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Abstract

In this work, we considered the problem of learning action-values and corresponding policies
from a fixed batch of data. The algorithms designed for this setting need to account for
the fact that the action-coverage of the data distribution may be incomplete, that is cer-
tain state-action transitions are not present in the dataset. The core issue faced by Offline
RL methods is insufficient action-coverage which leads to overestimation or divergence in
learning during the bootstrapping update. We critically examine the In-Sample Softmax
(INAC)(Xiao et al [2023) algorithm for Offline Reinforcement Learning (RL), addressing
the challenge of learning effective policies from pre-collected data without further environ-
mental interaction using an in-sample softmax. Through extensive analysis and comparison
with other in-sample algorithms like In-sample Actor-Critic (IAC) (Zhang et all 2023) and
Batch-Constrained Q-learning (BCQ) (Fujimoto et al.,[2019), we investigate INAC’s efficacy
across various environments, including tabular, continuous, and discrete domains, as well as
imbalanced datasets. We find that the INAC, when benchmarked against state-of-the-art
offline RL algorithms, demonstrates robustness to variations in data distribution and per-
forms comparably, if not superiorly, in all scenarios. We do a comprehensive evaluation of
the capabilities and the limitations of the In-Sample Softmax method within the broader
context of offline reinforcement learning.

1 Introduction

Offline reinforcement learning (offline RL) considers the problem of learning effective policies entirely from
previously collected data. This is very appealing in a range of real-world domains, from robotics to logistics
and operations research real-world exploration with untrained policies is costly or dangerous, but prior data is
available. This data could have been gathered under a near-optimal behaviour policy, from a mediocre policy,
or a mixture of different policies (perhaps produced by several expert agents). One of the core challenges of
offline RL is development of algorithms which perform well over various compositions of data distributions i.e
they are able to learn the best actions, even if the number of such transitions in the dataset are minimal. The
other more costly alternative to make offline RL perform well is to control the data collection to ensure that
good trajectories are collected. Most methods for learning action values in Offline Reinforcement Learning
(Offline RL) either use actor-critic algorithms, where the action values are updated using temporal-difference
(TD) learning updates to evaluate the actor, or Q-learning updates, which bootstrap off of a maximal action
in the next state. Regardless in both approaches, insufficient action coverage can lead to poor performance
when combined with bootstrapping.

The action-value updates based on TD involve bootstrapping off an estimate of values in the next state. This
bootstrapping is problematic if the value is overestimated, which is likely to occur when actions are never
sampled in a state (Fujimoto et all [2018b} [Kumar et al. |2019; [Fujimoto et al., |2019). This overestimated
action will be selected when using a maximum over actions, pushing up the value of the current state and
action. Such updates can lead to poor policies and instability. Nevertheless, this imposes a trade-off between
how much the policy improves and how vulnerable it is to misestimation due to distributional shifts. To
solve the problems that arise due to the extrapolation error, state of the art algorithms such as Implicit
Q-Learning (IQL, [Kostrikov et al.| (2021)), In-sample Actor-Critic (INAC, Xiao et al.| (2023))) and In-sample
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Actor-Critic (IAC, [Zhang et al. (2023)) use in-sample learning, where they attempt to learn an optimal
policy, without ever querying the values of unseen actions.

In this work, we

1. Successfully reproduce the claims made for INAC in [Xiao et al| (2023) and explored the extension
of its adaptability to sub-optimal imbalanced datasets

2. Compare it with adaptations of IQL and CQL that use Return Weighting or Advantage Weighting
sampling strategies (Hong et al., 2023 Peng et al., [2019)

3. Compare it to Batch Conservative Q-Learning (BCQ). This allows us to quantify the impact of using
a soft-max over a maximum (as in INAC) versus using argmax over actions (as in BCQ)

4. Demonstrate that adding Behavioral Cloning regularization into the Actor loss function induces
stability during training while keeping the mean reward the same

In summary, this reproduction contributes empirical results on the ability of In-Sample softmax to generalise
to varied compositions of data distributions and provides results of rigorous experimentation to suggest INAC
as a go-to algorithm for offline RL settings, especially when the quality of the dataset is unknown.

