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Abstract

Safe Reinforcement Learning (Safe RL) is one of the prevalently studied subcategories of
trial-and-error-based methods with the intention to be deployed on real-world systems. In
safe RL, the goal is to maximize reward performance while minimizing constraints, often
achieved by setting bounds on constraint functions and utilizing the Lagrangian method.
However, deploying Lagrangian-based safe RL in real-world scenarios is challenging due
to the necessity of threshold fine-tuning, as imprecise adjustments may lead to suboptimal
policy convergence. To mitigate this challenge, we propose a unified Lagrangian-based
model-free architecture called Meta Soft Actor-Critic Lagrangian (Meta SAC-Lag). Meta
SAC-Lag uses meta-gradient optimization to automatically update the safety-related hy-
perparameters. The proposed method is designed to address safe exploration and threshold
adjustment with minimal hyperparameter tuning requirement. In our pipeline, the inner
parameters are updated through the conventional formulation and the hyperparameters are
adjusted using the meta-objectives which are defined based on the updated parameters. Our
results show that the agent can reliably adjust the safety performance due to the relatively
fast convergence rate of the safety threshold. We evaluate the performance of Meta SAC-
Lag in five simulated environments against Lagrangian baselines, and the results demon-
strate its capability to create synergy between parameters, yielding better or competitive
results. Furthermore, we conduct a real-world experiment involving a robotic arm tasked
with pouring coffee into a cup without spillage. Meta SAC-Lag is successfully trained to
execute the task, while minimizing effort constraints. The success of Meta SAC-Lag in
performing the experiment is intended to be a step toward practical deployment of safe RL
algorithms to learn the control process of safety-critical real-world systems without explicit
engineering.

1 Introduction

Reinforcement Learning (RL) is one of the most important paradigms for learning to control physical systems.
However, a major shortcoming of RL is its need for exploration and extensive trial and error. For that reason,
while we observe its wide success in various domains such as Energy systems Perera & Kamalaruban (2021),
Video games Shao et al. (2019), and Robotics Andrychowicz et al. (2020), the real-world deployment of these
algorithms to learn the control process poses is challenging Dulac-Arnold et al. (2019) since the exploration
process might lead the system to states that might damage the system and incur heavy costs to the user. To
this end, safe RL methods aim to address this issue by optimizing the policy such that it is compliant with the
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Figure 1: The Computational Graph of the Meta SAC-Lag.

constraints. The constraints are defined such that they aim to prevent the system from exceeding its physical
limitations.

The most common approach in safe RL is through the Lagrangian method. Specified under the Constrained
Markov Decision Process (CMDP) framework, through defining thresholds for the constraints, the multi-
objective optimization problem is converted to constraint satisfaction and is solved by casting it to an un-
constrained problem using the Lagrangian method. While the approach has been extensively studied in the
literature Gu et al. (2022); Brunke et al. (2022), without precise tuning and engineering of the constraint
thresholds, the Lagrangian methods will suffer from convergence to suboptimal policies. For that reason, the
real-world use of these algorithms is rendered to be challenging due to the iterative process of hyperparameter
tuning.

To address these challenges, based on the Soft Actor-Critic (SAC) architecture Haarnoja et al. (2018b), our
algorithm aims to address two fundamental problems: safe exploration and tuning-free constraint adjustment.
Previous attempts to automate the tuning of exploration-related hyperparameter of SAC have been mostly fo-
cused on optimizing the performance of the system Haarnoja et al. (2019); Wang & Ni (2020). However,
addressing the safety compliance of SAC has been limited. To this end, we propose a threshold-free safety-
aware exploration optimization pipeline. In addition, our approach optimizes the safety threshold according
to the overall performance of the policy. We are able to update the aforementioned hyperparameters using
the metagradients w.r.t. to the meta-objectives which are computed based on the gradients of the internal
learnable parameters. Finally, to assess the performance of Meta SAC-Lag, as depicted in Fig. 4, we study its
performance against several baseline algorithms in five simulated robotic tasks with four different application
themes. We observe that our method attains better or comparable results in terms of safety or reward per-
formance while automatically tuning the safety-related hyperparameters. Furthermore, we present a safety
benchmark test case, called Pour Coffee, which attempts to relocate and pour a coffee-filled mug into another
cup. Constraint violation happens in case of collision or the spillage of the coffee. We deploy and train Meta
SAC-Lag in a real-world setup using Kinova Gen3 robot. Our implementation shows that not only is Meta
SAC-Lag capable of safe deployment without the iterative process of hyperparameter tuning but also, the
learning process of the policy results in a smooth and jerk-free execution of the task with minimum effort
imposed on the system.

