
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AN IMAGE IS WORTH TEN THOUSAND WORDS:
VERBOSE-TEXT INDUCTION ATTACKS ON VLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

With the remarkable success of Vision-Language Models (VLMs) on multimodal
tasks, concerns regarding their deployment efficiency have become increasingly
prominent. In particular, the number of tokens consumed during the generation
process has emerged as a key evaluation metric. Prior studies have shown that
specific inputs can induce VLMs to generate lengthy outputs with low informa-
tion density, which significantly increases energy consumption, latency, and token
costs. However, existing methods simply delay the occurrence of the EOS token
to implicitly prolong output, and fail to directly maximize the output token length
as an explicit optimization objective, lacking stability and controllability. To ad-
dress these limitations, this paper proposes a novel verbose-text induction attack
(VTIA) to inject imperceptible adversarial perturbations into benign images via
a two-stage framework, which identifies the most malicious prompt embeddings
for optimizing and maximizing the output token of the perturbed images. Specifi-
cally, we first perform adversarial prompt search, employing reinforcement learn-
ing strategies to automatically identify adversarial prompts capable of inducing
the LLM component within VLMs to produce verbose outputs. We then conduct
vision-aligned perturbation optimization to craft adversarial examples on input
images, maximizing the similarity between the perturbed image’s visual embed-
dings and those of the adversarial prompt, thereby constructing malicious images
that trigger verbose text generation. Comprehensive experiments on four popular
VLMs demonstrate that our method achieves significant advantages in terms of
effectiveness, efficiency, and generalization capability.

1 INTRODUCTION

In recent years, Vision-Language Models (VLMs) have advanced rapidly, demonstrating strong per-
formance in multimodal tasks such as image captioning (Wang et al., 2021; Li et al., 2022), visual
question answering (Liu et al., 2023b; Dai et al., 2023), and visual reasoning (Zhu et al., 2023;
Cheng et al., 2024). However, these achievements are largely driven by scaling models to billions of
parameters, which renders the model’s deployment highly resource-intensive (Zhang et al., 2024a).
With the accelerating commercialization of VLMs, many service providers offer inference services
for users through APIs, commonly under token-based billing schemes. This raises a critical chal-
lenge for practical deployment, which is to ensure accurate and efficient inference while suppressing
redundant token generation.

Most state-of-the-art VLMs adopt modular architectures in which an intermediate layer connects the
visual encoder and Large Language Models (LLMs) (Yin et al., 2024). The visual encoder and inter-
mediate layer jointly process the image to extract visual embeddings, which are then combined with
the textual embeddings of prompts for response generation by the LLMs. Due to the autoregressive
nature of LLMs, each generated token requires a forward pass, and the token is subsequently fed
back as input for the next steps (Cao et al., 2023). As the token sequence grows, the computational
cost of each forward pass increases accordingly. Such characteristics expose VLMs to a new type of
security threat (Gao et al., 2024a;b): adversaries can design malicious images that induce the model
to generate excessively long outputs. Such behavior not only inflates inference energy consumption
and latency, severely degrading server responsiveness, but also substantially increases user costs
under token-based pricing. As illustrated in Figure 1, the inference time increases with the number
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of generated tokens. When adversarial perturbations remain visually imperceptible, the stealth and
practical risk of these attacks become even more severe.
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Figure 1: The relationship between the time
consumed in a single inference and the number
of generated tokens.

Prior works (Shumailov et al., 2021; Chen
et al., 2022b) have investigated increasing in-
ference energy consumption and latency by
adding perturbations to images, but these methods
mainly target image-classification models (e.g.,
ResNet) or small-scale image-to-text models (e.g.,
ResNet+RNN) and do not readily transfer to mod-
ern VLMs. Recent studies (Gao et al., 2024a;b) on
VLMs have focused on prolonging outputs by de-
laying the occurrence of the EOS token: their core
idea is to decrease the probability of EOS in the
next-step distribution and use that signal to com-
pute gradients for optimizing image perturbations.
However, this approach relies solely on the prob-
ability distribution obtained from a single forward
pass of the image and input text through the VLM,
therefore cannot capture the complete information
of the subsequent autoregressive generation process. That is because LLMs generate autoregres-
sively, later outputs are highly context-dependent and thus difficult to predict or control. Conse-
quently, adversarial images optimized using single-pass information often lack stability and control-
lability in their final attack effectiveness. This limitation raises a key question: can we directly use
the VLM’s output length as the optimization objective when optimizing an adversarial image
for verbose text, thereby improving the stability and controllability of adversarial methods?

