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Abstract

State-of-the-art approaches for integrating symbolic knowledge with deep learning architec-
tures have demonstrated promising results in static domains. However, methods to handle
temporal logic specifications remain underexplored. The only existing approach relies on
an explicit representation of a finite-state automaton corresponding to the temporal speci-
fication. Instead, we aim at proposing a neurosymbolic framework designed to incorporate
temporal logic specifications, expressed in Linear Temporal Logic over finite traces (ltlf ),
directly into deep learning architectures for sequence-based tasks.

We extend the Iterative Local Refinement (ILR) neurosymbolic algorithm, leveraging
the recent introduction of fuzzy ltlf interpretations. We name this proposed method
Temporal Iterative Local Refinement (T-ILR). We assess T-ILR on an existing benchmark
for temporal neurosymbolic architectures, consisting of the classification of image sequences
in the presence of temporal knowledge. The results demonstrate improved accuracy and
computational efficiency compared to the state-of-the-art method.

1. Introduction

The integration of symbolic reasoning into deep learning (DL) architectures, commonly re-
ferred to as neurosymbolic (NeSy) learning, has emerged as a powerful paradigm to improve
generalization capabilities in data-driven models. While a variety of NeSy frameworks have
been proposed, the majority of these approaches primarily focus on first-order logics as the
underlying symbolic formalism, only supporting reasoning over static domains (Badreddine
et al., 2022; Daniele et al., 2023; Manhaeve et al., 2018). Nonetheless, the application of
NeSy methods to dynamic, temporally structured environments, where knowledge is ex-
pressed in temporal logic, remains an open, underexplored problem.
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Temporal logics, and especially Linear Temporal Logic, are employed across a range
of domains—including formal methods (Pnueli, 1977), automated planning (De Giacomo
et al., 2014), process mining (Di Ciccio and Montali, 2022), and reinforcement learning (De
Giacomo et al., 2020). We believe that the exploration and adaptation of different NeSy
approaches to temporal, dynamic domains can greatly benefit the research community.

Very little work exist on the combination of temporal logics and neural systems (see
e.g., Badreddine et al. (2023); Garcez and Lamb (2003); Perotti et al. (2014); Di Francesco-
marino et al. (2017); Umili et al. (2023); Umili and Capobianco (2024)) and the list reduces
even more if we focus on the direct, differentiable integration of temporal logic into NeSy ar-
chitectures. The only notable approach to temporal NeSy integration relies on constructing
finite-state automata that represent temporal formulae expressed in ltlf (Linear Temporal
Logic on finite traces), which are subsequently used to define supervision signals over input
sequences (Umili et al., 2023). While effective, this strategy may incur high computational
costs due to the complexity of building finite-state automata (De Giacomo and Vardi, 2013).

Our work starts from the observation that the majority of recent NeSy approaches aim
to directly embed the representation of the knowledge within the deep learning architec-
tures (Badreddine et al., 2022; Daniele et al., 2023). Motivated by this observation we
propose Temporal Iterative Local Refinement (T-ILR), a novel framework for NeSy learn-
ing over sequential data with temporal knowledge expressed using ltlf . Our approach
builds upon the Iterative Local Refinement (ILR) (Daniele et al., 2023) algorithm that has
shown excellent computational performances. We extend ILR to operate directly over ltlf
specifications via their fuzzy interpretations. This allows for a differentiable, gradient-based
optimization of temporal logic satisfaction within standard deep learning architectures. The
proposed architecture includes a neural perception module that grounds the atomic propo-
sitions contained in the formula from raw observations, and a symbolic reasoning layer that
encodes ltlf semantics through fuzzy temporal logics. Crucially, the combination of ILR
with the fuzzy semantics of ltlf enables end-to-end differentiable training without the need
for an external representation of the logical formulas (e.g., a finite-state-automata).

We empirically validate T-ILR by comparing it with the state of the art by expanding the
benchmark for temporal symbol grounding in Umili et al. (2023) both in terms of sequences
of increasing lengths and ltlf formulae built upon alphabets of increasing sizes. The results
show a lead of T-ILR, both in terms of classification accuracy and computational efficiency.

