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Abstract

Several recent deep learning (DL) based techniques per-
form considerably well on image-based multilingual text
detection. However, their performance relies heavily on the
availability and quality of training data. There are numer-
ous types of page-level document images consisting of in-
formation in several modalities, languages, fonts, and lay-
outs. This makes text detection a challenging problem in the
field of computer vision (CV), especially for low-resource
or handwritten languages. Furthermore, there is a scarcity
of word-level labeled data for text detection, especially for
multilingual settings and Indian scripts that incorporate
both printed and handwritten text. Conventionally, Indian
script text detection requires training a DL model on plenty
of labeled data, but to the best of our knowledge, no relevant
datasets are available. Manual annotation of such data re-
quires a lot of time, effort, and expertise. In order to solve
this problem, we propose TEXTRON, a Data Programming-
based approach, where users can plug various text detec-
tion methods into a weak supervision-based learning frame-
work. One can view this approach to multilingual text de-
tection as an ensemble of different CV-based techniques and
DL approaches. TEXTRON can leverage the predictions
of DL models pre-trained on a significant amount of lan-
guage data in conjunction with CV-based methods to im-
prove text detection in other languages. We demonstrate
that TEXTRON can improve the detection performance for
documents written in Indian languages, despite the absence
of corresponding labeled data. Further, through extensive
experimentation, we show improvement brought about by
our approach over the current State-of-the-art (SOTA) mod-
els, especially for handwritten Devanagari text. Code and
dataset has been made available at https://github.
com/IITB-LEAP—-OCR/TEXTRON

1. Introduction

Text detection aims to localize the textual information
present in images. Text detection from documents is an es-
sential and one of the first steps in Optical Character Recog-
nition (OCR). With Deep Learning(DL) methods replacing
conventional approaches in several fields, text detection also
benefits from such DL techniques including various convo-
lutional neural networks (CNNSs) [7], region-based convolu-
tional neural networks (R-CNNs), and fully convolutional
networks (FCNs) [34], offering their robust solutions. A
major limitation of deep learning methods is the need for
ample training data, which can be challenging to obtain, es-
pecially in resource-limited situations like identifying new
languages without readily available datasets. Further, as
demonstrated in Figure la, it is seen that pre-trained DL-
based methods (like DBNet [18]) are not able to capture
different styles of handwriting or word level demarcation
for multilingual scripts (such as those of Indian languages).
As opposed to this, certain image processing-based tech-
niques like contour-based techniques [20] which work on
the pixel level, can work well to capture these different writ-
ing styles by engulfing concerned characters and nuances
as illustrated in Figure 1b. A lot of CV-based techniques
that work on the principle of edge detection, such as So-
bel Filter Usage [14] or Canny Filter Application [4] have
prevailed for a few decades. Since these CV-based meth-
ods that work on pixel-level classification are more adap-
tive to different styles and fonts of text, they can be con-
sidered insightful in contributing to the effective detection
of diverse text. However, unlike DL-based methods, CV-
based methods are sensitive to noise and may not be able to
unify the complete word in one bounding box as can be seen
in Figure 1b. This can drastically affect the performance
of visually rich or scanned documents. Consequently, we
propose integrating the robustness and noise immunity of
DL-based methods with the diversity-capturing ability of
CV-based techniques, leading to the introduction of TEX-
TRON. As shown in Figure 1c, TEXTRON can help accu-
rately identify word-level boxes by combining the strengths
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Figure 1. A comparative overview of different text detection approaches. The green boxes in subsequent figures highlight true positives
while the red ones represent incorrect detections that either engulf more than two words in a single bounding box or fragment a single word

into multiple boxes.

