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ABSTRACT

Learning visual semantic similarity is the key challenge to bridge the correspon-
dences between images and texts. However, there are many inherent variations
between vision and language data, such as information density, i.e., images can
contain textual information from multiple different views, which makes it diffi-
cult to accurately compute the similarity between these two modality data. In the
mainstream methods, global-level methods cannot effectively handle the above
problem, while local-level methods need complicated mechanism, which signifi-
cantly affects the retrieval efficiency. In this paper, we propose Asymmetric Visual
Semantic Embedding (AVSE), which aims to design a novel model to learn visual
semantic similarity by explicitly considering the difference in information density
between the two modalities and eschew the prohibitive computations. Specifically,
to keep the information density of images, AVSE exploits the large spatial redun-
dancy of image regions to capture and concatenate multi-view features as image
embedding. It also has a novel module to efficiently calculate the visual seman-
tic similarity of asymmetric image embedding and text embedding via dividing
embeddings into many semantic blocks with the same dimension and compute
the similarity by finding the optimal match between these semantic blocks. Ex-
tensive experiments on large-scale MS-COCO and Flickr30K datasets verify the
superiority of our proposed AVSE compared with recent state-of-the-art methods.
Compared to the recent NAAF method, our AVSE inference is 1000 times faster
on the 1K test set and more accurately on the widely used benchmarks.

1 INTRODUCTION

Understanding the correspondence between the visual world and human language is one of the
fundamental capabilities of artificial intelligence (Karpathy & Fei-Fei, 2015). It motivates much
research on vision-and-language tasks. As a foundation task in the vision-and-language domain,
image-text matching devotes to bridging the semantic gap between these two different modalities,
which aims to search images for a given textual description or vice versa. The key challenge of
image-text matching is to measure the semantic similarity between images and texts.

To accurately bridge the correspondences between images and texts, mainstream methods follow
a common way to first encode images and texts into a shared embedding space, then measure the
similarity between them, and optimize the model via a triplet loss that encourages the similarity of
the matched image-text pair to be greater than that of unmatched pairs. For global-level matching
methods, most works (Faghri et al., 2018; Li et al., 2019; Chen et al., 2021) calculate the visual
semantic similarity via the inner product (cosine similarity), others (Vendrov et al., 2016; Gu et al.,
2018) introduce ordered representations to measure antisymmetric visual-semantic hierarchy. For
local-level matching methods, many works (Lee et al., 2018; Chen et al., 2020a; Liu et al., 2020)
adopt cross-modal attention mechanism to compute the visual semantic similarity.

Although the above methods have slightly different similarity calculation modules, these methods
ignore the difference between the two modal data when calculating the similarity. Actually, there are
many inherent variations between vision and language data, such as the information density (He
et al., 2022). In reality, vision is the real world that humans see, while language is a description of
the part of interest in vision. This intuition is favorable to gain the precise correspondence between
images and texts. As shown in Figure 1, an image can be described from multiple different views
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Figure 1: (Left) Information density is different in vision and language data, e.g., an image can
be described from multiple different views using language. (Right) The conceptual diagram of our
proposed AVSE, which can dynamically calculate the visual semantic similarity between images
and matched texts with different views.

using human language, so an image text embedding of the same size could contain unequal amounts
of information. However, mainstream methods directly compute visual semantic similarity using

Figure 2: Accuracy-speed tradeoff
of single model on Flickr30K test
set. Our AVSE performs best.

holistic visual and text embedding without considering the dif-
ference of information density in two modality data, which in-
evitably hinders the retrieval accuracy. The local-level match-
ing methods implicitly handle such a problem by dynami-
cally computing the similarity between images and text us-
ing a cross-modal attention mechanism, where the key idea
is to compute all word-region similarities by attending to rel-
evant fragments with respect to each query fragment from an-
other modality. Such methods implicitly find the correspond-
ing view for each sentence in the image at the word-region
level, and thus obtains better retrieval results than the global-
level matching methods. However, the prohibitive cost of com-
puting the cross-modal attention (Lee et al., 2018) limits its
practical usage in real-world applications.

Motivated by this, we aim to design a novel model to learn
visual semantic similarity by explicitly considering the differ-
ence in information density between the two modalities and
simultaneously achieve computational efficiency. We propose Asymmetric Visual Semantic Em-
bedding (AVSE), which measures the visual semantic similarity by dynamically finding the most
similar perspective for different texts in an image at a block-level embedding. By doing so, we use
simple consine similarity to alleviate the computational cost caused by the cross-modal attention
and achieve results even better than the state-of-the-art methods (See Figure 2). Specifically, in
order for image features to contain information from multiple different views, AVSE exploits the
large spatial redundancy of images, randomly groups regions, and uses a shared encoder to extract
image embeddings of different image regions. Then these embeddings are concatenated as a larger
image embedding than text embedding. Considering the different dimensions of text embedding
and image embedding, we design a novel Asymmetric Embedding Optimal Matching module to
effectively compute the visual semantic similarity by simulating the way humans describe images
with language. We divide the visual embedding and text embedding into many semantic blocks with
the same dimension and calculate the visual semantic similarity by finding the most similar image
semantic block for each text semantic block via the Sinkhorn algorithm. We also propose a new loss
function to regularize the image embeddings of different views to facilitate the model to find the
optimal match between visual and text blocks.

