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Abstract

Why can pre-trained language models (PLMs)001
learn universal representations and effectively002
adapt to broad NLP tasks differing a lot super-003
ficially? In this work, we empirically find evi-004
dence indicating that the adaptations of PLMs005
to various few-shot tasks can be reparameter-006
ized as optimizing only a few free parame-007
ters in a unified low-dimensional intrinsic task008
subspace, which may help us understand why009
PLMs could easily adapt to various NLP tasks010
with small-scale data. To find such a subspace011
and examine its universality, we propose an012
analysis pipeline called intrinsic prompt tun-013
ing (IPT). Specifically, we resort to the re-014
cent success of prompt tuning and decompose015
the soft prompts of multiple NLP tasks into016
the same low-dimensional nonlinear subspace,017
then we learn to adapt the PLM to unseen data018
or tasks by only tuning parameters in this sub-019
space. In the experiments, we study diverse020
few-shot NLP tasks and surprisingly find that021
in a 5-dimensional subspace found with 100022
tasks, by only tuning 5 free parameters, we023
can recover 87% and 65% of the full prompt024
tuning performance for 100 seen tasks (using025
different training data) and 20 unseen tasks, re-026
spectively, showing great generalization abil-027
ity of the found intrinsic task subspace. Be-028
sides being an analysis tool, IPT could further029
bring practical benefits, such as improving the030
prompt tuning stability.031

1 Introduction032

Pre-trained language models (PLMs) have shown033

dominant performances on various natural lan-034

guage processing (NLP) tasks (Han et al., 2021;035

Min et al., 2021). After pre-training huge pa-036

rameters on massive data, a PLM can effectively037

adapt to diverse downstream NLP tasks with small-038

scale data through full-parameter fine-tuning or039

parameter-efficient tuning methods (Lester et al.,040

2021; Houlsby et al., 2019). Nevertheless, the041

mechanisms behind such adaptations remain un-042
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clear. Why can PLMs learn universal representa- 043

tions through task-irrelevant pre-training objectives 044

and easily adapt to diverse NLP tasks differing a 045

lot? Towards answering this question, in this paper, 046

we hypothesize that the adaptations of PLMs to 047

various downstream tasks can be reparameterized 048

as optimizing only a few free parameters in a uni- 049

fied low-dimensional parameter subspace, which 050

we call intrinsic task subspace (Figure 1). 051

Specifically, during adaptation to a certain down- 052

stream task, PLMs optimize the tunable adaptive 053

parameters. This is typically a high-dimensional 054

optimization problem. For instance, in conven- 055

tional fine-tuning, the adaptive parameters are all 056

the PLM parameters, which may exceed hundreds 057

of millions. However, Aghajanyan et al. (2021) 058

show that the adaptation to a single task of a PLM 059

can be reparameterized into only optimizing hun- 060

dreds of free parameters in a low-dimensional sub- 061

space and then randomly projecting the tuned pa- 062

rameters back into the full parameter space. This 063

motivates our hypothesis that adaptations to mul- 064

tiple tasks can be reparameterized into optimiza- 065

tions in a unified low-dimensional intrinsic task 066

subspace. If this hypothesis holds, then (1) the ex- 067

istence of a common task reparameterization sub- 068

space explains the universality of PLMs and (2) the 069

low dimensionality explains why the adaptations 070

can be done with relatively small-scale data. From 071
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this perspective, the PLMs serve as general com-072