of both the aforementioned kinds of approaches (CV-based
and DL-based). TEXTRON can help in the effective ag-
gregation of different text detection methods (weak labels)
and can also handle scenarios with scarcity or absence of
labeled data. This aggregation of different text detection
methods is different from an ensemble approach, because
in the latter, there is a need to use two or more models to be
fitted on the same labeled data, and then the predictions of
each model are combined. Contrary to this, TEXTRON tries
to eliminate dependency on labeled data. In an attempt to
incorporate different CV-based techniques, TEXTRON also
works on the document images on a pixel-based classifica-
tion level that helps in capturing the subtlety of text. Thus,
through TEXTRON , we can bring about effective multilin-
gual text detection which is not very sensitive to noise and
at the same time helps capture a rich diversity of text written
in different languages and modalities (such as handwritten
vs. printed). In addition to this, it also reduces and often
eliminates the need to train new DL models and does not
rely on labeled data. We highlight recent work in text de-
tection and the role of weak supervision associated with it
in Section 2. We also describe our methodology and asso-
ciated unsupervised experimentation in Sections 3 and 4 re-
spectively. We further demonstrate the usage of TEXTRON
and report the relevant results in Section 5. Finally, we con-
clude with opening doors to more innovative contributions
bringing about seamless multilingual text detection.

2. Related Works

Deep learning-based text detection has garnered recent
attention. Such DL-based text detection in images can
be either bounding box-based or pixel-based. Bound-
ing box-based text detection takes inspiration from Ob-
ject Detection approaches such as YOLO [27], SSD [19],
and Faster RCNN [28]. On the other hand, pixel-based
text detection methods include the approaches inspired by
Mask RCNN [9] and FCN [21] which include CRAFT
[3], PSENet [17], etc. Differential Binarization or DB-
Net [18] is one of the recently introduced approaches that
work at the pixel level followed by a label generation pro-
cess to retrieve word-level bounding boxes. DBNet is a
segmentation-based detection network with a RESNET [10]

backbone making it faster, more accurate, and lightweight.
Other segmentation-based text detection methods include
LinkNet [6] which attempts to exploit parameters utiliza-
tion of neural networks efficiently. Due to the optimiza-
tion in parameter usage, LinkNet helps to decrease the pro-
cessing time required for text detection. Unsupervised seg-
mentation approaches have also been employed generically
to classify regions of an input image and assign labels to
them. One such unsupervised approach [13] leverages a
pre-trained CNN model to assign labels to pixels. However,
the number of unique labels should be sufficiently large to
leverage this unsupervised segmentation technique. Com-
puter Vision (CV) based text detection includes a variety of
algorithms such as edge detection [14], connected compo-
nent analysis [ |, 15], Stroke Width Transform (SWT) [25],
and contour-based methods [20]. Edge detection methods
include the usage of the Sobel filter [14] method to find
the corresponding edges of the textual information present
in a binarized map of the input document image. Further,
the canny [4] algorithm to detect regions based on edges
can also help perform text detection. Recently, to address
the scarcity of labeled data, there has been an emergence
of weak-supervision and semi-supervision-based text de-
tection in documents. Text-as-Lines [32] proposes a scene
text detector based on weakly supervised learning that helps
in the annotation process. This method uses coarse line-
level pixel-based masks to denote text lines in documents.
The usage of coarse masks as opposed to full pixel-level
masks makes the process robust and faster to train. We-
Text [31] exploits the paradigm of both weak supervision
and semi-supervision to eventually train models to perform
scene text detection. It follows a character-based approach
to handle multilingual as well as multi-oriented text. Var-
ious semi-supervised and unsupervised data programming
approaches [2,22,26,33] have proven to be useful in creat-
ing labeled data. In our work, we leverage the data pro-
gramming paradigm of weakly supervised learning as in
CAGE [5] that also provides domain-based quality guides
on the labeling functions [23].
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3. Our Methodology

We begin by explaining the notion of labeling functions
that get used for data programming.

3.1. Labeling Functions

Labeling Functions (LFs) [33] are conventionally weak
supervision functions that generate noisy labels. In our
context, LFs mark regions of document image as TEXT or
NON-TEXT regions. In our setting, the LFs operate at the
pixel level by assigning corresponding labels to each pixel.
Following are some of the LFs used in our framework to
identify TEXT regions. The output predictions from each of
the LF would be a binarized pixel map. Each LF is associ-
ated with one of the two classes: TEXT for labeling a textual
region in the document and NON-TEXT otherwise. While
some LFs are based on conventional Computer Vision (CV)
techniques, others make use of DL-based models:

