

AN IMAGE IS WORTH TEN THOUSAND WORDS: VERBOSE-TEXT INDUCTION ATTACKS ON VLMS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905<br

of generated tokens. When adversarial perturbations remain visually imperceptible, the stealth and practical risk of these attacks become even more severe.

Prior works (Shumailov et al., 2021; Chen et al., 2022b) have investigated increasing inference energy consumption and latency by adding perturbations to images, but these methods mainly target image-classification models (e.g., ResNet) or small-scale image-to-text models (e.g., ResNet+RNN) and do not readily transfer to modern VLMs. Recent studies (Gao et al., 2024a;b) on VLMs have focused on prolonging outputs by delaying the occurrence of the EOS token: their core idea is to decrease the probability of EOS in the next-step distribution and use that signal to compute gradients for optimizing image perturbations. However, this approach relies solely on the probability distribution obtained from a single forward pass of the image and input text through the VLM, therefore cannot capture the complete information of the subsequent autoregressive generation process. That is because LLMs generate autoregressively, later outputs are highly context-dependent and thus difficult to predict or control. Consequently, adversarial images optimized using single-pass information often lack stability and controllability in their final attack effectiveness. This limitation raises a key question: **can we directly use the VLM’s output length as the optimization objective when optimizing an adversarial image for verbose text, thereby improving the stability and controllability of adversarial methods?**

To address these limitations, in this paper, we propose a novel redundancy-inducing VLM attack, termed Verbose-Text Induction Attack (VTIA). This attack method adopts a two-stage decoupling strategy that explicitly learn the most malicious prompt embedding and maximizes the output token numbers of the perturbed images. In particular, it proceeds in two steps: 1) Adversarial Prompt Search: we train an attacker LLM using reinforcement learning to optimize the generation of a malicious prompt, avoiding the non-differentiability of directly maximizing output token length. The embedding of this prompt, when inserted after the visual embeddings, can trigger the LLM within the VLM to produce excessively long outputs; 2) Vision-Aligned Perturbation Optimization: based on the similarity between the malicious prompt embedding and visual embeddings, gradients are computed to perturb the input image and obtain adversarial examples. This stage operates entirely independently of the target VLM’s textual module, thereby avoiding the substantial overhead of repeatedly invoking large LLMs during iterative optimization. In this manner, our attack can effectively prolong the VLM’s output. The main contributions of this work are as follows:

- We propose a novel verbose-text induction attack on VLMs, capable of generating adversarial images while accounting for subsequent outputs with explicit token-aware designs, thereby advancing security research on inducing verbose text generation in VLMs.
- We design a two-stage attack framework, which firstly searches for an adversarial prompt through reinforcement learning, and then uses it to optimize adversarial images with the defined similarity loss and standard deviation loss.
- We apply our method to four mainstream VLMs (Blip2, InstructBlip, LLaVA, Qwen2-VL) and evaluate it on the MS-COCO dataset. Experimental results show that the generated adversarial images can induce these models to produce token counts that are 121.90 \times , 87.19 \times , 9.44 \times , and 6.48 \times longer than those generated from the original images.

2 RELATED WORK

2.1 VLMs

Currently, mainstream VLMs consist of two key parts, i.e., textual and visual components. Early models such as CLIP (Radford et al., 2021), BLIP (Li et al., 2022), and ALIGN (Jia et al., 2021) employed both visual encoders and text encoders, aligning image and text embeddings through

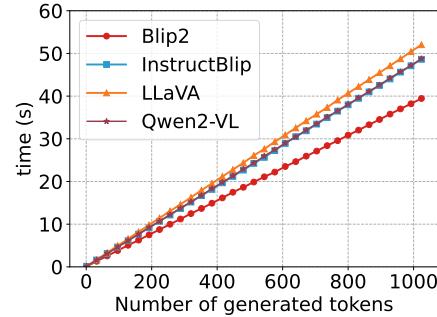


Figure 1: The relationship between the time consumed in a single inference and the number of generated tokens.

108 contrastive learning. Newer generations of models (e.g., Blip2 (Li et al., 2023), InstructBLIP (Dai
 109 et al., 2023), MiniGPT (Zhu et al., 2023), LLaVA (Liu et al., 2023b), Qwen2-VL (Wang et al.,
 110 2024)) typically no longer include a standalone text encoder. Instead, they rely on LLMs, such
 111 as OPT (Zhang et al., 2022), LLaMA (Touvron et al., 2023), Vicuna (Chiang et al., 2023), and
 112 Qwen (Bai et al., 2023), for text understanding, while integrating visual inputs through projection
 113 layers or cross-attention mechanisms. This trend reflects a growing shift toward leveraging the
 114 capabilities of LLMs, rather than relying solely on visual components, to support more flexible and
 115 advanced multimodal reasoning and generation tasks.