To address these limitations, in this paper, we propose a novel redundancy-inducing VLM attack,
termed Verbose-Text Induction Attack (VTIA). This attack method adopts a two-stage decoupling
strategy that explicitly learn the most malicious prompt embedding and maximizes the output token
numbers of the perturbed images. In particular, it proceeds in two steps: 1) Adversarial Prompt
Search: we train an attacker LLM using reinforcement learning to optimize the generation of a ma-
licious prompt, avoiding the non-differentiability of directly maximizing output token length. The
embedding of this prompt, when inserted after the visual embeddings, can trigger the LLM within
the VLM to produce excessively long outputs; 2) Vision-Aligned Perturbation Optimization: based
on the similarity between the malicious prompt embedding and visual embeddings, gradients are
computed to perturb the input image and obtain adversarial examples. This stage operates entirely
independently of the target VLM’s textual module, thereby avoiding the substantial overhead of
repeatedly invoking large LLMs during iterative optimization. In this manner, our attack can effec-
tively prolong the VLM’s output. The main contributions of this work are as follows:

• We propose a novel verbose-text induction attack on VLMs, capable of generating adver-
sarial images while accounting for subsequent outputs with explicit token-aware designs,
thereby advancing security research on inducing verbose text generation in VLMs.

• We design a two-stage attack framework, which firstly searches for an adversarial prompt
through reinforcement learning, and then uses it to optimize adversarial images with the
defined similarity loss and standard deviation loss.

• We apply our method to four mainstream VLMs (Blip2, InstructBlip, LLaVA, Qwen2-VL)
and evaluate it on the MS-COCO dataset. Experimental results show that the generated ad-
versarial images can induce these models to produce token counts that are 121.90×, 87.19×,
9.44×, and 6.48× longer than those generated from the original images.

2 RELATED WORK

2.1 VLMS

Currently, mainstream VLMs consist of two key parts, i.e., textual and visual components. Early
models such as CLIP (Radford et al., 2021), BLIP (Li et al., 2022), and ALIGN (Jia et al., 2021)
employed both visual encoders and text encoders, aligning image and text embeddings through
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contrastive learning. Newer generations of models (e.g., Blip2 (Li et al., 2023), InstructBlip (Dai
et al., 2023), MiniGPT (Zhu et al., 2023), LLaVA (Liu et al., 2023b), Qwen2-VL (Wang et al.,
2024)) typically no longer include a standalone text encoder. Instead, they rely on LLMs, such
as OPT (Zhang et al., 2022), LLaMA (Touvron et al., 2023), Vicuna (Chiang et al., 2023), and
Qwen (Bai et al., 2023), for text understanding, while integrating visual inputs through projection
layers or cross-attention mechanisms. This trend reflects a growing shift toward leveraging the
capabilities of LLMs, rather than relying solely on visual components, to support more flexible and
advanced multimodal reasoning and generation tasks.

2.2 ENERGY-LATENCY ATTACKS

Prior research (Chen et al., 2022a; Hong et al., 2020; Liu et al., 2023a; Chen et al., 2023; Zhang
et al., 2024b; Dong et al., 2024) has investigated how to construct adversarial inputs to degrade the
model inference efficiency. Shumailov et al. (2021) analyzed both language and vision models; in
the case of vision models, the focus was on classification architectures such as ResNet (He et al.,
2016), DenseNet (Huang et al., 2017), and MobileNet (Howard et al., 2017). The approach involved
designing adversarial image inputs that increase activation values across layers. Higher activation
density prevents hardware from skipping certain computations, thereby increasing energy consump-
tion. However, this work did not consider multimodal models. Chen et al. (2022b) examined the
efficiency of Neural Image Caption Generation (NICG) models, proposing to delay the occurrence
of EOS tokens while disrupting token dependencies, thereby generating longer sequences. This
increases the number of decoder calls and reduces inference efficiency. Nonetheless, their studied
architectures (MobileNets+LSTM, ResNet+RNN) differ significantly from the Transformer-based
architectures used in current mainstream VLMs. To induce VLMs to generate longer responses,
Gao et al. (2024a) and Gao et al. (2024b) proposed three strategies: 1) lowering the probability
of EOS token generation to delay its appearance; 2) enhancing output uncertainty to encourage
predictions that deviate from the original token order and pay more attention to alternative can-
didate tokens; and 3) improving the diversity of hidden states across generated tokens to explore
a broader output space, thereby further weakening original output dependencies. However, these
works typically proxy increased output verbosity by manipulating the EOS token probability rather
than treating token length as an explicit optimization objective. Given the autoregressive nature of
current models, where outputs serve as inputs for subsequent steps, and the fact that the loss function
is constructed solely from distributions obtained in a single forward pass, the attack effectiveness of
such adversarial samples remains difficult to guarantee.