1. Labeling Functions from Pretrained DL Models

(a) DBNet [18] is pre-trained for English! and uses
neural network segmentation-based method for
text detection. Given a document image, DB-
Net internally generates a binarized pixel map
which is then processed to generate the word-
level bounding boxes. Based on these bounding
boxes, this LF gives a binarized pixel map as its
output as shown in Fig 3b

2. CV-based Labeling Functions

(a) Contour-based LF: Contour-based methods can
determine word-level regions on a binarized pixel
map by demarcating pixels having the same
value. Given an input image (shown in Fig 3a),
we binarize the image and find contours twice
with an intermediate process of drawing con-
tours”. This is finally used to get the pixel-level
binary map. The process to obtain bounding
boxes is pictorially depicted in Figure 2. The bi-
narized output pixel map is shown in Fig 3c.

(b) Canny Filter-based LF: This function detects
edges along the words by using the canny [4]
filter over the input image. Later the output
of detected edges is fed into the contour-based
post-processing with certain edge thickness * as
shown in Fig 2 to retrieve bounding boxes and
obtain the final binarized output as shown in Fig-
ure 3d.

"https://mindee.github.io/doctr/latest/modules/
models.html#doctr.models.detection.db_resnet50

2with thickness 4, which is a hyperparameter for this LF

3used as a hyperparameter for this LF
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Figure 2. Workflow for Contour-based processing to get word
level bounding boxes

(c) Tesseract [30]: The image-to-data method pro-
vided by Tesseract* can also determine word-
level bounding boxes for text detection which is
used to create a binarized output map. The output
for the same is shown in Fig 3e

(d) Image Edges based LF: As shown in Figure 3f,
this function uses the Sobel filter [14] method to
find the corresponding edges of the textual in-
formation present in a binarized input document
image. The binary map is again fed to contour-
based processing ° to obtain bounding boxes.

Similar to the five LFs described above, we also define
and use the corresponding five complementary LFs which
are associated with the NON-TEXT class. Thus, we have de-
signed ten LFs out of which, the complementary LFs use the
same algorithm proposed in the above descriptions. How-
ever, the only difference is that they help to label the con-
cerned set of pixels with NON-TEXT class. The reason to
introduce the complementary LFs lies in the fact that cur-
rently, our method limits one labeling function to label en-
tities for only a single class. The outputs for such comple-
mentary LFs will be the complement of what is shown in
Figure 3 and will label the non-textual pixels of the input
page image. The workflow of TEXTRON is presented in
Figure 4 which highlights the application of LFs followed
by aggregation of LF outputs to produce TEXTRON out-
put, which is also a binarized pixel map (Y). Before pro-
ceeding to further details, we introduce two standard pro-
cesses working in the periphery for the creation of word-
level bounding boxes from the retrieved pixel-based TEX-
TRON output.

“https://github.com/tesseract-ocr/tessdoc
Swith thickness 2, a hyperparameter for this LF
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Figure 3. Binary Image Outputs for different Labeling Functions
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Figure 4. A step-by-step description of the TEXTRON workflow

3.1.1 Shrinkage Factor Preprocessing

The final pixel-level prediction (Y) obtained in Figure 4 is
in the form of a binary map. Often, in such an output,
we observe cases with overlapping bounding boxes as de-
picted in Figure 5a. The word level demarcation gets lost
in these overlapping bounding boxes. Since it is prefer-
able to get the output in bounding boxes format, we need
to tweak the LFs in such a way that we are able to retrieve
the word level demarcation again through the output. To
achieve this, we shrink the width and height of the bound-
ing boxes provided by each LF by a shrinkage factor (set
to be a hyperparameter) to provide a binary map containing

l:— e

(a) Original Result (b) With 20% Shrink- (c) With 40% Shrink-
without shrinking age of both height and age of both height and
dimesnions width width

Figure 5. Demonstration of Shrinkage Factor Preprocessing

disjoint non-overlapping bounding boxes. This encourages
our TEXTRON model to fit and learn on shrunk bounding
boxes. This process, in turn, provides a similar output map
as seen in Figures 5b and 5c respectively. These figures
show the effect on the overall results produced by shrinking
heights and widths of bounding boxes with different values
of shrinkage factors. The benefit of performing shrinkage
becomes evident while recovering the original and indepen-
dent word-level bounding boxes during the label generation
step and this is explained in the following Section 3.1.2.