The remainder of the paper is organized as follows: Section 2 reviews related work,
Section 3 covers background concepts, and Section 4 introduces T-ILR. Finally, Sections 5
details and discusses the experimental evaluations and the results we have obtained.

2. Related Works

NeSy integration methods can be broadly categorized into two main approaches: those
based on probabilistic logic and those based on fuzzy logic.

Probabilistic approaches typically rely on the optimization of Weighted Model Counting
(WMC). Notable examples include DeepProbLog (Manhaeve et al., 2018), DeepStochLog
(Winters et al., 2022), and Semantic Loss (Xu et al., 2018).

More closely related to our work are approaches grounded in fuzzy logic. These methods
often fall into two categories: loss-based and model-based. Loss-based approaches inject
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logical constraints into the training process by encoding them as a loss function or as a
regularization term. This class includes Semantic Based Regularization (SBR) (Diligenti
et al., 2017) and Logic Tensor Networks (LTN) (Badreddine et al., 2022). Despite their
success, a key limitation of this class of methods is that logical constraints are typically not
retained at inference time. In contrast, model-based approaches embed logical knowledge
directly into the architecture, typically through additional layers or components that persist
at inference time. Representative examples include KENN (Daniele and Serafini, 2019,
2022), C-HMCNN(h) (Giunchiglia and Lukasiewicz, 2021), and CCN+ (Giunchiglia et al.,
2024). These methods enforce logical consistency by construction and are thus not subject
to the same limitations as loss-based techniques.

Unlike loss-based methods, which have been shown to work better with product fuzzy
logic (van Krieken et al., 2022), the model-based approaches are more commonly based on
Gödel logic, as the logical layers require a closed-form formulation, which is not known for
product logic, except for special cases (Daniele et al., 2023). Among this type of approaches,
there is ILR (Daniele et al., 2023), upon which our work builds. It is a multi-layer refining
algorithm that minimally modifies the neural network’s output, making it consistent with
the provided logical specifications (more details in Section 3.3).

All the approaches presented above are tailored to the integration of knowledge written
using propositional or first order logics. When it comes to temporal logics, such as ltl and
ltlf (see Section 3.1), the number of works available in the literature drops dramatically.

The direct, differentiable integration of temporal logic into NeSy architectures is recent,
with Umili et al. (2023) providing the main example. Their work proposes a NeSy system for
weakly-supervised learning, where input sequences are classified based on the satisfaction
of a given ltlf formula. The formula is translated into a Deterministic Finite Automaton
(DFA) and interpreted via fuzzy logic, resulting in a differentiable architecture that enables
learning through back-propagation. While demonstrating the feasibility of integrating ltlf
into DL pipelines, Umili et al. (2023) rely on DFA construction, which poses computational
challenges due to the costly ltlf to DFA conversion (De Giacomo and Vardi, 2013).

We propose a differentiable, gradient-based optimization of ltlf formula satisfaction
within a neural model, avoiding an external representation of the formula.

3. Background

We provide a brief introduction of Linear Temporal Logic on Finite Traces, and its fuzzy
version, and the framework of Iterative Local Refinement (ILR).

3.1. Linear Temporal Logic on Finite Traces

Linear-time logics, that is, temporal logics predicating on traces, provide the most natural
choice to express symbolic knowledge in our setting. Traditionally, traces are assumed to
have an infinite length, as witnessed by Linear Temporal Logic (ltl) (Pnueli, 1977). In
several application domains, such as planning and process mining, the dynamics of the
system are more naturally captured using unbounded, but finite, traces. This led to ltl on
finite traces (ltlf ) (De Giacomo and Vardi, 2013).
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A ltlf formula φ over a finite set P of propositional atoms follows the grammar:

φ ::= p | ¬φ | φ1 ∨ φ2 | Xφ | φ1 U φ2, where p ∈ P.

A trace τ over P is a finite, non-empty sequence τ = ⟨τ1, τ2 . . . , τn⟩ where each τi, i > 0 is a
propositional assignment (in symbols τi ∈ 2P) indicating which propositional atoms from P
are true at instant i in the trace. The length n of τ is denoted len(τ). The grammar above
extends propositional logic on P with formulae employing the temporal operators X and U,
representing (strong) next and (strong) until. Intuitively, when evaluated in an instant of
the trace: Xφ states that there exists a next instant, and φ holds therein; φ1 U φ2 states
that φ2 holds in the current or a later instant, and in all instants in between, φ1 holds.

