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Abstract
We introduce GenDecider, a novel re-ranking001
approach for Zero-Shot Entity Linking (ZSEL),002
built on the Llama model. It innovatively de-003
tects scenarios where the correct entity is not004
among the retrieved candidates, a common005
oversight in existing re-ranking methods. By006
autoregressively generating outputs based on007
the context of the entity mention and the can-008
didate entities, GenDecider significantly en-009
hances disambiguation, improving the accuracy010
and reliability of ZSEL systems, as demon-011
strated on the benchmark ZESHEL dataset.012

1 Introduction013

Zero-Shot Entity Linking (ZSEL) (Logeswaran014

et al., 2019), a crucial task in NLP, links entity men-015

tions in text to corresponding entities in a Knowl-016

edge Base (KB), when no labeled examples of017

those entities are available. The importance of018

this task stems from its ability to handle entities019

dynamically, particularly in evolving KBs where020

new entities frequently emerge.021

The prevailing approach in ZSEL, exemplified022

by the BLINK method (Wu et al., 2020), adopts023

a two-step process: initial retrieval of candidate024

entities followed by a re-ranking phase. While025

extensive research has improved the retrieval stage026

(Ma et al., 2021; Agarwal et al., 2022; Sui et al.,027

2022; Sun et al., 2022; Wu et al., 2023), the re-028

ranking phase, which is critical for final decision-029

making, has received comparatively less attention.030

Moreover, a significant oversight in existing re-031

ranking studies (Wu et al., 2020; Tang et al., 2021;032

Barba et al., 2022; Xu et al., 2023) is the assump-033

tion that the correct entity is always among the034

retrieved candidates. This assumption, however,035

often does not hold in zero-shot settings, leading to036

the prevalence of what we call “None of the Can-037

didates” (NoC for short) cases. When the correct038

entity is not among the retrieved candidates, opt-039

ing for a NoC prediction is more beneficial than040

forcibly making a false positive prediction in real 041

applications. Having NoC predictions can also of- 042

fer feedback to the retrieval phase by highlighting 043

the limitations of retrievers in zero-shot settings. 044

This paper introduces GenDecider, a novel ap- 045

proach that integrates NoC judgments into the 046

ZSEL re-ranking process. GenDecider formulates 047

the re-ranking task as a generative process using the 048

recent Llama model (Touvron et al., 2023). Given 049

the context of an entity mention and the retrieved 050

candidates, GenDecider autoregressively generates 051

an output that is either the ID of the correct entity 052

candidate or a NoC judgment. This approach al- 053

lows for direct interactions between the mention 054

context and the candidates within the same input, 055

facilitating more accurate disambiguation. More- 056

over, by supporting NoC judgments, GenDecider 057

enhances the reliability of ZSEL systems. 058

The contributions of this work are twofold. 059

Firstly, it presents a novel re-ranking formulation 060

that addresses a significant gap in existing research 061

by effectively detecting NoC scenarios. Secondly, 062

the proposed method demonstrates a comprehen- 063

sive approach to disambiguation, improving both 064

the accuracy and applicability of ZSEL systems. 065

2 Related Work 066

Entity Linking (EL) methods can be broadly 067

classified into generation-based and retrieval- 068

based. Generation-based methods, such as GENRE 069

(De Cao et al., 2020), directly generate entity titles 070

but struggle with new entities in zero-shot settings 071

(Xu et al., 2023). In contrast, retrieval-based meth- 072

ods, more suitable for zero-shot settings, follow 073

a two-step approach: candidate retrieval and re- 074

ranking. We focus on the re-ranking phase. 075

ZSEL Re-ranking. The ZSEL task, initiated by 076

Logeswaran et al. (2019), challenges EL systems’ 077

capability to link new, unseen entities using mini- 078

mal information, typically just brief entity descrip- 079
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tions from KBs. Notable works in ZSEL re-ranking080

