est
k,m evaluated on all possible choices of ∆. Formally:

πest
k,m(s) ∼ U

{
π̂est
k,m(sg, Fs∆) : ∆ ∈

(
[n]

k

)}
(31)

We now use the celebrated performance difference lemma from Kakade & Langford (2002),
restated below for convenience in Theorem D.2, to bound the value functions generated between
πest
k,m and π∗.
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Theorem D.2 (Performance Difference Lemma). Given policies π1, π2, with corresponding value
functions V π1 , V π2 :

V π1(s)− V π2(s) =
1

1− γ
E s′∼dπ1

s

a′
g∼π1(·|s′)

[Aπ2(s′, a′g)]

Here, Aπ2(s′, a′g) := Qπ2(s′, a′g) − V π2(s′) and dπ1
s (s′) = (1 − γ)

∑∞
h=0 γ

h Prπ1

h [s′, s] where
Prπ1

h [s′, s] is the probability of π1 reaching state s′ at time step h starting from state s.

Theorem D.3 (Bounding value difference). For any s ∈ S := Sg × Snl and (δ1, δ2) ∈ (0, 1]2, we
have:

V π∗
(s)− V πest

k,m(s) ≤ 2∥rl(·, ·)∥∞
(1− γ)2

√
n− k + 1

2nk

√
ln

2|Sl|
δ1

+
2r̃

(1− γ)2
|Ag|δ1 +

2ϵk,m
1− γ

Proof. Note that by definition of the advantage function,

Ea′
g∼πest

k,m(·|s′)A
π∗
(s′, a′g) = Ea′

g∼πest
k,m(·|s′)[Q

π∗
(s′, a′g)− V π∗

(s′)]

= Ea′
g∼πest

k,m(·|s′)[Q
π∗
(s′, a′g)− Ea∼π∗(·|s′)Q

π∗
(s′, ag)]

= Ea′
g∼πest

k,m(·|s′)Eag∼π∗(·|s′)[Q
π∗
(s′, a′g)−Qπ∗

(s′, ag)].

Since π∗ is a deterministic policy, we can write:

Ea′
g∼πest

k,m(·|s′)Eag∼π∗(·|s′)A
π∗
(s′, a′g) = Ea′

g∼πest
k,m(·|s′)[Q

π∗
(s′, a′g)−Qπ∗

(s′, π∗(s′))]

=
1(
n
k

) ∑
∆∈([n]

k )

[Qπ∗
(s′, π̂est

k,m(s′g, Fs′∆
))−Qπ∗

(s′, π∗(s′))]

Then, by the linearity of expectations and the performance difference lemma (while noting that
Qπ∗

(·, ·) = Q∗(·, ·)):

V π∗
(s)− V πest

k,m(s) =
1

1− γ
∑

∆∈([n]
k )

1(
n
k

)E
s′∼d

πest
k,m

s

[
Qπ∗

(s′, π∗(s′))−Qπ∗
(s′, π̂est

k,m(s′g, Fs′∆
))
]

=
1

1− γ
∑

∆∈([n]
k )

1(
n
k

)E
s′∼d

πest
k,m

s

[
Q∗(s′, π∗(s′))−Q∗(s′, π̂est

k,m(s′g, Fs′∆
))
]

Next, we use Theorem D.4 to bound this difference (where the probability distribution function of

D is set as d
πest
k,m

s as defined in Theorem D.2) while letting δ1 = δ2:

V π∗
(s)− V πest

k,m(s)

≤ 1

1− γ
∑

∆∈([n]
k )

1(
n
k

)[2∥rl(·, ·)∥∞
1− γ

√
n− k + 1

2nk

√ln
2|Sl|
δ1

+
2r̃

1− γ
|Ag|δ1 + 2ϵk,m

]

≤ 2∥rl(·, ·)∥∞
(1− γ)2

√
n− k + 1

2nk

√ln
2|Sl|
δ1

+
2r̃

(1− γ)2
|Ag|δ1 +

2ϵk,m
1− γ

This proves the theorem.