To sum up, our main contributions of this paper are summarized as follows:

• We propose Asymmetric Visual Semantic Embedding (AVSE) for image-text retrieval to compute
visual semantic similarity by explicitly considering the difference in information density between
the two modalities and eschew the prohibitive computations.

• Asymmetric Embedding Optimal Matching (AEOM) module is proposed to efficiently calculate
the visual semantic similarity and a dimension-wise regularization loss is developed to regularize
the embeddings of different views for further improving the similarity score calculated by AEOM.

• Experimental results on Flickr30K and MS-COCO datasets demonstrate the superiority of our
proposed AVSE compared with recent state-of-the-art baselines. Our model enjoys the benefits
of both global-level methods and local-level methods, i.e. faster speed and higher accuracy.
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Figure 3: Illustration of the two different matching methods, and our proposed AVSE is a variant
of global-level matching method.

2 RELATED WORK

As a hot research topic to bridge the vision and language domains, the key issue of image-text
retrieval is to measure the visual semantic similarity between a image and a text. According to the
granularity of the matching similarity, we roughly divide mainstream works into two groups: global-
level matching methods and local-level matching methods. As illustrate in Figure 3, the difference
between them is whether holistic embedding is used to calculate the similarity, and our AVSE is also
belongs to global-level matching.

Global-level matching methods. Global-level matching methods embed the holistic images and
sentences into a shared embedding space, the visual semantic similarity can be calculated by simply
inner product (cosine similarity) Kiros et al. (2014); Faghri et al. (2018) or other distance functions
(Vendrov et al., 2016; Gu et al., 2018). Due to the lack of interaction between images and texts, such
methods rely on high-quality image text embeddings to compute visual semantic similarity. Existing
related works commonly utilize the graph convolutional network (Li et al., 2019; Wang et al., 2020;
2022; Cheng et al., 2022), self attention mechanism (Wu et al., 2019) or special pooling function
(Chen et al., 2021; Li et al., 2022). In addition, many works focusing on model optimization. Wang
et al. (2016) consider the external constraint loss that preserves the neighborhood structure in a single
modality. Chen et al. (2020b) propose the adaptive offline quintuplet loss to improve the triplet loss
effectively. Liu et al. (2022) utilize intra-modal contrastive loss to regularize the shared embedding
space to gain the high-quality embeddings.

Local-level matching methods. To learn latent fine-grained correspondence between images
and texts, local-level matching methods calculate visual semantic similarity by aligning the sub-
fragments, i.e., regions in images and words in sentences. With the success of bottom-up attention
(Anderson et al., 2018) in image captioning and VQA, Lee et al. (2018) proposed a stacked cross
attention network to attend to image regions with respect to each word in sentences and versa. Re-
cently, there are many follow-up works (Liu et al., 2019; Wang et al., 2019; Chen et al., 2020a;
Liu et al., 2020; Diao et al., 2021; Zhang et al., 2022a;b) that use such stack attention mechanism
to learn more region-word correspondences. Chen et al. (2020a) introduce an iterative matching
scheme to capture correspondences between images and texts with multiple steps of alignments.
Liu et al. (2020) construct visual and textual graph, and learn fine-grained correspondence by node-
level matching and structure-level matching. Diao et al. (2021) introduce a vector similarity function
to compute a similarity representation, constructing a similarity graph to reason the similarity and
adopting attention filtration to eliminate the less-meaning alignments. Zhang et al. (2022a) infer the
confidence of matched region-word pairs from the global perspective to refine the imagetext rele-
vance measurement. Zhang et al. (2022b) measure the accurate similarity/dissimilarity degrees via
a two-branch matching mechanism to jointly infer the overall image-text similarity.