2 Background

2.1 Markov Decision Process

We consider finite Markov Decision Process (MDP) determined by M = (S, A, P,r,7) (Puterman, 1994)),
where S is a finite state space, A is a finite action space, v € [0, 1) is the discount factor, r : S x A —» R
and P: S x A — A(S) are the reward and transition functions.! The value function specifies the future
discounted total reward obtained by following a policy 7 : & = A(A), v™(s) = E™[>.,2v'r(se, ar)|so = s]
where we use E™ to denote the expectation under the distribution induced by the interconnection of 7w and the
environment. The corresponding action-value function is ¢™(s,a) = r(s,a) + YE, ~ P(-|s,a)[v™(s")].There
exists an optimal policy 7* that maximizes the values for all states s € S. We use v* and ¢* to denote the
optimal value functions. The optimal value satisfies the Bellman optimality equation,

v (s) = max {r(s,a) + 1B [v"(s)]}, ¢"(5,0) = (5,0) + 1Esrup()s,0)[max g™ (s',a')] (1)

In this work, we consider the entropy-reqularized MDP setting—also called the maximum entropy set-
ting—where an entropy term is added to the reward to encourage the policy to be stochastic (Snoswell
et al.l |2020)). The maximum-entropy value function is defined as

v™(s) = 0™ (s) + TH(s, ),

where H(s,7) = E, Z —~'log w(als)|so = s
t=0

for temperature 7. H is called the discounted entropy regularization. The corresponding maximum-entropy
action-value function is ¢™ (s, a) = (s, a) + YEy < p(s,a)[07 (5')], with soft Bellman optimality equations simi-
larly modified as described in the next section. As 7 — 0, we recover the original value function definitions.

2.2 Offline Reinforcement learning

We consider the problem of learning an optimal decision making policy from a previously collected offline
dataset D = {s;,a;,7;, s;}?;ol. We assume that the data is generated by executing a behavior policy mp. In
offline RL, the learning algorithm can only learn from samples in this D without further interaction with
the environment. Due to this, offline RL algorithms do not have access to the full coverage of the action
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distribution, which leads to over-estimation of the value function. In such cases, the policy learnt is prone to
distribution shifts and yields poor results during test time. To overcome these issue, one popular approach is
to constrain the learned policy to be similar to mp, such as by adding a KL-divergence regularization term:

max By, | Y w(als)q(s, a) — 7Dxu(n(.[s)llmp(]s)) (2)

a

for some 7 > 0. The optimal policy for this objective must be on the support of mp: the KL constraint
makes sure 7w(als) = 0 as long as mp(als) = 0. This constraint can result in poor 7’ when 7p is sub-optimal,
as confirmed in previous studies. (Kostrikov et al., 2021))

The other strategy is to consider an in-sample policy optimization,

max m(als)q(s,a),m < mpVa € A (3)
)
where © < 7mp indicates the support of 7 is a subset of mp. This approach more directly avoids selecting
out-of-distribution actions. The idea is to estimate 7, &~ wp and directly constrain the support by sampling
candidate actions from m,, as proposed for Batch-Constrained Q-learning (Fujimoto et al., |2018a). This
approach,may not avoid bootstrapping from out-of-sample actions due to the error in the estimate .

2.3 Batch-Constrained deep Q-learning (BCQ)

The algorithm Batch-Constrained deep Q-learning (BCQ) attempts to perform in-sample learning by em-
ploying a state generative model that produces only previously seen actions. It combines this with a deep
Q-network to select the value with the highest action, similar to the batch data. Batch-constrained rein-
forcement Learning works by defining trust regions (Schulman et al., |2017al) in the batch and determining
the Q-value only in these regions.

The state-conditioned generative model is used to generate actions likely under the given batch, which is then
combined with a network to optimally perturb actions in a small range. The perturbation model increases
the diversity of seen actions and prevents excessive prohibitive sampling from the generative model. A Q-
network is used to obtain the highest valued action, and a duo of Q-networks are trained such that the value
update penalizes unfamiliar states and rewards familiar ones. This value estimate bias is achieved through
a modification to Clipped Double Q-learning (Fujimoto et al., [2018b). BCQ works by taking an in-sample
max.