Lemma D.4. For any arbitrary distribution D of states S := Sg × Snl , for any ∆ ∈
(
[n]
k

)
and for

δ1, δ2 ∈ (0, 1], we have:

Es′∼D[Q
∗(s′, π∗(s′))−Q∗(s′, π̂est

k,m(s′g, Fs′∆))]

≤ 2∥rl(·, ·)∥∞
1− γ

√
n− k + 1

8nk

√ln
2|Sl|
δ1

+

√
ln

2|Sl|
δ2

+
r̃

1− γ
|Ag|(δ1 + δ2) + 2ϵk,m
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Proof. Denote ζs,∆k,m := Q∗(s, π∗(s)) − Q∗(s, π̂est
k,m(sg, Fs∆). We define the indicator function

I : S × N× (0, 1]× (0, 1] by:

I(s, k, δ1, δ2) = 1

ζs,∆k,m ≤
2∥rl(·, ·)∥∞

1− γ

√
n− k + 1

8nk

√ln
2|Sl|
δ1

+

√
ln

2|Sl|
δ2

+ 2ϵk,m


We then study the expected difference between Q∗(s′, π∗(s′)) and Q∗(s′, π̂est

k,m(s′g, Fs′∆
)). Observe

that:

Es′∼D[ζ
s,∆
k,m] = Es′∼D[Q

∗(s′, π∗(s′))−Q∗(s′, π̂est
k,m(s′g, Fs′∆

))]

= Es′∼D
[
I(s′, k, δ1, δ2)(Q∗(s′, π∗(s′))−Q∗(s′, π̂est

k,m(s′g, Fs′∆
)))
]

+ Es′∼D[(1− I(s′, k, δ1, δ2))(Q∗(s′, π∗(s′))−Q∗(s′, π̂est
k,m(s′g, Fs′∆

)))]

Here, we have used the general property for a random variable X and constant c that E[X] =
E[X1{X ≤ c}] + E[(1− 1{X ≤ c})X]. Then,

Es′∼D[Q
∗(s′, π∗(s′))−Q∗(s′, π̂est

k,m(s′g, Fs′∆
)]

≤ 2∥rl(·, ·)∥∞
1− γ

√
n− k + 1

8nk

√ln
2|Sl|
δ1

+

√
ln

2|Sl|
δ2)

+ 2ϵk,m

+
r̃

1− γ
(1− Es′∼DI(s′, k, δ1, δ2)))

≤ 2∥rl(·, ·)∥∞
1− γ

√
n− k + 1

8nk

√ln
2|Sl|
δ1

+

√
ln

2|Sl|
δ2)

+ 2ϵk,m

+
r̃

1− γ
|Ag|(δ1 + δ2)

For the first term in the first inequality, we use E[X1{X ≤ c}] ≤ c. For the second term, we
trivially bound Q∗(s′, π∗(s′))−Q∗(s′, π̂est

k,m(s′g, Fs′∆
)) by the maximum value Q∗ can take, which

is r̃
1−γ by Theorem A.7.

In the second inequality, we use the fact that the expectation of an indicator function is the
conditional probability of the underlying event. The second inequality follows from Theorem D.5
which yields the claim.

Lemma D.5. For a fixed s′ ∈ S := Sg × Snl , for any ∆ ∈
(
[n]
k

)
, and for δ1, δ2 ∈ (0, 1], we have

that with probability at least 1− |Ag|(δ1 + δ2):

Q∗(s′, π∗(s′))−Q∗(s′, π̂est
k,m(s′g, Fs′∆

))≤ 2∥rl(·, ·)∥∞
1− γ

√
n− k + 1

8nk

√ln
2|Sl|
δ1

+

√
ln

2|Sl|
δ2

+2ϵk,m

Proof.

Q∗(s′, π∗(s′))−Q∗(s′, π̂est
k,m(s′g, Fs′∆

))

= Q∗(s′, π∗(s′))−Q∗(s′, π̂est
k,m(s′g, Fs′∆))+Q̂

est
k,m(s′g, s

′
∆, π

∗(s′))

− Q̂est
k,m(s′g, s

′
∆, π

∗(s′))+Q̂est
k,m(s′g, s

′
∆, π̂

est
k,m(s′g, Fs′∆

))

−Q̂est
k,m(s′g, Fs′∆

, π̂est
k,m(s′g, Fs′∆

))