3 ASYMMETRIC VISUAL SEMANTIC EMBEDDING

In this section, we formally present our Asymmetric Visual Semantic Embedding (AVSE) model.
Specifically, given an image-text pair, the model aims to calculate the visual semantic similarity by
considering the difference in information density in two modalities. To better exploit the informa-
tion density difference between the two modality data, AVSE learns an asymmetric visual semantic
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Figure 4: An overview of Asymmetric Visual Semantic Embedding (AVSE). Asymmetric Feature
Extraction exploits the inherent differences to capture asymmetric embedding for images and texts.
Asymmetric Embedding Optimal Matching takes full advantage of the inherent differences to find
the optimal match between visual semantic blocks and textual semantic blocks to compute simi-
larity by the affinity of block-level embeddings. Dimension-wise Regularizing Loss regularizes the
embeddings of different image views to help AEOM to calculate more accuracy block-level affinity.

embedding and calculates the visual semantic similarity by a novel similarity learning module at a
block-level. The overall framework of our proposed AVSE is depicted in Figure 4.

3.1 ASYMMETRIC FEATURE EXTRACTION

Textual Representation. Given a text T which consisted of m words, we aim to obtain a holistic
textual embedding t ∈ Rd1 . First, each word is represented as a one-hot encoding, and embed into a
pre-trained GloVe (Pennington et al., 2014) vector. Then, these vectors are fed into a bi-directional
GRU to gain a set of word features. Finally, generalized pooling operator (Chen et al., 2021) is
adopted as an aggregation function to encode the word vectors into the holistic text embedding t.

Visual Representation With Multiple Views. Due to information density being different in images
and text, visual embedding should contain more information than textual embedding.

Random Grouping. Given an image I , we aim to extract a holistic visual embedding containing
different views. First, we follow (Anderson et al., 2018) to extract K salient regions with the Faster
R-CNN (Ren et al., 2016) pre-trained on Visual Genomes (Krishna et al., 2017). We divide these K
regions into two groups by random sampling to simulate two different views of the image I . Effect
of different number of views is describe in Tab.3.

Shared-Weight Image Encoder. Then, we feed each region in all groups into a fully connected layer
to transform into a d1-dimensional vector, and a generalized pooling operator is used to aggregate the
region features in each group into a holistic visual embedding vgn ∈ Rd1 . Finally, we concatenate
all group embeddings as the visual embedding v ∈ R2∗d1 .

3.2 ASYMMETRIC EMBEDDING OPTIMAL MATCHING

As the different dimensions of image embedding v and text embedding t, the visual semantic sim-
ilarity cannot be calculated using the conventional method. Motivated by the way humans describe
images with language, we design a Asymmetric Embedding Optimal Matching (AEOM) module
to calculate the visual semantic similarity efficiently. In contrast to the global-level matching ap-
proaches (Faghri et al., 2018; Chen et al., 2021) that use holistic embedding to compute similarity,
we present a more fine-grained way to compute block-wise similarity, which aims to find the most
similar visual block for each textual block. By doing so, we simulate the process of finding the most
similar view in an image for a given sentence.

Concretely, we first split the visual embedding v and text embedding t into a set of d2-dimensional
blocks, represented as vb = [vb1 ,vb2 , ...,vbp ] and tb = [tb1 , tb2 , ..., tbq ], respectively, where p =
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nd1/d2 and q = d1/d2. Then we compute the affinity matrix A of visual blocks vb and text blocks
tb as follows:

Ai,j =
v⊤
bi
tbj

∥vbi∥ · ∥tbj∥
, i ∈ [1, p], j ∈ [1, q] (1)

where Ai,j indicate the affinity score of visual block vbi and text block tbj . Since text blocks
might not be associated with any visual blocks and vice versa, we augment the affinity matrix A
with a dustbin so that unmatched blocks are explicitly assigned to it. Specifically, we augment
the affinity matrix A by adding a new row and column at the end of the matrix to produce a new
Ā ∈ R(p+1)×(q+1), the new row and column are initialed the new row and column are initialed by
filling a single learnable parameter z. While each visual block or text block will be assigned to a
single block in another modal or to the dustbin, the maximum capacity that can be assigned to each
bin is the number of visual blocks or text blocks. We denote a = [1⊤

p , q]
⊤ and b = [1⊤

p , p]
⊤ as the

number of expected matched blocks for each block and dustbin in vb1 and tb1 . Further, note that the
augmented Ā is subject to the following constraints: Ā1q+1 = a and Ā⊤1p+1 = b. where 1 is a
vector of ones. The constraints of the above optimization problem are similar to solving for Optimal
Transport (Peyré et al., 2019). We leverage the Sinkhorn Normalization (Adams & Zemel, 2011;
Cuturi, 2013; Sinkhorn & Knopp, 1967) to automatically satisfy above constraints during training
and testing. Sinkhorn algorithm is a differentiable version of the Hungarian algorithm Munkres
(1957), which is used to solve an efficient yet simple approximate solution for generalized linear
assignment by repeatedly normalizing rows and columns. After c iterations of Sinkhorn algorithm,
Ā is approximately converted to a doubly-stochastic matrix, and we obtain the final affinity matrix
by A∗ = Ā1:p,1:q .