3 PRELIMINARIES

3.1 STRUCTURE OF VLMS

Existing state-of-the-art VLMs, such as Blip2 (Li et al., 2023), InstructBLIP (Dai et al., 2023),
LLaVA (Liu et al., 2023b), and Qwen2-VL (Wang et al., 2024), generally consist of a visual encoder
E and a pretrained LLM F . To bridge the two components, an intermediate module M is required.
For example, in InstructBLIP, this module consists of a Q-Former and a fully connected layer. While
in LLaVA, it is implemented as a linear layer that maps the visual features extracted by the visual
encoder into the word embedding space.

Given an input image x, the visual encoder first encodes the input image as visual features
Zv = E(x). Subsequently, the intermediate module projects the visual features into visual em-
beddings Hv = M(Zv), which has the dimension of m (i.e., the visual token number of the
VLM). And for the input prompt c, it is first processed by tokenizer T into a textual token se-
quence St = T (c) = {s1, s2, · · · , sn} of length n. Then St is projected by the embedding layers
D into textual embeddings Ht = D(St). Finally, the visual embedding Hv is concatenated with
the textual embedding Ht to form the initial sequence, and then fed into the LLM for content gen-
eration in an autoregressive manner. Represent the initial sequence as Hv ⊕ Ht, it is fed into the
LLM F , which produces a probability distribution over the next token. By sampling from this dis-
tribution, the next token is obtained and appended to the original sequence, which serves as the
input for the next decoding step of the LLM. Formally, the response of the LLM can be denoted
as y = F(M(E(x) ⊕ D(D(c)). The generation process terminates under either of the following
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Figure 2: Flowchart of VTIA. Step 1: Adversarial prompt search; Step 2: Vision-aligned perturba-
tion optimization.

conditions: 1) The generated token is an EOS token in a given step. 2) The number of generated
tokens reaches a predefined maximum value.

3.2 THREAT MODEL

Attacker’s Knowledge. We consider a gray-box attack setting in which the attacker has access to
the model structure of the target VLM f , as well as the parameters of the visual encoder E and the
intermediate module M. While the attacker does not require the LLM’s parameters.

Attacker’s Goal. The attacker aims to generate an adversarial image that induces the VLM to
produce maximally verbose responses. Such responses increase inference costs, including compu-
tational and energy consumption, latency, and monetary expenses.

Attacker’s Constraint. The magnitude of the perturbations applied to the image is bounded by a
predefined lp norm, ensuring the stealthiness of the attack.

4 ATTACK METHOD

4.1 INSIGHT OF VTIA

The goal of our attack is to find an adversarial perturbation δ that, when added to a clean image x,
yields a perturbed image x∗ = x + δ that causes the victim VLM f to produce the output y with
maximal token length. Formally, let len(·) denotes the token-count operator and let f represents
the target VLM, we aim to solve

max
δ

Ey=F(M(E(x∗)⊕D(D(c)) [len(y)] , (1)

s.t. ||x∗ − x||p ≤ ϵ, (2)