116 2.2 ENERGY-LATENCY ATTACKS

117 Prior research (Chen et al., 2022a; Hong et al., 2020; Liu et al., 2023a; Chen et al., 2023; Zhang
 118 et al., 2024b; Dong et al., 2024) has investigated how to construct adversarial inputs to degrade the
 119 model inference efficiency. Shumailov et al. (2021) analyzed both language and vision models; in
 120 the case of vision models, the focus was on classification architectures such as ResNet (He et al.,
 121 2016), DenseNet (Huang et al., 2017), and MobileNet (Howard et al., 2017). The approach involved
 122 designing adversarial image inputs that increase activation values across layers. Higher activation
 123 density prevents hardware from skipping certain computations, thereby increasing energy consump-
 124 tion. However, this work did not consider multimodal models. Chen et al. (2022b) examined the
 125 efficiency of Neural Image Caption Generation (NICG) models, proposing to delay the occurrence
 126 of EOS tokens while disrupting token dependencies, thereby generating longer sequences. This
 127 increases the number of decoder calls and reduces inference efficiency. Nonetheless, their studied
 128 architectures (MobileNets+LSTM, ResNet+RNN) differ significantly from the Transformer-based
 129 architectures used in current mainstream VLMs. To induce VLMs to generate longer responses,
 130 Gao et al. (2024a) and Gao et al. (2024b) proposed three strategies: 1) lowering the probability
 131 of EOS token generation to delay its appearance; 2) enhancing output uncertainty to encourage
 132 predictions that deviate from the original token order and pay more attention to alternative can-
 133 didate tokens; and 3) improving the diversity of hidden states across generated tokens to explore
 134 a broader output space, thereby further weakening original output dependencies. However, these
 135 works typically proxy increased output verbosity by manipulating the EOS token probability rather
 136 than treating token length as an explicit optimization objective. Given the autoregressive nature of
 137 current models, where outputs serve as inputs for subsequent steps, and the fact that the loss function
 138 is constructed solely from distributions obtained in a single forward pass, the attack effectiveness of
 139 such adversarial samples remains difficult to guarantee.

141 3 PRELIMINARIES

142 3.1 STRUCTURE OF VLMs

143 Existing state-of-the-art VLMs, such as Blip2 (Li et al., 2023), InstructBLIP (Dai et al., 2023),
 144 LLaVA (Liu et al., 2023b), and Qwen2-VL (Wang et al., 2024), generally consist of a visual encoder
 145 \mathcal{E} and a pretrained LLM \mathcal{F} . To bridge the two components, an intermediate module \mathcal{M} is required.
 146 For example, in InstructBLIP, this module consists of a Q-Former and a fully connected layer. While
 147 in LLaVA, it is implemented as a linear layer that maps the visual features extracted by the visual
 148 encoder into the word embedding space.

149 Given an input image x , the visual encoder first encodes the input image as visual features
 150 $Z_v = \mathcal{E}(x)$. Subsequently, the intermediate module projects the visual features into visual em-
 151 beddings $H_v = \mathcal{M}(Z_v)$, which has the dimension of m (i.e., the visual token number of the
 152 VLM). And for the input prompt c , it is first processed by tokenizer \mathcal{T} into a textual token se-
 153 quence $S_t = \mathcal{T}(c) = \{s_1, s_2, \dots, s_n\}$ of length n . Then S_t is projected by the embedding layers
 154 \mathcal{D} into textual embeddings $H_t = \mathcal{D}(S_t)$. Finally, the visual embedding H_v is concatenated with
 155 the textual embedding H_t to form the initial sequence, and then fed into the LLM for content gen-
 156 eration in an autoregressive manner. Represent the initial sequence as $H_v \oplus H_t$, it is fed into the
 157 LLM \mathcal{F} , which produces a probability distribution over the next token. By sampling from this dis-
 158 tribution, the next token is obtained and appended to the original sequence, which serves as the
 159 input for the next decoding step of the LLM. Formally, the response of the LLM can be denoted
 160 as $y = \mathcal{F}(\mathcal{M}(\mathcal{E}(x) \oplus \mathcal{D}(c)))$. The generation process terminates under either of the following

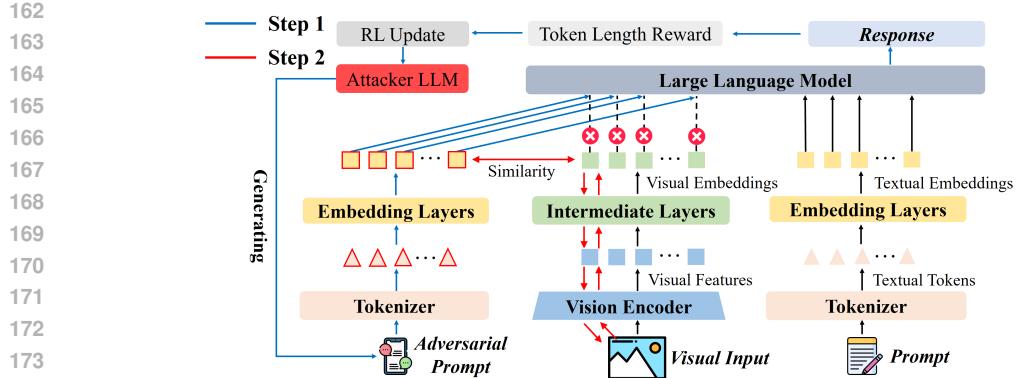


Figure 2: Flowchart of VTIA. Step 1: Adversarial prompt search; Step 2: Vision-aligned perturbation optimization.

conditions: 1) The generated token is an EOS token in a given step. 2) The number of generated tokens reaches a predefined maximum value.