include BLINK (Wu et al., 2020) which employs081

a Cross-Encoder for comprehensive analysis be-082

tween mention contexts and entity descriptions.083

Bi-MPR (Tang et al., 2021) utilizes a bidirectional084

multi-paragraph reading model for deeper semantic085

understanding, while ReS (Xu et al., 2023) focuses086

on enhancing cross-entity comparisons. These ap-087

proaches typically re-rank using similarity scores.088

ExtEnD (Barba et al., 2022) offers an alternative089

by formulating re-ranking as a text extraction task,090

not relying on entity descriptions.091

Difference from NIL. The concept of NIL in EL092

refers to instances where an entity mention does093

not correspond to any entity in the entire KB (Zhu094

et al., 2023). It signifies that the mention either095

refers to an entity not present in the KB or is not an096

entity. In contrast, NoC indicates that the correct097

entity does exist in the KB but was not included in098

the candidate set by the retrieval model. Therefore,099

while NIL concerns the absence of a correspond-100

ing entity in the KB, NoC deals with missing the101

correct entity in the retrieval process.102

3 Methodology103

3.1 Task Definition104

EL associates detected entity mentions in text with105

corresponding entities in KBs, typically through a106

two-step process: retrieval and re-ranking.107

Retrieval: This phase aims to identify a set of108

candidate entities C(m) from the KB E for an entity109

mention m in a document d.110

Re-ranking: Following retrieval, this phase tar-111

gets re-evaluating the candidate entities C(m) to112

accurately identify the correct entity e.113

ZSEL is characterized by that the training and114

test datasets do not share entities, mirroring real-115

world scenarios where new, unseen entities fre-116

quently emerge. Formally, let Etrain and Etest117

represent the training and test KBs, respectively,118

with Etrain ∩ Etest = ∅. Each entity e in either119

Etrain or Etest is associated with a textual descrip-120

tion Desc(e). Let Dtrain and Dtest be the corre-121

sponding sets of training and test documents. The122

objective of ZSEL is to train a retrieval-reranking123

system using Dtrain and Etrain, and then apply it124

to Dtest and Etest.125

3.2 Integrating NoC into ZSEL Re-ranking126

In this paper, we focus on enhancing the re-ranking127

phase. Traditional re-ranking methods typically as-128

sume that the correct entity is always present within 129

the retrieved candidate set, which leads to a forced 130

selection from this set. However, this assumption 131

often does not hold in ZSEL scenarios, where the 132

retrieval model (trained on Etrain) is more likely 133

to fail to include the correct entity in the candidate 134

set from Etest compared to traditional EL. Conse- 135

quently, this leads to a higher rate of false positives 136

in the final linking predictions, thereby affecting 137

the reliability of EL systems. 138

To tackle this challenge, we propose integrat- 139

ing the NoC option into re-ranking. We reformu- 140

late re-ranking as a generative task, employing a 141

decoder-only architecture, which allows the model 142

to directly reason over the mention context and 143

candidate entities within the same input. 144

The input in our formulation includes a task- 145

specific instruction Inst, the context of the entity 146

mention Ctxt(m), and the set of retrieved candi- 147

dates C(m). The generated output is either the ID 148

of the correct entity e ∈ C(m), or a “None” des- 149

ignation when the correct entity is not among the 150

candidates. This is formally represented as: 151

f : (Inst, Ctxt(m), C(m)) → ID(e) or None, 152

where (Inst, Ctxt(m), C(m)) collectively forms 153

the prompt for our re-ranking process. 154

3.3 GenDecider 155

In our empirical investigations, we discovered that 156

recent open-sourced, decoder-only large language 157

models (LLMs) struggled with our re-ranking for- 158

mulation through In-Context Learning (ICL). This 159

shortfall is likely attributable to their pre-training 160

regimes, which may not heavily focus on disam- 161

biguation tasks. To overcome this limitation, we 162

opted to fine-tune such an advanced LLM using 163

Low-Rank Adaptation (LoRA) (Hu et al., 2021). 164

LoRA’s adaptability allows us to retain the base 165

model’s capabilities while introducing a small, 166

disambiguation-specialized adaptor, resulting in 167

our new model, GenDecider. 168

For training GenDecider, we collect entity men- 169

tions along with their top k candidates (i.e., 170

|C(m)| = k) given by the retrieval step as the train- 171

ing set. The choice of k is constrained by the base 172

model’s maximum context length. Note that this 173

training set includes instances where the correct 174

entity e is not among C(m), leading to NoC scenar- 175

ios. Instances serve to form the following prompt 176

for GenDecider: 177
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Entity Mention: m178
Entity Mention Context: Ctxt(m)179

