
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REDO: EXECUTION-FREE RUNTIME ERROR
DETECTION FOR CODING AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

As LLM-based agents exhibit exceptional capabilities in addressing complex
problems, there is a growing focus on developing coding agents to tackle in-
creasingly sophisticated tasks. Despite their promising performance, these coding
agents often produce programs or modifications that contain runtime errors, which
can cause code failures and are difficult for static analysis tools to detect. Enhanc-
ing the ability of coding agents to statically identify such errors could significantly
improve their overall performance. In this work, we introduce Execution-free
Runtime Error Detection for COding Agents (REDO), a method that integrates
LLMs with static analysis tools to detect runtime errors for coding agents, without
code execution. Additionally, we propose a benchmark task, SWE-Bench-Error-
Detection (SWEDE), based on SWE-Bench (lite), to evaluate error detection in
repository-level problems with complex external dependencies. Finally, through
both quantitative and qualitative analyses across various error detection tasks, we
demonstrate that REDO outperforms current state-of-the-art methods by achiev-
ing a 11.0% higher accuracy and 9.1% higher weighted F1 score; and provide
insights into the advantages of incorporating LLMs for error detection.

1 INTRODUCTION

IPA-GNN E. IPS-GNN REDO
Methods

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Sc
or

es

Acc (Without Context)
Acc (With Context)
W. F1 (Without Context)
W. F1 (With Context)

Figure 1: REDO outperforms current SOTA meth-
ods (Bieber et al., 2022) with respect to accuracy
and weighted F1 (W.F1) on different tasks.

Large language models (LLMs) and LLM-
based agents have exhibited significant po-
tential in code generation, code editing, and
code evaluation. This progress has culmi-
nated in the development of advanced LLM-
based agents (hereafter referred to as coding
agents) designed to address increasingly com-
plex tasks. For example, SWE-Bench (Jimenez
et al., 2024a) presents a demanding benchmark
comprising repository-level coding challenges.
This benchmark requires coding agents to gen-
erate a modification patch that solves a given
problem within a GitHub repository, based on
a problem statement expressed in natural lan-
guage. To effectively navigate complex tasks
such as those posed by SWE-Bench, coding
agents must demonstrate proficiency in the fol-
lowing core competencies: 1) comprehension
of the problem statement and retrieving relevant
code, 2) reasoning towards a functionally cor-
rect solution, and 3) generation of programs
free from runtime errors such as SyntaxError,
AttributeError, or TypeError.

While the majority of coding agents across different tasks focus on enhancing comprehension, re-
trieval and reasoning capabilities, the systematic detection of runtime errors has received compara-
tively limited attention. However, ensuring that generated code is free from runtime errors is as criti-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

cal as the aforementioned capabilities. For example, an AttributeError can cause the modified code
to fail, irrespective of the agent’s comprehension and reasoning processes. Indeed, coding agents are
not immune to runtime errors. On SWE-Bench-lite (Jimenez et al., 2024b), the top six coding agents
as of August 2024 (CodeStory, Mentatbot, Marscode, Lingma, Droid, AutoCodeRover) produce, on
average, 1.8 SyntaxErrors, 25.8 TypeErrors, 5.2 NameErrors, and 11.3 AttributeErrors. Moreover,
SWE-Bench (lite) is deliberately curated to include only straightforward problems, suggesting that
the incidence of runtime errors could be substantially higher on the full SWE-Bench dataset. Ad-
ditionally, detecting these runtime errors enables coding agents to rapidly iterate solutions, thereby
reducing both time and cost.

Recent coding agents do often incorporate modules for detecting runtime errors. For example, SWE-
agent (Yang et al., 2024) and AutoCoderRover (Zhang et al., 2024) employ static analysis tools
such as Pylint (Foundation, 2024c), while CodeR (Chen et al., 2024) utilizes dynamic analysis by
generating unit tests and executing the modified code. However, these methods have three critical
limitations. First, because runtime errors are often triggered by specific inputs that are typically
unpredictable from the code alone, static analysis approaches struggle to detect errors such as many
TypeErrors. Second, although dynamic analysis techniques may identify these runtime errors, they
require execution of the underlying code, which is problematic for three reasons. First, execution
ceases upon encountering the first runtime error, allowing only one error to be detected at a time,
thereby increasing the cost of detection. Secondly, dynamically configuring execution environments
for diverse project setups and testing frameworks poses significant challenges and might trigger
technical, legal or privacy concerns (Puddu et al., 2022; Lacoste & Lefebvre, 2023). Furthermore,
although these mechanisms are commonly employed as separate modules, their performance has
never been comprehensively evaluated. This lack of modular evaluation makes it difficult to assess
the extent to which these error detection modules enhance the performance of coding agents.

In this work, we introduce an execution-free runtime error detection method, termed REDO, which
integrates static analysis tools, such as Pyflakes (Foundation, 2024b) or PyRight (pyright, 2024),
with a large language model (LLM). This approach extends the capabilities of static analysis tools
to detect a broader range of errors without the need for code execution. The combination of these
tools is specifically designed to maximize the advantages of both tools, achieving a balanced trade-
off between reliability and the breadth of detectable errors. Similar to other works (Jimenez et al.,
2024a; Bieber et al., 2022), we specifically focus on the runtime error detection in Python reposito-
ries; but our method could be straightforwardly extended to other languages. Moreover, we present
a challenging and practical benchmark, SWE-Bench-Error-Detection (SWEDE), which is the first
repository-level error detection in the presence of complex external dependencies. Beyond SWEDE,
we perform a suite of experiments encompassing various tasks to further evaluate error detection al-
gorithms. As shown in Figure 1, REDO significantly outperforms previous methods, obtaining
SOTA performance across diverse scenarios; and through qualitative analysis, we provide insights
into the underlying mechanisms of REDO.

2 RELATED WORK

2.1 LLM-BASED CODE GENERATION, CODING AGENTS, AND SWE-BENCH

LLMs (Ouyang et al., 2022; et al., 2024b; 2023b; 2024a; Anthropic, 2024) have been increasingly
leveraged for automatic code generation (Nijkamp et al., 2023b; et al., 2021a; Chai et al., 2023;
et al., 2024c; Nijkamp et al., 2023a; et al., 2023a; Gunasekar et al., 2023) and code repair (Xia
et al., 2023; Shypula et al., 2024; Gunasekar et al., 2023; Prenner & Robbes, 2023; Huang et al.,
2023). The advent of LLM-based agents has further expanded the scope of problem-solving in
complex coding tasks, leading to the development of specialized coding agents. For example, SWE-
Agent (Yang et al., 2024) is built on the ReAct framework (Yao et al., 2023) and incorporates a
custom Agent-Computer Interface (ACI), enhancing the agent’s ability to interact with the envi-
ronment effectively. Similarly, AutoCodeRover (Zhang et al., 2024) provides an integrated set of
search tools and includes Pylint within its toolkit, which serves to statically detect errors. Another
significant contribution is CodeR (Chen et al., 2024), a multi-agent framework that facilitates code
editing by coordinating multiple agents through structured graphs. Within this framework, specific
agents like the Reproducer and Verifier are designed to generate unit tests and validate modified
implementations, respectively. These coding agents are frequently evaluated using the SWE-Bench

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

<Runtime Errors>
[AttributeError]: The
patch assumes that
JSONField has a
‘prepare_value’ metho
d. If this …
</Runtime Errors>

Method
“_print_Identity”
overrides class
“StrPrinter” in an
incompatible manner
Return type
mismatch: …

Figure 2: REDO employes a two-step process. When a repository-level modification is given, REDO
first applies differential analysis to compare the original and modified implementations. If runtime
errors are identified, REDO triggers an alert and rejects the patch. Conversely, if no errors are
detected, the patch is forwarded to the LLM-based detection. The final determination regarding the
patch’s safety is made based on the detection provided by the LLM.
benchmark Jimenez et al. (2024a), which is composed of coding issues extracted from public GitHub
repositories. This benchmark poses significant challenges by requiring coding agents to comprehend
issues, localize relevant code segments, and produce correct modifications.

2.2 STATIC ANALYSIS TOOLS AND RUNTIME ERROR PREDICTION

Static analysis, a technique for examining computer programs without execution, is particularly
valuable in contexts where executing the program might lead to legal, privacy, or computational
concerns. Due to its non-executive nature, static analysis has found widespread application in error
detection (Zheng et al., 2006; Dillig et al., 2007; Chow et al., 2024), bug identification (Ayewah
et al., 2008; Mashhadi et al., 2024), and vulnerability discovery Charoenwet et al. (2024); Son-
nekalb et al. (2023); Esposito et al. (2024); Chess & McGraw (2004); Livshits & Lam (2005); Evans
& Larochelle (2002). In the context of Python programming, various professional static analysis
tools have been developed to enhance code quality. For instance, Pylint (Foundation, 2024c) and
Pyflakes (Foundation, 2024b) are designed to identify errors, while Bandit PyCQA (2024) focuses
on detecting common security vulnerabilities. Additionally, tools such as PyRight (pyright, 2024)
and MyPy (Foundation, 2024a) perform type checking, contributing to more robust software devel-
opment. Although the integration of LLMs with static analysis is still in its infancy, some recent
studies have proposed combining these technologies to enhance bug detection in complex systems,
such as the Linux kernel (Li et al., 2024a), and to identify security vulnerabilities (Li et al., 2024b).
However, the exploration of LLMs in conjunction with static analysis for runtime error detection
remains limited. Additionally, Bieber et al. (2022) presents a notable effort in this domain by lever-
aging Graph Neural Networks (GNNs) for predicting runtime errors, along with proposing a dataset,
referred to as STA, to evaluate their approach’s efficacy.

3 EXECUTION-FREE RUNTIME ERROR DETECTION FOR CODING AGENTS

In this study, we introduce REDO, which serves to check the safety of modification patches. Here,
“Unsafe” instances are those that might crash due to runtime errors; and “Safe” instances are those
that can be successfully run. REDO operates through a two-phase process: differential analysis and
LLM-based detection.

The differential analysis component employs a static analysis tool, which provides a dependable
method for detecting runtime errors. However, its detection capabilities are generally constrained to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

SyntaxError, AttributeError, and NameError. To address this limitation, the LLM-based detec-
tion is incorporated to reason about the input contexts. It extends REDO’s detection capabilities to
errors such as TypeError and ValueError, which are typically beyond the scope of static analysis.

