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Abstract

Multimodal learning can benefit from the representation power of pretrained Large
Language Models (LLMs). However, state-of-the-art transformer based LLMs
often ignore negations in natural language and there is no existing benchmark to
quantitatively evaluate whether multimodal transformers inherit this weakness.
In this study, we present a new multimodal question answering (QA) benchmark
adapted from labeled music videos in AudioSet (Gemmeke et al., 2017) with
the goal of systematically evaluating if multimodal transformers can perform
complex reasoning to recognize new concepts as negation of previously learned
concepts. We show that with standard fine-tuning approach multimodal transform-
ers are still incapable of correctly interpreting negation irrespective of model size.
However, our experiments demonstrate that augmenting the original training task
distributions with negated QA examples allow the model to reliably reason with
negation. To do this, we describe a novel data generation procedure that prompts
the 540B-parameter PaLM model to automatically generate negated QA examples
as compositions of easily accessible video tags. The generated examples contain
more natural linguistic patterns and the gains compared to template-based task
augmentation approach are significant.

1 Introduction

Large language models (LLMs) have difficulty understanding negation in natural language. Pre-
trained LLMs often ignore negation in cloze questions and give same prediction for negated ("Birds
cannot [MASK]") and non-negated ("Birds can [MASK]") queries (Kassner and Schiitze, [2019;
Hosseini et al. 2021)). [Hossain et al.| (2022) analyzed the training corpora of state-of-the-art LLMs
and found that negation is rarely present, leading to the poor handling of negation at inference time.

State-of-the-art multimodal learning leverages pretrained LLMs for fusing different modalities (Jia
et al.} 2021} |Radford et al., [2021; (Oncescu et al., 2021} |[Kilgour et al., |2022; [Nagrani et al.| [2022]).
Will the fine-tuned LLMs intended for multimodal applications inherit the negation problem? [Huang
et al.[(2022) showed that the zero-shot performance on the text query based audio retrieval task
degrades when the text query includes negation cues, e.g., "no vocals". |Yu et al.|(2022) showed that
the text-to-image model generates items that are mentioned in the text prompt, even when the prompt
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suggests the absence of the item. However, there is no benchmark for quantitatively evaluation of
how well negation patterns in the text are handled in such multimodal settings.

In this study, we created MAQA, a binary music audio question answering benchmark, to evaluate how
well the multimodal transformers understand negation in music related questions. This benchmark is
created from labeled videos in the music-related portion of AudioSet (Gemmeke et al., [2017). While
the original benchmarks features 5000 hours of audios labeled with 527 audio event classes and only
contains a handful of labels including negation, the proposed benchmark MAQA features a significant
portion of negated questions that are generated programmatically from the original audio labels.
Our goal is to evaluate if multimodal transformer can be fine-tuned to understand new concepts,
e.g., “no vocals” as negation of the previously learned concept, e.g., “vocals” through compositional
generalization.

The main contributions of the paper are: (1) A compositional generalization experiment that demon-
strates standard fine-tuning prevents our baseline model, a multimodal transformer modified from
the multilingual TS5 (MTS) (Raffel et al., 2019; Xue et al., [2021)) from generalizing to new concepts
that are negation of learned concepts. (2) A PaLM-based data generation approach that automatically
generate negated QA examples from easily access video tags. (3) Two task augmentation strategies
that lead to a significant boost of the model performance on portion of MAQA with text negation.

The rest of this paper is organized as follows. Section 2] provides relevant background and related
work on negation, compositional generalization and multimodal learning. Section [3| provides an
overview of the MAQA dataset and its statistics. Section [] details how we create the benchmark
through data generation. The models and experiment results are presented in Section[5|and[6} The
paper closes with a discussion on the limitations, implications of our results and future work.

2 Related Works

Negation. Despite improvements of LLMs in many NLP tasks such as natural language understand-
ing, reading comprehension, zero-shot text generation, negation remains a challenge for pre-trained
LLMs (Kassner and Schiitze| [2019; Hosseini et al.} 2021). Data augmentation has been used to tackle
negation in the NLP literature. For example, modification of the natural language understanding
corpora by adding negation to the verb or adjective and reversing the labels was proposed in (Hossain
et al.,[2020), and an unlikelihood loss for the span corruption pre-training tasks was proposed in (Hos+
seini et al.,|2021). Negation is also addressed in the meta-learning literature (Murty et al., 2021,
where it is treated as one of the reasoning categories that requires additional few-shot classification
tasks to augment the original task distribution.