Based on the above entity mention and180
its context, identify the ID of the181
candidate in the following to which the182
entity mention refers (if none of them,183
assign the ID as “None”):184

ID: ID(e0)185
Entity: e0186
Entity Description: Desc(e0)187

(omit other k − 1 entity candidates)188

During training, we direct the model to generate189

a JSON object, for example, {“ID”: “123”} or190

{“ID”: “None”}, facilitating easy post-processing.191

During inference, to improve the likelihood of192

including the correct entity in the candidate set, the193

number of candidates |C(m)| can be larger than194

k. Since GenDecider cannot process at once, we195

employ a block-wise approach. We split the can-196

didates into ⌈|C(m)|/k⌉ blocks for block-wise in-197

ference. Each block yields either a candidate pre-198

diction or a NoC prediction. We merge non-NoC199

predictions into a new set C′(m). If |C′(m)| still ex-200

ceeds k, the process is repeated until the set meets201

the size criteria (≤ k). A final inference is then202

conducted on this set to get the ultimate prediction.203

4 Experiments204

4.1 Datasets205

We conduct experiments on the widely-used ZSEL206

dataset ZESHEL (Logeswaran et al., 2019). Statis-207

tics of this dataset are listed in Appendix 8.1. All208

the mentions have their correct entities in the KBs,209

which allows us to experiment with NoC scenarios.210

4.2 Evaluation Metrics211

Normalized accuracy is traditionally used in re-212

ranking evaluations, measuring the performance213

only on the subset of test instances for which the214

correct entity is within the retrieved candidates by215

the retrieval step. However, this metric falls short216

for our re-ranking methodology as it does not con-217

sider NoC cases, which are pivotal in our approach.218

Instead, we adopt precision, recall, and the F1219

score as our primary evaluation metrics on the en-220

tire test set. Precision can reflect if the NoC cases221

are accurately predicted. Recall measures whether222

the model accurately identifies the correct entity223

when it is within the candidate set. It’s noteworthy224

that recall is essentially equivalent to normalized225

accuracy. The F1 score offers a balanced measure226

of the model’s overall performance, measuring its227

ability to identify correct entities and recognize 228

when none of the candidates are suitable. 229

4.3 Setups 230

We implemented GenDecider on Vicuna-7B-v1.5, 231

based on Llama 2 (Touvron et al., 2023), with a 232

limit of 4096 tokens. For fine-tuning, we utilized 233

the FastChat package, which supports LoRA. We 234

set LoRA parameters to r = 8 and α = 16, re- 235

sulting in an adaptor with 4 million trainable pa- 236

rameters. Diverging from baseline methods that 237

train and test on the top 64 BM25-retrieved candi- 238

dates, GenDecider uses the top 10 candidates (i.e., 239

k = 10) from BM25 for training, while for test- 240

ing, we align with the baselines by using the top 241

64 candidates. Both mention contexts and entity 242

descriptions were limited to 256 tokens. 243