Formally, let φ, τ , and i be a ltlf formula, a trace, and an instant in the trace,
respectively. We inductively define that φ is true in instant i of τ , written τ, i |= φ, as:

τ, i |= p if p ∈ τi

τ, i |= ¬φ if τ, i ̸|= φ

τ, i |= φ1 ∨ φ2 if τ, i |= φ1 or τ, i |= φ2

τ, i |= Xφ if i+ 1 < len(τ) and τ, i+ 1 |= φ

τ, i |= φ1 U φ2 if τ, j |= φ2 for some j s.t. i ≤ j < len(τ) and τ, k |= φ1 for every k s.t. i ≤ k < j

We say that τ satisfies φ, written τ |= φ, if τ, 1 |= φ.
The syntax and semantics of the other boolean connectives ⊤, ⊥, ∧, → are derived as

usual. Further key temporal operators are derived from X and U as following: R (Release)
φ1 R φ2 ≡ ¬(¬φ1 U ¬φ2); G (Globally) Gφ ≡ ⊥ R φ and F (Eventually) Fφ ≡ ⊤ U φ.

The process mining community has selected a number of patterns of ltlf formulas that
are particularly significant for describing business processes in a declarative manner. These
patterns constitute the declare modelling language (Di Ciccio and Montali, 2022). An
example of declare pattern is the chain response, indicating that whenever activity a
occurs, b must occur in the next time instant. This is formalised in ltlf as G(a → Xb).
Following Umili et al. (2023), we use declare formulae in the evaluation of our approach.

3.2. Linear Temporal Logic on Finite Fuzzy Traces

In this work, we employ the fuzzy interpretations of ltlf , as defined in Donadello et al.
(2024), to enable its integration into gradient-based optimization via back-propagation.
This logic, called fltlf , is the finite-trace counterpart of the infinite-trace temporal fuzzy
logic fltl from Lamine and Kabanza (2000); Frigeri et al. (2014).

Essentially, fltlf expresses temporal properties of fuzzy traces. A fuzzy trace is a finite,
non-empty sequence of functions ⟨λ1, λ2 . . . , λn⟩, where for every i ∈ {1, . . . , n}, function
λi assigns to each propositional symbol p ∈ P a corresponding real value λi(p) ∈ [0, 1].
Semantically, state formulas in fltlf move from the crisp interpretation of ltlf , to a fuzzy
one where truth values of propositional formulas take on values in [0, 1], using t-(co)norms
to define the fuzzy truth values induced by conjunction, disjunction, and negation.

Temporal operators are interpreted as before, and thus yield fuzzy truth values that are
defined as follows. The fuzzy truth value of Xφ in instant i is the fuzzy truth value of φ
evaluated in instant i + 1. The fuzzy truth value of φ1 U φ2 is computed recursively using
the equivalence φ1Uφ2 ≡ φ2∨(φ1∧X(φ1Uφ2)). The evaluation starts from the last instant
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of the trace, where the formula reduces to φ2, and proceeds backward through the trace. At
each step, the conjunction and disjunction are computed using the chosen t-(co)norm, and
the value of X(φ1 U φ2) used in the recursion has already been computed at the previous
recursion step, which corresponds to the next temporal instance in the trace.

As concrete instantiation for the t-(co)norm, fltlf employs the Zadeh semantics (Don-
adello et al., 2024), where φ∨ψ yields the maximum among the truth values of φ and ψ, ¬φ
yields 1 minus the truth value of φ, and the truth values for conjunction and implication
are derived using the standard abbreviations. This choice is done for two reasons. First, it
is compatible with that originally used in fltl. Second, it retains the correspondence of
derived temporal operators from ltlf , where release, globally, and eventually are defined as
syntactic sugar from X and U. Under Zadeh, in fltlf we get that the truth value obtained
by natively interpreting the semantics of such derived temporal operators indeed coincides
with the one obtained through the evaluation of their definition in terms of X and U only.