At this point, we more precisely compute the block-wise correspondence between visual embedding
and text embedding. Inspired by (Karpathy & Fei-Fei, 2015; Lee et al., 2018), we employ the max-
sum pooling to caculate the visual semantic similarity between image I and text T by computing
the max over the columns and then summing:

S(I, T ) =

q∑
j=1

max
i∈[1,p]

A∗
i,j (2)

3.3 DIMENSION-WISE REGULARIZING FOR DIFFERENT VIEWS

Considering that to find the best matches between text blocks tb and visual blocks containing dif-
ferent views vb, we argue that image embeddings of diferent views should satisfy the same fea-
ture distribution, i.e., each channel in the embedding vg1 and vg2 represents the same semantics.
Specifically, we first calculate the cross-correlation matrix C between vg1 and vg2 along the batch
dimension as follows:

Cij =

∑
b v

A
b,iv

B
b,i√∑

b(v
A
b,i)

2
√∑

b(v
B
b,i)

2
(3)

where b indicates the index of batch sample and i,j indicate the vector dimension of embedding,
C is a matrix with size of b × b. Then, we regularize the embeddings of different views by trying
to equate the diagonal elements of the cross-correlation matrix to 1, and equate the off-diagonal
elements of the cross-correlation matrix to 0. We define the loss as:

Lreg =
∑
i

(1−Cii)
2 + λ1

∑
i

∑
j ̸=i

C2
ij (4)

where λ1 is a positive constant to balance the weight of two terms of the loss function.

3.4 OBJECTIVE FUNCTION

To align images and texts, we adopt hinge-based triplet loss (Kiros et al., 2014) using the hardest
negative samples (Faghri et al., 2018; Lee et al., 2018; Chen et al., 2021). The loss function is
defined as follows:

Lm =
∑

(I,T )∈D

[
α− S(I, T ) + S(I, T̂ )

]+
+

[
α− S(I, T ) + S(Î , T )

]
(5)
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Table 1: Comparisons of experimental results on MS-COCO and Flickr30k datasets. Methods are
divided into two categories: Global-level Matching Methods and Local-level Matching Methods.
‘*’ indicates ensemble methods. The best performances are in bold.

MS-COCO 5-fold 1K Test Flickr30k 1K Test

Method Text Retrieval Image Retrieval rSum Text Retrieval Image Retrieval rSum
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Global-level Matching Methods
LIWE (Wehrmann et al., 2019) 73.2 95.5 98.2 57.9 88.3 94.5 507.6 69.6 90.3 95.6 51.2 80.4 87.2 474.3
VSRN* (Li et al., 2019) 76.2 95.6 98.5 61.7 89.1 95.0 516.1 71.3 90.6 96.0 54.7 81.8 88.2 482.6
CVSE (Wang et al., 2020) 74.8 95.1 98.3 59.9 89.4 95.2 512.7 73.5 92.1 95.8 52.9 80.4 87.8 482.5
VSE∞ (Chen et al., 2021) 78.5 96.0 98.7 61.7 90.3 95.6 520.8 76.5 94.2 97.7 56.4 83.4 89.9 498.1
MV-VSE (Li et al., 2022) 78.7 95.7 98.7 62.7 90.4 95.7 521.9 79.0 94.9 97.7 59.1 84.6 90.6 505.8
ConVSE* (Liu et al., 2022) 78.6 96.3 98.8 64.3 92.4 96.9 526.2 81.6 95.5 97.8 61.3 86.7 92.0 514.9

Local-level Matching Methods
SCAN* (Lee et al., 2018) 72.7 94.8 98.4 58.8 88.4 94.8 507.9 67.4 90.3 95.2 48.6 77.7 85.2 464.4
IMRAM (Chen et al., 2020a) 76.7 95.6 98.5 61.7 89.1 95.0 516.6 74.1 93.0 96.6 53.9 79.4 87.2 484.2
SHAN (Ji et al., 2021) 76.8 96.3 98.7 62.6 89.6 95.8 519.8 74.6 93.5 96.9 55.3 81.3 88.4 490.0
GSMN* (Liu et al., 2020) 78.4 96.4 98.6 63.3 90.1 95.7 522.5 76.4 94.3 97.3 57.4 82.3 89.0 496.8
SGRAF* (Diao et al., 2021) 79.6 96.2 98.5 63.2 90.7 96.1 524.3 77.8 94.1 97.4 58.5 83.0 88.8 499.6
NAAF* (Zhang et al., 2022b) 80.5 96.5 98.8 64.1 90.7 96.5 527.2 81.9 96.1 98.3 61.0 85.3 90.6 513.2

Ours: AVSE 78.5 96.3 98.7 63.3 91.0 96.1 524.0 81.5 96.2 98.0 60.9 86.8 92.0 515.5
Ours: AVSE* 81.4 96.9 98.8 65.4 91.5 96.4 530.4 82.4 96.3 98.3 62.6 87.9 92.8 520.4

where α serves as a margin parameter and [x]+ ≡ max(x, 0). In dataset D, the visual semantic
similarity in a positive pair S (I, T ) should be higher than that in the hardest negative pairs S(Î , T )
and S(I, T̂ ) by a margin α.