3.2 THREAT MODEL

Attacker’s Knowledge. We consider a gray-box attack setting in which the attacker has access to the model structure of the target VLM f , as well as the parameters of the visual encoder \mathcal{E} and the intermediate module \mathcal{M} . While the attacker does not require the LLM’s parameters.

Attacker’s Goal. The attacker aims to generate an adversarial image that induces the VLM to produce maximally verbose responses. Such responses increase inference costs, including computational and energy consumption, latency, and monetary expenses.

Attacker's Constraint. The magnitude of the perturbations applied to the image is bounded by a predefined l_p norm, ensuring the stealthiness of the attack.

4 ATTACK METHOD

4.1 INSIGHT OF VTIA

The goal of our attack is to find an adversarial perturbation δ that, when added to a clean image x , yields a perturbed image $x^* = x + \delta$ that causes the victim VLM f to produce the output y with maximal token length. Formally, let $\text{len}(\cdot)$ denotes the token-count operator and let f represents the target VLM, we aim to solve

$$\max \mathbb{E}_{y \in \mathcal{F}(\mathcal{M}(\mathcal{E}(x^*) \oplus \mathcal{P}(\mathcal{D}(c)))} [\text{len}(y)], \quad (1)$$

$$\text{s.t. } \|x^* - x\|_+ \leq \epsilon \quad (2)$$

where $\|\cdot\|_p$ is the l_p norm constraint and ϵ indicates the perturbation magnitude. However, the above problem cannot be solved directly because $\text{len}(y)$ is not differentiable with respect to δ . Therefore, we design two steps to achieve the attack goal: 1) **Adversarial prompt search**: We directly construct the token length of the VLM’s response as the reinforcement learning reward. To reduce the search space, we optimize an attacker LLM to produce discrete textual prompts whose embeddings replace image embeddings, thereby inducing the targeted adversarial behavior. 2) **Vision-aligned perturbation optimization**: We split the optimized adversarial prompt into token slices and optimize an objective that jointly penalizes slice–image embedding dissimilarity and standard deviation, and apply backpropagation to optimize and obtain the adversarial image. Our proposed VTIA can capture the VLM’s output during the adversarial prompt search stage, compensating for the limitation of existing approaches (Gao et al., 2024a;b), which cannot observe the subsequent autoregressive generation process when creating adversarial images. Figure 2 illustrates the workflow of our proposed attack method.

216 **Algorithm 1** Process of vision-aligned perturbation optimization

217 1: **Input:** Origin images x , the perturbation magnitude ϵ , step size lr , optimization iterations T
218 and momentum value μ ;
219 2: **Output:** An adversarial image x^* with $\|x^* - x\|_p \leq \epsilon$.
220 3: $g_0 = 0$, $x_0^* = x$;
221 4: **for** $t = 0$ to $T - 1$ **do**
222 5: Input x_t^* to VLM and calculate the loss \mathcal{L}_{total} according to Equation (8);
223 6: Update g_{t+1} by:
224
$$g_{t+1} = \mu \cdot g_t + \frac{\nabla \mathcal{F}(x_t^*)}{\|\nabla \mathcal{F}(x_t^*)\|_1}; \quad (4)$$

225 7: Update x_{t+1}^* by:
226
$$x_{t+1}^* = x_t^* - lr \cdot \text{sign}(g_{t+1}); \quad (5)$$

227 8: **end for**
228 9: **return** x_T^*

232 4.2 ADVERSARIAL PROMPT SEARCH

233
234 In the first step, we optimize an attacker LLM \mathcal{F}^* to produce adversarial prompts c^* . Then c^* is
235 tokenized and projected into textual embeddings H_t^* , and is used to replace the visual embedding
236 H_v of the target VLM. The search objective is to maximize the VLM’s output length (i.e., induce the
237 most verbose responses). This problem can be naturally solved through the following formulation
238 of reinforcement learning:

239
240
$$\arg \max_{\mathcal{F}^*} \mathbb{E}_{y=\mathcal{F}(\mathcal{D}(\mathcal{T}(c^*) \oplus \mathcal{D}(\mathcal{T}(c)))} [\text{len}(y)], \quad (3)$$

241 which takes the token length of the response as the reward. We use \mathcal{F}^* to generate an adversarial
242 prompt c^* containing k tokens, and slice its corresponding textual embedding H_t^* according to
243 the visual token number m corresponding to the target VLM. Specifically, we set the dimension
244 corresponding to the sliced embedding $H_t^*[k']$ to an integer k' that is divisible by m (e.g., when
245 m is 32, k' can be 4), corresponding to the vector of the first k' dimensions of H_t^* . Subsequently,
246 we repeat $H_t^*[:, k']$ for m/k' times and replace it with the model’s visual embeddings to generate
247 the response. We use the Proximal Policy Optimization (PPO) strategy to optimize f^* according to
248 the objectives in Equation (3). By repeating this process, one can eventually identify an adversarial
249 prompt that induces the LLM to generate a token count reaching the predefined upper bound.