where ||·||p is the lp norm constraint and ϵ indicates the perturbation magnitude. However, the above
problem cannot be solved directly because len(y) is not differentiable with respect to δ. Therefore,
we design two steps to achieve the attack goal: 1) Adversarial prompt search: We directly con-
struct the token length of the VLM’s response as the reinforcement learning reward. To reduce the
search space, we optimize an attacker LLM to produce discrete textual prompts whose embeddings
replace image embeddings, thereby inducing the targeted adversarial behavior. 2) Vision-aligned
perturbation optimization: We split the optimized adversarial prompt into token slices and opti-
mize an objective that jointly penalizes slice–image embedding dissimilarity and standard deviation,
and apply backpropagation to optimize and obtain the adversarial image. Our proposed VTIA can
capture the VLM’s output during the adversarial prompt search stage, compensating for the limita-
tion of existing approaches (Gao et al., 2024a;b), which cannot observe the subsequent autoregres-
sive generation process when creating adversarial images. Figure 2 illustrates the workflow of our
proposed attack method.
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Algorithm 1 Process of vision-aligned perturbation optimization
1: Input: Origin images x, the perturbation magnitude ϵ, step size lr, optimization iterations T

and momentum value µ;
2: Output: An adversarial image x∗ with ∥x∗ − x∥p ≤ ϵ.
3: g0 = 0, x∗

0 = x;
4: for t = 0 to T − 1 do
5: Input x∗

t to VLM and calculate the loss Ltotal according to Equation (8);
6: Update gt+1 by:

gt+1 = µ · gt +
∇F(x∗

t )

∥∇F(x∗
t )∥1

; (4)

7: Update x∗
t+1 by:

x∗
t+1 = x∗

t − lr · sign(gt+1); (5)
8: end for
9: return x∗

T

4.2 ADVERSARIAL PROMPT SEARCH

In the first step, we optimize an attacker LLM F∗ to produce adversarial prompts c∗. Then c∗ is
tokenized and projected into textual embeddings H∗

t , and is used to replace the visual embedding
Hv of the target VLM. The search objective is to maximize the VLM’s output length (i.e., induce the
most verbose responses). This problem can be naturally solved through the following formulation
of reinforcement learning:

argmax
F∗

Ey=F(D(T (c∗)⊕D(T (c))[len(y)], (3)

which takes the token length of the response as the reward. We use F∗ to generate an adversarial
prompt c∗ containing k tokens, and slice its corresponding textual embedding H∗

t according to
the visual token number m corresponding to the target VLM. Specifically, we set the dimension
corresponding to the sliced embedding H∗

t [k
′] to an integer k′ that is divisible by m (e.g., when

m is 32, k′ can be 4), corresponding to the vector of the first k′ dimensions of H∗
t . Subsequently,

we repeat H∗
t [: k

′] for m/k′ times and replace it with the model’s visual embeddings to generate
the response. We use the Proximal Policy Optimization (PPO) strategy to optimize f∗ according to
the objectives in Equation (3). By repeating this process, one can eventually identify an adversarial
prompt that induces the LLM to generate a token count reaching the predefined upper bound.

4.3 VISION-ALIGNED PERTURBATION OPTIMIZATION

In order to get the adversarial image x∗, we optimize the perturbation δ through vision-aligned per-
turbation optimization based on the generated adversarial prompt c∗. Let the visual embedding of
the adversarial image be represented as H∗

v = [v1, v2, v3, . . . , vm], where m denotes the number of
visual tokens, and vi represents the visual embedding vector. Correspondingly, the concatenated em-
bedding of the adversarial prompt slice is represented as [H∗

t [: k
′]1, H

∗
t [: k

′]2, · · · , H∗
t [: k

′]m/k′ ] =
[t1, t2, t3, . . . , tm], where ti denotes the text embedding vector. Since the concatenated adversarial
prompt embedding is fixed after step one, we need to optimize a perturbation δ, so that the adver-
sarial image’s embedding closely matches the prompt’s per-token embeddings, thereby reproducing
the same verbose behavior. Therefore, it is necessary to maximize the cosine similarity between vi
and ti. Upon this, we define the similarity loss Lsim as:

Lsim =
1

m

m∑
i=1

cos(M(E(x+ δ)[i], ti), (6)

which is the mean cosine similarity between the visual and textual embeddings. However, if only
Lsim is used as the loss term, the optimization process may lead to a situation where some (vi, ti)
pairs achieve sufficient optimization, while others (vj , tj) remain under-optimized. This imbalance
can result in adversarial images with suboptimal attack performance. To address this issue and
ensure that each (vi, ti) pair is adequately optimized, we introduce a standard deviation term into

5
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Table 1: Key information of the large models used in the experiments, including model scale (num-
ber of parameters), type of visual module, the LLM employed, and the number of visual tokens.