Compositional Generalization. Compositional Generalization refers to the ability to understand
novel concept as compositions of previously learned concept or atoms. Negation can be thought as a
form of composition. In the field of semantic parsing, several benchmarks have been proposed to
evaluate compositional generalization (Lake and Baroni, [2018}; [Keysers et al., [ 2020; Kim and Linzen)
2020), which have encouraged development of techniques and architectures to make LLMs better
at solving compositional tasks (Furrer et al.,[2020; |Ontanon et al.| 2022} |Csordas et al.| 2021} |Qiu
et al.,2022). Several multimodal benchmarks have shown visually grounded LLMs often struggle
with compositional generalization in visual reasoning tasks (Johnson et al.,|2017), visual grounded
command following tasks (Ruis et al.| 2020), text-to-image matching (Zhang et al.,|2021)), etc. Our
study focus on evaluating audio grounded LLMs on compositional tasks involves negation.

Multimodal QA. Multimodal question answering benchmarks are used to probe the multimodal
models to evaluate their perception and reasoning capability on different modalities. Visual Question
Answering benchmarks (Zhang et al., 2015; |Agrawal et al.,|2015) commonly consist of triplets of
(image, a natural language question about the image, answer), and the task is to answer the question
based on the visual cue in the image. In the field of audio perception, audio QA benchmarks (Fayek
and Johnson, 2020) are less common than audio classification benchmarks (Gemmeke et al.,[2017).
In the music domain, most benchmarks are music information retrieval tasks (Law and Von Ahnl
2009), where the text labels are usually in the format of short form music tags.

Multimodal Transformers. A series of Transformer-based multimodal models (Sun et al., 2019;
Tan and Bansal, 2019} |Lu et al., 2019), referred to as “Multimodal Transformers” in this study,
explored using Transformer encoder as a join encoder for multimodal fusion achieve state-of-the-art



Table 1: Examples of generated Binary Audio QA Pairs in MAQA. The original AudioSet example is
a music audio clip associated with the following tags: Bass guitar, Guitar, Acoustic guitar and Strum.
Questions and their negated counterpart are generated from the sampled attributes with the PaLM
based approach. Negative attributes steel guitar, slide guitar are sampled from the sibling nodes in
the AudioSet ontology.

Sampled Attributes Question Answer | Negated
Bass guitar (4) Q1)The musical instrument played TRUE No
Bass guitar (+4) in the song is Bass guitar TRUE No
Bass guitar (4) Q2)Bass guitar is not played in the song FALSE Yes
steel guitar, slide guitar (—) | Q3)The song has steel guitar or slide guitar FALSE No
steel guitar, slide guitar (—) | Q4)The song does not have slide guitar or steel guitar | TRUE Yes

Table 2: Statistics on Music Audio QA (MAQA) Benchmark. Statistics on Music Audio QA (MAQA)
Benchmark. Both evaluation sets ASBaseEval and ASNegationEval are generated by PaLM. Each
training set has a template-generated and a PaLM-generated version. All the datasets have balanced
binary label distributions. ASNegationEval contains ASBaseEval and its negated counterparts. The
music attributes have a simialr distribution in training and evaluation split.

Label Stats # of QA Pairs # of mentions
Data Version True Negated | Non- Negated | Genre | Mood | Instrument| Role
negated
ASBaseEval 50% 0% 17,028 0 5574 730 9740 984
ASNegationEval | 50% 50% 17,028 17,028 (32.7%) (4.3%) | (57.2%) (5.8%)
ASBaseTrain 50% 0% 1,263,004 | 0 439,904 28,634 | 740,126 54,340
ASNegationTrain | 50% 50% 1,263,004 | 1,263,004 (34.8%) (2.3%) | (58.6%) (4.3%)

results on a range of multimodal QA tasks. |(Changpinyo et al.| (2022) proposed a multimodal version
of TS (Raffel et al.| 2019). Given the image and the question in a VQA example, the multimodal T5
takes the global and regional image features generated by a pre-trained visual encoder and text tokens
of the question as inputs, and solves a classification problem with pre-defined classes of answers for
the VQA task. The parameters of the visual encoder are frozen during T5 fine-tuning. We follow
the same approach but use pre-trained audio encoders (Gemmeke et al.l 2017; [Huang et al.|[2022) to
extract global representation of the music audio. A detailed survey of audio representation can be
found in/Huang et al.| (2022).