pression frameworks, which compress the learning073

complexity of various tasks from very high dimen-074

sionalities to low dimensionalities.075

To find evidence for the hypothesis, we need076

to develop methods for finding the common in-077

trinsic task subspaces of PLMs. Naturally, the078

subspace should contain adaptation solutions (i.e.,079

tuned adaptive parameters) for various tasks, hence080

we can approximate the subspace by training a low-081

dimensional decomposition of the adaptive parame-082

ters using multiple tasks and then examine whether083

we can learn unseen tasks in the found subspace.084

However, training a decomposition for all the PLM085

parameters (the case of fine-tuning) is computation-086

ally unaffordable since the required parameters of087

the decomposition would be hundreds of times of088

PLMs. Fortunately, prompt tuning (PT) provides089

a parameter-efficient alternative, whose number of090

adaptive parameters (soft prompts), are only tens of091

thousands. PT can also achieve close performance092

to fine-tuning on both understanding (Lester et al.,093

2021) and generation (Li and Liang, 2021) tasks.094

In experiments, we explore the common intrin-095

sic subspace through PT under the few-shot learn-096

ing setting, which ensures the data scales of var-097

ious tasks are balanced. We name the analysis098

pipeline used in this paper as Intrinsic Prompt099

Tuning (IPT), which consists of two phases: multi-100

task subspace finding (MSF) and intrinsic subspace101

tuning (IST). During MSF, we first obtain trained102

soft prompts for multiple tasks and then learn an103

auto-encoder by first projecting them into the de-104

sired low-dimensional subspace and then recon-105

structing them with a back-projection. During106

IST, to adapt the PLM to unseen data and tasks,107

we only train the few free parameters in the low-108

dimensional subspace found by MSF through a109

fixed back-projection.110

Surprisingly, we find that the intrinsic task sub-111

space may not only exist but also is extremely low-112

dimensional. We study diverse few-shot NLP tasks113

and find that in a 5-dimensional subspace found by114

100 tasks with MSF, we can recover 87% and 65%115

of the full PT performance with IST for 100 seen116

tasks (using different training data) and 20 unseen117

tasks, respectively. Furthermore, we analyze the118

effect of training task types, the number of train-119

ing tasks, and training data scales for IPT. We also120

show that IPT and the intrinsic task subspace could121

bring some practical uses, such as analyzing task122

differences and improving training stability. We 123

encourage future work to explore how to better find 124

the intrinsic task subspace and develop techniques 125

taking inspiration from low-dimensional reparame- 126

terizations of PLM adaptations. 127

2 Related Work 128

PLM, Fine-tuning and Prompt tuning. Since 129

the success of BERT (Devlin et al., 2019), pre- 130

trained language models bring a new paradigm to 131

NLP, that is to pre-train a massive model as the 132

universal backbone and then adapt the PLMs to 133

specific downstream tasks. The mainstream way of 134

downstream adaptation is fine-tuning, which adds 135

task-specific classification heads and tunes all the 136

PLM parameters with supervised data. 137

Recently, researchers found that promising re- 138

sults can be achieved by casting downstream tasks 139

into the form of pre-training tasks and adding 140

some prompt tokens into the input, including 141

human-designed explainable prompts (Brown et al., 142

2020; Schick and Schütze, 2021a,b) and auto- 143

matically searched prompts (Jiang et al., 2020; 144

Shin et al., 2020; Gao et al., 2021). Follow- 145

ing this line of study, the prompts are extended 146

from real tokens to trainable embeddings, i.e., soft 147

prompts (Hambardzumyan et al., 2021; Zhong 148

et al., 2021; Qin and Eisner, 2021). Furthermore, 149

some works (Lester et al., 2021; Li and Liang, 150

2021) demonstrate that only tuning soft prompts 151

and keeping PLMs frozen can achieve excellent 152

performance in various tasks, especially for large- 153

scale PLMs. In this work, we try to understand 154

these phenomena, i.e., why can PLMs learn univer- 155

sal abilities to adapt to various tasks with few data 156

points and tunable parameters. 157

Intrinsic Dimensionality. Intrinsic dimension 158

(ID) is the minimal number of variables needed 159

to represent some data or approximate a function. 160

Li et al. (2018) propose to measure the IDs of 161

objective functions optimized by neural networks 162

through randomly projecting all the trainable pa- 163

rameters into linear subspaces and finding the min- 164

imal dimensions that satisfactory solutions appear. 165

Following this, Aghajanyan et al. (2021) show that 166

the IDs of PLM adaptations (via fine-tuning) to 167

many NLP tasks can be smaller than thousands and 168

the pre-training implicitly lowers the IDs of down- 169

stream tasks, which motivates this work. Consid- 170

ering the existence of individual subspace for each 171

task has been proved, here we aim to study whether 172
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Figure 2: Illustrations of fine-tuning (a), prompt tuning (b) and two components of IPT (c,d). We discriminate
tunable parameters, fixed parameters and intermediate features with different colors.

the subspace is universal. However, the random lin-173

ear projections of previous methods inevitably in-174

troduce redundant task-irrelevant information and175

make the investigated subspace not compact for176

reparameterizing task adaptations. Therefore, we177

resort to stronger subspace-finding methods and178

use supervision from diverse tasks to train a nonlin-179

ear low-dimensional decomposition for the adap-180

tive parameters.181

Unifying Different NLP Tasks. Although vari-182

ous NLP tasks differ a lot on the surface, there has183

been long-standing attempts to unify different NLP184

tasks into the same form (Sun et al., 2021) and thus185

handle them with similar techniques, especially186

after the success of the prompting methods (Liu187

et al., 2021) to cast various tasks into the form of188

pre-training tasks of PLMs. The analyses in this189

paper may help us understand why can this be pos-190

sible and explore how to better unify different tasks191

from the perspective of intrinsic task subspace.192

3 Methodology193

We first introduce essential preliminaries for both194

fine-tuning and prompt tuning in § 3.1, and then195

introduce our proposed analysis pipeline Intrinsic196

Prompt Tuning (IPT) in § 3.2, which consists of197

two stages: (1) Multi-task Subspace Finding (MSF)198

and (2) Intrinsic Subspace Tuning (IST). In Fig-199

ure 2, we visualize the paradigms of fine-tuning,200

prompt tuning and our IPT.201

3.1 Preliminaries202

Assume we are given a series of NLP tasks203

{T1, . . . , T|T |} partitioned into training tasks Ttrain204

and test tasks Ttest. Following Raffel et al. (2019),205

without loss of generality, we cast each task Ti into206

the unified conditional generation format. Given a207

training instance (X ,Y) of Ti, where both the input 208

X and the target Y consist of a sequence of tokens, 209

i.e., X = {w1, . . . , w|X |} and Y = {y1, . . . , y|Y|}. 210

Our goal is to learn a mapping functionFi :X →Y , 211

and the de-facto way is to modelFi with a PLMM, 212

which first converts the input X into embeddings 213

E = {w1, . . . ,w|X |} ∈ R|X |×d, where d denotes 214

the input embedding dimension, then encodes E 215

into hidden representations H = {h1, . . . ,h|X |} ∈ 216

R|X |×d and finally decodes Y conditioning on H. 217

The goal is to optimize the following objective: 218

LLM=− 1

|Y|

|Y|∏
j=1

p(yj |w1, ..., w|X |, y1, ..., yj−1). 219

In traditional fine-tuning, all parameters of 220

M (θM) are tuned during the optimization. 221

Rather, prompt tuning (PT) prepends some task- 222

specific embeddings (i.e., soft prompts) Pi = 223

{p1, . . . ,pn} parameterized by θP before E, and 224

thus modify the input embeddings into E∗ = 225

{p1, . . . ,pn;w1, . . . ,w|X |} ∈ R(n+|X |)×d. Then 226

we keep θM frozen and only tune θP to adaptM to 227

Ti during PT. The training objective of PT is essen- 228

tially the same as LLM and denoted as LLM(Pi). 229

3.2 Intrinsic Prompt Tuning 230

To verify our hypothesis that the adaptations of 231

PLMs to various downstream tasks can be repa- 232

rameterized as optimization within a unified low- 233

dimensional intrinsic task subspace, we propose 234

a two-phase analysis pipeline IPT. The first phase 235

MSF aims to find the intrinsic task subspace with 236

multiple tasks’ prompts, which are defined by an 237

auto-encoder consisting of a projection function 238

and a back-projection function. The second phase 239

IST tunes a low-dimensional vector in the sub- 240
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space and then recovers the vector to soft prompts241