Model Parameters Vision Encoder LLM Visual token number

Blip2 2.7B ViT-B/L/g OPT 32

InstructBlip 7B ViT Vicuna 32

LLaVA-1.5 7B CLIP ViT-L/14 Vicuna 576

Qwen2-VL 2B EVA-CLIP ViT-L Qwen-2 dynamic

the loss function. Then define Lstd as:

Lstd =

√√√√ 1

m

m∑
i=1

(cos(M(E(x+ δ)[i], ti)− Lsim)
2
, (7)

which is the standard deviation of the cosine similarity between the visual and text embeddings.
Based on the two loss terms, the optimization objective is formulated as:

min
x∗

Ltotal = −Lcos + α · Lstd, s.t. ∥x∗ − x∥p ≤ ϵ, (8)

where α is a hyperparameter that balances the two losses. Furthermore, we use a momentum µ to
control the update of x∗. The specific process is shown in Algorithm 1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Models and datasets. This study employs four open-source models: Blip2, InstructBlip, LLaVA,
and Qwen2-VL. Table 1 presents detailed information about these models. Unlike the first three,
Qwen2-VL’s number of visual tokens varies with image resolution. Consequently, prior to feeding
images into Qwen2-VL, we uniformly resize them to 336×336, resulting in 144 visual tokens. In the
Visual Question Answering task, Blip2 and InstructBlip use the language prompt “Please describe
this picture. Answer:”, whereas LLaVA and Qwen2-VL utilize a conversational template with the
text portion “Please describe this picture.” We randomly select 100 images from the MS-COCO
dataset as experimental samples.

Baselines and setups. As a baseline, we use the original images, images with added random noise,
and verbose images. The perturbation magnitude is set to ϵ = 8 under an ℓ∞ constraint. For both
the verbose images and our method, we employ the PGD algorithm with 5,000 iterations. For the
verbose images, the step size and momentum are set to 0.0039 and 0.9, respectively, as reported in
the original source. For our method, the weight is α = 0.8, the step size (lr) is 0.0022, and the
momentum is µ = 0.9. In the reinforcement-learning component, we use PPO; the attacker LLM
is GPT-2 XL with a learning rate of 1.46 × 10−5 and a clip range of 0.3. After the attacker LLM
generates a token sequence, we extract a slice and repeat that slice until it matches the number of
visual tokens. For example, if the slice contains two tokens and the VLM (e.g., InstructBLIP) has
32 visual tokens, the slice is repeated 32/2 times to match the visual-token count. For all VLMs
used in our experiments, the maximum number of generated tokens is set to 1024, and generation is
performed using greedy decoding.

Evaluation metrics. We record the number of tokens generated per image and compute the average
generation length (Average length) across the 100 images, as well as the proportion of samples
producing more than 1000 tokens (Extra long rate).

5.2 MAIN RESULTS

Table 2 presents the experimental results on four models. It can be seen that the number of gener-
ated tokens produced by images with added random noise is similar to that of the original images,

6
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Table 2: Comparison of the text-generation induction effects (e.g., number of generated tokens)
of the original images, images with added random noise, verbose images, and VTIA on Blip2,
InstructBLIP, LLaVA, and Qwen2-VL.

VLM model Method Average length Average length /
max length Extra long rate (%)

Qwen2-VL

Origin 158.14 0.1544 1
Noise 145.04 0.1416 0

Verbose Images 809.01 0.7900 70
VTIA (ours) 1024 1.0000 100

LLaVA

Origin 108.38 0.1058 0
Noise 108.58 0.1060 0

Verbose Images 518.61 0.5065 42
VTIA (ours) 1024 1.0000 100

InstructBlip

Origin 11.63 0.0114 0
Noise 11.37 0.0111 0

Verbose Images 1003.86 0.9803 98
VTIA (ours) 1014 0.9902 99

Blip2

Origin 8.4 0.0082 0
Noise 8.32 0.0081 0

Verbose Images 933.19 0.9113 91
VTIA (ours) 1024 1.0000 100

Table 3: Ablation experiments on the four VLMs, comparing attack performance when the Lstd

term is included or excluded and when momentum is used or not.