3 Music Audio Question Answering (MAQA)

To evaluate the ability of multimodal models to reason with negation, we create a music audio QA
benchmark (MAQA) which emphasizes on correct understanding of text negation. The music audio
QA pairs are generated programmatically from the music related portion of AudioSet (Gemmeke
et al.l 2017), which contains music audio clips annotated with music attributes and an ontology
describing their relationship. There are 388, 262 and 4, 497 unique music audio clips in the train and
evaluation split, respectively. Each clip is labeled with one or more music tags out of the 141 unique
music attributes covering music genres, music roles, music instruments and music moods.

Table[T] presents an example in MAQA, which consists of four QA pairs generated from an example
of music attribute labeled audio clip in AudioSet. Q1 and Q2 are questions generated from the same
seed attribute, and essentially probe about the same musical skill, i.e., listen to a music audio and try
to identify if a bass guitar is played. Q2 is a negated form of Q1. If a model answer Q1 correctly and
fail on its negated counterpart Q2, it suggests that the model does not understand the negation logic
in the question and unable to perform compositional generalization.

MAQA contains two evaluation sets ASBaseEval and ASNegationEval and two training sets ASBase-
Train and ASNegationTrain as shown in Table [2| with balanced binary label distribution, featuring
QA pairs about music moods, genre, instrument and roles. ASBaseTrain / ASBaseEval contains
non-negated QA pairs about music audio recordings. ASNegationTrain / ASNegationEval is a
superset of ASBaseTrain / ASBaseEval, and it also includes their negated counterparts of the QA
pairs. A multimodal model with strong music audio understanding capabilities should score high on



ASBaseEval. Moreover, to demonstrate its ability of reasoning about negation logic, it has to also
score high on ASNegationEval.

4 Data Generation

Since music descriptive text that involves negation rarely occur in the standard text corpora |[Hossain
et al.[(2022)), we propose the following 3-step approach to programmatically generate binary audio
QA pairs that involve text negation: 1. For each music audio-attribute pair in the original dataset, we
sample a negative attribute that is not associated with the audio clip. 2. Convert the positive and the
negative audio-attribute pair into a binary AQA example in the format of a triplet (audio clip, question
on the attribute, True / False label). 3. Perform a text negation on the question and flip the binary
label simultaneously to create negated audio QA pairs. As a first attempt we curate MAQA from
AudioSet with this method, however it can be applied to other datasets containing annotated music
audios. Next, we discuss the details of how we followed the 3 steps to create MAQA from AudioSet.

Negative Attribute Sampling. We adopt negative sampling to create a balanced binary label
distribution. In particular, we sample hard negative attributes using sibling nodes in the ontology tree
and assign False label to the derived audio QA pair. Consider the example in Table[I] the audio clip is
tagged with Bass guitar and Acoustic guitar, which are both under the parent node Guitar. We sample
hard negative attributes steel guitar and slide guitar from the sibling nodes, to create a negative
audio-attribute pair. This hard negative sampling approach encourages the model to differentiate
related but different music concepts.

Question Generation. We explore the following two approaches to generate questions from the
audio-attribute pair sampled from the first step. The first approach is template based, and it takes
advantage of the AudioSet ontology, where each music attribute is associated with one of the four
attribute types: genres, roles, instruments, and moods. We use type-specific templates to convert
attributes into a true-or-false question, e.g., “The <Attribute Type> of the song is <Attribute Value>.".
The second approach leverages the few-shot text generation capability of PaLM (Chowdhery et al.
2022) to improve the diversity of generated questions. Similar to GPT-3 (Brown et al.,[2020), when
prompted with an instruction, e.g., “Generate a sentence about music given the music attribute”,
PalLM learns from a few demonstrations and generates questions on unseen attributes.