By integrating these mechanisms, REDO achieves a balanced trade-off between reliability and the
breadth of error detection. An overview of REDO’s architecture is illustrated in Figure 2.

3.1 DIFFERENTIAL ANALYSIS

Static analysis tools like Pyflakes and PyRight typically ensure detection through reliable methods,
such as verifying syntax correctness and maintaining data type consistency, making them essential
for identifying runtime errors in coding agents. In this study, we employ PyRight as our static
analysis tool since it is fast and lightweight; however, our framework is designed to be flexible,
allowing the integration of any static analysis tool.

Despite their utility, static analysis tools are affected by two challenges. First, they are prone to
generating false positives, where potential vulnerabilities are incorrectly flagged (Kang et al., 2022;
Kharkar et al., 2022; Murali et al., 2024). For example, when PyRight is applied to original python
scripts containing the modified functions, which do not contain runtime errors, it falsely classifies an
average of 267 instances, considering 89% of all testing instances as “Unsafe” across various coding
agents. To mitigate this issue, particularly in code edit tasks, we introduce the concept of differential
analysis. This method involves applying static analysis tools to both the original and modified
implementations separately. By comparing the errors detected in the original implementation (SOrig)
with those in the modified implementation (SMod), we can identify any new errors introduced by
the modifications. If new errors are detected in the modified implementation, the patch is flagged
as “Unsafe”. Differential analysis effectively refines static analysis tools to focus specifically on
runtime errors introduced by modifications, thereby filtering out false positives from the original
implementation. Notably, this removes almost all positives induced by the original implementation.

The second challenge with static analysis tools is their inability to detect errors that are triggered
under specific inputs. In dynamically typed languages like Python, variable data types are unknown
before execution and also can change in response to different inputs. Since static analysis tools
cannot reason about input contexts, they often fail to detect these errors, resulting in low recall in
error detection performance. We show a concrete example in Figure 4. To address this challenge,
we propose the LLM-based detection described in the next section.

3.2 LLM-BASED DETECTION

In comparison to static analysis tools, LLMs possess the ability to comprehend both the problem
statement and the modification patch. This capability allows them to reason about potential input
contexts and anticipate runtime errors that might be overlooked by static analysis tools. However,
the reasoning process of LLMs is not always as reliable as the error detection mechanisms inherent
in static analysis tools. To harness the complementary strengths of both approaches, we restrict
the application of LLMs to instances deemed ’Safe’ by static analysis tools. Accordingly, we have
designed the LLM prompt template to identify potential runtime errors that static analysis tools may
have missed.

Specifically, for each modification patch, we provide two additional pieces of information: the prob-
lem statement and the Python script containing the original version of the modified functions. The
problem statement outlines the input contexts and describes the potential verification process for the
modified implementation. The original implementation provides the running context of the modi-
fied functions, including the safe utilization of variables and functions. Subsequently, we prompt
the LLM to enumerate potential runtime errors that may arise due to the modification and ultimately
assess the safety of the patch. A detailed prompt template is provided in Appendix E.2.

Given the cost and latency associated with LLM calls, the LLM API is restricted to a single invoca-
tion per instance in our study. For the LLM, we utilize Claude-SONNET-3-5, with the temperature
setting fixed at zero. A pseudo-code of whole REDO framework is given in Algorithm 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 SWE-BENCH-ERROR-DETECTION (SWEDE)

The difficulty of runtime error detection can vary drastically among different coding problems. For
instance, on the task proposed by Bieber et al. (2022), only one python script is considered on
each data point. This task is practical as it resonates the competitive programming scenario where
one python script should contain all functionality; and external dependencies are simple. However,
as coding agents become more powerful, additional challenging and practical scenarios should be
considered. In this work, we propose an repository-level error detection task, which is based on
SWE-Bench (lite) (Jimenez et al., 2024a) and its evaluation results using different coding agents.
We name this task as SWE-Bench-Error-Detection or SWEDE.

SWE-Bench (lite) is a popular benchmark dataset containing instances of repository-level coding
problems. Taking a GitHub repository and a problem statement as inputs, SWE-Bench (lite) asks
coding agents to generate a modification patch to resolve the problem. SWEDE extends SWE-Bench
(lite) to include generated patches and evaluation logs from SWE-Bench leaderboard (Jimenez et al.,
2024b); but with a focus on detecting runtime errors induced by generated patches, without execut-
ing the code.

The task is challenging for two reasons. First, the modified scripts usually call other python scripts,
referred to as external dependencies, within the same repository. For instance, as shown in Table 1,
when only one directory level above the location where the modified file resides is considered, there
already are many dependencies on average. When all files in the repository are considered, the
number of dependencies could become even more intimidating. Furthermore, the unit tests might
not directly interact with the modified files. These two factors make SWEDE challenging for error
detection algorithms as running contexts of variables and functions are harder to infer. The task is
practical because, when coding agents autonomously modify repositories, detecting runtime errors
early offers instrumental information; and can potentially reduce cost and time.

Table 1: Average External Dependencies in Parent Folder on SWEDE Across Coding Agents.

Method CodeStory Demo Aider Lingma Droid ACR

Average dependencies 5.56 4.56 6.07 5.75 5.61 5.98

As the problem is challenging, in this work, we focus on detecting if a modification patch will induce
any runtime errors, e.g., SyntaxError, AttributeError, TypeError, etc. As a result, given a patch, we
label it as positive if it contains an runtime error; and negative if the patch passes all unit tests or
fails the unit tests only because of wrong functionality. We propose to measure the performance of
error detection algorithms on SWEDE using precision, recall and F-1 score.

5 EXPERIMENTS

5.1 QUANTITATIVE RESULTS

SWE-Bench-Error-Detection (SWEDE). We first evaluate REDO on SWEDE task. We consider
six State-of-the-art (SOTA) coding agents on the SWE-Bench-lite leaderboard, including CodeStory,
Mentatbot, Marscode, Lingma, Droid, and AutoCodeRover (ACR) Zhang et al. (2024). We compare
REDO to several baselines. First, we include two widely used static analysis tools, namely Pyflakes
and PyRight. To eliminate false positive detection, we apply differential analysis (introduced in
Section 3.1. Second, we include an LLM-only method, denoted as LLM. The LLM is prompted with
the same template introduced in Section 3.2. Lastly, to study how the choice of static analysis tool
affects REDO, we include a REDO framework with Pyflakes, named as REDO-Pyflakes. Due to the
inherent stochasticity in generation, even with a temperature setting of zero, we generate the LLM
responses three times and report the mean and standard deviation of the outcomes.

As shown in Table 2, static analysis tools (Pyflakes and PyRight) usually have higher precision
scores, while LLM obtains better recall scores. This justifies our analysis on the difference between
static analysis tools and LLM (as in Section 3). Furthermore, confusion matrices in Figure 3 show
that the static analysis tool is more prudent in claiming unsafe patches, and therefore misses more
failed patches than LLM does. By appropriately combining these two kinds of tools, REDO makes

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

a good trade-off between reliability and detectable score. This better trade-off contributes to supe-
rior F1 scores. Second, the performance of LLM is closer to REDO because REDO utilizes LLM
on more than 70% instances. However, we note that despite the similarity, REDO makes less API
calls because of the differential analysis step. We show confusion matrices using REDO and differ-
ent coding agents in Figure 6. Also, as can be seen on the other dataset (STA) below, when static
analysis tools performs better, REDO can significantly outperform the LLM-only baseline. Third,
the performance of REDO-Pyflakes and REDO are close and outperform others, demonstrating the
robustness of REDO against static analysis tool choices. We further report results using Anthropic
Claude OPUS in Table 4 and SONNET-3.5 with temperature being 0.5 in Table 5. We can observe
that REDO and REDO-Pyflakes consistently outperform static analysis tools and LLM, demonstrat-
ing the robustness of our proposed method against LLM configurations.

Table 2: Performance metrics by method and benchmark

Coding agent Metric Method

Pyflakes PyRight LLM REDO-Pyflakes REDO

CodeStory
Precision 32.1 43.7 34.0 0.2 33.3 0.2 33.9 0.2

Recall 22.8 48.1 69.2 0.7 70.5 0.7 75.5 0.7

F1 26.7 45.8 45.6 0.4 45.3 0.3 46.8 0.3

Demo
Precision 34.1 33.9 30.7 0.6 31.2 0.6 31.1 0.3

Recall 34.9 45.3 61.2 1.8 70.2 1.3 74.4 1.2

F1 34.5 38.8 40.9 1.0 43.2 0.8 43.8 0.5

Marscode
Precision 22.9 33.8 28.7 1.0 27.9 0.7 29.1 0.8

Recall 16.4 37.3 68.7 1.5 74.6 1.5 77.6 1.5

F1 19.1 35.5 40.5 1.2 40.6 1.0 42.3 1.0

Lingma
Precision 45.8 48.3 40.5 0.1 40.3 0.2 41.3 0.2

Recall 27.8 29.9 66.3 0.6 71.5 0.6 71.5 0.6

F1 34.6 36.9 50.3 0.2 51.5 0.3 52.3 0.3

Droid
Precision 53.3 42.1 41.8 0.3 40.1 0.3 42.0 0.3

Recall 22.0 14.7 63.6 0.5 65.4 0.5 68.2 0.5

F1 31.2 21.8 50.4 0.4 49.7 0.4 52.0 0.4

ACR
Precision 45.3 54.7 39.2 0.2 38.3 0.2 40.6 0.2

Recall 23.5 34.3 65.7 1.0 69.3 0.6 73.9 0.6

F1 31.0 42.2 49.1 0.3 49.3 0.0 52.4 0.3

Passed Failed
Ground Truth

Sa
fe

Un
sa

fePr
ed

ict
ed

165 67

29 35

40

60

80

100

120

140

160

(a) PyRight

Passed Failed
Ground Truth

Sa
fe

Un
sa

fePr
ed

ict
ed

47 85

36 128

40

60

80

100

120

(b) LLM

Figure 3: Confusion Matrices on CodeStory

Ensemble patch To demonstrate how the detection errors serve to enhance coding agents, we
propose a preliminary algorithm to ensemble a base coding agent with an auxiliary agent, basing on
the detection results from REDO. Specifically, given an instance in SWEDE, REDO first checks the
safety of the patch pbase from the base agent. If pbase is safe, it will be accepted; otherwise, REDO
will check the safety of the patch paux from the auxiliary agent. If paux is safe, it will be alternatively
accepted; otherwise, the algorithm falls back to the base agent and accept pbase. Note that, since
the top agents on the SWE-Bench leaderboard are proprietary, we are unable to run their methods
to generate new patches. Instead, we utilize the patches reported in the SWE-Bench repository. A

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

pseudo-code of the ensemble algorithm is given in Algorithm 2. The quantitative results and analysis
can be found in Section D.