VLM model Lstd
With Momentum Without Momentum

Average length Extra long rate (%) Average length Extra long rate (%)

Qwen2-VL ✓ 1024 100 1024 100
✗ 1024 100 1010.75 98

LLaVA ✓ 1024 100 1021.31 99
✗ 1023.76 100 1023.81 100

InstructBlip ✓ 1014 99 793.66 77
✗ 1004.27 98 551.06 53

Blip2 ✓ 1024 100 902.9 88
✗ 994.18 97 640.34 62

indicating that simply adding random noise is insufficient to trigger verbose outputs from VLMs;
achieving verbose outputs requires carefully designed image perturbations. Although the verbose
images method can generate malicious images that induce verbose text, its effectiveness remains
inferior to our proposed method. The performance gap is especially pronounced for the two more
recent models, LLaVA and Qwen2-VL (Gao et al. (2024a) did not evaluate these two models), which
further demonstrates the advantage of the “search adversarial prompt first, then optimize image per-
turbations” strategy.

Figure 3 displays the original images and the adversarial images, and compares the cosine-similarity
distributions between their visual embeddings and the embeddings of the adversarial prompt. The
results show that after applying small perturbations to the original images, the cosine similarities of
most visual embeddings with their corresponding adversarial-prompt embeddings increase. Conse-
quently, the perturbed images become semantically closer to the adversarial prompt and can trigger
verbose outputs from the VLM in the same way as that prompt.

5.3 ABLATION STUDIES

We primarily investigate the effects of the Lstd term, hyperparameter α, momentum, perturbation
magnitude, and the adversarial prompt on attack performance.

7
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(a) Original images, adversarial images, and their generated outputs
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(b) Cosine similarity of origin image
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(c) Cosine similarity of adversarial image

Figure 3: Examples of original images and adversarial images, together with distributions of the
cosine similarity between their visual embeddings and the adversarial-prompt embeddings. The
model used is LLaVA.
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(a) Impact of α on average token length

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
momentum value

880

900

920

940

960

980

1000

1020

av
er

ag
e 

le
ng

th

InstructBlip
Qwen2-VL

(b) Impact of the momentum value on average to-
ken length

Figure 4: Effect of different weights α and different momentum values on attack performance (e.g.,
average generated token length), shown as curves or bar charts.

Impact of the Lstd term. Table 3 reports ablation experiments on the Lstd term and momentum.
Vertical comparisons indicate that adding Lstd to the loss improves attack performance, particularly
on Blip2 and InstructBlip; this improvement is more pronounced when momentum is not used. For
LLaVA and Qwen2-VL, the impact of including Lstd is relatively small; moreover, when momentum
is absent, adding Lstd slightly degrades LLaVA’s attack performance. Two main reasons explain this
phenomenon: 1) LLaVA and Qwen2-VL have far more visual tokens than Blip2 and InstructBlip;
therefore, even if some visual embeddings and their corresponding adversarial prompt embeddings
are not fully optimized in terms of cosine similarity, the overall attack is less affected. When the
number of visual tokens is small, such insufficiently optimized embeddings can substantially reduce
attack effectiveness. 2) Introducing the Lstd term into the loss can trade off optimization for the
Lsim term when optimizing the adversarial image. This trade-off may reduce final performance,
especially when the visual token count is very large (e.g., LLaVA has 576 tokens). Horizontal
comparisons show that introducing momentum improves attack performance across models.

Impact of α and momentum value. In addition, Figure 4 illustrates the effects of different α values
and different momentum values on attack performance. As shown in Figure 4(a), performance on
InstructBLIP is optimal when α = 0.6, further indicating that an appropriate choice of α is needed to

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Attack performance and perceptual-quality metrics (e.g., LPIPS) under different perturba-
tion magnitudes (e.g., 2/255, 4/255, 8/255, 16/255).

Magnitude LPIPS Average length Extra long rate (%)

2/255 0.0110 380.34 36
4/255 0.0379 793 77
8/255 0.1137 1014 99

16/255 0.2190 1024 100

Table 5: Attack performance under different adversarial prompts (constructed from repeated slices);
the repetition count is computed as: visual token number/slice token number

Slice length Average length Extra long rate (%)

2 1014 99
4 1003.91 98
8 923.44 90
16 953.55 93
32 883.48 86

balance the optimization of Lsim and Lstd. In contrast, on Qwen2-VL, α has little impact on attack
performance, which corroborates that when the number of visual tokens is large, whether each visual
embedding is fully optimized has a reduced influence on the final outcome. Figure 4(b) shows that,
for InstructBLIP, attack performance increases as the momentum value grows, implying that stable
optimization is necessary for generating effective adversarial images; whereas for Qwen2-VL, the
momentum value has little effect, likely because a larger number of visual tokens makes the overall
optimization process more stable.