Our main contributions can be summarized as:

• We propose a Lagrangian-based safe RL method able to automatically adjust the constraint bounds.

• Meta SAC-Lag addresses safe exploration through an unconstrained metagradient-based optimization
pipeline.

• The applicability of Meta SAC-Lag is validated in five simulated robotic environments against baseline
algorithms.
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• A test environment, called Pour Coffee, is presented, and, with minimal prior safety-related hyperparam-
eter tuning, Meta SAC-Lag is deployed and trained on a real-world Kinova Gen3 setup. The algorithm
successfully achieves the task objective with minimized effort exerted on the robot.

2 Related Work

The constrained Markov decision process (CMDP), is the theoretical building block of safe RL. CMDPs
have been widely studied in the RL paradigm Sutton & Barto (2018); Altman (2021) and are solved using
Lagrangian methods Bertsekas (2012). In this regard, Shen et al. (2014) devised the risk-sensitive policy
optimization (RSPO) algorithm which sequentially decreases the Lagrangian multiplier to zero. Further-
more, Stooke et al. (2020) updates the multiplier using PID control. Additionally, Reward-constrained pol-
icy optimization (RCPO) employs dual gradient descent optimization for the policy and Lagrange multi-
plier Tessler et al. (2018).

In another aspect, metagradient optimization has been explored thoroughly in RL hyperparameter tuning.
Initially, model-agnostic meta-learning (MAML) Finn et al. (2017) introduced meta-optimization of initial
weights to enable fast task adaptation within a few gradient descent steps. In a different approach, Meta-
Gradient RL Xu et al. (2018) extended the concept to learn the hyperparameters of return functions online.
This paradigm offered a general approach, applicable to other RL hyperparameters. Subsequently, similar
techniques were applied for auto-tuning other RL hyperparameters, such as exploration thresholds Haarnoja
et al. (2018a), entropy temperature in SAC Wang & Ni (2020), auxiliary tasks and sub-goals Veeriah et al.
(2021), and differentiable hyperparameters of loss functions Zahavy et al. (2020). Despite these advance-
ments, metagradient methods have not been extensively explored in constrained RL paradigms Gu et al.
(2022), with few applications focusing on ensuring safety in sensitive learning tasks, as seen in the work
by Calian et al. (2020). The authors utilized meta-gradients to update the Lagrange multiplier learning rate
in an off-policy RL framework.

The Lagrangian methods are not the sole approach taken toward solving safe RL. Thananjeyan et al. (2021)
trained a recovery policy in parallel to the task policy and used it whenever the task policy chose actions
deemed too risky. More prominently, model-based RL and safety guarantees for risk aversion during training
are proposed. Koppejan & Whiteson (2011) used the neuroevolutionary approach to exploiting domain ex-
pertise to learn safe models for model-based RL. Thomas et al. Thomas et al. (2021), in a different approach,
used near-future imagination to plan safe trajectories ahead of time. Moldovan & Abbeel (2012) focused
on risk aversion in MDPs using near-optimal Chernoff bounds. Lyapunov functions have also been used to
guarantee safety during training Berkenkamp et al. (2017); Chow et al. (2018), though constructing Lyapunov
functions remains a challenge due to their typically hand-crafted nature and the absence of clear principles
for agent safety and performance optimization.

3 Background

In this section, we investigate the background by exploring essential preliminary concepts that serve as the
foundation for this paper. We start with the discussion of the CMDP framework. Furthermore, we delve into
the formulation of the safety critic and SAC.