through the back-projection function.242

Multi-task Subspace Finding. We first conduct243

prompt tuning for each downstream task Ti and244

obtain the trained soft prompts Pi ∈ Rn×d. Dur-245

ing MSF, we try to find a satisfactory intrinsic task246

subspace of a low dimension dI by learning a de-247

composition for the matrix Pi. Inspired by text248

autoencoders (Bowman et al., 2016), the decompo-249

sition consists of a projection function Proj(·) to250

project Pi into the dI -dimensional subspace and251

a back-projection function Projb(·) to project the252

dI -dimensional vectors back into soft prompts of253

Ti, and we optimize the reconstruction loss LiAE:254

P∗i = Projb(Proj(Pi)),

LiAE = ||P∗i −Pi||22,
255

where Proj(·) is implemented with a one-layer256

feed-forward network and Projb(·) is parameter-257

ized by a two-layer nonlinear perceptron.258

Moreover, finding the decomposition of a certain259

task’s prompt Pi, which is essentially a matrix, is260

somewhat trivial. Since the desired intrinsic task261

subspace should work for broad tasks, we introduce262

multi-task training and also take the task-oriented263

language modeling losses using the reconstructed264

soft prompts as objective functions. By jointly265

optimizing the reconstruction losses and the task-266

oriented losses, the subspace could gain the ability267

to reparameterize various task adaptations. The268

overall training objective of MSF is as follows:269

LMSF
θproj

=
1

|Ttrain|

|Ttrain|∑
i=1

(LLM(P∗i ) + αLiAE),270

where α denotes the hyper-parameter controlling271

the ratio between the two losses, and θproj denotes272

the parameters of both Proj and Projb. During273

MSF, we only optimize θproj while keeping other274

parameters fixed. By introducing downstream task275

supervision and nonlinearity, we could find more ir-276

redundant and effective subspaces than the random277

linear subspaces (Aghajanyan et al., 2021).278

Intrinsic Subspace Tuning. In this stage, we279

want to evaluate if the subspace found by MSF280

is generalizable to previously (1) unseen training281

data of Ttrain and (2) unseen tasks Ttest. And if282

the answer is yes, we can say that we successfully283

find the intrinsic task subspace reparameterizing284

the adaptations of PLMs to various tasks to some285

extent. Specifically, we only retain Projb learned 286

during MSF and keep both Projb and M fixed. 287

Then for each task Ti, instead of conducting vanilla 288

prompt tuning, we tune only dI free parameters (θd) 289

in the found subspace, which form an intrinsic vec- 290

tor Vi ∈ RdI , and project them into soft prompts 291

with the fixed Projb. The objective function for 292

training a specific task Ti could be formulated as: 293

LIST
θd

= LLM(Projb(Vi)). 294

4 Experiment and Analysis 295

In this section, we first describe the experimental 296

settings in § 4.1, including the tasks and corre- 297

sponding datasets, evaluation metrics, evaluation 298

pipeline and training details. Then we introduce the 299

experimental results and analyses in § 4.2 and § 4.3. 300

4.1 Experimental Settings 301

Tasks and Datasets. To cover broad and diverse 302

NLP tasks, we randomly choose 120 typical few- 303

shot NLP tasks from CrossFit Gym (Ye et al., 2021). 304

The few-shot setting ensures the data scales of tasks 305

are balanced so that the subspace found by MSF 306

will not be easily biased towards data-rich tasks. 307

For a brief introduction, CrossFit Gym consists 308

of various types of few-shot NLP tasks, including 309

text classification, question answering, conditional 310

generation, etc. As mentioned in § 3.1, all tasks 311

are processed into a unified sequence-to-sequence 312

format following Raffel et al. (2019) and Khashabi 313

et al. (2020) for ease of handling them with unified 314

text-to-text PLMs. Each task Ti ∈ T could be 315

represented as a tuple of (Ditrain, Didev, Ditest), and 316

the sizes of Ditrain and Didev are both set to K in the 317

few-shot setting. For classification and regression 318

tasks, K = 16, while for other categories of tasks, 319

K = 32. We list task details in appendix F. 320

Evaluation Metrics. Since different tasks have 321

distinct evaluation protocols (e.g., F1 score for dis- 322

criminative tasks and BLEU for generative tasks 323

typically), as suggested by Ye et al. (2021), we 324

introduce average relative performance (Erel) in- 325

stead of absolute performance as the evaluation 326

metric. The average absolute performance is also 327

reported in appendix A.1 for reference. Specif- 328

ically, let T = {T1, ..., T|T |} be the evaluated 329

tasks and ETi denotes the test score of Ti for IPT, 330

Erel =
1
|T |

∑
Ti∈T

ETi
E∗Ti

, where E∗Ti denotes the per- 331

formance of either prompt tuning (in which we 332

denote the final score as EPT
rel ) or fine-tuning (EFT

rel ). 333
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Shorthand Ttrain Ttest

random 100 random 20 random
non-cls 35 non-cls. 42 non-cls.(T in

test) / 43 cls.(T out
test )

cls 35 cls. 8 cls.(T in
test) / 77 non-cls.(T out

test )

Table 1: The overall 120 tasks Tall consist of 43 classifi-
cation tasks (cls.) and 77 non-classification tasks (non-
cls.). Three task splits are evaluated, including random,
non-cls and cls, with details listed above, e.g., for non-
cls partition, 35 non-cls. are chosen as Ttrain and 42
non-cls. / 43 cls. are chosen as T in

test / T out
test , respectively.