251 4.3 VISION-ALIGNED PERTURBATION OPTIMIZATION

252 In order to get the adversarial image x^* , we optimize the perturbation δ through vision-aligned per-
253 turbation optimization based on the generated adversarial prompt c^* . Let the visual embedding of
254 the adversarial image be represented as $H_v^* = [v_1, v_2, v_3, \dots, v_m]$, where m denotes the number of
255 visual tokens, and v_i represents the visual embedding vector. Correspondingly, the concatenated em-
256 bedding of the adversarial prompt slice is represented as $[H_t^*[:, k']_1, H_t^*[:, k']_2, \dots, H_t^*[:, k']_{m/k'}] =$
257 $[t_1, t_2, t_3, \dots, t_m]$, where t_i denotes the text embedding vector. Since the concatenated adversarial
258 prompt embedding is fixed after step one, we need to optimize a perturbation δ , so that the ad-
259 versarial image’s embedding closely matches the prompt’s per-token embeddings, thereby reproduc-
260 ing the same verbose behavior. Therefore, it is necessary to maximize the cosine similarity between v_i
261 and t_i . Upon this, we define the similarity loss \mathcal{L}_{sim} as:

262
263
$$\mathcal{L}_{sim} = \frac{1}{m} \sum_{i=1}^m \cos(\mathcal{M}(\mathcal{E}(x + \delta)[i], t_i)), \quad (6)$$

264

265 which is the mean cosine similarity between the visual and textual embeddings. However, if only
266 \mathcal{L}_{sim} is used as the loss term, the optimization process may lead to a situation where some (v_i, t_i)
267 pairs achieve sufficient optimization, while others (v_j, t_j) remain under-optimized. This imbalance
268 can result in adversarial images with suboptimal attack performance. To address this issue and
269 ensure that each (v_i, t_i) pair is adequately optimized, we introduce a standard deviation term into

270
 271 Table 1: Key information of the large models used in the experiments, including model scale (num-
 272 ber of parameters), type of visual module, the LLM employed, and the number of visual tokens.

Model	Parameters	Vision Encoder	LLM	Visual token number
Blip2	2.7B	ViT-B/L/g	OPT	32
InstructBlip	7B	ViT	Vicuna	32
LLaVA-1.5	7B	CLIP ViT-L/14	Vicuna	576
Qwen2-VL	2B	EVA-CLIP ViT-L	Qwen-2	dynamic

280
 281 the loss function. Then define \mathcal{L}_{std} as:
 282

$$\mathcal{L}_{std} = \sqrt{\frac{1}{m} \sum_{i=1}^m (\cos(\mathcal{M}(\mathcal{E}(x + \delta)[i], t_i) - \mathcal{L}_{sim})^2}, \quad (7)$$

283
 284 which is the standard deviation of the cosine similarity between the visual and text embeddings.
 285 Based on the two loss terms, the optimization objective is formulated as:
 286

$$\min_{x^*} \mathcal{L}_{total} = -\mathcal{L}_{cos} + \alpha \cdot \mathcal{L}_{std}, \quad \text{s.t. } \|x^* - x\|_p \leq \epsilon, \quad (8)$$

291 where α is a hyperparameter that balances the two losses. Furthermore, we use a momentum μ to
 292 control the update of x^* . The specific process is shown in Algorithm 1.
 293

294 5 EXPERIMENTS

295 5.1 EXPERIMENTAL SETUPS

296 **Models and datasets.** This study employs four open-source models: Blip2, InstructBlip, LLaVA,
 297 and Qwen2-VL. Table 1 presents detailed information about these models. Unlike the first three,
 298 Qwen2-VL’s number of visual tokens varies with image resolution. Consequently, prior to feeding
 299 images into Qwen2-VL, we uniformly resize them to 336×336 , resulting in 144 visual tokens. In the
 300 Visual Question Answering task, Blip2 and InstructBlip use the language prompt “Please describe
 301 this picture. Answer:”, whereas LLaVA and Qwen2-VL utilize a conversational template with the
 302 text portion “Please describe this picture.” We randomly select 100 images from the MS-COCO
 303 dataset as experimental samples.
 304

305 **Baselines and setups.** As a baseline, we use the original images, images with added random noise,
 306 and verbose images. The perturbation magnitude is set to $\epsilon = 8$ under an ℓ_∞ constraint. For both
 307 the verbose images and our method, we employ the PGD algorithm with 5,000 iterations. For the
 308 verbose images, the step size and momentum are set to 0.0039 and 0.9, respectively, as reported in
 309 the original source. For our method, the weight is $\alpha = 0.8$, the step size (lr) is 0.0022, and the
 310 momentum is $\mu = 0.9$. In the reinforcement-learning component, we use PPO; the attacker LLM
 311 is GPT-2 XL with a learning rate of 1.46×10^{-5} and a clip range of 0.3. After the attacker LLM
 312 generates a token sequence, we extract a slice and repeat that slice until it matches the number of
 313 visual tokens. For example, if the slice contains two tokens and the VLM (e.g., InstructBLIP) has
 314 32 visual tokens, the slice is repeated $32/2$ times to match the visual-token count. For all VLMs
 315 used in our experiments, the maximum number of generated tokens is set to 1024, and generation is
 316 performed using greedy decoding.