The ZESHEL training dataset consists of 49,275 244

examples, including 30,614 examples where the 245

correct entity is among the top 10 candidates and 246

18,661 examples where it is not, as identified by 247

BM25. The training was conducted over 2 epochs 248

with a batch size of 1. Checkpoint selection was 249

guided by loss convergence on a 2% held-out sub- 250

set of our training data, differing from baseline 251

methods that use the ZESHEL validation set. This 252

selection is designed to better simulate a general 253

zero-shot setting. All experiments were conducted 254

on a single NVIDIA A100-SXM4-80GB GPU. 255

4.4 Baselines Considering NoC 256

As NoC is a novel aspect in re-ranking studies, 257

there are no existing baselines explicitly designed 258

for it. For BLINK and ReS, which use scoring for 259

re-ranking, we can introduce a thresholding mech- 260

anism to determine NoC. For an entity mention, if 261

scores for all candidates are lower than the thresh- 262

old, this instance is considered NoC. We conducted 263

a grid search for thresholds (ranging from 0.1 to 264

0.9) on a subset of 500 training examples, aiming to 265

maximize the F1 score. The best thresholds identi- 266

fied were 0.9 for BLINK and 0.1 for ReS. Bi-MPR 267

was not included due to the unavailability of its 268

code. Additionally, we incorporate the base model 269

Vicuna-7B-v1.5 through ICL (Vicuna-ICL) with a 270

modified prompt from Section 3.3 by appending a 271

suffix instruction: Only output the ID in this 272

format {“ID”: “”}, guiding its decoding. 273

4.5 Results 274

Performance on ZEHSEL Test Sets. The BM25 275

retrieval results (Recall@64) on ZESHEL test sets 276
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Method Forgotten Realms Lego Star Trek YuGiOh Macro Avg.
Not Considering NoC

BLINK 72.33/ 86.80/ 78.91 62.05/ 76.39/ 68.48 51.36/ 77.95/ 61.92 41.05/ 67.46/ 51.04 56.70/ 77.15/ 65.36
Bi-MPR∗ 74.67/ 89.60/ 81.46 65.39/ 80.50/ 72.16 53.39/ 81.04/ 64.37 41.83/ 68.74/ 52.01 58.82/ 79.97/ 67.78
ExtEnD∗ 66.35/ 79.62/ 72.38 52.96/ 65.20/ 58.45 48.24/ 73.21/ 58.16 36.51/ 60.01/ 45.40 51.02/ 69.51/ 58.85

ReS∗ 73.42/ 88.10/ 80.09 63.72/ 78.44/ 70.32 53.82/ 81.69/ 64.89 46.15/ 75.84/ 57.38 59.28/ 81.02/ 68.47
Vicuna-ICL (w/o none) 35.03/ 42.00/ 38.20 22.45/ 27.62/ 24.77 23.64/ 35.80/ 28.47 13.30/ 21.78/ 16.52 23.61/ 31.80/ 27.10
GenDecider (w/o none) 75.98/ 91.10/ 82.86 66.14/ 81.42/ 72.99 54.50/ 82.48/ 65.63 46.40/ 75.99/ 57.62 60.76/ 82.75/ 70.07

Considering NoC
BLINK-Thresholding 88.34/ 80.30/ 84.13 81.96/ 66.22/ 73.25 71.02/ 71.35/ 71.18 62.97/ 59.47/ 61.17 76.07/ 69.33/ 72.54

ReS-Thresholding 85.95/ 77.10/ 81.28 78.20/ 61.50/ 68.85 73.97/ 70.09/ 71.98 62.21/ 68.87/ 65.37 75.12/ 69.39/ 72.12
Vicuna-ICL 35.10/ 37.80/ 36.40 22.09/ 24.54/ 23.25 22.46/ 30.92/ 26.02 14.09/ 21.44/ 17.01 23.44/ 28.67/ 25.79
GenDecider 86.26/ 86.00/ 86.13 79.06/ 72.90/ 75.85 74.75/ 79.61/ 77.10 63.60/ 73.11/ 68.03 75.92/ 77.91/ 76.90

Table 1: Performance (Precision/ Recall/ F1) on ZESHEL test datasets. * means results reported in Xu et al. (2023).