STA dataset. To assess the general applicability of REDO, we conduct evaluations on another
dataset: the balanced test set introduced by Bieber et al. (2022), hereafter referred to as STA. This
dataset is derived from a code generation dataset CodeNet (et al., 2021b) and comprises approxi-
mately 27,000 Python submissions for competitive programming tasks. The balanced test set was
designed to ensure that the number of submissions without errors is approximately equal to those
containing runtime errors. The dataset categorizes 26 distinct error types, including the category
”no error.” The detailed enumeration of errors and their corresponding indices are consistent with
those listed in the prompt template provided in Appendix E.3. Unlike the SWEDE dataset, each
submission in STA consists of a single Python script that processes input via standard input (stdin)
and performs its functionality without relying on external dependencies. In the context of STA, error
detection algorithms are tasked with predicting runtime error types based on the Python submission,
with or without the presence of input contexts. These input contexts describe the potential values
that stdin may take, providing clues regarding possible runtime errors. We refer to the scenario
involving input context as With Context, and the scenario without input context as Without Context.

Given that the task in STA differs from that in SWEDE, we adapt REDO using modified prompt
templates. The templates for both the scenarios with and without input contexts are provided in
Appendix E.3 and Appendix E.4, respectively. The performance of the algorithms is assessed us-
ing three metrics: accuracy (Acc), weighted F1 score (W.F1), and weighted error F1 score (E.F1).
Weighted metrics are computed by calculating the F1 score for each class independently and av-
eraged using a weight that depends on the number of true instances for each class; the E.F1 is
calculated exclusively for data points containing a runtime error. We compare our methods with
those reported by Bieber et al. (2022). To further investigate the contributions of individual com-
ponents within REDO, we also evaluate PyRight and LLM separately. Since the original dataset
samples do not include error-free submissions, we employed three different random seeds to sample
an equivalent number of submissions for a fair comparison. The means are reported in Table 3, and
the standard deviations are presented in Table 6.

First, as demonstrated in Table 3, REDO-PyRight achieves state-of-the-art (SOTA) performance
across all six evaluated metrics, underscoring the superior performance of REDO in the context
of STA. Additionally, we observed discrepancies between the annotated error types and the results
obtained from our running results. Consequently, we also present evaluation results, enclosed in
brackets, based on error types identified in our runs. Under these conditions, REDO exhibits even
more pronounced improvements over the baselines. Second, our ablation PyRight obtains decent
performance in both Without and With Context tasks. Considering that the input to STA submissions
are usually most common cases, as opposed to corner cases in SWEDE, our result demonstrates that
static analysis tools could perform well if the inputs and dependencies are simple. Furthermore,
when comparing REDO to PyRight, we can also see that REDO obtains extra benefits by including
the LLM based tool. This shows the effectiveness of our proposed framework.

Moreover, the differing conclusions regarding static analysis tools and LLMs between SWEDE
and STA highlight that each excels in distinct tasks. By integrating these two tools, we can
leverage the strengths of both, rendering our framework more versatile and effective across a broader
range of tasks.

5.2 QUALITATIVE ANALYSIS

In this section, we qualitatively analyze how key design factors in REDO affects the performance.
Consequently, we target answering the following two questions:

1. When does LLM succeed and fail to help REDO?
2. How could the detected errors help?

When Does the LLM Succeed? Figure 4 illustrates a case in which the LLM successfully iden-
tifies a runtime error that PyRight overlooked. This example is on the django-13551 instance using
coding agent Lingma. The complete LLM response and modification patch are presented in Fig-
ure 8. Specifically, the evaluation log in Figure 4 reveals that an AttributeError is triggered when the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Quantitative results on detecting runtime errors in CodeNet dataset. Each method is eval-
uated with and without the input context. Three metrics are included, namely accuracy (Acc),
weighted F1 score (W. F1), and weighted error F1 score (E. F1). Bold values indicate the best
performance for each metric, while underlined values represent the second-best performance.

Without Context With Context
Method Acc W. F1 E. F1 Acc W. F1 E. F1

GGNN 62.8 58.9 45.8 68.3 66.5 56.8
TRANSFORMER 63.6 60.4 48.1 67.3 65.1 54.7
LSTM 66.1 61.4 48.4 68.1 66.8 58.3
IPA-GNN 68.3 64.8 53.8 71.4 70.1 62.2
E. IPS-GNN 68.7 64.9 53.3 71.6 70.9 63.5
PyRight 74.5 (76.4) 67.2 (70.1) 52.2 (54.2) 74.5 (76.4) 67.2 (70.1) 52.2 (54.2)
LLM 61.8 (64.1) 54.0 (57.2) 32.7 (35.8) 64.3 (66.8) 58.6 (62.1) 40.4 (43.7)
REDO 75.1 (76.8) 69.9 (72.6) 57.0 (59.1) 77.4 (79.3) 74.5 (77.5) 64.3 (66.6)

I'll analyze the modification patch for potential runtime errors:

<Runtime Errors>
[AttributeError]: The modification adds `user.email` to the hash value calculation. However,
not all user models in Django are guaranteed to have an email field. If a custom user model is
used that doesn't include an email field, this could raise an AttributeError.
</Runtime Errors>

<Conclusion> Unsafe </Conclusion>

LLM Prediction

Traceback (most recent call last):
File "/opt/pyenv/versions/3.6.15/lib/python3.6/unittest/case.py", line 59, in

testPartExecutor yield
File "/opt/pyenv/versions/3.6.15/lib/python3.6/unittest/case.py", line 523, in subTest yield
File "/opt/django__django/tests/auth_tests/test_tokens.py", line 57, in

test_token_with_different_email tk1 = p0.make_token(user)
File "/opt/django__django/django/contrib/auth/tokens.py", line 28, in make_token return

self._make_token_with_timestamp(user, self._num_seconds(self._now()))
File "/opt/django__django/django/contrib/auth/tokens.py", line 70, in

_make_token_with_timestamp self._make_hash_value(user, timestamp),
File "/opt/django__django/django/contrib/auth/tokens.py", line 98, in _make_hash_value

return str(user.pk) + user.password + str(login_timestamp) + user.email + str(timestamp)

AttributeError: 'CustomEmailField' object has no attribute 'email'

Evaluation log

Figure 4: Successful example

invalid attribute email is accessed on the variable user, which is an instance of a CustomEmailField
object. PyRight failed to detect this runtime error due to the inability to infer the data type of user
through static analysis. In contrast, the LLM, capable of reasoning about potential runtime contexts,
successfully identifies the runtime error, thus marking the patch as Unsafe. This example demon-
strates the advantage of leveraging LLMs to anticipate runtime errors. Another successful instance
is documented in Appendix F.1.

When Does the LLM Fail? Figure 5 presents an instance where both PyRight and the LLM failed
to detect a runtime error. This example pertains to the instance django-11797 using coding agent
CodeStory. The complete modification patch and the LLM’s response are detailed in Figure 11.
The runtime error occurs when an invalid column name is referenced in a query. Given the current
input context, it is nearly impossible to infer the content of the query, leading to the LLM’s failure
to predict this runtime error. This example highlights the limitations of REDO in inferring potential
inputs with limited contextual information, a challenge we plan to address in future work. Another
instance of failure is documented in Appendix F.2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

I've analyzed the modification patch and the original implementation. Here's my assessment:

<Runtime Errors>
No potential runtime errors detected.
</Runtime Errors>

<Conclusion> Safe </Conclusion>

LLM Prediction

Traceback (most recent call last):
File "/opt/django__django/django/db/backends/utils.py", line 86, in _execute

return self.cursor.execute(sql, params)
File "/opt/django__django/django/db/backends/sqlite3/base.py", line 396, in execute

return Database.Cursor.execute(self, query, params)
sqlite3.OperationalError: no such column: U0.name

Evaluation log

Figure 5: Failed example

How could the detected errors help? This section presents a qualitative example illustrating how
detected errors can facilitate the correction of flawed patches. We introduce a preliminary patch-
fixing algorithm that leverages error messages generated by REDO. Specifically, when presented
with a modified patch (referred to as the original generated patch) and its associated detected errors,
our approach first applies the patch and extracts the modified code chunks, with ten lines of code
added before and after each chunk. We then prompt the LLM to refine the code chunks according
to the identified errors. Finally, a fixed patch is generated based on the modifications to the code
chunks. The detailed LLM prompt is provided in Appendix E.6. For instance, in the case of Django-
12308 utilizing ACR, REDO initially identifies a risky attribute call that could potentially lead to an
AttributeError. Based on this detection, the patch-fixing algorithm generates an fixed patch that
avoids invoking the risky attribute, thereby preventing the AttributeError present in the original
patch. A comprehensive description of the algorithm and a detailed analysis of this example are
provided in Section G.

6 CONCLUSION

In this study, we first present REDO, an innovative error detection framework that operates through
a two-step process: differential analysis followed by LLM-based detection. This approach achieves
a balanced trade-off between reliability and the scope of detectable errors. We also propose SWE-
Bench-Error-Detection (SWEDE), a novel and challenging runtime error detection task that aligns
with the increasing deployment of autonomous coding agents responsible for repository-level mod-
ifications. Furthermore, we conduct a comprehensive set of quantitative experiments to empirically
demonstrate the efficacy of REDO across various tasks. In addition, our qualitative analysis offers
insights into the conditions under which LLM integration proves beneficial or falls short, and how
detected runtime errors using REDO could help fix the previous flawed patches.

7 LIMITATION AND FUTURE WORK

The current implementation of the LLM-based detection step constrains the number of LLM API
call on each data point to just one. Expanding the number of API calls, potentially by leveraging
agentic AI techniques, could significantly improve error detection capabilities. Additionally, the
SWEDE task is presently confined to a binary classification of ’Safe’ and ’Unsafe.’ As error de-
tection algorithms become more sophisticated, it is crucial to consider expanding the classification
schema to encompass a wider spectrum of error types, similar to those addressed in STA. Finally, the
advancement of more refined ensemble and patch-fixing algorithms holds the potential to enhance
the efficacy of REDO in supporting coding agents.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT.