By the monotonicity of the absolute value and by the triangle inequality,

Q∗(s′, π∗(s′))−Q∗(s′, π̂est
k,m(s′g, Fs′∆

))

≤ |Q∗(s′, π∗(s′))− Q̂est
k,m(s′g, Fs′∆

, π∗(s′))|

+ |Q̂est
k,m(s′g, Fs′∆

, π̂est
k,m(s′g, Fs′∆

))−Q∗(s′, π̂est
k,m(s′g, Fs′∆

))|
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The above inequality crucially uses the fact that the residual term Q̂est
k,m(s′g, Fs′∆

, π∗(s′)) −
Q̂est

k,m(s′g, Fs′∆
, π̂est

k,m(s′g, Fs′∆
)) ≤ 0, since π̂est

k,m is the optimal greedy policy for Q̂est
k,m.

Finally, applying the error bound derived in Theorem D.1 for two timesteps completes the proof.

Corollary D.6. Optimizing parameters in Theorem D.3 yields:

V π∗
(s)− V πest

k,m(s) ≤ 2r̃

(1− γ)2

(√
n− k + 1

2nk
ln(2|Sl||Ag|

√
k) +

1√
k

)
+

2ϵk,m
1− γ

Proof. Recall from Theorem D.3 that:

V π∗
(s)− V πest

k,m(s) ≤ 2∥rl(·, ·)∥∞
(1− γ)2

√
n− k + 1

2nk

√ln
2|Sl|
δ1

+
2∥rl(·, ·)∥∞
(1− γ)2

|Ag|δ1 +
2ϵk,m
1− γ

Note ∥rl(·, ·)∥∞ ≤ r̃ from Assumption 2.2. Then,

V π∗
(s)− V πest

k,m(s) ≤ 2r̃

(1− γ)2

√n− k + 1

2nk
ln

2|Sl|
δ1

+ |Ag|δ1

+
2ϵk,m
1− γ

Finally, setting δ1 = 1
k1/2|Ag|

yields the claim.

Corollary D.7. Therefore, from Theorem D.6, we have:

V π∗
(s)− V πest

k,m(s) ≤ O
(

r̃√
k(1− γ)2

√
ln(2|Sl||Ag|

√
k) +

ϵk,m
1− γ

)
= Õ

(
r̃(1− γ)−2

√
k

+
ϵk,m
1− γ

)
This yields the bound from Theorem 3.4.

E BEYOND THE TABULAR SETTING (IN THE LINEAR BELLMAN COMPLETE
SETTING)

This section extends our result to non-tabular settings where the global agent’s state space Sg can
be a compact infinite set, and the global agent’s action space Ag and each local agent’s state space
Sl is a finite set. In order to solve this problem, we make assumptions on the underlying MDP. A
common assumption made is the linearity of value functions with respect to some known features
(Sutton et al., 1999b; Chen & Theja Maguluri, 2022; Min et al., 2023).

At a high-level, this section learns the non-tabular function Q̂est
k,m using function approximation

methods from Golowich & Moitra (2024) under assumptions of Linear Bellman completeness, and
using the triangle inequality to bound the performance between the optimal policy and the subsam-
pled policy learned via sampling and linear function approximation.

Typically, existing works in the literature assume the existence of a map ϕ such that ϕ : S ×
A → Rd, where d is the dimension of the embedding ϕ. The weakest assumption made on the
value function is that Q is linear: for some w ∈ Rd, Q(s, a) = ⟨w, ϕ(s, a)⟩ for all (s, a) ∈ S ×
A. However, it is conjectured that it is impossible to computationally learn a near-optimal policy
under this assumption. Therefore, in accordance with Golowich & Moitra (2024), we make the
stronger assumption that the underlying Markov decision process on the subsampled Q-function,
Q̂est

k,m, satisfies Linear Bellman completeness. This class of Linear Bellman completeness captures
a variety of function classes: for instance, it subsumes the set of linear MDPs and MDPs with low
Bellman-Eluder (BE) dimension, which in turn contains rich subclasses such as functions with low
Eluder dimension or low Bellman rank.
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Definition E.1 (Linear Bellman Completeness). Firstly, for t ∈ N and k ≤ n, let Bk,t denote the set
of coefficient vectors bounding linear functions on Sg × Skl ×Ag such that