Task Augmentation with Negation. The template-based approach convert a question to the negation
form by inserting a modifier not before the noun, i.e., “The <Attribute Type> of the song is not
<Attribute Value>.” and the binary label is flipped. One of the limitation of this approach is that it is
attribute type specific and only modifies nouns. PaLLM based method overcomes the limitation as with
few shot learning the model can generate different negation patterns by modifying both nouns and
verbs. For example, the negation patterns associated with the instrument attribute “guitar” include “no
guitar”, “guitar is not played”, and “the song does not feature bass guitar”. For each music attribute,
we use PalLM to generate a few question candidates and manually pick the best one. Row 2 and 4 in
Table[I]are example questions generated in this way. More example questions generated by PaLM
and the prompts used are shown in Appendix

5 Multimodal Modeling

Following the VQA literature (Changpinyo et al.| [2022} [Zhang et al., 2015), we treat the audio QA as
a binary classification task. We adopt a multimodal T5 architecture similar to that in (Changpinyo
et al.,[2022) to fuse the audio and text inputs, and we replace TS5 with its multilingual version MTS5.
Each music audio clip input is represented as a 128-dimensional embedding obtained either from
VGGish (Gemmeke et al., 2017ﬂ which uses a VGG ConvNet architecture, or the transformer based
MuLan model (Huang et al.,[2022). The audio encoders are frozen when we finetune the multimodal
T5. The audio embeddings are projected to the text token embedding space through a linear projection
layer, which is initialized randomly at the beginning of finetuning. Then, the audio token and text
token are fed into the pre-trained multi-layer MT5 (Xue et al.,[2021) encoder as a sequence of vectors

"https://github.com/tensorflow/models/tree/master/research/
audioset/vggish



and the final multimodal representation is classified into the binary classes. The multimodal code is
based on the Flaxformer frameworkﬂ Training details can be found in Appendix

6 Experiments and Results

We report experiment results on the ASBaseEval and ASNegationEval evaluation benchmark in
Table [3|and Table ] respectively. The Audio QA task is formulated as a binary classification problem,
and we report the best AUC-ROC score and the corresponding accuracy in the positive class. To
evaluate model’s ability to generalize compositionally so that it can understand composed music
concepts like “no vocals” that involve negation, we split the data into train and test sets following the
design recommended by (Keysers et al.,2020). By design the music attributes or atoms are similarly
represented in the train and test sets, while the test set contains novel combinations of the atoms
that are not seen in the train set. Compound Divergence (CD) is used to measure quantitatively how
different is the compound distributions in the train and test split (Keysers et al.,|2020), while in our
case CD is used as a qualitative measure (Tabel [5]in Appendix [8.2)), and compound refers to the
QA pairs after applying compositional rules, e.g., negation to the atoms. For each split scenario, we
compare the performance of finetuned multimodal transformer with different audio feature extractors,
as well as with different sized pre-trained MT5 model. Furthermore, we vary the types of QA pairs
(template-based or PalLM-based) used in training split and study how compound divergence affects
learning negation.

6.1 Music Understanding

Table 3[a) shows the result for the first split scenario where the model is trained and evaluated on non-
negated QA pairs generated by PalLM. This Low CD experiment establish a fine-tuning baseline on
basic music concepts. The fine-tuned multimodal MTS5 score over 90% AUC-ROC on the ASBaseEval
benchmark that features Audio QA tasks on music styles, moods, genres, instruments, etc. Recall the
random baseline is 50% for balanced binary classification tasks, this suggests multimodal transformer
learn to efficiently fuse audio and text signals through fine-tuning, even it is warm started from a
text-only checkpoint. Probing the model on different music attributes suggests that music concepts
like “Scary music”, “Children music” and popular percussion instruments like “Cowbell” are easy
for the fine-tuned model to pick up, while the model has a harder time to understand electronic music
genres such as “Drum and bass”, “Trance music”.

We further replace the training examples generated by PaLM with the template-generated QA
examples resulting in the Medium CD setting. The model scores around 6% lower in the Medium CD
setting (Table[3(b)) compared to the Low CD setting. This suggest the model can still transfer most
of the music knowledge learned in a different linguistic context via compositional generalization.
For both split scenarios the best multimodal model is the MT5-XL with Mulan embedding as audio
features.