317 **Evaluation metrics.** We record the number of tokens generated per image and compute the average
 318 generation length (Average length) across the 100 images, as well as the proportion of samples
 319 producing more than 1000 tokens (Extra long rate).
 320

321 5.2 MAIN RESULTS

322 Table 2 presents the experimental results on four models. It can be seen that the number of gener-
 323 ated tokens produced by images with added random noise is similar to that of the original images,
 324

324
 325 Table 2: Comparison of the text-generation induction effects (e.g., number of generated tokens)
 326 of the original images, images with added random noise, verbose images, and VTIA on Blip2,
 327 InstructBLIP, LLaVA, and Qwen2-VL.

VLM model	Method	Average length	Average length / max length	Extra long rate (%)
Qwen2-VL	Origin	158.14	0.1544	1
	Noise	145.04	0.1416	0
	Verbose Images	809.01	0.7900	70
	VTIA (ours)	1024	1.0000	100
LLaVA	Origin	108.38	0.1058	0
	Noise	108.58	0.1060	0
	Verbose Images	518.61	0.5065	42
	VTIA (ours)	1024	1.0000	100
InstructBlip	Origin	11.63	0.0114	0
	Noise	11.37	0.0111	0
	Verbose Images	1003.86	0.9803	98
	VTIA (ours)	1014	0.9902	99
Blip2	Origin	8.4	0.0082	0
	Noise	8.32	0.0081	0
	Verbose Images	933.19	0.9113	91
	VTIA (ours)	1024	1.0000	100

347 Table 3: Ablation experiments on the four VLMs, comparing attack performance when the \mathcal{L}_{std}
 348 term is included or excluded and when momentum is used or not.

VLM model	\mathcal{L}_{std}	With Momentum		Without Momentum	
		Average length	Extra long rate (%)	Average length	Extra long rate (%)
Qwen2-VL	✓	1024	100	1024	100
	✗	1024	100	1010.75	98
LLaVA	✓	1024	100	1021.31	99
	✗	1023.76	100	1023.81	100
InstructBlip	✓	1014	99	793.66	77
	✗	1004.27	98	551.06	53
Blip2	✓	1024	100	902.9	88
	✗	994.18	97	640.34	62

360 indicating that simply adding random noise is insufficient to trigger verbose outputs from VLMs;
 361 achieving verbose outputs requires carefully designed image perturbations. Although the verbose
 362 images method can generate malicious images that induce verbose text, its effectiveness remains
 363 inferior to our proposed method. The performance gap is especially pronounced for the two more
 364 recent models, LLaVA and Qwen2-VL (Gao et al. (2024a) did not evaluate these two models), which
 365 further demonstrates the advantage of the “search adversarial prompt first, then optimize image per-
 366 turbations” strategy.

367 Figure 3 displays the original images and the adversarial images, and compares the cosine-similarity
 368 distributions between their visual embeddings and the embeddings of the adversarial prompt. The
 369 results show that after applying small perturbations to the original images, the cosine similarities of
 370 most visual embeddings with their corresponding adversarial-prompt embeddings increase. Conse-
 371 quently, the perturbed images become semantically closer to the adversarial prompt and can trigger
 372 verbose outputs from the VLM in the same way as that prompt.

375 5.3 ABLATION STUDIES

376 377 We primarily investigate the effects of the \mathcal{L}_{std} term, hyperparameter α , momentum, perturbation
 378 magnitude, and the adversarial prompt on attack performance.

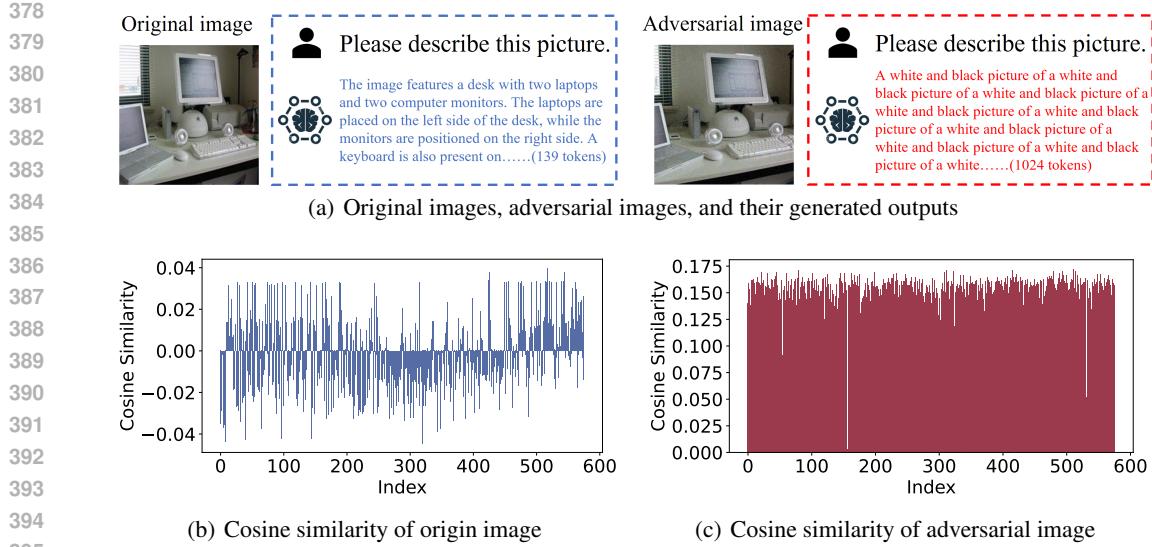


Figure 3: Examples of original images and adversarial images, together with distributions of the cosine similarity between their visual embeddings and the adversarial-prompt embeddings. The model used is LLaVA.