Evaluation Pipeline. To properly evaluate the334

generalization ability achieved by IPT, we ran-335

domly split the overall task set Tall into training336

tasks Ttrain and test tasks Ttest. We adopt three task337

splits as introduced in Table 1 to investigate the in-338

fluence of task types. We first conduct prompt tun-339

ing on all tasks and obtain the trained soft prompts.340

During MSF, we train Proj and Projb on Ttrain341

only, and evaluate the reconstructed prompts on342

Ttrain (denoted as Ttrain(MSF)) to see how much per-343

formance we will lose in the process of reconstruct-344

ing prompts from dI -dimensional subspace, which345

will provide an empirical upper bound for the gen-346

eralization to unseen data and tasks in our setting.347

We also directly reconstruct the soft prompts of348

Ttest with the learned auto-encoder and test their349

performance (Ttest(MSF)) to see the auto-encoder’s350

reconstruction ability for unseen soft prompts.351

For IST, we first carry out experiments on Ttrain352

using exactly the sameDitrain /Didev utilized in MSF353

training and get a result T same
train (IST). After that,354

we evaluate the generalization ability of IPT to355

see whether adaptations to various tasks are sub-356

stantially reparameterized into the found subspace357

with two generalization challenges: (1) unseen-358

data challenge and (2) unseen-task challenge.359

• For the unseen-data challenge, we sample dif-360

ferent training and validation data for Ttrain while361

keeping test data the same. Then we conduct IST362

with the new data and test its performance on Ttrain,363

which is denoted as T diff
train(IST). This challenge364

is to test whether the learned subspace can also365

reparameterize optimization on unseen data, which366

naturally has different optimization trajectories.367

• For the unseen-task challenge, we evaluate368

the soft prompts obtained by IST on Ttest, which369

are tasks unseen during MSF, to see how well can370

optimization in the found subspace recover PLM371

adaptations of unseen tasks, which will provide372

evidence for our hypothesis that the reparameteri-373

zation subspaces for different task adaptations are 374

not orthogonal. In the random split, the results are 375

denoted as Ttest(IST). In the non-cls and cls splits, 376

we have two test sets with different task types and 377

the results are denoted as T in
test(IST) and T out

test (IST). 378

Training Details. Since all tasks are unified into 379

the same sequence-to-sequence format, we use 380

BARTBASE (Lewis et al., 2020) for the experiments 381

in the main paper and also test BARTLARGE in ap- 382

pendix A.3. For the prompt tuning / fine-tuning 383

baseline, we perform grid search on the combina- 384

tion of a series of learning rates and batch sizes 385

and choose the best checkpoint using Ddev. We set 386

the number of soft prompts to be 100 for all tasks 387

and randomly initialize them. For IPT, we examine 388

the dimension dI of {3, 5, 10, 50, 100}. Note that 389

for fine-tuning / prompt tuning, 139M / 76, 800 pa- 390

rameters are tuned, while IPT only tunes dI free 391

parameters. More details are left in appendix D. 392

4.2 Main Results 393

Based on the experimental results shown in Fig- 394

ure 3, we study the following questions: 395

Q1. Do PLMs really reparameterize various 396

task adaptations into a low-dimensional task 397

subspace in the few-shot setting? From the re- 398

sults in Figure 3 (a), we observe that: (1) for the 399

unseen-data challenge (T diff
train(IST)), when dI ≥ 5, 400

IST on unseen i.i.d. data could recover more than 401

80% of the full prompt tuning performance of the 402

100 training tasks; (2) for the unseen-task challenge 403

(Ttest(IST)), we can also achieve about 60% perfor- 404

mances by only tuning 5 ∼ 100 parameters. From 405

these results, we can say that the low-dimensional 406

reparameterizations in the subspaces found by MSF 407

successfully recover the PLM adapations of Ttrain 408

and can also generalize to unseen tasks to some ex- 409

tent, thus non-trivial performances can be achieved 410

by only tuning a few free parameters in these sub- 411

spaces. This provides evidence for our hypothe- 412

sis that PLMs reparameterize various task adapta- 413

tions into the same low-dimensional subspace, or at 414

least the low-dimensional reparameterization sub- 415

spaces for various task adaptations (Aghajanyan 416

et al., 2021) should have a substantial intersection, 417

otherwise the subspaces found by Ttrain will be al- 418

most impossible to also work for Ttest. 419

Q2. What limits IPT? Although positive evi- 420

dence is observed, the effectiveness of IPT is still 421

limited considering only about 60% performances 422
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Figure 3: Relative performance of IPT at different dimension dI on three task splits (random, non-cls and cls). We
report the relative performance of IPT comparing with both prompt tuning (EPT

rel ) and fine-tuning (EFT
rel ).

can be recovered for unseen tasks. From the results423

in Figure 3 (a) and (b), we discuss what factors may424

limit the effectiveness of IPT and provide insights425

for improving the analysis pipeline.426

(1) Reconstruction ability of the auto-427

encoder. The performance on Ttrain when we428

directly reconstruct soft prompts using the auto-429

encoder of MSF (Ttrain(MSF)) are even better than430

vanilla prompt tuning (PT), which demonstrates431

that MSF can improve PT by enforcing multi-432

task skill sharing within the extremely low dimen-433

sions. In addition, from the comparisons between434

Ttrain(MSF) and Ttest(MSF), we can see that di-435

rectly reconstructing soft prompts of unseen tasks436

performs poorly. It indicates that the reconstruction437

ability of the auto-encoders trained in MSF cannot438

generalize well to unseen soft prompts, which will439

limit IPT to some extent. This may come from the440

MSF training methods and the limited representa-441

tion ability of the networks used to parameterize442

Proj(·) and Projb(·). Nevertheless, IST could443

find much better solutions than MSF reconstructed444

prompts with task-specific supervisions on Ttest.445

(2) Optimization in IST. The consis-446

tently higher performance of Ttrain(MSF)447

over T same
train (IST) and T diff

train(IST) demonstrates448

that there exists good enough solutions for Ttrain449

in the found subspaces. However, even using450

exactly the same training data, IST cannot find451

these good solutions (the gap between Ttrain(MSF)452

and T same
train (IST)), which shows that the adopted453

optimization algorithm limits the performance of454

IST to some extent. 455

(3) Adaptive parameters. Comparing the re- 456

sults in Figure 3 (a) and (b), we observe that the re- 457

covered relative performance of fine-tuning (EFT
rel ) 458

is always poorer than that of PT (EPT
rel ). This is be- 459

cause PT is slightly inferior than fine-tuning under 460

the few-shot setting, and the performance of IPT is 461

bounded by PT since MSF is based on decompos- 462

ing soft prompts. Ideally, EFT
rel could be improved 463

by designing better PT algorithms or selecting more 464

appropriate adaptive parameters. 465

Q3. How is the influence of task types? Fol- 466

lowing Ye et al. (2021), we divide the studied tasks 467

into cls (classification), which are discriminative 468

tasks and non-cls (non-classification), which tend 469

to be generative tasks. From the results in Figure 3 470

(c)-(d), we find that: (1) there exists a huge gener- 471

alization gap between cls tasks and non-cls tasks. 472

When using only one kind of tasks during MSF, 473

the found subspaces work well for the same kind 474

of tasks (T in
test(IST)) but generalize poorly to the 475

other kind of tasks (T out
test (IST)). This shows that 476

the found subspace is severely biased by the train- 477

ing task types. (2) When increasing dI , cls perfor- 478

mance (Figure 3 (d)) tends to increase, but non-cls 479

performance (Figure 3 (c)) tends to decrease. The 480

opposite trends of these two types of tasks make 481

the IPT performance on the random split exhibit a 482

constant trend when dI ≥ 5. Intuitively, the ideal 483

common reparameterization subspace for multiple 484

task adaptations has an optimal dimension d̂. When 485
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Figure 4: Comparisons between IPT and randomly gen-
erated subspaces on the random task split.