6.2 Reasoning with Negation

For the third split scenario (Table 3[b)) we apply the same fine-tuning setup as in Table [3(a) but
evaluate on ASNegationEval, where the non-negated half is from ASBaseEval and the other half
contains their negation counterparts. As shown in Table [(a), the multimodal MTS5 fine-tuned on
non-negated audio QA pairs (ASBaseTrain) scores only 50% on the ASNegationEval benchmark
in this High CD setting. Although the model still scores around 80% on the non-negated QAs
(comparable to the accuracy on ASBaseEval in Table[3), it scores only around 20% on their negated
counterparts. The model does worse than the 50% random guess baseline on these negated questions
after fine-tuning. This shows that while the model is trained to answer the non-negated questions
correctly, they also learn to “ignore” the negation cue in the negated questions. We also show that
increasing the model size does not improve the AUC-ROC score, suggesting that even larger model
fail to generalize compositionally using the standard fine-tuning approach.

Zhttps://github.com/google/flaxformer



Table 3: Accuracy on ASBaseEval for two different Compound Divergence (CD) settings.

Finetuning Details ASBaseEval
Model Train Data - QA Type | CD Type | AUC | Acc
a) | MT5-Base+VGGish | ASBaseTrain-PaLM Low CD 0.905 | 0.821
MTS5-XL+VGGish ASBaseTrain-PaLM Low CD | 0911 | 0.827
MT5-Base+MuLan | ASBaseTrain-PalLM LowCD | 0913 | 0.828
MT5-XL+MulLan ASBaseTrain-PaLM Low CD | 0.918 | 0.832
b) | MT5-Base+VGGish | ASBaseTrain-Temp Med CD | 0.847 | 0.771
MT5-XL+VGGish ASBaseTrain-Temp Med CD | 0.850 | 0.765
MT5-Base+MuLan | ASBaseTrain-Temp Med CD | 0.845 | 0.766
MTS5-XL+MuLan ASBaseTrain-Temp Med CD | 0.851 | 0.767

Table 4: Accuracy on ASNegationEval for three different Compound Divergence (CD) settings.

Finetuning Details ASNegationEval
Acc
Model Train Data - QA Type CD Type | AUC Avg Neg | NoNeg
a) | MT5-Base+VGGish | ASBaseTrain-PaLM HighCD | 0.524 | 0.513 | 0.218 | 0.803
MT5-XL+VGGish ASBaseTrain-PalLM HighCD | 0.525 | 0.525 | 0.247 | 0.802
MT5-Base+MuLan | ASBaseTrain-PalLM HighCD | 0.553 | 0.541 | 0.273 | 0.802
MT5-XL+MuLan ASBaseTrain-PaLM HighCD | 0.528 | 0.520 | 0.220 | 0.819
b) | MT5-Base+VGGish | ASNegationTrain-PaLM | Low CD | 0.896 | 0.814 | 0.814 | 0.813
MTS5-XL+VGGish ASNegationTrain-PaLM | Low CD | 0.903 | 0.821 | 0.821 | 0.821
MT5-Base+MuLan | ASNegationTrain-PaLM | Low CD | 0.905 | 0.821 | 0.821 | 0.822
MT5-XL+MuLan ASNegationTrain-PaLM | Low CD | 0.907 | 0.825 | 0.825 | 0.825
c) | MT5-Base+VGGish | ASNegationTrain-Temp | Med CD | 0.784 | 0.715 | 0.690 | 0.741
MT5-XL+VGGish ASNegationTrain-Temp | Med CD | 0.823 | 0.743 | 0.724 | 0.763
MT5-Base+MuLan | ASNegationTrain-Temp | Med CD | 0.805 | 0.739 | 0.723 | 0.755
MTS5-XL+MuLan ASNegationTrain-Temp | Med CD | 0.828 | 0.750 | 0.740 | 0.759

6.3 Task Augmentation

We then apply task augmentation during training by augmenting ASBaseTrain with negated QA
example generated by PaLM (AsNegationTrain-PaLM), which lower the compound divergence. The
task augmentation proves to be an effective strategy for tackling negation. As shown in Table f{b),
multimodal MTS fined-tuned with task augmentation improves the baseline on ASNegationEval as
shown in Table [#a) by nearly 40%, while obtaining similar performance on the non-negated QA
pairs (ASBaseEval). The AUC-ROC score and accuracy is on par with the scores on the non-negated
Audio QA pairs (ASBaseEval), suggesting that task augmentation can indeed help the model to learn
to answer the questions with negation correctly. The best result on ASNegationEval is obtained by
fine-tuned MT5-XL with MuLan audio embedding.