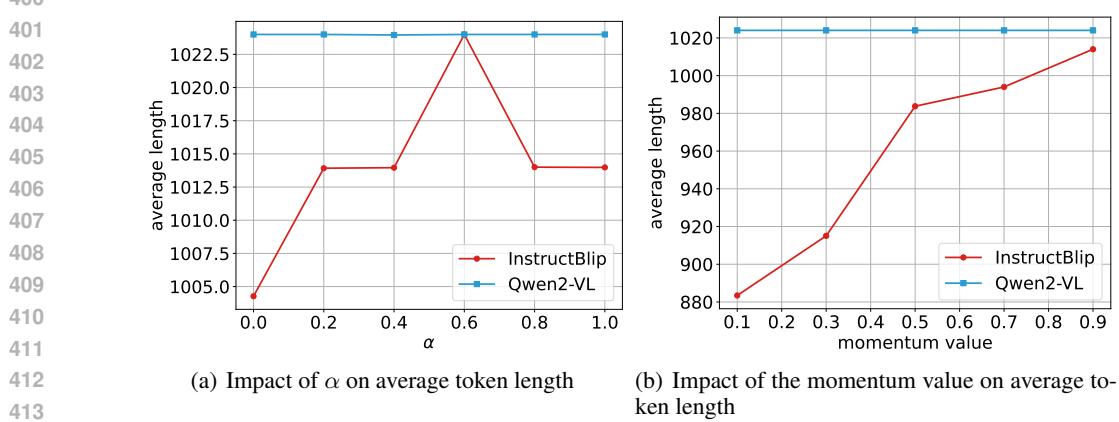


Figure 4: Effect of different weights α and different momentum values on attack performance (e.g., average generated token length), shown as curves or bar charts.

Impact of the \mathcal{L}_{std} term. Table 3 reports ablation experiments on the \mathcal{L}_{std} term and momentum. Vertical comparisons indicate that adding \mathcal{L}_{std} to the loss improves attack performance, particularly on Blip2 and InstructBlip; this improvement is more pronounced when momentum is not used. For LLaVA and Qwen2-VL, the impact of including \mathcal{L}_{std} is relatively small; moreover, when momentum is absent, adding \mathcal{L}_{std} slightly degrades LLaVA’s attack performance. Two main reasons explain this phenomenon: 1) LLaVA and Qwen2-VL have far more visual tokens than Blip2 and InstructBlip; therefore, even if some visual embeddings and their corresponding adversarial prompt embeddings are not fully optimized in terms of cosine similarity, the overall attack is less affected. When the number of visual tokens is small, such insufficiently optimized embeddings can substantially reduce attack effectiveness. 2) Introducing the \mathcal{L}_{std} term into the loss can trade off optimization for the \mathcal{L}_{sim} term when optimizing the adversarial image. This trade-off may reduce final performance, especially when the visual token count is very large (e.g., LLaVA has 576 tokens). Horizontal comparisons show that introducing momentum improves attack performance across models.

Impact of α and momentum value. In addition, Figure 4 illustrates the effects of different α values and different momentum values on attack performance. As shown in Figure 4(a), performance on InstructBLIP is optimal when $\alpha = 0.6$, further indicating that an appropriate choice of α is needed to

432

433 Table 4: Attack performance and perceptual-quality metrics (e.g., LPIPS) under different perturba-
434 tion magnitudes (e.g., 2/255, 4/255, 8/255, 16/255).

435

Magnitude	LPIPS	Average length	Extra long rate (%)
2/255	0.0110	380.34	36
4/255	0.0379	793	77
8/255	0.1137	1014	99
16/255	0.2190	1024	100

441

442 Table 5: Attack performance under different adversarial prompts (constructed from repeated slices);
443 the repetition count is computed as: visual token number/slice token number
444

445

Slice length	Average length	Extra long rate (%)
2	1014	99
4	1003.91	98
8	923.44	90
16	953.55	93
32	883.48	86

451

452

453 balance the optimization of \mathcal{L}_{sim} and \mathcal{L}_{std} . In contrast, on Qwen2-VL, α has little impact on attack
454 performance, which corroborates that when the number of visual tokens is large, whether each visual
455 embedding is fully optimized has a reduced influence on the final outcome. Figure 4(b) shows that,
456 for InstructBLIP, attack performance increases as the momentum value grows, implying that stable
457 optimization is necessary for generating effective adversarial images; whereas for Qwen2-VL, the
458 momentum value has little effect, likely because a larger number of visual tokens makes the overall
459 optimization process more stable.