3.1 Constrained Markov Decision Process (CMDP)

CMDP comprises the tuple < S,A,P, r, c, γr, γc, ρ0 > where S denotes the state space, A represents the
action space, and r denotes the reward function: r : S×A×S 7→ R. The transition functionP : S×A×S 7→
[0, 1] defines the likelihood P(s′|s, a) of moving from state s to s′ by executing action a. The probability
distribution function ρ0 : S 7→ [0, 1] denotes initial state distribution of the framework. Furthermore, c(s) is
the constraint indicator function which determines whether state s violates the constraint functions specified
by C: c(s) = 1[C(s) == 1]. Parameters γr ∈ [0, 1) and γc ∈ [0, 1) serve as discount factors for reward and
safety critics, respectively. Ultimately, the solution to CMDP is represented by the policy π : S ×A 7→ [0, 1]
which is the probability distribution over actions. The value function associated with policy π for a specific
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state-action pair (s, a) and the corresponding recursive equation, known as the Bellman equation, can be
formulated as follows:

Qπ
r (s, a) = Est∼P,at∼π[

∞∑
t=0

γtr(st, at)|s0 = s, a0 = a] = Es′∼P [r(s, a) + γV π
r (s′)] (1)

Additionally, the primary function of the safety critic is to estimate the probability of a policy failure occurring
in the future, determined by the expected cumulative discounted probability of failure.

Qπ
c (s, a) = Est∼P,at∼π

[
c(s) + (1− c(s))

∞∑
t=1

[γt
cc(st)]

]
= Pr[c(s) == 1] + γcEs′∼P

[
(1− c(s))V π

c (s′)
]
(2)

Finally, the main objective of an RL algorithm in a CMDP framework is to find a policy to maximize expected
return while satisfying the constraints starting from the initial state s0:

π∗ = argmax
π∈Π

J π
r = argmax

π∈Π
Eπ

s0∼ρ0
[

∞∑
t=0

γtrt]

s.t. J π
c = Eπ

s0∼ρ0
[

∞∑
t=0

γt
cct] ≤ ε

(3)

3.2 Soft Actor Critic (SAC)

SAC Haarnoja et al. (2018b) optimizes a stochastic policy in an off-policy manner, utilizing two neural
networks: one for estimating Q-function (critic) and another for policy updates (actor). A key feature of SAC
is entropy regularization, where the policy aims to strike a balance between maximizing expected return and
maximizing entropy. This balance mirrors the exploration-exploitation trade-off; higher entropy encourages
greater exploration, potentially accelerating learning and prevent convergence to suboptimal solutions.

Considering ωr and ϕ as parameters representing the critic and actor networks, respectively, training these
networks involves sampling a batch of samples from the replay buffer. ωr is updated by taking the gradient
through the mean squared error (MSE) loss between the critic output and the target value:

JQωr
r = E(s,a,r)∼D[ 12(Qωr (s, a)−Qtar

r (s, a))2], (4)

where Qtar
r is calculated using Eq. 1:

Qtar
r (s, a) = Es′∼P(s,a)a′∼πϕ

[r(s, a) + γr(Qr(s′, a′)− αlog(πϕ(a′|s′)))] (5)

Furthermore, the policy πϕ is optimized by taking the gradient through the critic and the expected entropy of
the policy:

J πϕ
r = E s∼D

a∼πϕ

[αlog(πϕ(a|s))−Qωr
(s, a)] (6)

Finally, it is important to note that the safety critic (Qωc ) defined in Section 3.1 is trained using the same loss
formulation in Eq. 4, without the entropy term.

4 Method

In this section the process of metagradient optimization of the safety threshold ε and entropy temperature α
is discussed.

4.1 Metagradient Optimization

Metagradient optimization is the process with which we can optimize the hyperparameters that are not a part
of the main loss function. Fundamentally, these meta-parameters1 dictate the dynamics of the system and

1In this paper, we use hyperparameters and meta-parameters terms interchangeably.
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direct it toward a certain behavior. In the context of metagradient reinforcement learning Xu et al. (2018), in
abstract terms, the learnable system variables are parameterized as θ. These parameters are updated to θ′ by
following the rule:

θ′ = θ + f(J , θ, η,B) (7)

where η is the list of hyperparameters, B a mini-batch of experience, and f the gradient of the objective
function J w.r.t. θ. Furthermore, the optimization process of the meta-parameters η can be formulated based
on the updated parameter θ′:

η′ = η + βη
∂J ′(θ′, η,B′)