Bk,t = {θk ∈ Rd : |⟨ϕk,t(sg, s∆, ag), θk⟩| ≤ 1,∀(sg, s∆, at) ∈ S × Skl ×Ag)}
Then, a Markov decision process is said to be linear Bellman complete with respect to the feature
mapping {ϕk,t}t∈[T ] if for each t ∈ [T ] and k ≤ n, there is a mappingMk,t : Bk,t+1 → Bk,t such
that for all θk ∈ Bk,t and all (sg, s∆, ag) ∈ Sg × Skl ×Ag ,

⟨ϕk,t(sg, s∆, ag),Mk,tθk⟩ = Es′g,s
′
∆∼P(·|sg,s∆,ag)

[
max
a′
g∈Ag

⟨ϕk,t+1(s
′
g, s

′
∆, a

′
g), θk⟩

]
, (32)

and such that the reward r∆(s, ag) is given by r∆(s, ag) = ⟨ϕt(sg, s∆, ag), θk,t⟩, for θk,t ∈ Bk,t.

Therefore, we make the following assumptions:
Assumption E.1. For all k ≤ n, the corresponding MDPs underlying the dynamics of Q̂∗

k is Linear
Bellman complete.
Assumption E.2. rg and rl have a linear form, such that the structured reward function r∆(s, ag) =
rg(sg, ag) +

1
k

∑
i∈∆ rl(si, sg) can be linearly decomposed to satisfy linear Bellman completeness.

Under the above assumptions of Linear Bellman completeness, the problem of learning the subsam-
pled Q̂est

k,m in the non-tabular setting is amenable to Algorithm 1 from Golowich & Moitra (2024),
which provides the following theoretical guarantee:
Lemma E.2 (Adapting theorem 5.10 from Golowich & Moitra (2024)). Suppose Algorithm 1 has
τ samples and produces policy σ̂est

k,m which is used to derive a subsampling policy σest
k,m. Then, if

σest
k,m is used T ′ times, we have:

|V πest
k,m(s)− V σest

k,m(s)| ≤ 64
T ′d|Ag|
τ1/|Ag|

. (33)

Remark E.3. We refer the interested reader to Algorithm 1 of Golowich & Moitra (2024). At a
high-level, their algorithm designs exploration bonuses for which Bk,t is linear, and uses policy
search through dynamic programming to design the bonus. This idea can be viewed as a variant of
optimistic exploration. The result then follows by applying a variant of least-squares value iteration
(LSVI) on these locally optimistic rewards.

Corollary E.4. Applying the triangle inequality, we see that:

V π∗
(s)− V σest

k,m(s) = V π∗
(s)− V πest

k,m(s) + V πest
k,m(s)− V σest

k,m(s)

≤ |V π∗
(s)− V πest

k,m(s)|+ |V πest
k,m(s)− V σest

k,m(s)|

≤ 2r̃

(1− γ)2

(√
n− k + 1

2nk
ln(2|Sl||Ag|

√
k) +

1√
k

)
+

2ϵk,m
1− γ

+
64T ′d|Ag|
τ1/|Ag|

Therefore, as the number of samples τ goes to infinity, we recover an optimality gap that decays
with k as k → n.

F ADDITIONAL DISCUSSIONS

Discussion F.1 (Tighter Endpoint Analysis). Our theoretical result shows that V π∗
(s) − V πest

k,m

decays on the order of O(1/
√
k + ϵk,m). For k = n, this bound is actually suboptimal since Q̂∗

k
becomes Q∗. However, placing |∆| = n in our weaker TV bound in Lemma C.7, we recovers a
total variation distance of 0 when k = n, recovering the optimal endpoint bound.
Discussion F.2 (Choice of k). Discussion 3.6 previously discussed the tradeoff in k between the
polynomial in k complexity of learning the Q̂k function and the decay in the optimality gap of
O(1/

√
k). This discussion promoted k = O(log n) as a means to balance the tradeoff. However,

the “correct” choice of k truly depends on the amount of compute available, as well as the accuracy
desired from the method. If the former is available, we recommend setting k = Ω(n) as it will yield
a more optimal policy. Conversely, setting k = O(log n), when n is large, would be the minimum k
recommended to realize any asymptotic decay of the optimality gap.
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