Impact of ϵ. Table 4 compares the impact of the perturbation magnitude ϵ (2/255, 4/255, 8/255,
16/255) on attack performance and reports the LPIPS between adversarial and source images. The
results show that attack strength increases significantly with larger perturbation magnitude, but the
perturbations also become more perceptible. Therefore, in practical attacks one must trade off
stealthiness and attack effectiveness and select an appropriate perturbation magnitude.

Impact of slice length. Table 5 presents the impact of different slice lengths on attack performance.
The table shows that although various adversarial prompts can all induce VLMs to generate tokens
up to the maximum limit, the final attack effectiveness of the resulting adversarial images still differs
after the vision-aligned perturbation optimization step. Moreover, as the slice length increases,
attack performance tends to decline. We attribute this mainly to the large amount of repetition and
redundancy in image pixels: if an adversarial prompt contains many repeated tokens, it matches the
image’s information-carrying characteristics and thereby reduces the difficulty of the vision-aligned
perturbation optimization.

6 CONCLUSION

This paper aims to construct imperceptible image perturbations that induce VLMs to produce ver-
bose responses, thereby increasing the computational, time, and monetary costs associated with
the inference process of VLMs. To achieve this, we propose a two-stage decoupled attack, named
VTIA. In stage one, we treat the VLM’s generated token count as a reward and apply reinforce-
ment learning to optimize an attacker LLM that discovers adversarial prompt embeddings. In stage
two, we optimize image perturbations by the trade-off between the similarity loss and the standard
deviation loss, ensuring that the visual embeddings align with the adversarial-prompt embeddings
while keeping the perturbations visually imperceptible. Experiments on popular VLMs — BLIP2,
InstructBLIP, LLaVA, and Qwen2-VL — show that the constructed adversarial images significantly
increase the number of generated tokens while maintaining high visual stealthiness, highlighting the
potential threat of such attacks in real-world deployments.
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Ethics statement. This paper investigates the security vulnerabilities of VLMs by proposing a
verbose-text induction attack that maliciously prolongs model outputs. Our goal is not to promote
harmful usage but to highlight critical risks associated with excessive token generation, which can
inflate energy consumption, increase operational costs, and impair system responsiveness. All ex-
periments were conducted on publicly available models and datasets. No private or sensitive data
was used, and no real-world deployment systems were attacked. We release our findings in the
spirit of responsible disclosure, aiming to assist the community in understanding potential risks and
motivating the development of more robust and cost-efficient VLMs.

Reproducibility statement. To ensure reproducibility, we provide comprehensive details of our
methodology and experimental setup. Specifically, we describe the two-stage framework, including
reinforcement learning strategies for adversarial prompt search and the vision-aligned perturbation
optimization procedure. Hyperparameters, training configurations, and evaluation protocols are re-
ported in the main paper and supplementary material. Experiments were conducted on four widely
used VLMs with publicly available checkpoints. All code, configurations, and perturbation genera-
tion scripts will be released upon publication to facilitate verification and further research.
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Appendix
A USE OF LARGE LANGUAGE MODELS

In this study, large language models were used solely to polish the manuscript text, improving the
fluency and clarity of the writing.

B EXPERIMENTAL DETAILS

The conversational template used by LLaVA and Qwen2-VL is as follows:

Template

conversation = [
{

”role”: ”user”,
”content”: [
{”type”: ”text”, ”text”: ”Please describe this picture.”},
{”type”: ”image”},

],
},

]

C ADDITIONAL EXPERIMENTS

Figure 5 presents the token-length distributions of original images and adversarial images across
four models. For all four models, the token lengths of original images are concentrated toward
the left, whereas those of adversarial images cluster on the far right. Meanwhile, due to model-
specific characteristics, LLAVA and Qwen2-VL generate more tokens than BLIP2 and InstructBLIP
on original images, and their distributions are close to Gaussian.
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(a) Blip2
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(b) InstructBlip
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(c) LLaVA
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(d) Qwen2-VL

Figure 5: The token-length distribution of original images and adversarial images across the four
models.
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