∂η
= η + βη

∂J ′(θ′, η,B′)
∂θ′

dθ′

dη (8)

where J ′ is the meta-objective used for the optimization of the meta-parameters, βη the learning rate as-
sociated with η, and B′ a resampled mini-batch validation set similar to the cross-validation method in the
meta-optimization literature Beirami et al. (2017). Finally, dθ′

dη can be calculated as:

dθ′

dη =
(
I + ∂f(J , θ, η,B)

∂θ

)
dθ
dη + ∂f(J , θ, η,B)

∂η
(9)

4.2 SAC-Lagrangian

In the Lagrangian version of the SAC we aim to optimize the policy based on its reward objective such that it
is compliant with the safety objective:

π∗
ϕ = max

πϕ∈Π
J πϕ

rπϕ
= E s∼D

a∼πϕ

[Qωr (s, a)− α log πϕ(s, a)]

s.t. J πϕ
c = E s∼D

a∼πϕ

[Qωc
(s, a)] ≤ ε

(10)

Naturally, multiple constraints can be defined for the policy to consider all of them. However, in this paper, in
order to keep the formulation simple and general, we consider a single constraint signal that is the result of the
superposition of all the constraint functions. In this paper, in contrast to Haarnoja et al. (2018b), we refrain
from considering α as an additional constraint and aim to optimize it through metagradient optimization.

Furthermore, the optimization process of policy in Eq. 10 is formulated by casting it as a Lagrangian loss and
backpropagating through the loss:

min
ν≥0

max
πϕ∈Π

L(πϕ, ν, ε, α) = J πϕ
rπϕ
− ν(J πϕ

c − ε) = E s∼D
a∼πϕ

[Qωr
(s, a)− α log πϕ(s, a)− ν(Qωc

(s, a)− ε)]

(11)
where ν is the Lagrange multiplier.

4.3 Meta SAC-Lag

Following the conventional notation in the context of gradient-based hyperparameter optimization Franceschi
et al. (2018), we split the parameters into inner and outer parameters. Rather than a one-shot optimization as
in Eq. 7, we propose a sequential updating approach. We define and update the inner parameters as:

θ′
inner =

[
ν′

ϕ′

]
=

[
ν
ϕ

]
+

[
−∇νL(πϕ, ν, ε, α)
∇ϕL(πϕ, ν

′, ε, α)

]
(12)

Furthermore, in the same sequential manner, we first update ε and then α:

θ′
outer =

[
ε′

α′

]
=

[
ε
α

]
+

[
∇εJε(πϕ′)

∇αJα(πϕ′ , ν′, ε′)

]
(13)

where Jε and Jα correspond to the objective functions of ε and α, respectively. To this end, we intended
to design the objective function for ε solely based on the performance of the resultant policy. Our intuition
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behind the aforementioned design stems from the idea that the threshold should be adjusted such that it
improves the performance of the agent as a whole. For that purpose, the ε objective function is proposed as:

Jε(πϕ′) = E s∼D
a∼πϕ′

[ν′
copyQωc

(s, a)−Qωr
(s, a)] (14)

The objective function Jε is consistent with the objective function of the policy. This is evident by comparing
Eq. 14 with the gradient w.r.t. the policy parameters ϕ in Eq. 11. The objective function for ε is designed
to minimize the policy objective. This design stems from the idea that ε aims to capture the worst-case
performance of the policy πϕ′ . Hence, by being optimized in this way, the safety region of the policy can
be correctly adjusted. It is important to note that we use ν′

copy to indicate that we merely use ν′ value in
the objective function and not include its gradient w.r.t. ε. We observed better performance by the gradient
detachment in our early experiments which may be due to the injection of bias in ν′ into its optimization pro-
cess. Furthermore, to optimize the exploration value α, Wang & Ni (2020) usedQωr

as the objective function
to change the value based on the performance of the policy. Therefore, in order to make the exploration rate
of the Meta SAC-Lag safety compliant, we propose the objective function of α as:

Jα(πϕ′ , ν′, ε′) = max
0<α≤1

E s0∼ρ0
a∼πdet

ϕ′

[Qωr
(s0, a)− ν′(Qωc

(s0, a)− ε′)] (15)

where πdet
ϕ′ indicates the deterministic action value output by the policy. Basically, we use the expectation

of the Lagrangian formulation evaluated in the initial states encountered by the agent. The learning process
of Meta SAC-Lag is presented in Algorithm 1. Moreover, to gain a better understanding of the gradient
relations, illustration of the optimization process of Meta SAC-Lag is depicted in Fig. 1.