dI < d̂, the dI -dimensional subspace is not strong486

enough to reparameterize these task adaptations487

and thus increasing dI leads to better IPT perfor-488

mance. When dI > d̂, since MSF must decompose489

the soft prompts into a dI -dimensional subspace,490

MSF is likely to put some redundant and confound-491

ing information into the found subspace and thus492

results in the decrease of IPT performance1. Hence493

this indicates that, although counter-intuitively, the494

d̂ for non-cls tasks is far smaller than cls tasks. We495

hypothesize this may come from the few-shot setup496

and will explore it in the future.497

4.3 Analyses and Properties498

Comparison with Random Subspace. Previ-499

ous works (Li et al., 2018; Aghajanyan et al., 2021)500

adopt randomly generated subspaces and avoid501

computation in subspace finding. While in this502

work, we introduce supervisions from diverse tasks503

to find the universal low-dimensional intrinsic task504

subspaces. To verify the effectiveness and ne-505

cessity of task-specific supervisions in MSF, we506

compare IPT with conducting IST in randomly507

generated subspaces, which are defined by ran-508

domly initialized auto-encoders of the same archi-509

tecture with the ones used in MSF. We compare510

them under the random task split. For IPT, we re-511

port the unseen-data (T diff
train(IST)) and unseen-task512

(Ttest(IST)) performance. For random subspaces,513

we also report their performance on Ttrain (denoted514

as Ttrain(Random)) and Ttest (Ttest(Random)), re-515

spectively. The results are shown in Figure 4, from516

which we can see that IPT could perform much517

better than random subspaces using much fewer di-518

mensions, which indicates the effectiveness of MSF519

to exclude redundant task-irrelevant information520

and find compact reparameterization subspaces.521

1We also observe non-increasing trends for the perfor-
mance of cls task split when dI is enlarged above 500.
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Figure 5: Impacts of the number of training tasks.

Impacts of the Number of Training Tasks. 522

During MSF, the auto-encoder is optimized to repa- 523

rameterize the adaptive parameters of various train- 524

ing tasks. Ideally, the coverage of Ttrain would sig- 525

nificantly impact the generalization ability of IPT 526

on unseen tasks Ttest. To demonstrate this, we ran- 527

domly sample {20%, 40%, 60%, 80%} tasks from 528

Ttrain of the random task split for training the auto- 529

encoder, then evaluate IPT (dI = {10, 100}) on 530

original Ttest with the unseen-task challenge. From 531

the results visualized in Figure 5, we observe that 532

with the number of training tasks growing, the gen- 533

eralization ability of the found intrinsic task sub- 534

space generally improves. This reflects that increas- 535

ing the coverage and diversity of seen tasks could 536

help IPT find more universal subspaces. 537

Impacts of the Data Scale. Although we adopt 538

the few-shot setup to control the influence of data 539

amount in this paper, it is also interesting to in- 540

vestigate whether IPT’s ability could be further 541

improved with more training data. Here we take an 542

initial trial using the task split cls by doubling and 543

quadrupling the number of data shots K (from 16 544

to 32 and 64), and investigate the performance of 545

MSF (Ttrain(MSF)) as well as IST under the unseen- 546

data (T diff
train(IST)) and unseen-task (T in

test(IST)) chal- 547

lenges. Note that with different number of data 548

points, the prompt tuning performance (denomina- 549

tor of EPT
rel ) is also different. The results are shown 550

in Figure 6, from which we observe that when the 551

data scale grows, the performance of IPT on unseen 552

data and unseen task challenges generally become 553

better, which shows the subspaces found with more 554

data are more universal. Hence we believe it is 555

interesting to explore in future how strong the per- 556

formance of IPT on data-rich scenarios will be. 557

Visualization of the Found Intrinsic Subspace. 558

We visualize the intrinsic vectors Vi (vectors con- 559
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Figure 7: PCA plots of the intrinsic vectors learned
during IST. We label points with different colors to
represent its corresponding categories. Specifically,
we show the clusters of (1) classification and non-
classification tasks (left) and (2) Ttrain and Ttest (right).
Without loss of generality, we choose the task split of
random and dI = 100.

sisting of the free parameters learned during IST in560

the found subspace) using PCA in Figure 7, from561

which we observe that: (1) there exists a clear divid-562

ing line between the clusters of classification tasks563

and non-classification tasks, indicating that they are564

highly distinct, which also explains why subspaces565

learned on either cluster generalize poorly to the566

other cluster; (2) the points of unseen tasks Ttest567

are mixed with those of Ttrain, which demonstrates568

that the found subspaces universally reparameterize569

various tasks so that IPT can generalize to unseen570

tasks. We also visualize the clusters of fine-grained571

categories of QA and text classification tasks in572

appendix B. We argue that the learned intrinsic573

vectors could be viewed as low-dimensional task574

representations, helping us analyze the similarity575

and differences for various NLP tasks.576

Improving Prompt Tuning Stability with IPT.577

In Table 2, we show the mean standard deviations578

(std) of test scores for 120 few-shot tasks over579

10 runs comparing IPT (dI = 10), fine-tuning and580

prompt tuning (PT). We observe that PT is the most581

unstable strategy with the highest std, while fine-582

tuning is far more stable. The instability of PT may583

influence its practical use. Intuitively, IPT only584

tunes a few free parameters, which will conduce585

Method Ttrain Ttest Tall

Fine-tuning 2.16 2.40 2.20
Prompt Tuning 3.06 4.19 3.25
IPT 1.12 0.73 1.06

Table 2: Standard deviations (std) of test scores over
multiple runs. dI of IPT is chosen to be 10.