Finally, notice that the Zadeh semantics coincides with what is often called Gödel se-
mantics, except that while Zadeh interpreted implication as material implication, under
Gödel one can also opt for residuum as an alternative semantics (van Krieken et al., 2022).

3.3. Iterative Local Refinement (ILR)

Iterative Local Refinement (ILR) (Daniele et al., 2023) is a NeSy framework for enforcing
logical constraints over the predictions of a neural network by iteratively refining its output.
Differently from most NeSy approaches, which enforce logical constraints exclusively during
training, ILR includes the knowledge directly into the model, allowing for imposing the
constraints even during inference.

Let λ ∈ [0, 1]n denote the output of a neural network, and let φ be a formula defined
over λ, interpreted under Gödel logic. Given a target truth value t ∈ [0, 1] (in this work,
we always assume t = 1, enforcing full satisfaction of the constraints), the goal of ILR is
to find a refined vector λ̂ = λ + δ (with λ̂ ∈ [0, 1]n) that satisfies φ with fuzzy truth value
t, while remaining close to the original prediction λ. This is formalized as the following
constrained optimization problem:

argminδ∥δ∥p s.t. φ(λ + δ) = t, 0 ≤ λ + δ ≤ 1

where ∥δ∥p represents the Lp norm of the applied refinement, and φ(λ + δ) represents the
interpretation of φ for the refined vector.

While the optimization problem is in general intractable, it can be solved analytically
for formulas that involve a singular logical connective (conjunction, disjunction, implication
and negation), providing a closed-form formula for simple logical constraints. Such formulas
define the minimal refinement functions (MRF) for the various logical connectives. ILR
finds an approximated solution to the original problem (involving a general formula φ)
by decomposing φ into a computational graph and applying the MRF to each node in a
back-propagation like algorithm. Specifically, it consists of an iterative algorithm with two
phases per iteration: forward (formula evaluation) and backward (formula refinement).

It is worth mentioning that the application of ILR corresponds to a new layer in the
final architecture, which is then trained end-to-end as classical neural models. This can be
done thanks to the ability of ILR to converge very fast to a (sub) optimal solution.
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4. Temporal ILR (T-ILR)

We propose Temporal Iterative Local Refinement (T-ILR), a neurosymbolic framework
designed to directly inject ltlf specifications into deep learning models for sequential tasks.

4.1. Problem Formulation

Consider a supervised learning task defined on temporal sequences of observations x. Let
x = ⟨x1, . . . , xn⟩ be an input sequence of length n, where each observation xi is defined
in an arbitrary observation space X (e.g. images, sensor readings), that is xi ∈ X . Each
sequence x has assigned a label—usually a multiclass categorical variable—which can be
represented as a finite set of propositional variables Y = {y1, . . . , ym}, and represents the
objective of the learning task. In our setting, each observation sequence x corresponds to
a symbolic trace τ = ⟨τ1, . . . , τn⟩ of the same length of x. In particular given a finite set of
atomic propositions P = {p1, . . . , p|P|}, which provides the symbolic representation of the

observation space X , each observation xi is mapped to the element τi ∈ 2P .
Assume that knowledge is given as a set of ltlf formulas {φ1, . . . , φm} defined over P.

Assume also that we can connect this knowledge with the labels in Y, via a ltlf specification
Φ defined over the set of propositional atoms P ∪ Y, for example via the formula:

Φ = (φ1 → y1) ∧ (φ2 → y2) ∧ · · · ∧ (φm → ym) (1)

Intuitively, φ1, . . . , φm represent the body of knowledge used to assess the behaviour of the
trace τ , while Equation (1) connects this knowledge with the labelling of our observations.
We enforce the logical constraints in Φ to solve the classification task x 7→ Y.

In this paper we focus on the version of this problem addressed by Umili et al. (2023),
where the task consist of weakly supervised binary classification Y = {y} where the label y
directly corresponds to the satisfiability of an ltlf formula φ by the traces τ . In particular,
a sequence of observations x = ⟨x1, . . . , xn⟩ consists of digit images. A formula φ expresses
a temporal condition over the symbolic trace τ , obtained by mapping each image in x to
its corresponding digit. For example, assume that the label consists in knowing whether
our sequences satisfies the fact that an image of a 2 is always immediately followed by the
image of a 0—in symbols G(2 → X0)—or not, and that we represent the positive labelling
with y = true and the negative labelling with y = false, then Equation (1) becomes

Φ = (G(2 → X0) → y) ∧ (¬G(2 → X0) → ¬y).