5 Experiments

In this section, we evaluate the performance of Meta SAC-Lag. Specifically, our aim is to study two questions:

• How much does the added autonomy affect the performance of the algorithm compared to the base-
line methods?

• How capable is Meta SAC-Lag to learn optimal performance in a real-world setup while avoiding
actions that might catastrophically damage the system?

5.1 Test Benchmarks and Baselines

In order to evaluate the performance of Meta SAC-Lag, we employ five environments across three main safety
topics of locomotion, obstacle avoidance, and manipulation. The details and motivation of our choice of envi-
ronments have been discussed in Appendix C. Furthermore, it is important to note that in the training process,
we treat the constraints as hard constraints and terminate the episode whenever a violation has happened in
the system. Furthermore, three baseline algorithms are chosen to compare and study the performance of Meta
SAC-Lag:

- SACv2-Lag: The basic form of Meta SAC-Lag which uses Eq. 11 to optimize the policy.

- Reward Constrained Policy Optimization (RCPO-SACv2): Optimizes the policy using the Q-function
formulated as Eπ[Q̂(s, a) = Qr(s, a)− νQc(s, a)]. The dual variable ν is also updated using Eq. 11.

- RCPO-MetaSAC: To showcase the effectiveness of our safe exploration technique, we use the Q̂(s, a)
formulation in RCPO and optimize α using the approach proposed in Wang & Ni (2020).

- Meta SAC-Lag Jnl: Inspired by Honari et al. (2024), we experiment with a nonlinear objective function
for ε specified as:

J nl
ε (πϕ′) = E s∼D

a∼πϕ′

[{
Qωr (s, a)Qωc(s, a) if Qωr (s, a) < 0
Qωr

(s, a)(1−Qωc
(s, a)) otherwise

]
(16)
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Figure 2: Performance of Meta SAC-Lag compared with the baseline algorithms. (Top row): Reward
performance during the learning process. (Higher values are better) (Middle row): The value of Exploration

hyperparameter (α). (Bottom row): Episodic policy safety performance of the algorithms during the
learning process. (Lower values are better). The dashed lines illustrate the constraint threshold value (ε).

Essentially, J nl
ε can have the advantage of no reliance on external parameter values, as opposed to Eq. 16

which uses ν′ in the objective formulation.

To have a fair comparison, we tune the values of ε and ν for SACv2-Lag and RCPO-SACv2. Also,
we use the values of RCPO-SACv2 for RCPO-MetaSAC. The values are outlined in Table 1. For the
value of α, SACv2 constrains the policy entropy as Es∼D

a∼π
[− log(π(s, a))] ≥ H and defines the α loss as

minα>0 L(α) = Es∼D
a∼π

[α(log(π(s, a)) + H)]. The authors propose the formula H = −dim(A) as their
target entropy. Furthermore, two important initial hyperparameter values of Meta SAC-Lag are automatically
tuned; therefore, we set ε = 1 and α = 1 as their initial values. Moreover, due to their similar training
pipelines, we use the initial values of ν for SACv2-Lag in Table 1 for Meta SAC-Lag. We also set γr = 0.99
and γc for all the tasks. The results indicate the mean and variance of the performance of the algorithms
across multiple independent runs.