460

461 **Impact of ϵ .** Table 4 compares the impact of the perturbation magnitude ϵ (2/255, 4/255, 8/255,
462 16/255) on attack performance and reports the LPIPS between adversarial and source images. The
463 results show that attack strength increases significantly with larger perturbation magnitude, but the
464 perturbations also become more perceptible. Therefore, in practical attacks one must trade off
465 stealthiness and attack effectiveness and select an appropriate perturbation magnitude.

466

467 **Impact of slice length.** Table 5 presents the impact of different slice lengths on attack performance.
468 The table shows that although various adversarial prompts can all induce VLMs to generate tokens
469 up to the maximum limit, the final attack effectiveness of the resulting adversarial images still differs
470 after the vision-aligned perturbation optimization step. Moreover, as the slice length increases,
471 attack performance tends to decline. We attribute this mainly to the large amount of repetition and
472 redundancy in image pixels: if an adversarial prompt contains many repeated tokens, it matches the
473 image’s information-carrying characteristics and thereby reduces the difficulty of the vision-aligned
474 perturbation optimization.

475

476

6 CONCLUSION

477

478

479 This paper aims to construct imperceptible image perturbations that induce VLMs to produce ver-
480 bose responses, thereby increasing the computational, time, and monetary costs associated with
481 the inference process of VLMs. To achieve this, we propose a two-stage decoupled attack, named
482 VTIA. In stage one, we treat the VLM’s generated token count as a reward and apply reinforce-
483 ment learning to optimize an attacker LLM that discovers adversarial prompt embeddings. In stage
484 two, we optimize image perturbations by the trade-off between the similarity loss and the standard
485 deviation loss, ensuring that the visual embeddings align with the adversarial-prompt embeddings
486 while keeping the perturbations visually imperceptible. Experiments on popular VLMs — BLIP2,
487 InstructBLIP, LLaVA, and Qwen2-VL — show that the constructed adversarial images significantly
488 increase the number of generated tokens while maintaining high visual stealthiness, highlighting the
489 potential threat of such attacks in real-world deployments.

486 **Ethics statement.** This paper investigates the security vulnerabilities of VLMs by proposing a
 487 verbose-text induction attack that maliciously prolongs model outputs. Our goal is not to promote
 488 harmful usage but to highlight critical risks associated with excessive token generation, which can
 489 inflate energy consumption, increase operational costs, and impair system responsiveness. All ex-
 490 periments were conducted on publicly available models and datasets. No private or sensitive data
 491 was used, and no real-world deployment systems were attacked. We release our findings in the
 492 spirit of responsible disclosure, aiming to assist the community in understanding potential risks and
 493 motivating the development of more robust and cost-efficient VLMs.

494 **Reproducibility statement.** To ensure reproducibility, we provide comprehensive details of our
 495 methodology and experimental setup. Specifically, we describe the two-stage framework, including
 496 reinforcement learning strategies for adversarial prompt search and the vision-aligned perturbation
 497 optimization procedure. Hyperparameters, training configurations, and evaluation protocols are re-
 498 ported in the main paper and supplementary material. Experiments were conducted on four widely
 499 used VLMs with publicly available checkpoints. All code, configurations, and perturbation genera-
 500 tion scripts will be released upon publication to facilitate verification and further research.

501 **REFERENCES**

502 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
 503 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

504 Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S Yu, and Lichao Sun. A com-
 505 prehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt.
 506 *arXiv preprint arXiv:2303.04226*, 2023.

507 Simin Chen, Cong Liu, Mirazul Haque, Zihe Song, and Wei Yang. Nmtslot: understanding and
 508 testing efficiency degradation of neural machine translation systems. In *Proceedings of the 30th*
 509 *ACM Joint European Software Engineering Conference and Symposium on the Foundations of*
 510 *Software Engineering*, pp. 1148–1160, 2022a.

511 Simin Chen, Zihe Song, Mirazul Haque, Cong Liu, and Wei Yang. Nicgslowdown: Evaluating the
 512 efficiency robustness of neural image caption generation models. In *Proceedings of the IEEE/CVF*
 513 *Conference on Computer Vision and Pattern Recognition*, pp. 15365–15374, 2022b.

514 Simin Chen, Hanlin Chen, Mirazul Haque, Cong Liu, and Wei Yang. The dark side of dynamic
 515 routing neural networks: Towards efficiency backdoor injection. In *Proceedings of the IEEE/CVF*
 516 *Conference on Computer Vision and Pattern Recognition*, pp. 24585–24594, 2023.

517 An-Chieh Cheng, Hongxu Yin, Yang Fu, Qiushan Guo, Ruihan Yang, Jan Kautz, Xiaolong Wang,
 518 and Sifei Liu. Spatialrgpt: Grounded spatial reasoning in vision-language models. *Advances in*
 519 *Neural Information Processing Systems*, 37:135062–135093, 2024.

520 Wei-Lin Chiang, Zhuohan Li, Ziqing Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
 521 Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
 522 impressing gpt-4 with 90%* chatgpt quality. See <https://vicuna.lmsys.org> (accessed 14 April
 523 2023), 2(3):6, 2023.

524 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,
 525 Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models
 526 with instruction tuning. *Advances in neural information processing systems*, 36:49250–49267,
 527 2023.