3.1.2 The Label Generation Logic

The generated binarized pixel map (Y from Figure 4) is sub-
jected to a simple post-processing step to convert the pixel-
level data into word-level bounding boxes. To achieve this,
we use the contour-based® demarcation method. After re-
trieving the corresponding bounding boxes, their widths and
heights are recovered by enlarging them to the same extent
by which they were shrunk in the LF application stage. In
Figure 6, we present the stepwise workflow of label gener-
ation in order to retrieve the final predictions. Through this
step, TEXTRON is able to provide a sequence of bounding
boxes as its output which can be further used for feedback
provision or evaluation.

3.2. Our Framework

As mentioned in Section 1, our framework TEXTRON
tries to combine different text detection methods together
using a data programming paradigm. The objective is to

6Cv2 contours https://docs.opencv.org/3.4/d4/d73/
tutorial_py_contours_begin.html
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Figure 6. Contour-based post-processing step for label generation.

train a model that can learn the parameters associated with
each LF so as to generate a binarized pixel map that aligns
with the consensus of LF outputs. In our framework, the
data programmer can guide the training process by pro-
viding quality guides to each LF [5], which are then in-
corporated into a generative model. This is important for
our scenario because while designing LFs, a programmer is
aware of the cases in which the LF (text detection method
giving weak labels) might work efficiently or fail. Let
X = {R}*W where X represents binarized input image
and R represents the intensity or color value of the pixel,
H and W represent the height and width of the image re-
spectively. ) = {cl1,c¢2} denotes the binary label space
indicating whether or not a pixel represents a text region.
P(X,Y) denotes the joint distribution of pixels and labels.
Our goal is to model the relation between a label y with a
pixel x € X. We have m=H*W pixels for a given image
instance. We have n LFs A1, Ao, .., A\, and each LF ); is
associated with a label k; which is one of the labels ¢! (for
TEXT) or ¢2 (for NON-TEXT). \; provides a discrete label
7;; = k; when triggered and 7;; = 0 when not triggered.
Each LF corresponds to a CV or DL-based algorithm to de-
tect textual and non-textual regions as long as it returns val-
ues in the above format. More details on the different LFs
used are presented in Section 3.1. Given the different LFs,
our goal is to learn to create consensus among the outputs
of the LFs. Thus, the model imposes a joint distribution
between the true label y and the value 7;; returned by each
LF )\; on any pixel z;. Since the graphical model (param-
eterized by 6) is to be trained on unlabeled data, the model
should ideally fit only on 7;; without relying on the true la-
bel y. Hence, the joint distribution is defined as,

n

P ya'rz = H T’L]? (D

where 6 denotes the parameters used in defining the poten-
tials g,

exp (0jy) if7i; # 0
1 otherwise

Vo (Tij,y) = { ()

and the normalizer Zy will be
Zo=> T +exp(6;)) 3)
yeY J

Given the above model, the training objective is defined as,
max LL(0 | D)+ R (0| {q}}) @)

The first part maximizes the likelihood of the observed T;
of the pixels in the training samples D = =z, ., x,, after
marginalizing out the true y. It can be expressed as:

L(0| D)= Zlogzpe (Tisy

yey

—ZlOgZH% Tij, Y

yey j=1

&)
—mlog Zy

R is a regularizer that guides the parameters with the
programmer’s expectation of the quality of each LF. The q§
guide (a value between 0 and 1) is the user’s belief or confi-
dence in the fraction of the cases where y and ¢; agree with
7; # 0. Given q we seek to minimize the KL divergence
between the user-pr0V1ded qj and the model-calculated pre-
cision Py(y = k;|7 = k;) which turns out to be:

R(0|{q}}) =, dllog Py (y =k | 7j = ky)
+(1—q))log(1— Py (y=Fk; | 75 = kj))

In a similar manner, we proceed with the training by
loading another unlabeled image, keeping the 6 unchanged,
and optimizing the same training objective mentioned in
equation (4). It is during the provision of these unlabeled
images that we can try to make up for the scarcity or ab-
sence of labeled data such as by providing unlabeled doc-
ument page-level images having contents written in low-
resource languages or handwritten Indian languages. Af-
ter an acceptable number of image iterations, we save the
model configuration which includes the LFs and their cor-
responding 6 parameters. During the inference stage, we
provide this model with quality guides and LF hyperparam-
eters to perform text detection on the input image.