5.2 Simulation Results

The simulation results are depicted in Fig. 2. The violation rate is calculated as the average number of failures
over a specific window of episodes. The results not only indicate that Meta SAC-Lag provides automated
tuning of the safety-related hyperparameters but also, that the convergence process of the policy incurs lower
constraint violations and yields higher or comparable returns. Furthermore, the update profile of α shows
that as training goes on, in most cases, Meta SAC-Lag updates α to values lower than SACv2. This indicates
that as the policy converges to a near-safe optimal solution, α is rapidly decreased to favor exploitation and
prevent further constraint violations. Moreover, we can observe similar α profiles in Meta SAC-Lag and
RCPO-SACv2 which can be attributed to α being optimized using similar objective functions. In addition,
the optimization process of ε shows a generally fast convergence. The fast convergence of ε provides the
advantage of stable optimization as other values can be updated based on the optimally achieved value of
ε. Finally, regarding the comparison between Eq. 14 and Eq. 16 we observe consistently better performance
of Eq. 14 in both aspects of return and safety. In summary, the optimization outcomes of Meta SAC-Lag
demonstrate that the algorithm excels across a range of embodied control tasks, proficiently learning optimal
solutions, while demanding minimal hyperparameter tuning.

5.3 Real-World Deployment

Deployability can be regarded as one of the most important obstacles in using RL for learning to control
real-world systems Enayati et al. (2023). Choosing unsafe actions might lead the system to states that might
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Figure 3: Deployment results of Meta SAC-Lag on the real-world setup. (a) and (b) represent the jerk and
acceleration of the end effector during the training process. (c) shows the final success rate of the algorithms.

damage it catastrophically, if chosen repeatedly. Therefore, using the conventional safe RL algorithms hinders
their deployability since they require intensive hyperparameter tuning. In line with our purpose of assessing
the deployability of a safe RL method, we propose a simple, yet important, safe RL testbench. This task,
which we call Pour Coffee, is the task of moving a coffee-filled mug from a home position to a specific
location and pouring the coffee into another cup. The task is executed using a Kinova Gen3 robot and its
digital twin is created in the PyBullet simulation environment Coumans & Bai (2016–2021). The environment
specifics are discussed in Appendix D.

We conduct experiments with Meta SAC-Lag in four reward and constraint settings. The experiments aim to
study whether formulating the problem sub-objectives can be more practical by defining them as constraints
rather than shaping the reward explicitly. In the presented task, coffee spillage provides an implicit sub-
objective that can be explicitly modeled as the sub-objective of minimizing the jerk and acceleration of the
end-effector during the execution of the task. As shown in Table 2, three experiments (Simulation #2, #3,
#4) utilize different reward shaping schemes along with various constraint definitions. Moreover, we trained
Meta SAC-Lag without engineered reward shaping (Simulation #1) both in the simulation environment and
the real-world Kinova Gen3 setup. In order to make comparisons and evaluate the Sim2Real capability,
the simulation-trained models were deployed on the robot using the checkpoints saved during the learning
process.

The evaluation results are depicted in Fig. 3. The results illustrate that, as a result of providing a denser
reward signal, explicit reward shaping can have positive effects in the increase of the success rate. However,
using the spillage constraint helps the algorithm be even more effort-compliant resulting in lower jerk and
comparable acceleration results. In other words, while being successful in executing the task is the most
important metric, in a real-world scenario, sacrificing the performance to lower the effort of the system and
satisfy other safety concerns can be reasonable. In addition, regarding the comparison between Sim2Real and
Real deployment of the proposed algorithm, we can observe that while both setups have similar behaviors,
the real-world deployment is slightly hindered by the system’s physical limitations, such as sensor noise,
control saturation, system fatigue, etc. Despite all that, the algorithm trained on the real-world setup without
engineered reward function achieves results comparable to the models trained in the simulation.

6 Conclusions

The paper focused on the problem of automatic hyperparameter tuning in Lagrangian safe RL methods. A
novel model-free architecture called Meta SAC-Lag was proposed which addressed two inherent problems:
safe exploration and constraint bound tuning. To this end, through the use of metagradient optimization, the
algorithm is capable of adjusting the safety-related hyperparameters with minimal initial tuning. Furthermore,
we studied the performance of our algorithm in five simulated embodied applications with the themes of
locomotion, obstacle avoidance, robotic manipulation, and dexterous manipulation. We observed that the
synergy created between the parameters and the hyperparameters results in comparable or better performance
of the policy in terms of reward or safety. Additionally, we conducted an experiment in a real-world setup
involving a practical coffee-pouring robotic environment without any explicit safety-related reward shaping.
We deployed the algorithm on the Kinova Gen3 robot and showed that the proposed algorithm can be helpful
for real-world safety-sensitive applications by reducing the reliance on heuristic implementation of safety. We
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also observed that formulation of safety solely as the violation rather than engineering the reward function
results in applying lower levels of effort at the cost of a diminished success performance. This trade-off can
be especially favorable in real-world setups where safety violations are costly. Specifically, the proposed
algorithm will learn the optimal policy in the real-world setup while adhering to the collision constraints and
minimizing the effort imposed on the robot.
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A Meta SAC-Lag Pseudocode