6.4 Template versus PaLM

We further explore how different task augmentation strategy affects the learning outcome. As shown
in Table [d{(c), we use template-based approach for composing QA pairs and task augmentation, and
compare with the fine-tuning results with PaLM-generated QA pairs. The Template-based fine-tuning
scores around 10% lower in AUC score compared to PaLM-based fine-tuning. The observed gap can
be explained by the increased compound divergence between the training data and the evaluation
data. The accuracy difference on the non-negated split is around 7% while the difference on the
negated split is around 10% to 12%. Recall that the template-based approach only modifies the noun
for negation while Palm-based approach incorporates more variations, which can explain why the
template-based fine-tuning performs worse on the negated split. This experiment has highlighted
the importance of composing augmented tasks with natural linguistic variations that match human
language used in production environment. However, even Template-based task augmentation can
improve negation understanding significantly, on average 30% higher than training without task
augmentation (Table[d{a)).



7 Conclusion

In this work, we propose a new Binary Audio QA benchmark MAQA in the music domain to
probe the state-of-the-art multimodal models on understanding negation. MAQA fills in the gap of
lacking negation-focused evaluation benchmark in the multimodal setting. Our experiments show
that standard fine-tuning prevents the multimodal transformers from generalizing to new concepts
that are negation of the learned concepts. While increasing the model size or adopting a better audio
encoder doesn’t help with negation, task augmentation allows the model to reason with negation by
providing more fine-tuning examples that contain negation. And LLMs like PalLM can be used to
generate negated examples with more natural linguistic variations, which have a significant effect
on the learning outcome. With the MAQA benchmark, we hope to encourage multimodal research
community to develop new modeling frameworks or algorithms to handle complex natural language
instructions that involves negation. We plan to release the MAQA dataset on Github.
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8 Appendix

8.1 Training Details

For the MT5-base encoder there are 12 Transformer encoder layers and the input embedding di-
mension is 768. For MT5-XL there are 24 Transformer encoder layers and the input embedding
dimension is 2048. MT5-XL has 3.7 billion parameters and MT5-base has 580 million parameters.
The batch size is 64 for MT5-base model and 128 for MT5-XL model. We use fixed a learning
rate among {1073,1074,57°} and observe 1 x 10~3 works best in general. The model outputs
2-dimensional logits as the Audio QA task is formulated as binary classification. We train all models
with data parallelism using 16 Cloud TPU Pods. For all experiments we run for 50, 000 steps and
reports the AUCROC and Accuracy based on the best checkpoint measured by AUCROC. For each
experiment we pick the highest AUCROC of multiple runs. It takes around 1 hour for MT5-Base and
around 4 hours for MT5-XL.

8.2 Compound Divergence

As PalLM-generated composition does not depend on rules to combine different atoms, hence it’s hard
to compute CD directly. Here we use Compound Divergence as a qualitative instead of quantitative
measure of the difference of composition in the train and test split as shown in Table [5]
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Attribute | Train Examples | Test Examples | CD Type
(a) Without Task Augmentation
Banjo The song is played with a banjo. The song is played with a banjo. Low CD
(ASBaseTrain-PalLM) (ASBaseEval-PalLM)
Blues The [genre] of the song is [blues]. | The song is a blues song. Med CD
(ASBaseTrain-Temp) (ASBaseEval-PalLM)
Scary The music is scary. The music is scary. High CD
The music is not scary.
(ASBaseTrain-PalLM) (ASNegEval-PalL. M)
(b) With Task Augmentation (ASNegationTrain)
Chant The music is a Chant. The music is a Chant. Low CD
The music is not a Chant. The music is not a Chant.
(ASNegTrain-PalLM) (ASBaseTrain-PalLM)
Dance The [music role] of the song is The music is suitable for dancing. Med CD
music [Dance music].
The [music role] of the song is not | The music is not suitable for dancing.
[Dance music].
(ASNegTrain-Temp) (ASBaseTrain-PalLM)

Table 5: The train and test split design of MAQA. For each of the 5 split scenarios we list a few
example questions included in the train and test split. All the QA examples or compounds are
composed from the seed music attributes or atoms via Template-based (Temp) or PaLM-based
(PaLM) approach. Compound Divergence (CD) Type is used to measure the difference between
the train and test compound distribution. Task Augmentation is applied during training for the
ASNegationEval-LowCD and ASNegationEval-MedCD split scenario.