Our work leverages results from previous methods, including publicly available sources and the
SWE-Bench dataset and leaderboard, as cited in the Experiment section. To the best of our knowl-
edge, this study does not pose any risks related to harmful insights, discrimination, bias, fairness,
privacy, or security concerns.

REPRODUCIBILITY STATEMENT.

We provide details of our experiments and implementation in Sections 3 and 5, including the models
used and a description of the data processing steps. Given the limited time, we are unable to wrap
up all the code files before the submission deadline. However, we will gladly provide them during
the rebuttal stage if required. Additionally, for each experiment, we used three random seeds and
report both the means and standard deviations.

REFERENCES

Anthropic. Meet claude. https://https://www.anthropic.com/claude, 2024. Accessed: 2024-
08-12.

Nathaniel Ayewah, William Pugh, David Hovemeyer, J David Morgenthaler, and John Penix. Using
static analysis to find bugs. IEEE software, 25(5):22–29, 2008.

David Bieber, Rishab Goel, Daniel Zheng, Hugo Larochelle, and Daniel Tarlow. Static prediction of
runtime errors by learning to execute programs with external resource descriptions, 2022. URL
https://arxiv.org/abs/2203.03771.

Yekun Chai, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, and Hua Wu. Ernie-code: Beyond
english-centric cross-lingual pretraining for programming languages, 2023. URL https://arxiv.
org/abs/2212.06742.

Wachiraphan Charoenwet, Patanamon Thongtanunam, Van-Thuan Pham, and Christoph Treude. An
empirical study of static analysis tools for secure code review, 2024. URL https://arxiv.org/
abs/2407.12241.

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, Jian-Gang Wang, Anton Cheshkov, Jun Sun,
Hao Yu, Guoliang Dong, Artem Aliev, Jie Wang, Xiao Cheng, Guangtai Liang, Yuchi Ma, Pan
Bian, Tao Xie, and Qianxiang Wang. Coder: Issue resolving with multi-agent and task graphs,
2024. URL https://arxiv.org/abs/2406.01304.

B. Chess and G. McGraw. Static analysis for security. IEEE Security & Privacy, 2(6):76–79, 2004.
doi: 10.1109/MSP.2004.111.

Yiu Wai Chow, Luca Di Grazia, and Michael Pradel. Pyty: Repairing static type errors in python. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineering, pp. 1–13,
2024.

Isil Dillig, Thomas Dillig, and Alex Aiken. Static error detection using semantic inconsistency
inference. In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 435–445, 2007.

Matteo Esposito, Valentina Falaschi, and Davide Falessi. An extensive comparison of static appli-
cation security testing tools, 2024. URL https://arxiv.org/abs/2403.09219.

Chen et al. Evaluating large language models trained on code, 2021a. URL https://arxiv.org/
abs/2107.03374.

Dubey et al. The llama 3 herd of models, 2024a. URL https://arxiv.org/abs/2407.21783.

Li et al. Starcoder: may the source be with you!, 2023a. URL https://arxiv.org/abs/2305.06161.

OpenAI et al. Gpt-4 technical report, 2024b. URL https://arxiv.org/abs/2303.08774.

10

https://https://www.anthropic.com/claude
https://arxiv.org/abs/2203.03771
https://arxiv.org/abs/2212.06742
https://arxiv.org/abs/2212.06742
https://arxiv.org/abs/2407.12241
https://arxiv.org/abs/2407.12241
https://arxiv.org/abs/2406.01304
https://arxiv.org/abs/2403.09219
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2303.08774

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Puri et al. Codenet: A large-scale ai for code dataset for learning a diversity of coding tasks, 2021b.
URL https://arxiv.org/abs/2105.12655.

Rozière et al. Code llama: Open foundation models for code, 2024c. URL https://arxiv.org/abs/
2308.12950.

Touvron et al. Llama 2: Open foundation and fine-tuned chat models, 2023b. URL https://arxiv.
org/abs/2307.09288.

David Evans and David Larochelle. Improving security using extensible lightweight static analysis.
IEEE software, 19(1):42–51, 2002.

Python Software Foundation. Mypy. https://pypi.org/project/mypy/, 2024a.

Python Software Foundation. Pyflakes. https://pypi.org/project/pyflakes/, 2024b.

Python Software Foundation. Pylint. https://pypi.org/project/pylint/, 2024c.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need, 2023. URL https://arxiv.org/abs/
2306.11644.

Kai Huang, Xiangxin Meng, Jian Zhang, Yang Liu, Wenjie Wang, Shuhao Li, and Yuqing Zhang.
An empirical study on fine-tuning large language models of code for automated program repair.
In 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 1162–1174, 2023. doi: 10.1109/ASE56229.2023.00181.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024a. URL
https://arxiv.org/abs/2310.06770.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. Swe-bench leaderboard, 2024b. URL https://www.swebench.com/. Accessed:
2024-08-19.

Hong Jin Kang, Khai Loong Aw, and David Lo. Detecting false alarms from automatic static
analysis tools: how far are we? In Proceedings of the 44th International Conference on
Software Engineering, ICSE ’22. ACM, May 2022. doi: 10.1145/3510003.3510214. URL
http://dx.doi.org/10.1145/3510003.3510214.

Anant Kharkar, Roshanak Zilouchian Moghaddam, Matthew Jin, Xiaoyu Liu, Xin Shi, Colin
Clement, and Neel Sundaresan. Learning to reduce false positives in analytic bug detectors. In
Proceedings of the 44th International Conference on Software Engineering, ICSE ’22. ACM, May
2022. doi: 10.1145/3510003.3510153. URL http://dx.doi.org/10.1145/3510003.3510153.

Marc Lacoste and Vincent Lefebvre. Trusted execution environments for telecoms: Strengths,
weaknesses, opportunities, and threats. IEEE Security & Privacy, 21:37–46, 2023. URL
https://api.semanticscholar.org/CorpusID:258069655.

Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. Enhancing static analysis for practical bug
detection: An llm-integrated approach. Proc. ACM Program. Lang., 8(OOPSLA1), apr 2024a.
doi: 10.1145/3649828. URL https://doi.org/10.1145/3649828.

Ziyang Li, Saikat Dutta, and Mayur Naik. Llm-assisted static analysis for detecting security vulner-
abilities. arXiv preprint arXiv:2405.17238, 2024b.

V Benjamin Livshits and Monica S Lam. Finding security vulnerabilities in java applications with
static analysis. In USENIX security symposium, volume 14, pp. 18–18, 2005.

Ehsan Mashhadi, Shaiful Chowdhury, Somayeh Modaberi, Hadi Hemmati, and Gias Uddin. An
empirical study on bug severity estimation using source code metrics and static analysis. Journal
of Systems and Software, pp. 112179, 2024.

11

https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://pypi.org/project/mypy/
https://pypi.org/project/pyflakes/
https://pypi.org/project/pylint/
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2310.06770
https://www.swebench.com/
http://dx.doi.org/10.1145/3510003.3510214
http://dx.doi.org/10.1145/3510003.3510153
https://api.semanticscholar.org/CorpusID:258069655
https://doi.org/10.1145/3649828

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aniruddhan Murali, Noble Mathews, Mahmoud Alfadel, Meiyappan Nagappan, and Meng Xu. Fuz-
zslice: Pruning false positives in static analysis warnings through function-level fuzzing. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineering, ICSE
’24. ACM, February 2024. doi: 10.1145/3597503.3623321. URL http://dx.doi.org/10.1145/
3597503.3623321.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. Codegen2:
Lessons for training llms on programming and natural languages, 2023a. URL https://arxiv.
org/abs/2305.02309.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis, 2023b. URL https://arxiv.org/abs/2203.13474.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URL https://arxiv.org/abs/2203.02155.

Julian Aron Prenner and Romain Robbes. Out of context: How important is local context in neural
program repair?, 2023. URL https://arxiv.org/abs/2312.04986.

Ivan Puddu, Moritz Schneider, Daniele Lain, Stefano Boschetto, and Srdjan Čapkun. On (the lack
of) code confidentiality in trusted execution environments, 2022. URL https://arxiv.org/abs/
2212.07899.

PyCQA. bandit. https://https://github.com/PyCQA/bandit, 2024.

pyright. Microsoft. https://https://github.com/microsoft/pyright, 2024.

Alexander Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob Gardner, Milad Hashemi, Gra-
ham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir Yazdanbakhsh. Learning
performance-improving code edits, 2024. URL https://arxiv.org/abs/2302.07867.

Tim Sonnekalb, Christopher-Tobias Knaust, Bernd Gruner, Clemens-Alexander Brust, Lynn von
Kurnatowski, Andreas Schreiber, Thomas S. Heinze, and Patrick Mäder. A static analysis plat-
form for investigating security trends in repositories, 2023. URL https://arxiv.org/abs/2304.
01725.

Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated program repair in the era
of large pre-trained language models. In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pp. 1482–1494, 2023. doi: 10.1109/ICSE48619.2023.00129.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024. URL https://arxiv.org/abs/2405.15793.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.org/
abs/2210.03629.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement, 2024. URL https://arxiv.org/abs/2404.05427.

Jiang Zheng, Laurie Williams, Nachiappan Nagappan, Will Snipes, John P Hudepohl, and Mladen A
Vouk. On the value of static analysis for fault detection in software. IEEE transactions on software
engineering, 32(4):240–253, 2006.