to improving the stability, and IPT surely becomes 586

the most stable method in Table 2. We further show 587

in appendix A.4 that IPT and vanilla PT could be 588

combined in a two-stage manner to improve both 589

stability and performance. 590

5 Conclusion and Future Work 591

Could few-shot NLP tasks be reparameterized 592

into a unified subspace? We study the hypoth- 593

esis that PLM adaptations to various tasks can be 594

reparameterized as optimizations within a unified 595

low-dimensional intrinsic task subspace. We de- 596

velop an analysis tool IPT. It first finds a subspace 597

by jointly decomposing the adaptive parameters 598

of multiple tasks and then tunes parameters within 599

the subspace for unseen data and tasks. Experi- 600

ments show that the found subspace contains sub- 601

optimal but non-trivial solutions for PLM adapta- 602

tions, which are strong evidence for our hypothesis. 603

However, we only investigate one PLM adap- 604

tation method, i.e., prompt tuning in this paper, 605

and the achieved performance of IPT is still far 606

from perfect. Although it may come from the in- 607

adequacy of current subspace-finding methods and 608

optimization algorithms as mentioned in our anal- 609

yses, based on current results, we cannot directly 610

conclude that the hypothesis is true. Nevertheless, 611

at least we have found promising empirical results 612

showing that the low-dimensional reparameteriza- 613

tion subspaces of various tasks have a substantial 614

intersection, which MSF is designed to find. 615

What’s next? In future, we will explore (1) how 616

to improve IPT to find stronger evidence for our hy- 617

pothesis, (2) whether the conclusions hold for other 618

PLM adaptation methods like the adapter (Houlsby 619

et al., 2019) and (3) whether the union of repa- 620

rameterization subspaces for various tasks is also 621

low-dimensional. We also encourage further explo- 622

rations based on our hypothesis, such as (1) under- 623

standing the scaling law of PLMs, (2) how to utilize 624

and manipulate intrinsic vectors, and (3) how to 625

better tune PLMs in the intrinsic task subspaces. 626

We leave the detailed discussions in appendix C. 627
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Appendices1456

A Additional Experiments1457

A.1 Absolute Performance1458

In the experiments, we mainly report the relative1459

performance (Erel). For reference, we also report1460

the average absolute performance (Eabs) in this1461

section. Let ETi denote the test score of Ti for IPT,1462

Eabs = 1
|T |

∑
Ti∈T

ETi . The Eabs of BARTBASE for1463

prompt tuning and fine-tuning are shown in Table 3,1464

and the Eabs of IPT on three task splits are shown1465

in Table 4, Table 5 and Table 6, respectively.1466

A.2 Relative Performance to Fine-tuning1467

In the experiments, we report the relative perfor-1468

mance to prompt tuning as the main evaluation1469

metric except in Figure 3 (b), which reports the1470

relative performance to fine-tuning on the random1471

split for analyses. In this section, we additional1472

report the EFT
rel on non-cls and cls splits in Figure 81473

for reference, where we can see the general conclu-1474

sions are consistent with our analyses in § 4.2.1475

A.3 BARTLARGE Performance1476

All the experiments in § 4 are conducted with1477

BARTBASE model (Lewis et al., 2020), which is1478

also the main evaluated model of our adopted eval-1479

uation platform CrossFit (Ye et al., 2021). To see1480

whether the conclusions will also hold for larger1481

models, we take a prior trial by conducting exper-1482

iments on BARTLARGE. As the results shown in1483

Figure 9 suggest, the overall conclusions are con-1484

sistent with those of BARTBASE that non-trivial per-1485

formance can be recovered in the found subspaces.1486

However, the performance is obviously worse than1487

the cases of BARTBASE when dI is extremely low1488

(3 ∼ 10), especially on the cls split. This phe-1489

nomenon may come from the difficulty of finding1490

intrinsic task subspaces for larger PLMs, which is1491

worthwhile to explore in the future.1492

A.4 Combining IPT and Vanilla Prompt1493

Tuning1494

To make the stability advantage brought by IPT1495

practical, we propose to use the solutions found1496

by IPT as the initialization for the vanilla prompt1497

tuning. Specifically, we continue the experiments1498

of split random on Ttest choosing dI = 10 and1499

initialize the soft prompts by back-projecting the1500

found solutions in the subspace during IST. Other1501

details are kept the same as the prompt tuning (PT)1502

Split
Prompt Tuning Fine-tuning
Ttrain T in

test / T out
test Ttrain T in

test / T out
test

random 32.6 40.1 (Ttest) 35.2 40.7 (Ttest)
non-cls 23.0 28.0 / 49.0 24.4 29.6 / 52.2

cls 48.6 50.9 / 25.7 52.5 51.1 / 27.2

Table 3: Average absolute performance for prompt tun-
ing / fine-tuning on the three task splits we adopted.

Dim (dI ) 3 5 10 50 100

Multi-task Projection Learning
Ttrain 29.1 31.8 32.2 32.0 32.6
Ttest 8.5 10.0 15.0 16.7 16.4

Single-task Intrinsic Subspace Tuning
T same

train 13.2 25.6 27.8 28.8 29.6
T diff

train 13.0 24.9 27.4 26.7 28.4
Ttest 9.3 26.5 24.7 23.1 25.8

Table 4: Average absolute performance on the random
task split.

Dim (dI ) 3 5 10 50 100

Multi-task Projection Learning
Ttrain 23.3 23.1 21.9 22.7 22.2

Single-task Intrinsic Subspace Tuning
T same

train 22.1 23.3 21.4 20.4 19.5
T diff

train 22.0 20.5 17.4 19.6 19.7
T in

test 16.7 16.4 14.8 17.0 19.5
T out

test 0.0 1.0 0.8 1.4 3.9

Table 5: Average absolute performance on the non-cls
task split.

baseline. We observe that the standard variance 1503

achieved in this way is significantly lower than the 1504

vanilla PT (1.65 v.s. 4.19) while we can achieve 1505

103.4% of EPT
rel , i.e., the performance could also be 1506

improved from 59% (IST). This indicates that both 1507

IPT and vanilla PT could be further combined in 1508

a two-stage manner to improve both the training 1509

stability and performance. This experiment also 1510

demonstrates that although our IPT pipeline mainly 1511

works as an analytical framework in this paper, it 1512

can also bring practical benefits. We will explore 1513

more practical uses of IPT in the future. 1514

B Additional Visualization 1515

We visualize the intrinsic vectors of fine-grained 1516

categories of QA and text classification tasks using 1517

PCA in Figure 10. We observe that the same cate- 1518

gory points exhibit a compact cluster. This further 1519

shows that the learned intrinsic vectors could serve 1520

as task representations and help us analyze the sim- 1521

ilarity and differences for diverse NLP tasks. 1522
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Dim (dI ) 3 5 10 50 100

Multi-task Projection Learning
Ttrain 46.0 50.0 48.0 49.5 48.7

Single-task Intrinsic Subspace Tuning
T same

train 12.2 32.0 30.3 48.5 47.2
T diff

train 10.5 33.0 31.9 46.9 44.4
T in

test 7.8 21.0 24.5 32.7 38.1
T out

test 0.6 0.7 1.0 2.1 4.2

Table 6: Average absolute performance on the cls task
split.
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Figure 8: Relative performance of IPT at different di-
mension dI on non-cls and cls splits, comparing with
fine-tuning.