can be found in Appendix 8.2, showing the preva-277

lence of NoC cases. Table 1 offers a snapshot of278

the current state of ZSEL re-ranking methods. In279

the group of not considering NoC, “(w/o none)”280

implies removing the instruction highlighted in281

blue from the prompt in both training and testing.282

Vicuna-ICL (w/o none) underperforms, showing283

the base model’s limitations in this disambiguation284

task. In contrast, GenDecider (w/o none) excels285

in this group, achieving the highest scores across286

datasets, underscoring the effectiveness of task-287

oriented fine-tuning and the advantages of larger288

language models in complex disambiguation tasks.289

Introducing NoC predictions significantly im-290

proves precision, suggesting a reduction in false291

positives across most methods. This improved pre-292

cision, coupled with robust recall rates, leads to293

notably higher F1 scores, demonstrating the impor-294

tance of NoC in achieving a more balanced perfor-295

mance. GenDecider shines in the NoC-inclusive296

group, topping F1 scores, maintaining strong recall,297

and achieving high precision, which affirms its ef-298

ficacy and reliability in practical EL tasks when299

NoC is common. These insights confirm the cru-300

cial role of both model architecture and fine-tuning301

for achieving accurate disambiguation.302

Category-Specific Performance. Table 2 presents303

F1 scores on the ZESHEL test sets by mention-304

entity overlap categories, including High Overlap305

(HO), Multiple Categories (MC), Ambiguous Sub-306

string (AS), and Low Overlap (LO), where LO307

poses the greatest challenge and constitutes 59%308

of the ZESHEL dataset. Details can be found in309

Appendix 8.3. Here the LO category particularly310

benefits from the NoC consideration, with GenDe-311

cider achieving the highest F1 score, underscoring312

its efficacy in challenging disambiguation tasks.313

Robustness across Retrieval Methods. Figure 1314

demonstrates the stability of re-ranking methods315

Method HO MC AS LO
BLINK 93.96 69.23 73.21 51.77

Bi-MPR∗ 92.50 75.23 70.85 52.04
ReS∗ 94.08 74.64 71.25 53.90

GenDecider (w/o none) 91.06 75.71 78.30 55.31
BLINK-Thresholding 90.84 74.44 74.05 62.20

ReS-Thresholding 88.52 74.81 70.45 63.71
GenDecider 90.69 78.59 79.42 68.95

Table 2: Category-specific performance (F1).

Figure 1: Robustness across retrieval methods.

when applied to different retrieval strategies on 316

the ZESHEL test sets. Despite being trained with 317

BM25-retrieved candidates, these methods exhibit 318

consistent performance when assessed with Bi- 319

Encoder-retrieved candidates (Wu et al., 2020), 320

showcasing their capacity to handle diverse can- 321

didate sets. GenDecider, in particular, retains high 322

F1 scores across both retrieval methods, reinforcing 323

its effectiveness amidst varying retrieval situations. 324

5 Conclusion 325

This paper presents GenDecider, an innovative re- 326

ranking approach for ZSEL that adeptly incorpo- 327

rates NoC judgments. Our extensive experiments 328

on ZESHEL demonstrate that GenDecider achieves 329

superior performance in challenging disambigua- 330

tion scenarios. The results underscore the impor- 331

tance of NoC consideration in improving the relia- 332

bility in the re-ranking phase. 333
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6 Limitations334

This study introduces GenDecider, a 7B-parameter335

model demonstrating state-of-the-art performance336

in zero-shot entity linking. However, there are337

limitations to consider.338

Computational Efficiency: Due to its large size,339

GenDecider is computationally intensive, which340

may not be feasible for systems requiring real-time341

or online processing. Its deployment in environ-342

ments with limited computational resources could343

be challenging, potentially limiting its practicality344

for certain applications.345

Disambiguation Mechanism: While GenDecider346

shows promise, the underlying mechanisms of its347

disambiguation process may deserve further inves-348

tigation. A deeper understanding of how GenDe-349

cider differentiates between entities could lead to350

improvements in both model efficiency and inter-351

pretability.352

Future work should focus on enhancing the353

model’s computational efficiency and exploring the354

disambiguation mechanism in more detail, which355

may yield more lightweight and interpretable mod-356

els without compromising performance.357

7 Ethics Statement358

We comply with the ACL Code of Ethics.359
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Method High Overlap Multiple Categories Ambiguous Substring Low Overlap
BLINK 93.62/ 94.30/ 93.96 64.00/ 75.40/ 69.23 67.52/ 79.95/ 73.21 39.96/ 73.50/ 51.77