12

http://dx.doi.org/10.1145/3597503.3623321
http://dx.doi.org/10.1145/3597503.3623321
https://arxiv.org/abs/2305.02309
https://arxiv.org/abs/2305.02309
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2312.04986
https://arxiv.org/abs/2212.07899
https://arxiv.org/abs/2212.07899
https://https://github.com/PyCQA/bandit
https://https://github.com/microsoft/pyright
https://arxiv.org/abs/2302.07867
https://arxiv.org/abs/2304.01725
https://arxiv.org/abs/2304.01725
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2404.05427

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A REDO PSEUDOCODE

Algorithm 1 Execution-Free Runtime Error Detection for Coding Agents

1: Input:original github repo, problem statement i, generated patch p, function searching method
f , git apply function g, git revert function r, static analysis tool t, LLM l

2: Search for original python script c containing the modified functions
3: Detect runtime errors SOrig in the original implementation using t
4: Apply the patch
5: Detect runtime errors SMod in the modified implementation using t
6: Revert applied patch
7: if SOrig ̸= SMod then
8: return ’Unsafe’
9: else

10: Prompt l with i, original script c, and modification patch p
11: if Do not detect runtime errors then
12: return ’Safe’
13: else
14: return ’Unsafe’
15: end if
16: end if

B CONFUSION MATRICES

C ADDITIONAL QUANTITATIVE RESULTS

Table 4: Performance metrics by method and benchmark using Claude-3 OPUS

Coding agent Metric Method

Pyflakes PyRight LLM REDO-Pyflakes REDO

CodeStory
Precision 32.1 43.7 43.1 35.6 39.2
Recall 22.8 48.1 39.2 46.8 62.0
F1 26.7 45.8 41.1 40.4 48.0

Demo
Precision 34.1 33.9 34.0 33.9 33.6
Recall 34.9 45.3 20.9 47.7 55.8
F1 34.5 38.8 25.9 39.6 41.9

Marscode
Precision 22.9 33.8 30.8 28.7 32.8
Recall 16.4 37.3 35.8 46.3 59.7
F1 19.1 35.5 33.1 35.4 42.3

Lingma
Precision 45.8 48.3 48.6 45.9 49.1
Recall 27.8 29.9 35.1 51.5 54.6
F1 34.6 36.9 40.7 48.5 51.7

Droid
Precision 53.3 42.1 56.0 50.6 48.2
Recall 22.0 14.7 25.7 40.4 36.7
F1 31.2 21.8 35.2 44.9 41.7

ACR
Precision 45.3 54.7 43.1 41.2 45.9
Recall 23.5 34.3 27.5 41.2 49.0
F1 31.0 42.2 33.5 41.2 47.4

D ENSEMBLE PATCHES

For a base agent, we denote the number of instance on SWEDE switching from failed to passed as
M ; and from passed to failed as N . The performance enhancement E of the base agent is therefore
measured by the difference in number between newly passed instances to newly failed instances, or

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Passed Failed
Ground Truth

Sa
fe

Un
sa

fePr
ed

ict
ed

82 23

112 56

30

40

50

60

70

80

90

100

110

(a) Codestory

Passed Failed
Ground Truth

Sa
fe

Un
sa

fePr
ed

ict
ed

80 27

134 59
40

60

80

100

120

(b) Mentatbot

Passed Failed
Ground Truth

Sa
fe

Un
sa

fePr
ed

ict
ed

98 17

128 50

20

40

60

80

100

120

(c) Marscode

Passed Failed
Ground Truth

Sa
fe

Un
sa

fePr
ed

ict
ed

93 28

102 69

30

40

50

60

70

80

90

100

(d) Lingma

Passed Failed
Ground Truth

Sa
fe

Un
sa

fePr
ed

ict
ed

83 38

107 71

40

50

60

70

80

90

100

(e) Droid

Passed Failed
Ground Truth

Sa
fe

Un
sa

fePr
ed

ict
ed

10 7

2 12

2

4

6

8

10

12

(f) Autocoderover

Figure 6: Confusion matrices

E = M − N . We further consider two scenarios. First, only passed instances or instances with
runtime errors using the base agent are considered; second, all instances are considered. These two
scenarios evaluates how well REDO detects specifically runtime errors and any errors, respectively.
We report the results in Figure 7a and 7b, where the rows represent different base agents and columns
represent auxiliary agents.

First, the enhancements E’s are positive for the majority of the entries, and are especially significant
when ensemble a base agent with a more powerful auxiliary agent (as shown by numbers in lower
triangular entries). The average enhancement is 3.1 in Figure 7a and 4.6 in Figure 7b. These en-
hancements are meaningful as more powerful agents usually involve more API calls. Switching
to more powerful agents only when necessary can reduce over cost and time. Second, when the
base agent is CodeStory, the enhancements are negative. This could results from the fact that the
ensemble algorithm currently does not consider the difference in the coding editing performance be-
tween base and auxiliary agents, therefore being over-confident with less powerful auxiliary agents.
Since the ensemble algorithm is orthogonal to our contribution, we regard improving the algorithm
as an important future work.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 5: Performance metrics by method and benchmark using Claude-3 SONNET and tempera-
ture=0.5

Coding agent Metric Method

Pyflakes PyRight LLM REDO-Pyflakes REDO

CodeStory
Precision 32.1 43.7 33.3 32.9 34.1
Recall 22.8 48.1 67.1 69.6 75.9
F1 26.7 45.8 44.5 44.7 47.1

Demo
Precision 34.1 33.9 31.8 31.4 32.1
Recall 34.9 45.3 65.1 70.9 77.9
F1 34.5 38.8 42.7 43.6 45.4

Marscode
Precision 22.9 33.8 29.5 28.2 29.3
Recall 16.4 37.3 68.7 74.6 76.1
F1 19.1 35.5 41.3 41.0 42.3

Lingma
Precision 45.8 48.3 40.9 40.7 41.4
Recall 27.8 29.9 69.1 74.2 74.2
F1 34.6 36.9 51.3 52.6 53.1

Droid
Precision 53.3 42.1 43.7 42.3 43.0
Recall 22.0 14.7 67.0 70.6 70.6
F1 31.2 21.8 52.9 52.9 53.5

ACR
Precision 45.3 54.7 39.6 39.1 40.9
Recall 23.5 34.3 63.7 68.6 72.5
F1 31.0 42.2 48.9 49.8 52.3

Table 6: Means and standard deviations using PyRight, LLM, and REDO on STA.

Metric Method

PyRight LLM REDO-PyRight

Without context

Accuracy 74.5 0.1 61.8 0.0 75.1 0.3

Running Accuracy † 76.4 0.0 64.1 0.1 76.8 0.3

W.F1 67.2 0.1 54.0 0.0 69.9 0.2

Running W.F1 70.1 0.0 57.2 0.0 72.6 0.2

With context

Accuracy 74.5 0.1 64.3 0.1 77.4 0.4

Running Accuracy 76.4 0.0 66.8 0.2 79.3 0.3

W.F1 67.2 0.1 58.6 0.1 74.5 0.3

Running W.F1 70.1 0.0 62.1 0.1 77.5 0.2

† Metrics with “Running” prefixes are those evaluated on our run-
ning results.

E PROMPT TEMPLATES

E.1 PROMPT TEMPLATE: SYSTEM PROMPT

You a r e an e x p e r i e n c e d program a n a l y z e r who can i d e n t i f y
↪→ p o t e n t i a l r u n t i m e e r r o r s w i t h o u t r u n n i n g t h e programs .

E.2 PROMPT TEMPLATE: ERROR DETECTION ON CODE EDITING

A m o d i f i c a t i o n p a t c h i s p r o p o s e d t o r e s o l v e an i s s u e wi th t h e
↪→ c u r r e n t g i t h u b repo . Th i s m o d i f i c a t i o n might i n t r o d u c e
↪→ r u n t i m e e r r o r s t h a t c a n n o t be c a p t u r e d by s t a t i c a n a l y s i s

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 2 Patch ensemble

1: Input: base agent Abase, auxiliary agent Aaux, problem instance I , error detection algorithm D
2: Generate patch p using base model Abase
3: Detect runtime error using REDO
4: if No error is detected then
5: return Accept p
6: else
7: Generate patch p′ using auxiliary model Aaux
8: Detect runtime error on p′

9: if No error is detected then
10: return Accept p′
11: else
12: return Accept p
13: end if
14: end if

Cod
est

ory

Men
tat

bo
t

Mars
cod

e

Lin
gm

a
Droi

d
Auto

Aux

Cod
est

ory

Men
tat

bo
t

Mars
cod

e

Lin
gm

a

Droi
d

Auto

Ba
se

0 -3 -1 -2 -2 -2

5 0 4 2 -3 1

5 2 0 3 1 -3

3 2 4 0 -1 2

3 3 3 3 0 0

4 2 4 1 3 0
3

2

1

0

1

2

3

4

5

(a) Scenario 1: passed and runtime error instances

Cod
est

ory

Men
tat

bo
t

Mars
cod

e

Lin
gm

a
Droi

d
Auto

Aux

Cod
est

ory

Men
tat

bo
t

Mars
cod

e

Lin
gm

a

Droi
d

Auto

Ba
se

0 -5 -1 -2 -4 -4

6 0 7 4 -2 0

6 1 0 3 1 -4

6 3 4 0 -2 0

8 6 6 4 0 0

6 2 5 2 4 0 4

2

0

2

4

6

8

(b) Scenario 2: all instances

Figure 7: Patch ensembling using detection results

↪→ t o o l s . Your t a s k i s t o check whe the r such r u n t i m e e r r o r s
↪→ e x i s t . T y p i c a l r u n t i m e e r r o r s i n c l u d e TypeError ,
↪→ Valu eEr ro r , A t t r i b u t e E r r o r , and I n d e x E r r o r .

F i r s t , you a r e p r o v i d e d wi th t h e problem s t a t e m e n t , which
↪→ d e s c r i b e s t h e i s s u e and h i n t s on how t h e m o d i f i c a t i o n p a t c h
↪→ w i l l be t e s t e d . The problem s t a t e m e n t i s a s f o l l o w s :

<Problem S t a t e m e n t>
{ p r o b l e m s t a t e m e n t }
</ Problem S t a t e m e n t>

Then , you w i l l be p r o v i d e d wi th t h e o r i g i n a l i m p l e m e n t a t i o n o f
↪→ py thon s c r i p t s c o n t a i n i n g m o d i f i e d f u n c t i o n s :

<O r i g i n a l I m p l e m e n t a t i o n>
{ o r i g i n a l i m p l e m e n t a t i o n }
</ O r i g i n a l I m p l e m e n t a t i o n>

F i n a l y , t h e m o d i f i c a t i o n p a t c h i s g i v e n below :
<M o d i f i c a t o i n Patch>

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

{ m o d i f i c a t i o n p a t c h }
</ M o d i f i c a t i o n Patch>

F i r s t , p l e a s e check i f t h e r e a r e p o t e n t i a l r u n t i m e e r r o r s , p l e a s e
↪→ l i s t t h e i r e r r o r t y p e and r e a s o n i n g i n t h e <Runtime
↪→ E r r o r s ></Runtime E r r o r s> s e c t i o n , w i th t h e f o r m a t
↪→ [E r ro rType] : [Reason ing] . I f t h e r e a r e no p o t e n t i a l r u n t i m e
↪→ e r r o r s , p l e a s e r e t u r n ' Safe ' ; o t h e r w i s e , p l e a s e r e t u r n
↪→ ' Unsafe ' . The c o n c l u s i o n s h o u l d be wrapped by
↪→ <Conc lus ion ></Conc lus ion >.