2.4 In-sample Actor Critic (IAC)

In-sample Actor Critic (IAC) (Zhang et all [2023) performs iterative policy iteration and simultaneously
follows in-sample learning to eliminate extrapolation error. It uses sampling-importance resampling to
reduce variance and executes in-sample policy evaluation, which formulates the gradient as it is sampled
from the trained policy. Sampling is done in accordance with the weights of importance resampling. For
policy improvement, advantage-weighted regression (Peng et al.,[2019) has been used to control the deviation
from the behavior policy.

TAC executes unbiased policy evaluation and has a smaller variance than importance sampling. It leverages
the benefits of both multi-step dynamic programming and in-sample learning, which only relies on the target
Q-values of the actions in the dataset. Moreover, it is unbiased and has a smaller variance than importance
sampling. In contrast to prior approaches, IAC dynamically adjusts the distribution of the dataset to align
with the learned policy throughout the learning process.

2.5 In-Sample Softmax(INAC)

The in-sample AC algorithm (Xiao et all |2023) carefully considers out-of-sample actions. INAC learns an
actor my with parameters 1, action-values gy with parameters 6 and a value function vy with parameters
¢. Additionally, INAC learns 7,, =~ mp. INAC initially extracts a greedy policy 7, = wp using a simple
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maximum likelihood loss on the dataset: Lyehavior(w) = —E(s,q)~p[log 7 (als)]. It will only be used to adjust
the greedy policy and will only be queried on actions in the dataset. INAC alternates between estimating
go and vy for the current policy and improving the policy by minimizing a KL-divergence to the soft greedy
policy. It updates its policy to attempt to match the in-sample soft greedy policy.

(qe(s,a) —Z(s)

Trpgo(@ | 8) = mp(a | s)exp

~logmu(a ) (1)

q0(s,a)
,T/

where Z(s) = log [, mp(a | s) exp ( —logm,(a | s)) da is the normalizer. The final loss function for

the actor my is

£actor ('(/J) - _Es a~D |:exp ((]a(S,Cl)—’%;(S)

~logm(a] 5 ) lmy(a | ) 5)

For the value function, we use standard value function updates for the entropy-regularized setting. The
objectives are

Acbaseline (¢) = Esm«D,aNﬂ'w(s) |:; (’U¢(S) - (q0(57 a) - TlOg 7T,¢)(a | S)))Q:l (6)
Loie 0) = Buapro |3 700 () — ol )’ g

The action-values use the estimate of vy in the next state. Therefore, they do not use out-of-distribution
actions. The update to the value function, vy, uses only actions sampled from 7, which is being optimized
to stay in-sample. The actor update progressively reduces the probability of these out-of-distribution actions,
even if temporarily the action-values overestimate their value because the actor update pushes m, towards
the in-sample greedy policy.

3 Investigation and Results

We begin the investigation by reproducing the results shown in the paper (Xiao et al.,2023)). The experiments
performed and reported in the paper belong to the following broad categories:

1. Tabular Domain
2. Continuous Control MuJoCo environments

3. Discrete Control MuJoCo environments

and their details will be noted further in this section. We further introduce experiments on imbalanced
datasets (Hong et al.| [2023) generated and derived from D4RL (Fu et al) 2021)) datasets and benchmark
the performance of INAC on some state-of-the-art in-sample offline reinforcement learning algorithms and
on standard state-of-the-art offline reinforcement learning algorithms.