For detailed motivation for the above equations, we refer
the reader to the work of Chatterjee et. al. [5]. Intuitively,
given an image with m pixels and n LFs (and its corre-
sponding q§ quality guides), we train a graphical model by
maximizing the log-likelihood training objective specified
in equation (4).

(6)

4. Experiments

To demonstrate the efficacy of the proposed framework,
we ran extensive experiments. We begin by describing the
datasets used and then present our experimental setup.
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4.1. Datasets

To compare the results in both the supervised and unsu-
pervised settings, we selected two types of datasets. Pub-
licly available datasets for the English language and text
detection datasets for a few Indian languages for which
there are no pre-trained models available, to the best of our
knowledge.

4.1.1 English Datasets

Docbank [16] is a publicly available dataset on which we
benchmark our experimental results. The dataset contains
around 500,000 page images each of which has correspond-
ing annotations in the form of bounding boxes. Each bound-
ing box is associated with a class. For our purpose, out of
the 12 Docbank classes, we excluded the figure class (i.e.,
the *figure’ class will be considered as any other non-textual
region) and considered the remaining 11 classes as the tar-
get, namely Abstract, Author, Caption, Equation, Footer,
List, Paragraph, Reference, Section, Table, and Title. All
regions belonging to the aforementioned classes are consid-
ered to be TEXT regions. Out of the 500,000 images, we
used around 22,000 images for training, validation, and un-
supervised assessment of LFs. We also use a sample test set
of 100 images having 55,223 bounding boxes representing
text class on which we report our results. We also use 199
images from Funsd [12] and 200 random images from the
CTDAR dataset [8] for training and validation purposes.

4.1.2 Indian Language Text Datasets

We have created a benchmark annotated dataset of printed
document images in three Indian languages which we use
as a test set. This includes 200 pages of Malayalam (48,358
words), 225 pages of Tamil (48,239 words), and 323 pages
of Gujarati (82,475 words) documents. The Gujarati docu-
ment pages also contain a considerable amount of Sanskrit
text. We have collected the required pages from textbooks
[24] and other books [1]. Word-level bounding boxes are
marked for every page-level image by a group of qualified
annotators. Apart from that, we also split and used around
300 unlabeled Sanskrit images from a set of books [] for
training and validation respectively. The PHD Indic 11
dataset [29] is composed of handwritten document images
of 11 official Indian language scripts. We have used 220
page-level images of handwritten Devanagari documents as
our test set for which bounding boxes are marked by a group
of verified annotators. We also use unlabeled document im-
ages of Telugu text (85 pages) and Kannada text (46 pages)
from the PHD Indic dataset [29] for training, validation, and
unsupervised analysis.

4.2. Unsupervised Quantitative Assessment of LFs

While choosing the best-performing TEXTRON LF set,
we performed extensive experiments using different combi-
nations of CV-based LFs as well as the LFs derived from
pre-trained DL models. We analyzed the unsupervised per-
formance measures of the ten LFs designed as mentioned
in Section 3.1. These measures include coverage, overlaps,
and conflicts for each LF. Recall from Section 3.1 that each
LF can either get triggered or abstain from labeling a pixel.
The fraction of pixels (with respect to the complete set of
pixels of the image) an LF can label is what we refer to as
the coverage of each LF. Similarly, the overlap of an LF is
defined as the fraction of pixels out of all covered (labeled)
pixels assigned the same label by at least one more LF. As
opposed to that, we define the conflict of an LF as the frac-
tion of pixels with respect to the overlapped pixels that do
not match the label assigned by any other LFs. Ideally, a
good LF will have significant coverage, high overlap, and
fewer conflicts. While experimenting we saw that the Image
Edge-Based LF had an extremely low coverage for TEXT
pixels. Also, the corresponding complementary LF had
high conflicts. So we dropped this LF and its corresponding
complementary LF from the best-performing set and ana-
lyzed further for the remaining eight LFs. These eight LFs
included four fundamental LFs namely pre-trained DBNet,
Tesseract-based LF, Contour-based LF, and Canny Filter-
based LF along with their complementary LFs. Figure 7
presents the three unsupervised performance measures for
these LFs on a random image of the Docbank dataset. The
fundamental LFs that labeled the text pixels had less (yet
significant) coverage which was a favorable scenario as the
amount of TEXT pixels in any generic document page is
much less as compared to the NON-TEXT pixels. Similarly,
all our chosen complementary LFs have a high percentage
of coverage and overlap, both of which are above 80% for
almost every image. We have performed a similar kind
of analysis with various unlabeled images with handwrit-
ten and printed Indian language text training sets as well.
All kinds of analysis and visual inspection of outputs (pre-
sented in the supplementary) have pointed in favor of usage
of TEXTRONgy, . With this newly defined TEXTRONg
configuration, we train our graphical model (parameterized
by ) for the training objective described in equation (4).