B Implementation Details

The proposed algorithm utilizes three replay buffers for training. The main replay buffer D stores all the
transitions occurred while interacting with the environment, safety replay buffer Ds stores all the transitions
that have led to a constraint violation, and D0 builds an approximation of ρ0 by generating samples from
the distribution. We used a sampled batch B ⊂ D to train the critic networks and the inner parameters
ν and ϕ. Following that, as discussed in Section 4.1, we use resampled B′ ⊂ D and D0 to train the meta-
parameters ε and α, respectively. The resampling process is analogous to the meta-testing process and is used
to reduce bias in the training of the outer parameters Beirami et al. (2017); Franceschi et al. (2018). Moreover,
following the original architecture Haarnoja et al. (2018b), Meta SAC-Lag uses two critic and safety critic
networks to prevent the overestimation of the value functions. To this end, the target values in Eq. 5 are
calculated as min{Qω̄r1

, Qω̄r2
} and max{Qω̄c1

, Qω̄c2
}, respectively. The ω̄ notation is used to indicate the

target networks which are copies of the main networks updated with a time delay. Proposed in Lillicrap et al.
(2015), the target networks aim to increase the stability of the training process and are calculated using the
polyak averaging: ω̄ = τω + (1− τ)ω̄. The hyperparameter τ ∈ (0, 1) typically has a value near zero.

Finally, it is also worth mentioning, in contrast to the original SAC, we use RMSProp Ruder (2016) instead
of Adam to calculate the higher-order gradients of the parameters ν, ϕ, and ε since backpropagating through
RMSProp seems to be more numerically stable Wang & Ni (2020).

C Benchmark details

In order to study how the proposed algorithm will perform in safety-critical robotic scenarios, we use five
simulated robotic environments with four different themes:

• Locomotion: In this theme, the purpose of control is to move the robotic system in the forward
direction. The safety constraints are violated whenever the controller’s actions make the system
exceed its limits, e.g., the velocity is higher than a certain threshold or the robot is falling to the
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Algorithm 1 Meta SAC-Lag

Require:
Initialize Policy network ϕ0, Exploration rate α0

Critic network ω0
r1
, ω0

r2
, Safety critic network ω0

c1
, ω0

c2
Lagrangian values ε0, ν0

Learning rates βϕ, βε, βν , βα

1: Create Transition buffer D, Safety buffer Ds, and Initial state buffer D0
2: Randomly sample initial state s0 ∼ ρ0 and fill D0
3: for e = 1, . . . do
4: Reset environment s0 ∼ ρ0 = env.reset()
5: for t = 0, . . . , T − 1 do
6: Sample action at ∼ πϕ

7: st+1, rt, ct ← env.step(at)
8: if ct == 1 then
9: Ds ← Ds ∪ (st, at, ct, st+1)

10: else
11: D ← D ∪ (st, at, rt, ct, st+1)
12: Train ωc1 , ωc2 on D ∪Ds (Eq. 2)
13: Sample a batch of transitions B =

{(s, a, r, c, s′)} ∈ D
14: Train ωr1 , ωr2 using B (Eq. 4)
15: ν′ ← ν − βν∇νL(πϕ, ν, ε, α) using B (Eq. 11)
16: ϕ′ ← ϕ+ βϕ∇ϕL(πϕ, ν

′, ε, α) using B (Eq. 11)
17: Resample B′ = {s ∈ D}
18: ε′ ← ε+ βε∇εJε(πϕ′) using B′ (Eq. 14)
19: α′ ← α+ βα∇αJα(πϕ′ , ν′, ε′) using D0 (Eq. 15)
20: ν ← ν′, ϕ← ϕ′, ε← ε′, α← α′