3.1 Reproducibility
3.1.1 Tabular Domain

We first perform a sanity check on the tabular domain, a four-rooms custom grid-world environment. This
would that INAC algorithm converges to the same policy as value iteration performed on the same envi-
ronment. Since value iteration converges to an optimal policy, we use this as an Oracle prediction (i.e. a
skyline). We denote this as Oracle-Max. In these experiments, we follow the paper’s implementation of the
custom 13 x 13 Four Rooms environment, where the agent starts from the bottom-left and needs to navigate
through the four rooms to reach the goal in the up-right corner in as few steps as possible. There are four
actions: A = {up, down, right, left}. The reward is zero on each time step until the agent reaches the
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goal-state where it receives +1. Episodes are terminated after 100 steps, and v is 0.9. We use three different
behavior policies to collect three datasets from this environment called Expert, Random, and Missing-Action.
The Expert dataset contains data collected by the optimal policy generated by value iteration. In Random
dataset, the behavior policy takes each action with equal probability. For the Missing-Action dataset, we
remove all transitions taking down actions in the entire room from the Mixed dataset. In the Expert, Mixed
and Random datasets we produce results that align with those given in the paper. In the Missing-Action
dataset, where the entirety of the downward actions were removed, the algorithm did not reach the optimal
value but nevertheless performed relatively well to give a normalized score of about 0.4 on a scale between
0 and 1. The results are displayed in Figure

Missing Random
m— Mixed m— Expert

FourRooms
1.0 ==

0.5

0.0-
0 50 100

Figure 1: Average Returns vs Iterations (x10%). Performance of INAC over four different datasets in tabular
domain graphed as a sanity check. The algorithm converges to 1 (highest return) for all datasets except
"missing-action".

3.1.2 Continuous environments

In continuous control tasks, we use the datasets provided by D4RL. We train the agent for 1 million iterations.
We run Walker2D, Ant, Hopper, HalfCheetah on four datasets, Medium, Medium Expert, Expert, Medium
Replay using the corresponding optimal hyperparameters. The reproduced results on most of the continuous
control environments are either better than or comparable to the results given in the paper for the optimal
hyperparameters. We run a grid search on the learning rate and the Lagrangian factor 7 for each environment.
We verify that the prescribed hyperparameters are in fact, the optimal hyperparameters in the sweep. The
hyperparameter sweep results are shown in the Appendix, Figure [5| The average returns, both normalized
and unnormalized are displayed in Table [[] and Table

3.1.3 Discrete environments

In discrete control tasks, we use implementations of PPO (Schulman et all 2017b), DQN from StableBase-
lines3 (Raffin et al., 2021)) to collect data. The mixed dataset has 2k (4%) near-optimal transitions and 48k
(96%) transitions collected with a randomly initialized policy. We run INAC on Acrobot, Lunar Lander
and Mountain Car on these datasets using the corresponding optimal hyper-parameters. We train for 70k
iterations. We use learning rate of 0.0003. The results are displayed in Table [3]

3.2 Imbalanced Datasets

Most offline reinforcement learning (RL) algorithms return a target policy maximizing a trade-off between
(1) the expected performance gain over the behavior policy that collected the dataset, and (2) the risk
stemming from the out-of-distribution sampling of the induced state-action occupancy. It follows that the
performance of the target policy is strongly related to the performance of the behavior policy. Therefore,
it tends to generate trajectories that belong to a distribution similar to the distribution of the behaviour
policy. We try with 5% and 50% "good" trajectories, using the datasets provided by [Hong et al. (2023) for
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Table 1: The final performance of each algorithm in continuous action space environments for expert,
medium expert, medium replay and medium datasets. Scores are normalized. Performance was averaged
over 3 random seeds.

Environment Dataset INAC (Ours) INAC IQL IAC

Expert 119.7 128.4 1188 NA

Ant Medium expert 135.7 120.9 121.0 NA
Medium replay 101.5 88.4 89.3 NA

Medium 115.0 94.2 94.5 NA

Expert 96.3 93.6 91.5 94,5

Medium expert 90.9 83.5 83.4 929

HalfCheetah . ro 41 replay 43.9 443 450 472
Medium 49.2 48.3 48.5  51.6
Expert 104.7 1034  89.4 110.6
Hobper Medium expert 106.6 93.8 61.8 109.3
PP Medium replay 95.6 92.1 60.3 103.2
Medium 61.1 60.3 59.0 74.6
Expert 111.9 110.6  102.9 114.8

Medium expert 112.3 109.0 96.0 110.1

Walker2D /o fium replay 87.5 69.8  66.3 93.2
Medium 88.0 82.7 71.1 852

Table 2: The final performance of each algorithm in continuous action space environments for expert, medium
expert, medium replay and medium datasets. This table reports the score before normalization. Performance
was averaged over 3 random seeds.