4.3. Training and Validation

After unsupervised experimentation with various combi-
nations of LFs on the training sets described in Section 3.1,
we trained the TEXTRONgy,  configuration. As mentioned
in Section 3, we try to optimize the training objective for 50
epochs by keeping a constant learning rate of 0.01 for each
image in the train set. We further experimented on our var-
ious validation sets described in Section 4.1. This included
tweaking the LF quality guides and their hyperparameters
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Figure 8. Predictions during TEXTRONgr, » Learning Phase

for an already trained TEXTRONgz » model. Hyperparame-
ter tuning was performed on curated validation sets of 125
images (English), 85 images (Printed Sanskrit), and 90 im-
ages (Kannada and Telugu handwritten) to determine the
best thickness and shrinkage parameters. Figure 8 shows
our final word-level bounding boxes output on random im-
ages from the validation set produced by TEXTRONg .
Once the model was able to perform well through hyperpa-
rameter tuning for a sufficiently large number of images, we
eventually used this saved TEXTRONgy » model and tuned
hyperparameters for inference on unseen test sets.

5. Results and Discussions

In this section, we present the performance of our
TEXTRONgy, » model using various combinations of qual-
ity guides and hyperparameters on the various test sets de-
scribed in Section 4.1.

5.1. Baselines

We use the current state-of-the-art DBNet [18] model
for text detection as our baseline. Additionally, we also
use Majority Based Voting (MBV) as a baseline to com-
pare our performance. The MBV baseline performs pixel-
based voting through exactly the same combination of LFs
(taking into account a pair of both fundamental LF and its
corresponding complementary LF) used by TEXTRONg .
Each LF will cast a vote for a pixel either as TEXT or NON-
TEXT. Finally, if the number of TEXT votes for a pixel ex-

CANNY_FILTER_REVERSE

Dataset Height Contour Edge
Shrunk By | Thickness | Thickness
Docbank 20% 4 2
Malayalam 20% 5 4
Tamil 20% 4 3
Gujarati 20% 4 3
Devanagari 30% 5 5

Table 1. Hyperparameters of TEXTRONgy, r for different datasets

Approach P R F
DBNet 90.49 | 80.00 | 84.92
Tesseract 40.49 | 74.03 | 52.35
MBV 89.53 | 80.02 | 84.51
TEXTRONgr,r | 90.17 | 80.75 | 85.21

Table 2. Results with IOU 0.5 on Docbank 100 Test Samples

ceeds the NON-TEXT votes, then the pixel is assigned TEXT
class. In this manner, MBV produces a binarized image
that undergoes contour-based post-processing as described
in Section 3.1.2 to obtain the bounding boxes. We eval-
uate TEXTRONgy  and the baselines using an IOU-based
approach to determine the overall precision, recall, and F1
scores.