4.2. Framework

The T-ILR framework (Figure 1) consists of two modules. The first is the neural, or
perception, module, which maps each observation xi to a vector of fuzzy values. The
second is the symbolic module, where a fuzzy counterpart Φ̃ of the original ltlf formula Φ
is evaluated and refined using the ILR layer (see Section 3.3). In the following, we provide
a detailed explanation of each module of the T-ILR framework.

The perception module. This module consists of a parametric function fθ : X →
[0, 1]|P|, typically implemented as a neural network with learnable parameters θ. This
function maps each observation xi of the input sequence x to a vector of fuzzy values
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Figure 1: Overview of the T-ILR framework.

f jθ (xi), j = 1, . . . , |P|, where each value represents the model’s degree of confidence that the
corresponding propositional atom in P holds for xi.

Depending on the nature of the learning task, the output of the function fθ(xi) can
be constrained accordingly. Under the mutual exclusivity (ME) assumption the outputs
of fθ(xi) are defined using the softmax activation function, which forces their sum to one.
Conversely, in the non-mutual exclusivity (NME) setting, the sigmoid activation is used.

The symbolic module. In order to integrate the ltlf specification Φ in a way that
is compatible with back-propagation, we adopt the fuzzy semantics (fltlf ) presented in
Section 3.2. Specifically, the formula Φ, which connects the trace τ to the propositional
atoms defining the labels Y, is transformed into its fuzzy counterpart Φ̃, defined over the
fuzzy trace λ and the labels Y.1 While alternative t-norms are often favoured in gradient-
based learning settings, our use of Gödel semantics preserves the intended logical properties
of the fltlf formalism, as defined in Donadello et al. (2024).

Given the observation sequence x, the output of the perception module is the sequence
⟨fθ(x1), . . . , fθ(xn)⟩ ∈ [0, 1]|P|×n, which can be interpreted as the fuzzy trace λ. Each ele-
ment of this output corresponds to a value of the fuzzy trace evaluated at a specific propo-
sitional atom, namely λi(pj) := f jθ (xi). We initialise the label values Y = {y1, . . . , ym} :=
{0, . . . , 0}, representing the targets over the observation sequence x.

Since the fuzzy formula Φ̃ consists of a combination of individual logical connectives
(conjunction, disjunction, negation, and implication), we can directly exploit an ILR layer
as defined in Section 3.3. Specifically, we decompose Φ̃ into a computational graph and apply
the minimal refinement function (MRF) to each node corresponding to a single connective.

The ILR layer defined in this way computes an approximate solution to the minimal
refinement of the fuzzy values required to satisfy the fuzzy formula (Φ̃ = 1). Specifically,
in the forward step, it uses the values of the fuzzy trace λi(pj) and the target values Y
to evaluate the satisfaction of the fuzzy formula. In the backward step, it produces the
refinement values λ̂i(pj) and ŷk, for k = 1, . . . ,m.

The learning objective is to minimize a loss function L(θ) =
∑

k loss(ŷk, yk), such as
cross-entropy, between the refined predicted satisfactions ŷk and the ground truth labels yk.
Since all operations in the perception module fθ and the symbolic module are differentiable,
the gradient of L(θ) with respect to θ can be computed, enabling back-propagation.

1. At this stage, the labels Y are treated as real-valued fuzzy interperations.A step function is applied at
inference time to obtain a crisp label. This is similar to what happens in neural network training.
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5. Evaluation

The evaluation we conducted is guided by the following research questions:

• RQ1: How does the proposed T-ILR framework compare to the state-of-the-art in
neurosymbolic temporal reasoning?

• RQ2: What are the scalability limits of NeSy approaches for temporal reasoning in
increasingly complex settings?

RQ1 measures the benefits of T-ILR compared to the approach of Umili et al. (2023)
in terms of performance (accuracy) in the setting proposed therein. RQ2 measures the
scalability of both approaches in settings with longer sequences and larger sets of symbols.