In summary, the final loss function of our model is defined as follows to perform joint optimization
of the two objectives.

L = Lm + Lreg (6)

4 EXPERIMENTS

4.1 DATASET AND SETTINGS

Datasets. Following previous works (Faghri et al., 2018), we use two widely used benchmark
datasets MS-COCO (Lin et al., 2014) and Flickr30K (Plummer et al., 2015) for our experiment.
MS-COCO is a dataset that contains 123287 images and five text captions are annotated for each
image. Following Faghri et al. (2018), all data are split into training set, validation set and testing set
which contains 113287, 5000, 5000 images respectively. Flickr30K is composed of 31783 images
and each image has 5 corresponding descriptions. We followed the split in Faghri et al. (2018), using
29000 images for training, 1000 images for validation, and 1000 images for testing.

Evaluation Metrics. The commonly used evaluation metrics for image-text matching are Recall@K
(K=1,5,10), denoted as R@1, R@5, and R@10, which depict the percentage of ground truth being
retrieved at top 1, 5, 10 results, respectively. Specifically, we also follow previous works (Chen
et al., 2021; Li et al., 2022) to use sum of all the Recall values (rSum) to evaluate the performance.

4.2 IMPLEMENTATION DETAILS

All of our experiments are trained on a single Tesla P100 GPU. We train the proposed model for 25
epochs with set the mini-batch size as 128 using AdamW (Loshchilov & Hutter, 2019) optimizer.
The learning rate is set as 0.0005 for the first epochs and then decreased to 0.00005 for the rest 10
epochs. We train the model on the training set, and validate it at each epoch on validation set, finally
we select the best model to test on the test set. The best model is model that has the highest rSum on
the validation set. For feature extractions, we set the dimension of the shared embedding space d1 as
1024. For text encoder, we adopt the pre-trained Glove (Pennington et al., 2014) word embedding
instead of the randomly initial word embedding, project it to the shared embedding space through
a 1-layer Bi-GRU and finally aggregates the word embeddings by a generalized pooling operator
(Chen et al., 2021) to get a holistic text embedding t. For the image encoder, we follow Lee et al.
(2018) implement the bottom-up attention with a Faster R-CNN (Girshick et al., 2014) model using
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ResNet-101 as the backbone, which is pre-trained on the Visual Genomes (Krishna et al., 2017)
dataset by Anderson et al. (Anderson et al., 2018). We choose the top K = 36 ROIs with the
highest class detection confidence scores as the region features, and the dimension of each region
is 2048 (Lee et al., 2018)1. Different from exist works, we sample these regions into n=2 groups to
capture 2 different views of the image, and each groups contains 75% of the selected K fragments
for training and 90% for testing. The two groups of region features is then transformed into a
1024-dimensional visual representation by a shared-weight fully-connected layer and aggregatee
by a generalized pooling operator (Chen et al., 2021) to get a holistic visual embedding v. For
asymmetric embedding optimal matching module, we set the dimension of blocks d2 as 512, and
we set the iteration of Sinkhorn normalization as 20. For objective function, we set λ1 in Eq. 4 as
0.0051 to balane two terms of Lreg and α in Eq. 5 is set to 0.2 as margin parameter.

4.3 COMPARISONS WITH SERVERAL RECENT STATE-OF-THE-ARTS

Table 2: Retrieval results on MS-COCO 5K test set.
‘*’ indicates ensemble methods.

Method Text Retrieval Image Retrieval rSum
R@1 R@5 R@10 R@1 R@5 R@10

Global-level Matching Methods
VSRN* 53.0 81.1 89.4 40.5 70.6 81.1 415.7
VSE∞ 56.6 83.6 91.4 39.3 69.9 81.1 421.9
MV-VSE 56.7 84.1 91.4 40.3 70.6 81.6 424.6

Local-level Matching Methods
SCAN* 50.4 82.2 90.0 38.6 69.3 80.4 410.9
IMRAM 53.7 83.2 91.0 39.7 69.1 79.8 415.5
SGRAF* 57.8 - 91.6 41.9 - 81.3 272.6
NAAF* 58.9 85.2 92.0 42.5 70.9 81.4 430.9

Ours 59.1 86.1 93.2 42.3 72.5 82.6 435.9
Ours* 61.8 86.7 93.3 43.5 73.2 83.4 442.0

We compare AVSE with the most recent
state-of-the-art approaches on two widely
used datasets, i.e., Flickr30K and MS-
COCO. It is noted that many state-of-the-
arts methods adopt the ensemble strategy
(Lee et al., 2018; Li et al., 2019; Diao et al.,
2021). For a fair comparison, we also pro-
vide the ensemble version to compare with
other methods. When implementing the en-
semble scheme, we average the similarity
scores of two already trained models for the
final ranking process.