C Additional Discussion1523

Relation to the scaling law. Recently, re-1524

searchers have found that larger PLMs tend to1525

be more sample-efficient (Kaplan et al., 2020),1526

parameter-efficient (Lester et al., 2021) and cross-1527

task generalizable (Wei et al., 2021). Our hypothe-1528

sis may help us understand this phenomenon: the1529

adaptations of larger PLMs can be better reparame-1530

terized into a unified subspace so that the cross-task1531

generalization will be easier, and larger PLMs have1532

lower reparameterization dimensions (Aghajanyan1533

et al., 2021), hence they should need fewer data1534

and tunable parameters. This also implies that the1535

characteristics of intrinsic task subspaces may be1536

used to examine how well a PLM is trained.1537

Utilize and manipulate intrinsic vectors. The1538

intrinsic vectors obtained during IST depict the1539

adaptations to different tasks and it is worthwhile to1540

explore whether we can (1) utilize them to find the1541
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Figure 9: Relative performance of IPT with
BARTLARGE at different dimension dI on non-cls and
cls splits, comparing with prompt tuning.

(a)

 

Classification
Non-classification
Other

(b)

 

Ttrain
Ttest

(c)

 

Closed-book QA
Long-form QA
Multi-choice QA
MRC

(d)

 

Hate speech detection
Emotion
NLI
Topic
Sentiment analysis

Figure 10: PCA plots of the intrinsic vectors learned
during IST. We label points with different colors to rep-
resent its corresponding categories. Specifically, we
show the clusters of fine-grained categories of QA (left)
and text classification tasks (right). Without loss of
generality, we choose the task split of random and
dI = 100.

relations among different tasks, and (2) manipulate 1542

these vectors to achieve some interesting cross-task 1543

generalization results. 1544

Tuning PLMs within intrinsic task subspaces. 1545

We have shown in Table 2 and appendix A.4 that 1546

IPT can improve tuning stability. We encourage fu- 1547

ture works to explore more methods to tune PLMs 1548

within low-dimensional intrinsic task subspaces, 1549

which may have more practical benefits such as 1550

avoiding over-parameterization and being greener 1551

to environments with fewer tunable parameters. 1552

D Implementation Details 1553

For all experiments, we adopt AdamW (Loshchilov 1554

and Hutter, 2019) as the optimizer. We train all 1555
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Figure 11: We report EPT
rel of IPT at different dI on tasks grouped by fine-grained task types under the (a) unseen-

data challenge (T diff
train(IST)) and (b) unseen-task challenge (Ttest(IST)), respectively. The results come from the

random task split.

models under the same environment of NVIDIA1556

32GB V100 GPU. We perform grid search on the1557

combination of a series of learning rates ({1 ×1558

10−5, 2 × 10−5, 5 × 10−5, 1 × 10−4}) and batch1559

sizes ({2, 4, 8})2, choose the best checkpoint using1560

Ddev, and evaluate it on Dtest. We set the max step1561

to 10, 000 / 100, 000 and validate on Ddev every1562

100 / 1000 steps3. The ratio α is set to 200. During1563

MSF, we only select the prompts that perform best1564

onDdev for each task to train the auto-encoder since1565

we empirically found that involving other prompts1566

leads to worse performance. The hyper-parameters1567

of IST are chosen as the same as prompt tuning for1568

fair comparisons.1569

For detailed model implementation, as men-1570

tioned in § 3.2, the projection function Proj(·)1571

is implemented with a one-layer feed-forward net-1572

2The numbers are chosen by pilot experiments on a random
subset of tasks

3We found that prompt tuning empirically requires around
10× more steps than fine-tuning to converge.

work and Projb(·) is parameterized by a two-layer 1573

perceptron as follows: 1574

Projb(di) = W2(tanh(W1di + b1)) + b2, 1575

where W1 ∈ Rd′I×dI , b1 ∈ Rd′I , W2 ∈ Rn×d×d′I 1576

and b2 ∈ Rn×d are trainable parameters. dI de- 1577

notes the intrinsic dimension investigated in this 1578

paper. We set the inner hidden size d′I of Projb to 1579

768 for both BARTBASE and BARTLARGE. 1580

E Fine-grained Performance of IPT 1581

In § 4, we evaluate the performance of IPT on 1582

120 tasks and also divide them into cls. (classifi- 1583

cation) and non-cls. (non-classification) tasks to 1584

see the difference between these two types. Here 1585

we take a step further to investigate IPT at a more 1586

fine-grained level based on the task ontology of Ye 1587

et al. (2021). Specifically, we divide cls. tasks 1588

into 7 types (cls/topic, cls/emotion, cls/nli, cls/fact 1589

checking, cls/hate speech detection, cls/sentiment 1590
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analysis, cls/paraphrase) and non-cls. tasks into 111591

types (qa/reading comprehension, qa/closed-book1592

qa, qa/multiple-choice qa, qa/binary, qa/long-form1593

qa, cg/dialogue, cg/summarization, other/linguistic1594

phenomenon, other/slot filling, other/generate ex-1595

planation, other/entity linking). We show the rel-1596

ative performance compared with prompt tuning1597

on unseen-data challenge (T diff
train(IST)) and unseen-1598

task challenge (Ttest(IST)) in Figure 11, from which1599

we can observe that IPT achieve obvious improve-1600

ments compared to vanilla prompt tuning on some1601

fine-grained types such as the qa/reading compre-1602

hension, which indicates that tuning PLMs within1603

the intrinsic task subspace is promising to obtain1604

certain benefits.1605

F Task Details1606

We list details for all the evaluated tasks in this1607

paper in Table 7.1608
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Table 7: The tasks evaluated in our experiments. We refer to Ye et al. (2021) for task ontology.