5.2. Hyperparameters for Inference

In this section, we mention the best-performing set of
hyperparameters for TEXTRONgy,  that have been tuned on
validation sets. The fundamental four LFs used namely
DBNet-based LF, Contour-based LF, Tesseract-based LF,
and Canny Filter-based LF have quality guides set to 0.9,
0.85, 0.75, and 0.85 respectively. Quality guides of the
complementary LFs are set to be 0.95 each. For this config-
uration, we apply 10% width shrinkage as the preprocessing
during the LF application stage. Additionally, the hyperpa-
rameters of height shrinkage, contour thickness, and edge
thickness were determined by tuning on different Indian lan-
guage validation sets (described in Section 4.1). They are
mentioned in Table 1. Using these TEXTRONgy  configu-
rations, we infer and report the following results on unseen
test sets.

5.3. Performance on Different Datasets

In this section, we evaluate and present the performance
of TEXTRONgy r on different test sets. Table 2 presents a
comparison of TEXTRONgy,  along with other baselines for
an IOU threshold of 0.5 on the Docbank test set described
in Section 4.1.1. We also highlight the performance of the
annotated Indian language text detection datasets described
in Sections 4.1.2. We have used TEXTRONgy, configura-
tion for carrying out the inference on these pages. We re-
port our performance on all four language test sets along
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Figure 9. Comparative Overview of DBNet results and our TEXTRON outputs for different kinds of test images

Language Printed Malayalam Printed Tamil Printed Gujarati Handwritten Devanagari
Approach P R F P R F P R F P R F
DBNet 97.97 | 99.38 | 98.67 || 98.90 | 99.59 | 99.24 || 98.40 | 96.84 | 97.62 || 72.84 | 62.33 | 67.17
Tesseract 81.39 | 90.96 | 85.91 || 95.23 | 95.34 | 95.28 || 86.72 | 84.06 | 85.37 || 60.29 | 65.89 | 62.97
MBV 99.71 | 99.35 | 99.53 || 99.29 | 99.25 | 99.27 || 95.39 | 98.38 | 96.86 || 57.05 | 68.76 | 62.36
TEXTRONgzr || 99.03 | 99.44 | 99.23 || 99.32 | 99.64 | 99.48 || 98.57 | 97.65 | 98.11 || 69.24 | 74.51 | 71.78

Table 3. Results with IOU 0.5 on Indian Language Text Detection Test Sets

with other baselines in Table 3. We can see that our ap-
proach has the highest recall for Malayalam text detection
and is at par with the best-performing baseline. On the other
hand, TEXTRONgy, gives the best overall performance on
both Tamil and Gujarati text detection. The improvement
brought about by TEXTRONg, r is visible in Figure 9. Fur-
ther, we also present our handwritten Devanagari text de-
tection performance in Table 3. The improvement in case
of TEXTRONg, i for this handwritten text detection is sub-
stantially high. This is also visually depicted in Figures 9d
and 9h respectively. Figure 10 shows that TEXTRONgy,
is able to maintain the best performance for Devanagari text
detection even for higher IOU thresholds. We also highlight
insights on the performances for other IOU scenarios and
different classes of text (presented in the supplementary).
This is beneficial for several downstream applications like
handwritten text recognition.

6. Conclusion and Future Work

We present TEXTRON, a weak supervision-based ap-
proach that provides efficient results for text detection in
multilingual documents. We demonstrate the flexibility of
TEXTRON by enabling the use of customized LFs to en-
hance text detection. The proposed approach is better off vi-
sually in addressing handwritten text and also near to state-
of-the-art in other printed modalities. Our results also high-
light that TEXTRON can effectively be used to perform text
detection in Indian language printed and handwritten doc-
uments. This also indicates its versatility by performing
well even in the absence or paucity of labeled data. Our
work paves the way in the direction of improving script-

[F1 Score vs loU] plot for Devanagari(HW)

—e— DBNet

0.7 TEXTRON
—e— MBV

—o— Tesserac t

Figure 10. TEXTRON performance against other baselines with
10U thresholds on Handwritten Devanagari Text Detection

specific or font-specific text detection in documents. Plug
and play with a set of customized LFs, setting intuitive qual-
ity guides, and tweaking hyperparameters can bring about
enhanced text detection in different types of documents.
Further work includes incorporating the detection of doc-
ument classes other than text such as figures, tables, and
equations. It will also be beneficial to expand the scope of
our framework to detect text ranging from different kinds
of handwritten documents to natural scenes, by designing
suitable labeling functions.
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