Results on Flickr30K. The quantitative re-
sults of our AVSE approach on Flickr30K
are shown in Tab.1. Our AVSE outperforms
state-of-the-arts significantly on all evalua-
tion metrics. Specifically, compared with
the current best method NAAF (Zhang et al., 2022b), AVSE obtain 7.2% improvement on rSum,
where the R@1 gains 0.5% and 1.6% improvement at text retrieval and image retrieval, respectively.
Moreover, compared with the typical VSE∞ (Chen et al., 2021) which our model builds on its ba-
sis, our proposed AVSE gains 5.9% and 6.2% on R@1 at two directions, respectively, and largely
improves rSum by 14.6%.

Results on MS-COCO. The experimental results of the larger and complicated MS-COCO 5-fold
1K test set and MS-COCO 5K test set are shown in Tab.1 and Tab.2, respectively. For 5-fold 1K test
set, it is obvious that our AVSE outperforms state-of-the-arts in terms of most evaluation metrics.
Compared with MV-VSE and SGRAF, our AVSE gains relative improvements of 8.5% and 6.1%
on rSum, respectively, and we can achieve competitive results with the current best method NAAF,
getting 3.2% improvements on rSum. For 5K test set, it is obvious that our method achieves the
new state-of-the-art, with 61.8% R@1 and on 46.2% R@1 on text retrieval and image retrieval,
respectively, which is consistent with results on Flickr dataset. Compared with the current best
model NAAF, AVSE gains relative improvements of 11.1% on rSum, which again demonstrates the
effectiveness of learning the visual-semantic similarities.

Inference efficiency analysis. In addition to the accuracy of caption or image retrieval, we
also argue that the efficiency at the inference stage is important when evaluating the model’s
performance. This is crucial especially when the model is used in search engines for a large-
scale database towards image or text queries. However, recent local-level matching meth-
ods (Lee et al., 2018; Chen et al., 2020a; Liu et al., 2020; Zhang et al., 2022b) usually rely
on complex cross-modal attention mechanism, which significantly harm the inference speed of
the model. In contrast, global-level matching methods (Chen et al., 2021; Li et al., 2019;
Liu et al., 2022; Li et al., 2022) have extremely fast inference speed, but due to inabil-
ity to learn the multi-view information to dynamically calculate the visual semantic similar-

1The region features can be downloaded from https://github.com/kuanghuei/SCAN
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ity between image and matched texts with different views, therefore, the retrieval accuracy
of the global-level matching methods are inferior to that of the local-level matching methods.

Figure 5: Inference time for image-text
retrieval on GPU (lower the better).

Our AVSE also belongs to the global-level matching
methods, but by learning multi-view image features and
dynamically computing the visual semantic similarity, we
well balance the retrieval speed and retrieval accuracy to
obtain the best performance at the expense of limited re-
trieval speed. As shown in Figure 5, we compare infer-
ence time for image-text retrieval on single GPU with
recent state-of-the-arts. It is obvious that global-level
matching methods (VSRN and VSE∞) are much faster
than local-level matching methods (NAAF and GSMN).
When there are only 10 candidate images, the global level
matching method is more than 100 times faster than the
local level matching method, and when the number of
candidate images increases to 1000, the time cost dif-
ference increases to 10,000 times. However, our AVSE
retrieval time increases only 0.3 seconds than traditional
global-level matching methods when there are 1000 can-
didate images, which is 1000× faster than NAAF and GSMN.

4.4 ABLATION STUDY

To verify the effectiveness of each component of our AVSE, we conduct extensive ablation studies
on the larger and complicated Flickr30K dataset.

Table 3: Ablation Studies about different pa-
rameters on Flickr30K Dataset.