Environment Dataset INAC (Ours) INAC IQL BCQ

Expert 5317.4 5077.9  4665.4  4907.4

Ant Medium expert 5379.4 4750.2  4763.7  3825.2
Medium replay 3943.2 3391.0  3427.1 777.2

Medium 3623.4 3637.8  3642.8  2390.0

Expert 11675.0 11347.0  11089.6 9243.8

Medium expert 11005.4 10086.4 10054.4 8674.7

HalfCheetah 1o 4;1 replay 5172.3 5209.8  5289.5  4005.5
Medium 5829.0 5716.7  5742.8  4693.2

Expert 3386.1 3346.4  2885.9  3347.9

Hobper Medium expert 3447.5 3032.0 1992.4  1376.9
PP Medium replay 3089.9 2975.2  1942.1  52.8

Medium 2067.8 1945.6  1897.9  1436.5

Expert 5140.6 5076.3  4725.1 33479

Medium expert 5154.7 5006.6  4410.6  2455.1

Walker2D — y 1 fium replay 4019.8 3205.2 30342 1600.9

Medium 4042.2 3790.8  3260.6  3380.0

continuous control environments. The results for 5% good trajectory dataset are displayed in Table [4] and
the results for 50% good trajectory dataset are displayed in Table
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Table 3: The offline-trained final performance of each algorithm in discrete action space environments for
optimal and mixed datasets. This table reports return per episode before normalization. Performance was
averaged over 3 random seeds.

Environment Dataset INAC (Ours) INAC Oracle-Max

Opt -77.6 -85.1 -81.2

Acrobot Mixed -124.8 -91.0 -146.8
Opt 290.0 201.2 166.5

Lunar Lander Mixed -468.6 -255.4 -248.6
. Opt -204.0 -118.1 -125.9
Mountain Car Mixed -1000.0 -151.2 -187.9

Table 4: Performance comparison of each algorithm in continuous action space environments for imbalanced
datasets - expert and medium for mixing ratio 0.05. Performance was averaged over 3 random seeds.

Environment Dataset INAC (Ours) IQL CQL

Aut Expert 111.6 105.4 115.5

n Medium 89.7 89.3  90.2
Expert 64.3 55.4 69.7

HalfCheetah o 4im 43.5 422 45.4
Honber Expert 108.4 110.6  107.3
obpe Medium 42.7 59.8  63.1
Expert 107.1 104.3  108.3

Walker2D Medium 71.3 67.9  75.2

3.3 Comparison with other in-sample algorithms

We compare the in-sample offline reinforcement algorithms - INAC, IAC and BCQ. The differentiating
concepts in each algorithm are as follows: INAC implements in-sample softmax, TAC implements sample-
importance-resampling (Rubin & Rubin, [1988), and BCQ implements agents which are trained to maximize
reward while minimizing the mismatch between the state-action visitation of the policy and the state-action
pairs contained in the batch. INAC and IAC gave comparable results, and were significantly better than
BCQ. The returns of INAC in different continuous control environments are compared with the returns of
BCQ in Figure [2|

3.4 Behaviour Cloning (BC) Regularization

We observe the effect of adding Behaviour Cloning Regularization (Fujimoto & Gul|2021)) along with entropy
regularization (Mnih et al. [2016). This results in the following loss function for actor my,

Lacor(8) = B [exp (P22 togm (als) ) logmytals) A — (o) =a?| 9

Incorporating the highlighted term introduces BC regularization. Here, A denotes the hyperparameter gov-
erning the regularization intensity. We set A to 0.1 consistently across all instances employing BC Regular-
ization. Adding this explicit regularization to the actions taken in the dataset increases the stability during
training while keeping the mean rewards the same in datasets with significant amounts of good trajectories.
As quality of the dataset reduces, this regularisation contributes to a decrease in mean return. The results
and the graphs are visualized in Figure [J]and in the Appendix, Figure [7]
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Table 5: Performance comparison of each algorithm in continuous action space environments for imbalanced
datasets - expert and medium for mixing ratio 0.5. Performance was averaged over 3 random seeds.