8.3 Text Prompts used for PaLM

After a few iterations, we’ve found the text prompts shown in Table [6] works best for generating
negated and non-negated QA pairs. The one-line instruction at the beginning of the prompt is crucial
to guide PaLM to generate desired sentences. Table|/|shows more PalLM-generated questions. The
total number of seed attributes used for text generation are 130, and for each attribute we pick one
non-negated and one negated question selected from the candidate questions generated from PaLM.
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User Input (Music Tag): Trumpet

Model Input:

Generate a sentence about music and its negation given the music tag
music tag: drum

describe the music: The music is played with a drum
negate the description: drum is not played in the song
music tag: rock

describe the music: This is a rock song

negate the description: the genre for the song is not rock
music tag: happy

describe the music: The music makes one feel happy
negate the description: The mood of the song is not happy
music tag: Choir

describe the music: The song features a choir

negate the description: The song does not feature a choir
music tag: Tabla

describe the music: Tabla is played in the song

negate the description: Tabla is not played in the song
music tag: Trumpet

describe the music: <extra_id 1>

negate the description: <extra_id_2>

Model Output:
<extra_id_I>: A trumpet is played in this song
<extra_id_2>: A trumpet is not played in this song

Table 6: Text prompts used for PalLM to generate non-negated and negated sentences from a seed
music attribute. Here we show a example output for the attribute Trumpet.
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Seed Attribute Generated Questions Generated Negated Questions

A capella The song is sung without any musical | The song is not sung without any musical instru-
instruments ments

Accordion The musical instrument of the song is | accordion is not played in the song

Acoustic guitar

Ambient music
Angry music
Background music
Bagpipes

Banjo
Bass drum

Bass guitar

Beatboxing
Bell

Bluegrass
Blues
Bowed string instrument

Brass instrument

Carnatic music
Cello

Chant

Choir

Christian music
Christmas music
Clarinet
Classical music
Country
Cowbell
Cymbal

Dance music
Didgeridoo
Disco
Double bass

Drum and bass

accordion

The song is played with an acoustic gui-
tar

The song is ambient music

The song makes one feel angry

The song is background music

The musical instrument of the song is
Bagpipes

The song is played with a banjo

The musical instrument of the song is
Bass drum

The musical instrument of the song is
Bass guitar

Beatboxing features in the song

The musical instrument of the song is
bell

The genre of the song is bluegrass

The song is a blues song

The musical instrument of the song is a
bowed string instrument

The musical instrument of the song is
brass

The music is Carnatic

The musical instrument of the song is
Cello

The music is a chant

The song features a choir

It is Christian music

The music is Christmas music

The song is played by clarinet

The music is classical

The genre of the song is Country

The song has cowbell

The musical instrument of the song is
Cymbal

The music is suitable for dancing

The music is played on a didgeridoo
The song belongs to the disco genre
The musical instrument of the song is
double bass

The music is drum and bass

The song is not played with an acoustic guitar

The song is not ambient music

The mood of the song is not angry
The song is not background music
Bagpipes is not played in the song

The song is not played with a banjo
Bass drum is not played in the song

Bass guitar is not played in the song

Beatboxing does not feature in the song
bell is not played in the song

bluegrass is not the genre of the song

the song is not a blues song

The music is not played with a bowed string
instrument

brass is not played in the song

The music is not Carnatic
Cello is not played in the song

The music is not a chant

The song does not feature a choir

It is not Christian music

The music is not Christmas music
clarinet is not played in the song

The genre for the song is not classical
This is not a Country song

The song does not have cowbell
Cymbal is not played in the song

The music is not suitable for dancing

The music is not played on a didgeridoo
The song does not belong to the disco genre
double bass is not played in the song

The song is not drum and bass

Table 7: More examples of PalLM-generated non-negated and negated questions.
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