21: if ct == 1 then Break

Table 1: Hyperparameter values (ε and ν) of the comparison methods

Environment / Parameter ε
Meta SAC-Lag

SACv2-Lag
RCPO-SACv2

RCPO-MetaSAC

Humanoid-Velocity 0.4 10 10
Franka DrawerClose 0.6 10 10

Car-Circle2 0.5 100 1
Fetch PushTopple 0.5 1000 10
Egg Manipulate 0.5 100 1

ground. For that purpose, we use the Mujoco-based Todorov et al. (2012) Humanoid-Velocity en-
vironment from the Safety Gymnasium codebase Ji et al. (2024). It is important to note that the
safety-related reward shaping of this environment is removed to have a better understanding of the
safety performance of the algorithms.

• Obstacle Avoidance: In many real-world robotic applications, there are mobile robots with manip-
ulation capabilities. An important constraint of these systems is achieving their goal while avoiding
certain regions in their surroundings. We adopt Isaac Gym-based FreightFrankaCloseDrawer Liang
et al. (2018). In this setup, the robot attempts to get near a drawer and close it while avoiding a red
region. In addition, we use Car-Circle2 task Ji et al. (2024) where the objective is to steer a car in a
circular motion while avoiding collision with two walls.

• Manipulation: Another important area of safety-concerned robotic applications is manipulation.
For that purpose, we use two embodied scenarios. For the robotic manipulation task we use Push
Topple Bharadhwaj et al. (2020); Hsu et al. (2022) environment where the robotic arm must relo-



Depoyable RL @ RLC 2024

cate a box without toppling it. Furthermore, in the dexterous manipulation scenario, we adopt
the Egg Manipulate task where the agent must rotate an egg to a specific orientation without drop-
ping it or exerting a force of more than 20 N. For both tasks, we use the Gymnasium Robotics
codebase de Lazcano et al. (2023).

(a) Humanoid-Velocity (b) Franka CloseDrawer (c) Car-Circle2 (e) Egg Manipulate(d) Fetch PushTopple

(f) Pour Coffee 
(simulation)

(g) Pour Coffee 
(real setup)

Figure 4: Safety-critical environments used to deploy Meta SAC-Lag. The top row represents simulated
environments with four general safety topics: locomotion (a), obstacle avoidance (b,c), robotic manipulation
(d), dexterous manipulation (e). The bottom row represents Pour Coffee environment (f,g) used to study the

deployability of the algorithm in a real-world setup.

D Real-world deployment details

We define the state space S =
{
Xcup ∪ Ocup ∪ Ẋcup ∪ Xgoal ∪ Ogoal

}
where X = {x, y, z}

and O = {ψ, θ, ϕ} refer to the Cartesian position and the Euler angles in the Tait-Bryan ZYX intrinsic
convention, respectively. Furthermore, the action of the agent maps to the velocity of the end-effector: A =
{ẋcup, ẏcup, żcup, ϕ̇cup}. Moreover, we hierarchically define the reward function for reaching and pouring
the coffee based on the Euclidean distance between the cup and the goal d = ||Xcup −Xgoal||2:

r(s, a, s′) =
{
r1 · d+ r2 · ||Ẍcup||+ r3 · 1[spillage] if d > dthresh

−|ϕcup − ϕgoal|+ 10 otherwise
(17)

Table 2: Pour Coffee Reward-Constraint Settings

Experiment Setting Reward Violation

Distance (r1) Acceleration (r2) Penalty (r3) Collision Spillage

Simulation #1 ✓ ✗ ✗ ✓ ✓
Simulation #2 ✓ ✓ ✗ ✓ ✗
Simulation #3 ✓ ✓ ✗ ✓ ✓
Simulation #4 ✓ ✓ ✓ ✓ ✓
Real ✓ ✗ ✗ ✓ ✓
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where r1 = −2, r2 = −0.05, r3 = −1 and dthresh = 5 cm. Furthermore, the system violates the safety
constraints whenever self-collision or collision with the environment objects occurs. Additionally, we can
define another constraint as spilling the coffee. As will be shown, this constraint forces the policy to be
less jerky and aims to minimize the acceleration. The advantage of this approach, in contrast to similar
environments Zhu et al. (2020), is the fact that it will eliminate the need to engineer the reward function to
minimize the jerk and acceleration of the robot.