E.3 PROMPT TEMPLATE: ERROR DETECTION ON CODENET WITH INPUT CONTEXT

Given t h e d e s c r i p t i o n o f i n p u t and t h e implemented s c r i p t , p l e a s e
↪→ check i f t h e i m p l e m e n t a t i o n c o n t a i n s r u n t i m e e r r o r s . You
↪→ can assume t h a t t h e i n p u t s a r e a lways v a l i d , and r e l e c t t h e
↪→ common c a s e .

Here i s t h e i m p l e m e n t a t i o n :
<I m p l e m e n t a t i o n>
{ i m p l e m e n t a t i o n }
</ I m p l e m e n t a t i o n>

Here i s t h e d e s c r i p t i o n o f t h e i n p u t :
<I n p u t d e s c r i p t i o n >
{ i n p u t }
</ I n p u t d e s c r i p t i o n >

P o t e n t i a l r u n t i m e e r r o r s a r e :
<E r r o r l i s t >
1 : ' No E r r o r ' ,
2 : ' Other ' ,
3 : ' Timeout ' ,
4 : ' A s s e r t i o n E r r o r ' ,
5 : ' A t t r i b u t e E r r o r ' ,
6 : ' dec imal ' ,
7 : ' EOFError ' ,
8 : ' F i l e N o t F o u n d E r r o r ' ,
9 : ' I m p o r t E r r o r ' ,
1 0 : ' I n d e n t a t i o n E r r o r ' ,
1 1 : ' I n d e x E r r o r ' ,
1 2 : ' KeyError ' ,
1 3 : ' MathDomainError ' ,
1 4 : ' MemoryError ' ,
1 5 : ' ModuleNotFoundError ' ,
1 6 : ' NameError ' ,
1 7 : ' OSError ' ,
1 8 : ' Ove r f l owEr ro r ' ,
1 9 : ' r e . e r r o r ' ,
2 0 : ' R e c u r s i o n E r r o r ' ,
2 1 : ' Run t imeEr ro r ' ,
2 2 : ' S t o p I t e r a t i o n ' ,
2 3 : ' S y n t a x E r r o r ' ,
2 4 : ' TabError ' ,
2 5 : ' TypeError ' ,
2 6 : ' UnboundLocalError ' ,
2 7 : ' Va lue Er ro r ' ,
2 8 : ' Z e r o D i v i s i o n E r r o r ' ,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

2 9 : ' numpy . A x i s E r r o r '
</ E r r o r l i s t >

P l e a s e e x p l a i n t h e l o g i c o f t h e i m p l e m e n t a t i o n i n t h e
↪→ ” I m p l e m e n t a t i o n ” s e c t i o n , e s p e c i a l l y how empty s t r i n g s o r
↪→ l i s t s a r e h a n d l e d . I f t h e i m p l e m e n t a t i o n i s m os t l y c o r r e c t
↪→ and s h o u l d run w i t h o u t e r r o r s i n most c a s e s , p l e a s e c l a i m
↪→ ”No E r r o r ” ; f i n a l l y , t h e i n d e x of t h e i d e n t i f i e d r u n t i m e
↪→ e r r o r t h a t c r a s h e s t h e program i n t h e ” C o n c l u s i o n ” s e c t i o n ,
↪→ b e i n g wrapped by <Conc lus ion ></Conc lus ion >.

E.4 PROMPT TEMPLATE: ERROR DETECTION ON CODENET WITHOUT INPUT CONTEXT

Given t h e implemented s c r i p t , p l e a s e check i f t h e i m p l e m e n t a t i o n
↪→ c o n t a i n s r u n t i m e e r r o r s . P l e a s e assume t h a t t h e i n p u t s a r e
↪→ a lways v a l i d ; and on ly r e f l e c t t h e most common c a s e .

Here i s t h e i m p l e m e n t a t i o n :
<I m p l e m e n t a t i o n>
{ i m p l e m e n t a t i o n }
</ I m p l e m e n t a t i o n>

P o t e n t i a l r u n t i m e e r r o r s a r e :
<E r r o r l i s t >
1 : ' No E r r o r ' ,
2 : ' Other ' ,
3 : ' Timeout ' ,
4 : ' A s s e r t i o n E r r o r ' ,
5 : ' A t t r i b u t e E r r o r ' ,
6 : ' dec imal ' ,
7 : ' EOFError ' ,
8 : ' F i l e N o t F o u n d E r r o r ' ,
9 : ' I m p o r t E r r o r ' ,
1 0 : ' I n d e n t a t i o n E r r o r ' ,
1 1 : ' I n d e x E r r o r ' ,
1 2 : ' KeyError ' ,
1 3 : ' MathDomainError ' ,
1 4 : ' MemoryError ' ,
1 5 : ' ModuleNotFoundError ' ,
1 6 : ' NameError ' ,
1 7 : ' OSError ' ,
1 8 : ' Ove r f l owEr ro r ' ,
1 9 : ' r e . e r r o r ' ,
2 0 : ' R e c u r s i o n E r r o r ' ,
2 1 : ' Run t imeEr ro r ' ,
2 2 : ' S t o p I t e r a t i o n ' ,
2 3 : ' S y n t a x E r r o r ' ,
2 4 : ' TabError ' ,
2 5 : ' TypeError ' ,
2 6 : ' UnboundLocalError ' ,
2 7 : ' Va lue Er ro r ' ,
2 8 : ' Z e r o D i v i s i o n E r r o r ' ,
2 9 : ' numpy . A x i s E r r o r '
</ E r r o r l i s t >

P l e a s e e x p l a i n t h e l o g i c o f t h e i m p l e m e n t a t i o n i n t h e
↪→ ” I m p l e m e n t a t i o n ” s e c t i o n , e s p e c i a l l y how empty s t r i n g s o r
↪→ l i s t s a r e h a n d l e d . I f t h e i m p l e m e n t a t i o n i s m os t l y c o r r e c t

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

↪→ and s h o u l d run w i t h o u t e r r o r s i n most c a s e s , p l e a s e c l a i m
↪→ ”No E r r o r ” ; f i n a l l y , t h e i n d e x of t h e i d e n t i f i e d r u n t i m e
↪→ e r r o r t h a t c r a s h e s t h e program i n t h e ” C o n c l u s i o n ” s e c t i o n ,
↪→ b e i n g wrapped by <Conc lus ion ></Conc lus ion >.

E.5 PROMPT TEMPLATE: ERROR DETECTION ON SWE-BENCH-LITE

A m o d i f i c a t i o n p a t c h i s p r o p o s e d t o r e s o l v e an i s s u e wi th t h e
↪→ c u r r e n t g i t h u b repo . Th i s m o d i f i c a t i o n might c o n t a i n
↪→ r u n t i m e e r r o r s t h a t w i l l c r a s h t h e u n i t t e s t s b u t c a n n o t be
↪→ c a p t u r e d by s t a t i c a n a l y s i s t o o l s . Your t a s k i s t o check
↪→ whe the r t h o s e e r r o r s e x i s t i n t h e c u r r e n t m o d i f i c a t i o n .

F i r s t , you a r e p r o v i d e d wi th t h e problem s t a t e m e n t , which
↪→ d e s c r i b e s t h e i s s u e and h i n t s on how t h e m o d i f i c a t i o n p a t c h
↪→ w i l l be t e s t e d . The problem s t a t e m e n t i s a s f o l l o w s :

<Problem S t a t e m e n t>
{ p r o b l e m s t a t e m e n t }
</ Problem S t a t e m e n t>

Then , you w i l l be p r o v i d e d wi th t h e o r i g i n a l i m p l e m e n t a t i o n o f
↪→ py thon s c r i p t s c o n t a i n i n g m o d i f i e d f u n c t i o n s :

<O r i g i n a l I m p l e m e n t a t i o n>
{ o r i g i n a l i m p l e m e n t a t i o n }
</ O r i g i n a l I m p l e m e n t a t i o n>

F i n a l y , t h e m o d i f i c a t i o n p a t c h i s g i v e n below :
<M o d i f i c a t o i n Patch>
{ m o d i f i c a t i o n p a t c h }
</ M o d i f i c a t i o n Patch>

P l e a s e i d e n t i f y p o t e n t i a l r u n t i m e e r r o r s t h a t can c r a s h t h e
↪→ program b u t c a n n o t be c a p t u r e d by s t a t i c a n a l y s i s t o o l s ;
↪→ and l i s t them i n t h e <P o t e n t i a l E r r o r s ></ P o t e n t i a l E r r o r s>
↪→ s e c t i o n . Next , Prune e r r o r s t h a t a r e u n l i k e l y t o be
↪→ r e l e v a n t t o t h e problem s t a t e m e n t . P l e a s e l i s t t h e s e e r r o r s
↪→ i n t h e ” Remaining E r r o r s ” s e c t i o n , b e i n g wrapped by
↪→ <Remaining E r r o r s ></Remaining E r r o r s >.

E.6 PROMPT TEMPLATE: PATCH FIXING

Your t a s k i s t o u p d a t e t h e p r o v i d e d code f i l e s t o p r e v e n t t h e
↪→ p r e v i o u s l y d e t e c t e d r u n t i m e e r r o r s . You w i l l be p r o v i d e d
↪→ wi th r e l e v a n t code chunks and i d e n t i f i e d e r r o r s .