Environment Dataset INAC (Ours) IQL CQL

Aut Expert 111.2 130.3  132.7
Medium 98.3 98.9 97.4

Expert 92.8 94.4 86.3

HalfCheetah o him 46.1 471 465
i Expert 106.2 109.4  106.7
obper Medium 60.8 61.9 645
Expert 108.1 109.4 108.8

Walker2D Medium 74.8 756 81.1

4 Discussion

4.1 Uniqueness of INAC

Our results agree with the original authors’ claims. INAC steers clear of depending on actions drawn from
an approximation of 7p, instead employing expectile regression. Previous approaches, such as BCQ, aimed
to devise a straightforward algorithm based on an in-sample max algorithm but required the integration of
multiple techniques.

4.2 Performance dependence on dataset

Due to the dependency on behavior policy performance, most offline RL algorithms are susceptible to the
return distribution of the trajectories in the dataset collected by a behavior policy. In a near-optimal
dataset (i.e., expert) this tendency favors the performance of an algorithm, while in a low-performing dataset
often reduces the policy’s performance. In realistic scenarios, offline RL datasets might consist mostly of
low-performing trajectories with few minor high-performing trajectories collected by a mixture of behavior
policies since collecting high-performing trajectories is costly and difficult. It is thus desirable to avoid
anchoring on low-performing behavior policies and exploit high-performing ones in mixed datasets.

4.3 INAC compared to other algorithms

In such imbalanced datasets, INAC performs comparable to variations of IQL and CQL, devised using Return
Weighting and advantage weighting sampling strategies as proposed by [Hong et al.| (2023). The distribution
learned due to the in-sample softmax approach allows INAC to learn the high-performing transitions in data
distribution effectively, thus allowing it to perform comparably to methods devised explicitly for the same.
We verify that learning an in-sample softmax performs much better in comparison to learning the in-sample
max. INAC performs much better than BCQ in the D4RL continuous environments. We can further infer
that INAC effectively learns a policy which is close to the optimal policy even in expert settings.

4.4 Effect of BC Regularization

When incorporating BC Regularization, we observe a stable training run without a corresponding change in
the mean return in all runs in expert, and medium expert datasets, and almost all in medium and medium
replay. This is because adding explicit BC regularisation will decrease performance, when quality of actions
in the dataset reduces. This phenomenon suggests that explicitly guiding the policy to emulate expert actions
from the dataset may alter the policy’s distribution while not necessarily enhancing its overall performance.
These findings suggest that INAC’s inherent capability to learn a robust action distribution renders further
regularization unnecessary.
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Figure 2: Average Returns vs Iterations (x10%). INAC over performs or is comparable to BCQ across all
datasets and all environments
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Figure 3: Average Returns vs Iterations (x10%). BC regularization added to INAC improves the average
return, especially in the expert and medium expert datasets as expected. Performance was averaged over 3
random seeds, after using a smoothing window of size 15
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5 Conclusion

Our attempt to reproduce the findings of Xiao et al. (2023) regarding the In-sample Softmax Algorithm
yielded results consistent with theirs across all three environments tested: tabular, continuous, and discrete.
In the domain of offline RL with imbalanced datasets, the prevailing state-of-the-art approaches are Conser-
vative Q-Learning and Implicit Q-Learning, which employ the re-weighted sampling strategy introduced by
Hong et al.| (2023)). Our investigation finds that INAC performs similarly to these algorithms in continuous
control environments. This suggests that INAC can be directly applied when datasets are imbalanced. Our
evaluation against Batch Conservative Q-Learning demonstrates that INAC surpasses BCQ by a consider-
able margin and achieves performance similar to IAC across all continuous control environments. Therefore,
we conclude that INAC exhibits performance on par with state-of-the-art algorithms across diverse settings
and shows resilience to changes in training data distributions. We find that INAC’s data-agnostic nature
makes it a reliable and safe choice for offline RL, particularly in settings with unknown data distributions.