Bi-MPR∗ 92.17/ 92.84/ 92.50 69.54/ 81.93/ 75.23 65.34/ 77.37/ 70.85 40.17/ 73.88/ 52.04
ReS∗ 93.74/ 94.42/ 94.08 69.00/ 81.29/ 74.64 65.71/ 77.80/ 71.25 41.60/ 76.51/ 53.90

GenDecider (w/o none) 90.73/ 91.39/ 91.06 70.06/ 82.36/ 75.71 73.68/ 83.53/ 78.30 42.74/ 78.37/ 55.31
BLINK-Thresholding 95.58/ 86.55/ 90.84 80.18/ 69.46/ 74.44 81.61/ 67.78/ 74.05 61.45/ 62.97/ 62.20

ReS-Thresholding 93.41/ 84.12/ 88.52 75.53/ 74.11/ 74.81 76.99/ 64.93/ 70.45 64.02/ 63.40/ 63.71
GenDecider 91.70/ 89.70/ 90.69 77.18/ 80.05/ 78.59 81.09/ 77.80/ 79.42 66.51/ 72.76/ 68.95

Table 3: Category-specific performance (Precision/ Recall /F1) on ZESHEL test datasets. * means results reported
in (Xu et al., 2023).

Domains Entities Mentions
Training

American Football 31929 3898
Doctor Who 40281 8334
Fallout 16992 3286
Final Fantasy 14044 6041
Military 104520 13063
Pro Wrestling 10133 1392
StarWars 87056 11824
World of Warcraft 27677 1437

Validation
Coronation Street 17809 1464
Muppets 21344 2028
Ice Hockey 28684 2233
Elder Scrolls 21712 4275

Test
Forgotten Realms 15603 1200
Lego 10076 1199
Star Trek 34430 4227
YuGiOh 10031 3374

Table 4: Statistics of the ZESHEL dataset.

8 Appendix437

8.1 ZESHEL Dataset438

The statistics of the ZESHEL dataset (Logeswaran439

et al., 2019) are presented in Table 4. All the men-440

tions have their correct entities in the correspond-441

ing KBs, which allows us to experiment with NoC442

scenarios.443

8.2 Retrieval Results444

Table 5 showcases the recall@64 performance for445

BM25 and Bi-Encoder on the ZESHEL test sets.446

The Bi-Encoder, as detailed in Wu et al. (2020),447

benefits from training on the ZESHEL training sets448

and its ability to capture semantics, yielding an449

enhanced retrieval efficacy over BM25. However,450

both methods struggle in Star Trek and YuGiOh,451

Dataset BM25 Bi-Encoder
Forgotten Realms 83.33 89.75

Lego 81.23 88.32
Star Trek 65.89 78.94
YuGiOh 60.85 65.65

Table 5: Retrieval performance (Recall@64) on
ZESHEL test datasets.

which indicates the prevalence of NoC cases. 452

8.3 Category-Specific Performance 453

Mentions in the ZESHEL dataset (Logeswaran 454

et al., 2019) are categorized based on the token 455

overlap with their corresponding entities: 456

High Overlap (HO): The entity title is identical to 457

the mention text. 458

Multiple Categories (MC): The entity title con- 459

sists of the mention text followed by a disambigua- 460

tion phrase (e.g., for the mention ‘Batman’, the title 461

is ‘Batman (Lego)’). 462

Ambiguous Substring (AS): The mention is a sub- 463

string of the entity title (e.g., the mention ‘Agent’ 464

corresponds to the title ‘The Agent’). 465

Low Overlap (LO): All other mentions that do not 466

fit the above categories are considered low overlap. 467

These categories represent roughly 5%, 28%, 468

8%, and 59% of the dataset’s mentions, respec- 469

tively. Table 3 presents detailed performance eval- 470

uations of precision, recall, and F1 scores on the 471

ZESHEL test sets by mention-entity overlap cate- 472

gories. 473
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