Begin your r e s p o n s e by p r o v i d i n g a s i m p l e smoke t e s t t o t e s t t h e
↪→ u p d a t e d code w i t h i n < t e s t ></ t e s t > t a g s . The r e s t o f your
↪→ r e s p o n s e s h o u l d p r o v i d e t h e u p d a t e d code t o p r e v e n t t h e
↪→ r u n t i m e e r r o r s , ma tch ing t h e e x a c t f o r m a t o f t h e p r o v i d e d
↪→ <code> below , i n c l u d i n g t h e <code> and < f i l e > t a g s , and t h e
↪→ name and s t a r t l i n e a t t r i b u t e s . I f a code chunk does n o t
↪→ need any m o d i f i c a t i o n , i t can be o m i t t e d from your
↪→ r e s p o n s e . Each code chunk you u p d a t e t o s o l v e t h e problem
↪→ must be r e w r i t t e n i n f u l l , i n c l u d i n g l i n e s t h a t a r e
↪→ unchanged . The name and s t a r t l i n e XML a t t r i b u t e s i n your
↪→ r e s p o n s e s h o u l d a lways match t h o s e i n t h e code below
↪→ e x a c t l y − do n o t change them . For example , i f 100 l i n e s o f

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

↪→ code a r e p a s s e d f o r a code chunk , b u t you on ly modify 5
↪→ l i n e s , you must s t i l l i n c l u d e t h e f u l l code chunk i n your
↪→ r e s p o n s e wi th t h e o r i g i n a l s t a r t l i n e a t t r i b u t e . I f you a r e
↪→ a b l e t o s o l v e t h e problem , p r o v i d e
↪→ <outcome>Complete </ outcome> i n your r e s p o n s e , o t h e r w i s e
↪→ p r o v i d e

<outcome>I ncomp le t e </ outcome > , a l o n g wi th b r i e f f e e d b a c k and n e x t
↪→ s t e p s w i t h i n

<a s s e s s m e n t ></ a s s e s s m e n t> t a g s .

Below i s a s i m p l e example o f a v a l i d r e s p o n s e :
<example>
<s m o k e t e s t>
from p a t h . t o . f i l e i m p o r t combine numbers
combine numbers (1 2 3 , 456)
</ s m o k e t e s t>
As r e q u e s t e d , i n t h e u p d a t e d code below , I ' ve r e w r i t t e n t h e f u l l

↪→ chunks p rov ided , even t h o s e p a r t s t h a t remain unchanged ,
↪→ such as t h e l o a d f i l e f u n c t i o n .

<code>
< f i l e name=” p a t h / t o / f i l e 1 . py ” s t a r t l i n e =”5”>
i m p o r t numpy as np
</ f i l e >
< f i l e name=” p a t h / t o / f i l e 1 . py ” s t a r t l i n e =”23”>
d e f l o a d f i l e (p a t h) :

w i th open (pa th , ” r ”) a s f :
c o n t e n t = f . r e a d ()

r e t u r n c o n t e n t

d e f combine numbers (a , b) :
r e t u r n {{

”sum ” : a + b ,
” d i f f e r e n c e ” : a − b ,
” p r o d u c t ” : a * b ,
” q u o t i e n t ” : a / b ,
” geome t r i c mean ” : geome t r i c mean (a , b) ,

}}
</ f i l e >
</ code>
<outcome>I ncomp le t e </ outcome>
<a s s e s s m e n t>
Although t h i s p a t c h adds a g e o m e t r i c mean c a l c u l a t i o n , i t does

↪→ n o t i m p o r t t h e r e q u i r e d f u n c t i o n t o t h e f i l e . The n e x t s t e p
↪→ i s t o i m p o r t t h e ` geomet r i c mean ` f u n c t i o n t o
↪→ p a t h / t o / f i l e 1 . py

</ a s s e s s m e n t>
</ example>

Here a r e t h e d e t e c t e d r u n t i m e e r r o r s :
<Rumetime e r r o r s >
{ r e m a i n i n g i s s u e s }
</ Runtime e r r o r s >

Here a r e t h e code chunks :
<code>
{ code }
</ code>

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F ADDITIONAL QUALITATIVE RESULTS

I'll analyze the modification patch for potential runtime errors:
<Runtime Errors>
[AttributeError]: The modification adds `user.email` to the hash value calculation.
However, not all user models in Django are guaranteed to have an email field. If a custom
user model is used that doesn't include an email field, this could raise an AttributeError.
</Runtime Errors>

<Conclusion>
Unsafe
</Conclusion>

The modification introduces a potential runtime error that static analysis tools might not
catch. The main concern is the addition of `user.email` to the hash value calculation.
While many Django user models include an email field, it's not a requirement of the
AbstractBaseUser class. Custom user models might not have this field, which could lead to
an AttributeError at runtime when trying to access the non-existent email attribute.

This change assumes that all user models will have an email field, which isn't always true
in Django applications. To make this change safer, it would be advisable to check for the
existence of the email attribute before using it, or to provide a fallback value if the
email attribute is not present.

LLM prediction

diff --git a/django/contrib/auth/tokens.py b/django/contrib/auth/tokens.py
index 93e2d71af2..6372dd927c 100644
--- a/django/contrib/auth/tokens.py
+++ b/django/contrib/auth/tokens.py
@@ -83,7 +83,8 @@ class PasswordResetTokenGenerator:

used:
1. The password field will change upon a password reset (even if the

same password is chosen, due to password salting).
- 2. The last_login field will usually be updated very shortly after
+ 2. The email field will change and invalidate the token.
+ 3. The last_login field will usually be updated very shortly after

a password reset.
Failing those things, settings.PASSWORD_RESET_TIMEOUT eventually
invalidates the token.

@@ -94,7 +95,7 @@ class PasswordResetTokenGenerator:
Truncate microseconds so that tokens are consistent even if the
database doesn't support microseconds.
login_timestamp = '' if user.last_login is None else

user.last_login.replace(microsecond=0, tzinfo=None)
- return str(user.pk) + user.password + str(login_timestamp) + str(timestamp)
+ return str(user.pk) + user.password + str(login_timestamp) + user.email +
str(timestamp)

def _num_seconds(self, dt):
return int((dt - datetime(2001, 1, 1)).total_seconds())

Generated patch

Traceback (most recent call last):
File "/opt/pyenv/versions/3.6.15/lib/python3.6/unittest/case.py", line 59, in

testPartExecutor yield
File "/opt/pyenv/versions/3.6.15/lib/python3.6/unittest/case.py", line 523, in subTest yield
File "/opt/django__django/tests/auth_tests/test_tokens.py", line 57, in

test_token_with_different_email tk1 = p0.make_token(user)
File "/opt/django__django/django/contrib/auth/tokens.py", line 28, in make_token return

self._make_token_with_timestamp(user, self._num_seconds(self._now()))
File "/opt/django__django/django/contrib/auth/tokens.py", line 70, in

_make_token_with_timestamp self._make_hash_value(user, timestamp),
File "/opt/django__django/django/contrib/auth/tokens.py", line 98, in _make_hash_value

return str(user.pk) + user.password + str(login_timestamp) + user.email + str(timestamp)

AttributeError: 'CustomEmailField' object has no attribute 'email'

Evaluation log

Figure 8: Generated patch and LLM response on Django-13551 using Lingma.

F.1 ANOTHER SUCCESSFUL EXAMPLE

This example is on instance Django-10924 using Lingma. As shown in Figure 10, the modification
fails due to calling a non-callable object field.path. According to the modification patch in Figure 10,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

this happens if a non-callable path variable is input into the init function. As this error is only
triggered during runtime, static analysis tools fail to capture it. On the other hand, as shown in
Figure 10, the LLM succeeds to identify this situation and foresee the runtime error.

F.2 ANOTHER FAILED EXAMPLE

This example is on instance Sympy-13471 using Mentabot, which actually passed the unit test. As
shown in Figure 11, the LLM identifies a corner case where the variable num is not a string, which
will fail the program. However, since this corner case is not triggered, the instance passed the unit
test, making the LLM prediction a false positive alarm.

G PATCH FIXING

As depicted in Figure 12, REDO identifies two potential runtime errors, including an AttributeEr-
ror triggered by invoking the prepare value attribute from JSONField. The evaluation log after
executing the modified implementation confirms that this AttributeError indeed caused a crash.
Subsequently, only basing on the results from REDO and without knowing the true error, Figure 13
shows that the corrected patch avoids invoking JSONField, which successfully mitigates the At-
tributeError.

We remark that although the AttributeError is resolved, the fixed patch may introduce new Asser-
tionError instances or other runtime errors. The AssertionError lies beyond the detection capa-
bilities of REDO, and the emergence of additional runtime errors suggests that an iterative process
may be required to fully eliminate all such errors.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

LLM prediction

I've analyzed the modification patch and the original implementation. Here's my
assessment:

<Runtime Errors>
No potential runtime errors detected.
</Runtime Errors>

<Conclusion>
Safe
</Conclusion>

The modification patch appears to be safe and doesn't introduce any obvious runtime
errors. The changes are focused on preserving the GROUP BY clause for subqueries, which is
a logical extension of the existing functionality. The modifications are made in a way
that's consistent with the existing code structure and don't introduce any new variables
or complex logic that could lead to runtime errors.

The main changes involve:

1. Adding a check to preserve the GROUP BY clause when building filters with subqueries.
2. Ensuring the GROUP BY clause is preserved when splitting excludes.

These modifications are straightforward and don't alter the fundamental behavior of the
query building process. They simply ensure that GROUP BY information is maintained when
working with subqueries, which should improve the correctness of the generated SQL without
introducing new risks.