Method TR IR

R@1 R@10 R@1 R@10

Asymmetric Embedding Optimal Matching
w/o AEOM (1 views) 77.2 97.4 57.6 90.6
w/o AEOM (2 views) 78.9 97.8 59.5 91.3
w/o AEOM (4 views) 79.3 97.7 58.7 91.1
w/ AEOM (2 views) 81.5 98.0 60.9 92.0
w/ AEOM (4 views) 81.5 97.9 60.2 91.3

Dimension of Block d2
initial d2 = 64 75.9 97.1 55.8 90.1
initial d2 = 128 77.5 97.5 56.1 89.9
initial d2 = 256 80.1 98.1 57.4 91.0
initial d2 = 512 81.5 98.0 60.9 92.0

Sinkhorn Normalization
w/o Sinkhorn 79.1 97.8 59.6 91.6
w/ Sinkhorn c = 10 81.9 98.1 60.1 91.7
w/ Sinkhorn c = 20 81.5 98.0 60.9 92.0
w/ Sinkhorn c = 30 81.0 98.0 60.2 91.4

Dimension-wise Regularizing Loss
w/o Lreg 80.1 97.7 59.5 91.0
w/ Lreg 81.5 98.0 60.9 92.0

The impact of AEOM. The AEOM is a critial
module in our AVSE, to validate the superiority
of AEOM, we first compare it with the conven-
tional similarity functions, i.e., Consine similarity,
we also extract multi-view image features and feed
it into a mean pooling to have multi-view informa-
tion. As shown in Tab.3, we list the results of 1,2,4
views of using Consine similarity. It prove that
multi-view information can directly improve the
retrieval accuracy. And it is clearly to see that our
AEOM achieves the best performance on all met-
rics when using 2 view image features. Although
increasing views does not improve retrieval per-
formance, our AEOM outperforms conventional
methods by a large margin of 2.2% on R@1.

The impact of different block dimension. The
dimension of the visual and text semantic blocks
d2 is a sensitive parameter in AEOM, which deter-
mines the ability to learn the visual-semantic simi-
larities. Hence, an appropriate parameter is impor-
tant in our proposed model. To validate the impact
of the blocks’ dimension d2, we conduct extensive
experiments on Flickr30K dataset. Here, we inves-
tigate the matching performance by setting d2 as
64, 128, 256 and 512, the results are reported in
Tab.3. It is obvious that when blocks’ dimension d2 setting with 512, the model yields the best
performance on both image retrieval and text retrieval.

The impact of Sinkhorn normalization. Sinkhorn Normalization is the most important compo-
nent in AEOM, to verify the effectiveness of Sinkhorn Normalization, we perform ablation studies
on Sinkhorn Normalization. To verify the effectiveness of Sinkhorn Normalization, we perform ab-
lation studies on Sinkhorn Normalization. As shown in Tab.3, the results show that without using
the Sinkhorn Normalization the retrieval performance decreases in all metrics. Then we validate
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(a)
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in his mouth.
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(c) (d)
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marathon in a light blue tank top and 

spandex shorts. 

2. A lady dressed in blue running a 

marathon . 

3. A woman who is running , with blue 

shorts. 

1. A blond toddler is shown in closeup 

chewing on a popsicle stick.

2. A young child has a popsicle stick 

in his mouth.

3. A very young boy stares ahead as he 

is biting onto a small object.  

(c) (d)

1. A young woman is running a 

marathon in a light blue tank top and 

spandex shorts. 

2. A lady dressed in blue running a 

marathon . 

3. A woman who is running , with blue 

shorts. 

A man is writing on a chalkboard full of paragraphs with a pencil in his ear. One African American woman working in a field with a baby in a sling .

(e) (f)

Figure 6: Result visualization of our proposed AVSE. We show the original image and two at-
tention maps from different views in (a) and (b) to show what AVSE learned from two views. In
(c),(d),(e),(f), we list qualitative results of image-text retrieval. For each query, we show the top-3
ranked results.

the effect of iteration c of Sinkhorn Normalization. The value of c controls the quality of the nor-
malization of the affinity matrix, which is with significant importance. The ablation studies show
that a suitable value of c = 20 is critical in maintaining good performance, though our method with
different c is all with superior results.

The impact of dimension-wise regularizing loss. We validate the positive effect of this dimension-
wise regularizing loss on our proposed method. We can clearly find that by using Lreg , the retrieval
performance is improved in all metrics. Especially for R@1, our method obtain relative 1.4% rela-
tive improvement both for image retrieval and text retrieval.

4.5 VISUALIZATION

We visualize the retrieval process in Figure 6. From the attention maps of two views, it is clear
from the figures that our model can capture different views feature of images, which is crucial for
dynamically calculate the visual semantic similarity. For example, in Figure 6 (a), the first view
mainly focus on the child while another view mainly focus on the chairs. So retrieval performance
can benefit in such multi-view information. And we also show some retrieval results in Flickr30K.
In Figure 6 (c) and (d), we show some results of image-to-text retrieval, and in Figure 6 (e) and (f),
we visualize the text-to-image retrieval. These show our approach always retrieves the ground truth
with a high rank. In addition, our approach is able to learn detail for image-text correspondence. For
example, in Figure 6 (f) , our network can accurately find women with baby.