11
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A Appendix
= Expert — == Medium

o Ant HalfCheetah Hopper Walker2D
; 1.0 1.0-
ja
~ 1.0

0.5
g 0.5 0.5
S 0.5
a0 0.0

0 50 100 ) 50 100 0 50 100 0 50 100

Figure 4: Normalized Average Returns vs Iterations (x10%). The performance of INAC for expert and
medium environments provided an imbalanced dataset comprising of 50% good and 50% bad trajectories.
Performance was averaged over 3 random seeds, after using a smoothing window of size 15
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Figure 5: Average Returns vs Iterations (x10*). INAC performance comparison of different hyperparameters
in different environments. The graph infers that the hyperparameters given in the original paper were
optimal. Performance was averaged over 3 random seeds, after using a smoothing window of size 15
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Figure 6: Average Returns vs Iterations (x10%). The average returns for INAC on discrete environments
have been reproduced. Performance was averaged over 3 random seeds, after using a smoothing window of

size 15
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Figure 7: Median Returns vs Iterations (x10%). BC regularization pushes the distribution further towards the
dataset, leading to better stability of the median return in expert and medium expert datasets. Performance
was averaged over 3 random seeds, after using a smoothing window of size 15
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Figure 8: Average Returns vs Iterations (x10%). BC regularization added to INAC improves the average
return, especially in the expert and medium expert datasets as expected. Performance was averaged over 3
random seeds, after using a smoothing window of size 15
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Figure 9: Average Returns vs Iterations (x10%). INAC over performs or is comparable to BCQ across all
datasets and all environments.
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Table 6: The final performance of each algorithm in continuous action space environments for expert, medium
expert, medium replay and medium datasets. This table reports the score before normalization. Performance
was averaged over 3 random seeds.

Environment Dataset INAC (Ours) INAC IQL BCQ

Expert 5317.4 5077.9 4665.4  4907.4

Ant Medium expert 5379.4 4750.2  4763.7  3825.2
Medium replay 3943.2 3391.0  3427.1 777.2

Medium 3623.4 3637.8 3642.8  2390.0

Expert 11675.0 11347.0 11089.6 9243.8

Medium expert 11005.4 10086.4 10054.4 8674.7

HalfCheetah 1o b replay 5172.3 5209.8  5280.5  4005.5
Medium 5829.0 5716.7 5742.8  4693.2

Expert 3386.1 3346.4 2885.9  3347.9

Medium expert 3447.5 3032.0 1992.4  1376.9

Hopper . *
Medium replay 3089.9 2975.2  1942.1  52.8(*)

Medium 2067.8 1945.6 1897.9  1436.5

Expert 5140.6 5076.3 4725.1 3347.9

Medium expert 5154.7 5006.6 4410.6  2455.1

Walker2D 1 fium replay 4019.8 3205.2 30342  1600.9
Medium 4042.2 3790.8 3269.6  3380.0

Table 7: The final performance of each algorithm in continuous action space environments for expert,
medium expert, medium replay and medium datasets. Scores are normalized. Performance was averaged
over 3 random seeds.

Environment Dataset INAC (Ours) INAC IQL IAC

Expert 119.7 128.4 1188 NA

Ant Medium expert 135.7 120.9 121.0 NA

n Medium replay 101.5 884  89.3 NA
Medium 115.0 94.2 94.5 NA

Expert 96.3 93.6 91.5 945

Medium expert 90.9 83.5 83.4 929

HalfCheetah ro 41 replay 43.9 4.3 450 472
Medium 49.2 48.3 48.5  51.6

Expert 104.7 103.4  89.4 110.6

H v Medium expert 106.6 93.8 61.8 109.3
oPpe Medium replay 95.6 92.1 60.3 103.2
Medium 61.1 60.3 59.0 74.6

Expert 111.9 110.6  102.9 114.8

Medium expert 112.3 109.0 96.0 110.1

Walker2D /0 fivm replay 87.5 69.8  66.3 93.2
Medium 88.0 82.7 71.1 852
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