5.1. Baselines, Datasets, and Experimental Settings

We compare the T-ILR framework against the DFA approach by Umili et al. (2023), which
achieves better performance compared to a pure deep learning-based approach.

The comparison is performed on the weakly supervised binary classification task intro-
duced in Section 4.1, by leveraging the MNIST dataset (LeCun et al., 1998) to construct
sequences of images. In this setting, each sample consists of a sequence of images paired with
a binary label indicating whether the sequence satisfies or violates a given ltlf formula.
This evaluates the neural perception module’s ability to learn the underlying symbolic repre-
sentation from visual data, based on the reasoning over their temporal properties, measured
as the accuracy over the image classification task.

The evaluation protocol is split into two main parts. First, we answer RQ1 by repli-
cating the original evaluation setting of Umili et al. (2023) which uses a base of 20 ltlf
formulas derived from declare patterns, constructed with up to 2 propositional atoms.
For each formula a dataset is created, composed of all the possible symbolic traces with
length between 1 and 4, and labelled as accepted or rejected based on the satisfaction of
the formula. Second, to systematically test scalability and answer RQ2, we introduce an
extended protocol in which we vary the size of P, ranging over |P| ∈ {2, 3, 4}, and the
maximum sequence length, ranging over len(τ) ∈ {5, 10, 20}. This yields 9 possible combi-
nations, for each 5 ltlf formulas φ are sampled, resulting in 45 experimental configurations.
The exponential growth of symbolic traces with |P| and len(τ) makes exhaustive dataset
generation impractical, so we use stratified sampling to construct representative datasets.
The details of the formula selection, dataset generation, and sampling procedures for all the
experiments are provided in the supplementary material (Appendix A).

The experimental design involves the two scenarios introduced in Section 4 regarding the
construction of the image sequences: mutual exclusivity (ME), and non-mutual exclusivity
(NME). In the ME setting only one symbol holds at a timestep, while in the NME settings,
at most two concurrent symbols can hold per timestep. Each training was run for 20 epochs,
with a timeout of 60 minutes. Any experiment failing to complete within the limit was con-
sidered a timeout and not included in the final aggregated results. The T-ILR implemen-
tation and the experiments are available at github.com/andreoniriccardo/temporal ILR.

5.2. Answering the Research Questions
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Table 2: Average test accuracy (in %) and training runtime (in min). Superscripts denote
the number of timed-out runs, which are counted as 60 minutes for averaging
purposes.

Setting |P| DFA
Time

Sequence Length 5 Sequence Length 10 Sequence Length 20

DFA T-ILR DFA T-ILR DFA T-ILR

Acc. Time Acc. Time Acc. Time Acc. Time Acc. Time Acc. Time

ME
2 0.01 89.73 4.05 100.00 0.77 70.83 6.21 99.91 0.91 69.63 9.87 99.84 1.39
3 0.06 72.25 5.90 72.64 0.79 64.71 9.47 71.54 0.95 57.49 16.79 84.60 1.44

4 10.68 40.56 29.28 49.52 0.89 34.39 40.30 66.85 1.36 25.31(2) 44.58(2) 60.47 4.32

NME
2 0.01 82.96 6.33 83.05 1.92 92.92 9.37 92.83 2.21 84.79 15.96 88.62 3.10
3 0.09 65.51 8.67 72.00 2.16 66.59 12.45 72.08 2.57 68.12 23.53 74.65 3.67

4 10.10 53.99(2) 38.21(2) 60.81 2.57 56.19(3) 43.61(3) 61.93 3.85 56.58(3) 47.45(3) 60.22 10.45

Table 1: Test accuracy.

Setting DFA T-ILR

ME 84.12(6) 87.94(9)
NME 76.83(7) 83.70(13)

Answering RQ1. Table 1 summarizes the results of the
overall accuracy averaged across the 20 ltlf formulas for
DFA and T-ILR, following the evaluation protocol proposed
by Umili et al. (2023). The results are split between the Mu-
tually Exclusive (ME) and Non-Mutually Exclusive (NME)
settings. In parenthesis, a number measuring how many times
each methods outperforms the competitor across the 20 experiments.