5 CONCLUSION

In this paper, we propose a novel Asymmetric Visual Semantic Embedding (AVSE) for efficient
image-text matching. The key insight is that the difference information density between vision and
language is crucial for image-text retrieval. To better exploit the information density difference
between the two modality data, let the model learn an asymmetric visual semantic embedding and
make full use of the information density difference by a novel similarity learning module. Moreover,
we propose a new loss function to regularize the image embeddings of different views to better help
the model to find the optimal match between visual and text blocks. Comprehensive experiments on
two widely-used benchmark datasets validate the effectiveness of the proposed method, leading to
state-of-the-art performance.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Ryan Prescott Adams and Richard S Zemel. Ranking via sinkhorn propagation. stat, 1050:14, 2011.

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and
Lei Zhang. Bottom-up and top-down attention for image captioning and visual question answer-
ing. In CVPR, pp. 6077–6086, 2018.

Hui Chen, Guiguang Ding, Xudong Liu, Zijia Lin, Ji Liu, and Jungong Han. Imram: Iterative
matching with recurrent attention memory for cross-modal image-text retrieval. In CVPR, pp.
12655–12663, 2020a.

Jiacheng Chen, Hexiang Hu, Hao Wu, Yuning Jiang, and Changhu Wang. Learning the best pooling
strategy for visual semantic embedding. In CVPR, pp. 15789–15798, 2021.

Tianlang Chen, Jiajun Deng, and Jiebo Luo. Adaptive offline quintuplet loss for image-text match-
ing. In ECCV, pp. 549–565. Springer, 2020b.

Yuhao Cheng, Xiaoguang Zhu, Jiuchao Qian, Fei Wen, and Peilin Liu. Cross-modal graph matching
network for image-text retrieval. TOMM, 18(4):1–23, 2022.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. NIPS, 26, 2013.

Haiwen Diao, Ying Zhang, Lin Ma, and Huchuan Lu. Similarity reasoning and filtration for image-
text matching. In AAAI, volume 35, pp. 1218–1226, 2021.

Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja Fidler. Vse++: Improving visual-
semantic embeddings with hard negatives. In BMVC, 2018.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In CVPR, pp. 580–587, 2014.

Jiuxiang Gu, Jianfei Cai, Shafiq R Joty, Li Niu, and Gang Wang. Look, imagine and match: Im-
proving textual-visual cross-modal retrieval with generative models. In CVPR, pp. 7181–7189,
2018.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In CVPR, pp. 16000–16009, 2022.

Zhong Ji, Kexin Chen, and Haoran Wang. Step-wise hierarchical alignment network for image-text
matching. In IJCAI, 2021.

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image descrip-
tions. In CVPR, pp. 3128–3137, 2015.

Ryan Kiros, Ruslan Salakhutdinov, and Richard S Zemel. Unifying visual-semantic embeddings
with multimodal neural language models. arXiv preprint arXiv:1411.2539, 2014.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language
and vision using crowdsourced dense image annotations. IJCV, 123(1):32–73, 2017.

Kuang-Huei Lee, Xi Chen, Gang Hua, Houdong Hu, and Xiaodong He. Stacked cross attention for
image-text matching. In ECCV, pp. 201–216, 2018.

Kunpeng Li, Yulun Zhang, Kai Li, Yuanyuan Li, and Yun Fu. Visual semantic reasoning for image-
text matching. In ICCV, pp. 4654–4662, 2019.

Zheng Li, Caili Guo, Zerun Feng, Jenq-Neng Hwang, and Xijun Xue. Multi-view visual semantic
embedding. In IJCAI, 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, pp.
740–755, 2014.

10



Under review as a conference paper at ICLR 2023

Chunxiao Liu, Zhendong Mao, An-An Liu, Tianzhu Zhang, Bin Wang, and Yongdong Zhang. Focus
your attention: A bidirectional focal attention network for image-text matching. In ACM MM, pp.
3–11, 2019.

Chunxiao Liu, Zhendong Mao, Tianzhu Zhang, Hongtao Xie, Bin Wang, and Yongdong Zhang.
Graph structured network for image-text matching. In CVPR, pp. 10921–10930, 2020.

Yang Liu, Hong Liu, Huaqiu Wang, and Mengyuan Liu. Regularizing visual semantic embedding
with contrastive learning for image-text matching. IEEE Signal Processing Letters, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

James Munkres. Algorithms for the assignment and transportation problems. Journal of the society
for industrial and applied mathematics, 5(1):32–38, 1957.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In EMNLP, pp. 1532–1543, 2014.
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