528 Jianshuo Dong, Ziyuan Zhang, Qingjie Zhang, Tianwei Zhang, Hao Wang, Hewu Li, Qi Li, Chao
 529 Zhang, Ke Xu, and Han Qiu. An engorgio prompt makes large language model babble on. *arXiv*
 530 *preprint arXiv:2412.19394*, 2024.

531 Kuofeng Gao, Yang Bai, Jindong Gu, Shu-Tao Xia, Philip Torr, Zhifeng Li, and Wei Liu. Induc-
 532 ing high energy-latency of large vision-language models with verbose images. *arXiv preprint*
 533 *arXiv:2401.11170*, 2024a.

540 Kuofeng Gao, Jindong Gu, Yang Bai, Shu-Tao Xia, Philip Torr, Wei Liu, and Zhifeng Li. Energy-
 541 latency manipulation of multi-modal large language models via verbose samples. *arXiv preprint*
 542 *arXiv:2404.16557*, 2024b.

543 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
 544 tion. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 545 770–778, 2016.

546 Sanghyun Hong, Yiğitcan Kaya, Ionuț-Vlad Modoranu, and Tudor Dumitraș. A panda? no, it's
 547 a sloth: Slowdown attacks on adaptive multi-exit neural network inference. *arXiv preprint*
 548 *arXiv:2010.02432*, 2020.

549 Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
 550 Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
 551 mobile vision applications. *arXiv preprint arXiv:1704.04861*, 2017.

552 Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
 553 convolutional networks. In *Proceedings of the IEEE conference on computer vision and pattern*
 554 *recognition*, pp. 4700–4708, 2017.

555 Chao Jia, Yinfai Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
 556 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
 557 with noisy text supervision. In *International conference on machine learning*, pp. 4904–4916.
 558 PMLR, 2021.

559 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 560 training for unified vision-language understanding and generation. In *International conference on*
 561 *machine learning*, pp. 12888–12900. PMLR, 2022.

562 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 563 pre-training with frozen image encoders and large language models. In *International conference*
 564 *on machine learning*, pp. 19730–19742. PMLR, 2023.

565 Han Liu, Yuhao Wu, Zhiyuan Yu, Yevgeniy Vorobeychik, and Ning Zhang. Slowlidar: Increasing
 566 the latency of lidar-based detection using adversarial examples. In *Proceedings of the IEEE/CVF*
 567 *Conference on Computer Vision and Pattern Recognition*, pp. 5146–5155, 2023a.

568 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 569 *in neural information processing systems*, 36:34892–34916, 2023b.

570 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 571 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 572 models from natural language supervision. In *International conference on machine learning*, pp.
 573 8748–8763. PmLR, 2021.

574 Ilia Shumailov, Yiren Zhao, Daniel Bates, Nicolas Papernot, Robert Mullins, and Ross Anderson.
 575 Sponge examples: Energy-latency attacks on neural networks. In *2021 IEEE European sympo-
 576 sium on security and privacy (EuroS&P)*, pp. 212–231. IEEE, 2021.

577 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 578 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 579 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

580 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 581 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the
 582 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

583 Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia Tsvetkov, and Yuan Cao. Simvilm: Sim-
 584 ple visual language model pretraining with weak supervision. *arXiv preprint arXiv:2108.10904*,
 585 2021.

586 Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
 587 multimodal large language models. *National Science Review*, 11(12):nwae403, 2024.

594 Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks:
595 A survey. *IEEE transactions on pattern analysis and machine intelligence*, 46(8):5625–5644,
596 2024a.

597 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
598 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
599 language models. *arXiv preprint arXiv:2205.01068*, 2022.

600 601 Yuanhe Zhang, Zhenhong Zhou, Wei Zhang, Xinyue Wang, Xiaojun Jia, Yang Liu, and Sen Su.
602 Crabs: Consuming resource via auto-generation for llm-dos attack under black-box settings. *arXiv*
603 *preprint arXiv:2412.13879*, 2024b.

604 605 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
606 hancing vision-language understanding with advanced large language models. *arXiv preprint*
607 *arXiv:2304.10592*, 2023.

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 649 Appendix 650

651 A USE OF LARGE LANGUAGE MODELS 652

653 In this study, large language models were used solely to polish the manuscript text, improving the
654 fluency and clarity of the writing.
655

656 B EXPERIMENTAL DETAILS 657

658 The conversational template used by LLaVA and Qwen2-VL is as follows:
659

```
660 Template
661
662 conversation = [
663   {
664     "role": "user",
665     "content": [
666       {"type": "text", "text": "Please describe this picture."},
667       {"type": "image"},
668     ],
669   },
670 ]
671
```

672 C ADDITIONAL EXPERIMENTS 673

674 Figure 5 presents the token-length distributions of original images and adversarial images across
675 four models. For all four models, the token lengths of original images are concentrated toward
676 the left, whereas those of adversarial images cluster on the far right. Meanwhile, due to model-
677 specific characteristics, LLaVA and Qwen2-VL generate more tokens than BLIP2 and InstructBLIP
678 on original images, and their distributions are close to Gaussian.
679

680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714



Figure 5: The token-length distribution of original images and adversarial images across the four models.