Traceback (most recent call last):
File "/opt/django__django/django/db/backends/utils.py", line 86, in _execute

return self.cursor.execute(sql, params)
File "/opt/django__django/django/db/backends/sqlite3/base.py", line 396, in execute

return Database.Cursor.execute(self, query, params)
sqlite3.OperationalError: no such column: U0.name

Evaluation log

Generated patch

diff --git a/django/db/models/fields/__init__.py b/django/db/models/fields/__init__.py
index 0c64748ccd..7efc0967c8 100644
--- a/django/db/models/fields/__init__.py
+++ b/django/db/models/fields/__init__.py
@@ -1663,7 +1663,9 @@ class FilePathField(Field):

def __init__(self, verbose_name=None, name=None, path='', match=None,
recursive=False, allow_files=True, allow_folders=False, **kwargs):

- self.path, self.match, self.recursive = path, match, recursive
+ self.path_callable = path if callable(path) else None
+ self.path = path() if callable(path) else path
+ self.match, self.recursive = match, recursive

self.allow_files, self.allow_folders = allow_files, allow_folders
kwargs.setdefault('max_length', 100)
super().__init__(verbose_name, name, **kwargs)

@@ -1687,7 +1689,9 @@ class FilePathField(Field):

def deconstruct(self):
name, path, args, kwargs = super().deconstruct()

- if self.path != '':
+ if self.path_callable:
+ kwargs['path'] = self.path_callable
+ elif self.path != '':

kwargs['path'] = self.path
if self.match is not None:

kwargs['match'] = self.match
@@ -1708,8 +1712,9 @@ class FilePathField(Field):

return str(value)

def formfield(self, **kwargs):
+ path = self.path_callable() if self.path_callable else self.path

return super().formfield(**{
- 'path': self.path,
+ 'path': path,

'match': self.match,
'recursive': self.recursive,
'form_class': forms.FilePathField,

Figure 9: Generated patch and LLM response on Django-11797 using Codestory.
23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

diff --git a/django/db/models/fields/__init__.py b/django/db/models/fields/__init__.py
index 0c64748ccd..7efc0967c8 100644
--- a/django/db/models/fields/__init__.py
+++ b/django/db/models/fields/__init__.py
@@ -1663,7 +1663,9 @@ class FilePathField(Field):

def __init__(self, verbose_name=None, name=None, path='', match=None,
recursive=False, allow_files=True, allow_folders=False, **kwargs):

- self.path, self.match, self.recursive = path, match, recursive
+ self.path_callable = path if callable(path) else None
+ self.path = path() if callable(path) else path
+ self.match, self.recursive = match, recursive

self.allow_files, self.allow_folders = allow_files, allow_folders
kwargs.setdefault('max_length', 100)
super().__init__(verbose_name, name, **kwargs)

@@ -1687,7 +1689,9 @@ class FilePathField(Field):

def deconstruct(self):
name, path, args, kwargs = super().deconstruct()

- if self.path != '':
+ if self.path_callable:
+ kwargs['path'] = self.path_callable
+ elif self.path != '':

kwargs['path'] = self.path
if self.match is not None:

kwargs['match'] = self.match
@@ -1708,8 +1712,9 @@ class FilePathField(Field):

return str(value)

def formfield(self, **kwargs):
+ path = self.path_callable() if self.path_callable else self.path

return super().formfield(**{
- 'path': self.path,
+ 'path': path,

'match': self.match,
'recursive': self.recursive,
'form_class': forms.FilePathField,

LLM prediction

Generated patch

I've analyzed the modification patch and the original implementation. Here's my
assessment:

<Runtime Errors>
[TypeError]: The modification assumes that num[1] is always a string, but it might not be.
If num[1] is already an integer (long), calling .rstrip('L') on it will raise a TypeError.
</Runtime Errors>

<Conclusion>Unsafe</Conclusion>

The modification patch introduces a potential runtime error. It assumes that num[1] is
always a string and tries to call the .rstrip('L') method on it. However, in the original
implementation, num[1] could already be an integer (long) if the input comes from a non-
pickled source. In such cases, calling .rstrip('L') on an integer would raise a TypeError.

To make this modification safe, it should first check if num[1] is a string before
attempting to strip the 'L' suffix. For example:

```python
if isinstance(num[1], string_types):

num[1] = num[1].rstrip('L')  # Strip 'L' suffix if present
num[1] = long(num[1], 16)
```

This change would make the modification safe for all input types.

Evaluation log

== ERROR:
test_callable_path (model_fields.test_filepathfield.FilePathFieldTests) ----------------------
-- Traceback (most recent call last): File
"/opt/django__django/tests/model_fields/test_filepathfield.py", line 21, in test_callable_path
self.assertEqual(field.path(), path) TypeError: 'str' object is not callable

Figure 10: Generated patch and LLM response on Django-10924 using Mentatbot.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

I've analyzed the modification patch and the original implementation. Here's my
assessment:

<Runtime Errors>
[TypeError]: The modification assumes that num[1] is always a string, but it might not be.
If num[1] is already an integer (long), calling .rstrip('L') on it will raise a TypeError.
</Runtime Errors>

<Conclusion>Unsafe</Conclusion>

The modification patch introduces a potential runtime error. It assumes that num[1] is
always a string and tries to call the .rstrip('L') method on it. However, in the original
implementation, num[1] could already be an integer (long) if the input comes from a non-
pickled source. In such cases, calling .rstrip('L') on an integer would raise a TypeError.

To make this modification safe, it should first check if num[1] is a string before
attempting to strip the 'L' suffix. For example:

```python
if isinstance(num[1], string_types):

num[1] = num[1].rstrip('L')  # Strip 'L' suffix if present
num[1] = long(num[1], 16)
```

This change would make the modification safe for all input types.

LLM prediction

Generated patch

diff --git a/sympy/core/numbers.py b/sympy/core/numbers.py
index 7bc96e68eb..4c8301c6b2 100644
--- a/sympy/core/numbers.py
+++ b/sympy/core/numbers.py
@@ -1042,6 +1042,7 @@ def __new__(cls, num, dps=None, prec=None, precision=None):

it's a hexadecimal (coming from a pickled object)
assume that it is in standard form
num = list(num)

+ num[1] = num[1].rstrip('L') # Strip 'L' suffix if present
num[1] = long(num[1], 16)
mpf = tuple(num)

else:

Figure 11: Generated patch and LLM response on Sympy-13471 using Mentatbot.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

LLM prediction

I've analyzed the modification patch and the original implementation. Here's my
assessment:

<Runtime Errors>
[AttributeError]: The patch assumes that JSONField has a 'prepare_value' method. If this
method doesn't exist on the JSONField class, it could raise an AttributeError.

[ImportError]: The patch adds an import statement for JSONField from django.db.models. If
this import is not available in the version of Django being used, it could raise an
ImportError.
</Runtime Errors>

<Conclusion>Unsafe</Conclusion>

The modification patch introduces potential runtime errors that cannot be captured by
static analysis tools. The main concerns are:

1. The patch assumes the existence of a 'prepare_value' method on JSONField. If this
method is not part of the JSONField API, it could lead to an AttributeError at runtime.

2. The added import statement for JSONField might not be compatible with all versions of
Django, potentially causing an ImportError.

These issues wouldn't be caught by static analysis tools because they depend on the
specific implementation and version of Django being used. Therefore, it's important to
thoroughly test this change across different Django versions and ensure that the JSONField
API includes the 'prepare_value' method before implementing this patch.

Evaluation log

==
ERROR: test_json_display_for_field (admin_utils.tests.UtilsTests) [<object object at
0x7f9860dbbe90>] (value={('a', 'b'): 'c'})
--
Traceback (most recent call last):

File "/opt/pyenv/versions/3.6.15/lib/python3.6/unittest/case.py", line 59, in
testPartExecutor

yield
File "/opt/pyenv/versions/3.6.15/lib/python3.6/unittest/case.py", line 523, in subTest

yield
File "/opt/django__django/tests/admin_utils/tests.py", line 192, in

test_json_display_for_field
display_for_field(value, models.JSONField(), self.empty_value),

File "/opt/django__django/django/contrib/admin/utils.py", line 404, in display_for_field
return field.prepare_value(value)

AttributeError: 'JSONField' object has no attribute 'prepare_value'

--
Ran 22 tests in 0.779s

FAILED (errors=4)
Destroying test database for alias 'default'
('file:memorydb_default?mode=memory&cache=shared')...
Destroying test database for alias 'default'
('file:memorydb_default?mode=memory&cache=shared')...
Destroying test database for alias 'default'
('file:memorydb_default?mode=memory&cache=shared')...

[django__django__3.1] [django__django-12308] Return Code: 1

>>>>> Some Tests Failed
[django__django__3.1] [django__django-12308] Test script run successful

Figure 12: REDO analysis and evaluation log on the fixed patch.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Fixed patch

--- a/django/contrib/admin/utils.py
+++ b/django/contrib/admin/utils.py
@@ -377,6 +377,9 @@

return help_text

+from django.db.models import JSONField
+import json
+
def display_for_field(value, field, empty_value_display):

from django.contrib.admin.templatetags.admin_list import _boolean_icon

@@ -387,6 +390,7 @@
elif isinstance(field, models.BooleanField):

return _boolean_icon(value)
elif value is None:

+
return empty_value_display

elif isinstance(field, models.DateTimeField):
return formats.localize(timezone.template_localtime(value))

@@ -398,6 +402,8 @@
return formats.number_format(value)

elif isinstance(field, models.FileField) and value:
return format_html('{}', value.url, value)

+ elif isinstance(field, JSONField):
+ return json.dumps(value, ensure_ascii=False, indent=2)

else:
return display_for_value(value, empty_value_display)

@@ -408,6 +414,7 @@
if boolean:

return _boolean_icon(value)
elif value is None:

+
return empty_value_display

elif isinstance(value, bool):
return str(value)

Originally generated patch

diff --git a/django/contrib/admin/utils.py b/django/contrib/admin/utils.py
index e4ddc8f017..640614ce0b 100644
--- a/django/contrib/admin/utils.py
+++ b/django/contrib/admin/utils.py
@@ -377,6 +377,8 @@ def help_text_for_field(name, model):

return help_text

+from django.db.models import JSONField # Ensure this import is added
+
def display_for_field(value, field, empty_value_display):

from django.contrib.admin.templatetags.admin_list import _boolean_icon

@@ -398,6 +400,8 @@ def display_for_field(value, field, empty_value_display):
return formats.number_format(value)

elif isinstance(field, models.FileField) and value:
return format_html('{}', value.url, value)

+ elif isinstance(field, JSONField):
+ return field.prepare_value(value)

else:
return display_for_value(value, empty_value_display)

Figure 13: Original generated patch and fixed patch

27

	Introduction
	Related Work
	LLM-Based Code Generation, Coding Agents, and SWE-Bench
	Static Analysis Tools and Runtime Error Prediction

	Execution-free Runtime Error Detection for Coding Agents
	Differential analysis
	LLM-based Detection

	SWE-Bench-Error-Detection (SWEDE)
	Experiments
	Quantitative results
	Qualitative analysis

	Conclusion
	Limitation and future work
	REDO pseudocode
	Confusion matrices
	Additional quantitative results
	Ensemble patches
	Prompt templates
	Prompt template: system prompt
	Prompt template: error detection on Code Editing
	Prompt template: error detection on CodeNet with input context
	Prompt template: error detection on CodeNet without input context
	Prompt template: error detection on SWE-Bench-lite
	Prompt template: patch fixing

	Additional qualitative results
	Another successful example
	Another failed example

	Patch fixing