Ontology Task Name Reference

cls/sentiment analysis
glue-sst2 Socher et al. 2013
imdb Maas et al. 2011
rotten_tomatoes Pang and Lee 2005

cls/emotion

emo Chatterjee et al. 2019
tweet_eval-emoji Barbieri et al. 2020
tweet_eval-hate Barbieri et al. 2020
tweet_eval-irony Barbieri et al. 2020
tweet_eval-offensive Barbieri et al. 2020
tweet_eval-sentiment Barbieri et al. 2020
tweet_eval-stance_abortion Barbieri et al. 2020
tweet_eval-stance_atheism Barbieri et al. 2020
tweet_eval-stance_climate Barbieri et al. 2020
tweet_eval-stance_feminist Barbieri et al. 2020
tweet_eval-stance_hillary Barbieri et al. 2020

cls/hate speech detection

ethos-disability Mollas et al. 2020
ethos-gender Mollas et al. 2020
ethos-national_origin Mollas et al. 2020
ethos-religion Mollas et al. 2020
ethos-sexual_orientation Mollas et al. 2020
hate_speech18 Davidson et al. 2017
hatexplain Mathew et al. 2020

cls/NLI

anli Nie et al. 2020
glue-mnli Williams et al. 2018
glue-qnli Rajpurkar et al. 2016

glue-rte Dagan et al. 2005; Bar-Haim et al. 2006
Giampiccolo et al. 2007; Bentivogli et al. 2009

glue-wnli Faruqui and Das 2018
scitail Khot et al. 2018

superglue-rte Dagan et al. 2005; Bar-Haim et al. 2006
Giampiccolo et al. 2007; Bentivogli et al. 2009

cls/fact checking
climate_fever Diggelmann et al. 2020
kilt_fever Thorne et al. 2018
liar Wang 2017

cls/paraphrase
glue-qqp (link)
medical_questions_pairs McCreery et al. 2020
paws Zhang et al. 2019

cls/topic
ag_news Gulli (link)
dbpedia_14 Lehmann et al. 2015

cls/other

ade_corpus_v2-classification Gurulingappa et al. 2012
discovery Sileo et al. 2019
glue-cola Warstadt et al. 2019
google_wellformed_query Faruqui and Das 2018
sms_spam Almeida et al. 2011
superglue-wic Pilehvar and Camacho-Collados 2019
superglue-wsc Levesque et al. 2012
wiki_qa Yang et al. 2015

qa/closed-book qa

freebase_qa Jiang et al. 2019
jeopardy (link)
kilt_hotpotqa Yang et al. 2018
kilt_nq Kwiatkowski et al. 2019
kilt_trex Elsahar et al. 2018
kilt_zsre Levy et al. 2017
lama-conceptnet Petroni et al. 2019, 2020
lama-google_re Petroni et al. 2019, 2020
lama-squad Petroni et al. 2019, 2020
lama-trex Petroni et al. 2019, 2020
numer_sense Lin et al. 2020a
search_qa Dunn et al. 2017
squad-no_context Rajpurkar et al. 2016
web_questions Berant et al. 2013

qa/binary
boolq Clark et al. 2019
mc_taco Zhou et al. 2019
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Ontology Task Name Reference

qa/multiple-choice qa

ai2_arc Clark et al. 2018
aqua_rat Ling et al. 2017
codah Chen et al. 2019
commonsense_qa Talmor et al. 2019
cosmos_qa Huang et al. 2019
dream Saha et al. 2018
hellaswag Zellers et al. 2019
math_qa Amini et al. 2019
openbookqa Mihaylov et al. 2018
qasc Khot et al. 2020
quail Rogers et al. 2020
quarel Tafjord et al. 2019a
quartz-no_knowledge Tafjord et al. 2019b
quartz-with_knowledge Tafjord et al. 2019b
race-high Lai et al. 2017
race-middle Lai et al. 2017
social_i_qa Sap et al. 2019
superglue-copa Gordon et al. 2012
superglue-multirc Khashabi et al. 2018
swag Zellers et al. 2018
wino_grande Sakaguchi et al. 2020

qa/long-form qa
eli5-askh Fan et al. 2019
eli5-asks Fan et al. 2019
eli5-eli5 Fan et al. 2019

qa/MRC

adversarialqa Bartolo et al. 2020
biomrc Pappas et al. 2020
quoref Dasigi et al. 2019
ropes Lin et al. 2019
superglue-record Zhang et al. 2018

cg/summarization

gigaword Napoles et al. 2012
multi_news Fabbri et al. 2019
samsum Gliwa et al. 2019
xsum Narayan et al. 2018

cg/dialogue
empathetic_dialogues Rashkin et al. 2019
kilt_wow Dinan et al. 2019

cg/other

spider Yu et al. 2018
wiki_bio Lebret et al. 2016
wiki_split Botha et al. 2018
wikisql an 2017

other/linguistic
phenomenon blimp-anaphor_gender_agreement Warstadt et al. 2020

blimp-ellipsis_n_bar_1 Warstadt et al. 2020
blimp-sentential_negation_npi_scope Warstadt et al. 2020

other/generate
explanation cos_e Rajani et al. 2019

other/slot_filling
ade_corpus_v2-dosage Gurulingappa et al. 2012
ade_corpus_v2-effect Gurulingappa et al. 2012

other/entity linking kilt_ay2 Hoffart et al. 2011

other/other

acronym_identification Pouran Ben Veyseh et al. 2020
art Bhagavatula et al. 2020
aslg_pc12 Othman and Jemni 2012
break-QDMR Wolfson et al. 2020
break-QDMR-high-level Wolfson et al. 2020
common_gen Lin et al. 2020b
crawl_domain Zhang et al. 2020
crows_pairs Nangia et al. 2020
definite_pronoun_resolution Rahman and Ng 2012
e2e_nlg_cleaned Dušek et al. 2020, 2019
limit Manotas et al. 2020
piqa Bisk et al. 2020
proto_qa Boratko et al. 2020
qa_srl He et al. 2015
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