Overall, in the ME scenario T-ILR shows a moderate improvement in average accuracy
compared to DFA. It outperforms the baseline in 9 out of 20 cases, while the DFA out-
performs T-ILR in 6 cases. For the other 5 cases, the two methods perform similarly thus
no significant differences are observed. In the NME scenario, where multiple atoms may
co-occur, the advantage of T-ILR becomes more pronounced: it surpasses DFA in 13 out of
20 cases, while the DFA outperforms T-ILR the other 7 times. These results indicate that
while T-ILR provides improvements in both settings, it particularly stands out in the more
complex NME case, where the occurrence of concurrent events aligns well with the fltlf
formalism, which allows multiple propositional atoms to hold at a single timestep.

Answering RQ2. To answer RQ2, we leverage the results presented in Table 2. We
highlight in parentheses the number of timeouts registered for the DFA method.

In the ME setting, T-ILR consistently outperforms DFA across all combinations of atoms
number |P| and sequence lengths. The T-ILR method consistently maintains high accuracy,
even as sequence length increases or more atoms are introduced—situations where DFA per-
formance typically degrades significantly. For example, with |P| = 2, T-ILR achieves perfect
or near-perfect accuracy regardless of sequence length. Although accuracy naturally drops
as |P| grows, T-ILR still retains a clear advantage over DFA. In the NME setting, T-ILR
again demonstrates robust performance, outperforming DFA in 17 out of 18 configurations.
While the gap between the two methods is slightly narrower than in the ME case, T-ILR
still maintains a consistent advantage, particularly as |P| increases. Instead, by looking at
Table 2 we observe large discrepancies between the execution times of the two methods,
especially with longer sequences and bigger |P|. In particular, we observe that in both the
ME and NME setting, the runtime of the DFA method is always larger than that of T-ILR.
This is especially true in the NME setting, with |P| = 4, where the DFA method reaches

9



Andreoni Buliga Daniele Ghidini Montali Ronzani

a timeout in 3 out of the 5 cases on different ltlf formulas. While DFA construction is
done once per formula, parsing through the DFA during training to check the satisfiability
of the network outputs is time-consuming, especially as the number of atoms and states
grows. The performance decrease with a larger |P| is due to the learning problem becoming
increasingly complex, as the number of symbolic sequences grows exponentially. This makes
a single binary label increasingly insufficient to adequately supervise the grounding task.

5.3. Discussion

The results in Section 5.2 confirm T-ILR’s effectiveness on temporal symbol grounding and
validate the choice of integrating temporal logic directly via fuzzy semantics in a differen-
tiable framework. Notably, T-ILR achieves superior accuracy, especially in more complex
cases with longer sequences and larger alphabets. In contrast, the DFA-based method’s
performance degrades as task complexity grows, especially in the ME setting. These results
suggest that T-ILR produces a signal that enables more stable, efficient learning within the
perception module. This allows the model to better differentiate levels of fuzzy satisfaction
of temporal formulae, maintaining robustness particularly in increasingly complex settings.

The evaluation in Section 5.2 also highlights the impact of the construction of the DFA
structure and its use during the learning process on the execution time of the approach. This
is due to the complexity and size of the DFA (De Giacomo and Vardi, 2013), which make
both its construction and the repeated parsing during training costly, leading to exponential
growth in execution time as sequence length increases. In contrast, T-ILR embeds the
background knowledge directly within the neural model, limiting runtime growth.

These results have several implications for the NeSy community. First, they highlight
the viability of fuzzy logic-based semantics as a bridge between symbolic and neural rep-
resentations in the case of temporal domains. Second, the generalizability of T-ILR across
both ME and NME scenarios underscores its potential for real-world applications, where the
nature of symbol co-occurrence and sequence lengths are often unpredictable or variable. In
this study we have leveraged the Gödel logic for the t-(co)norm semantics. However, other
types of interpretations are available to model fltlf , such as the  Lukasiewicz and Product
t-(co)norms (Daniele et al., 2023). Finally, we believe that the semantics offered by fltlf
could be further extended and applied within other fuzzy logic-based NeSy frameworks to
enrich the application of such approaches to these temporal domains.

6. Conclusions

In this work we propose T-ILR, a novel architecture based on the ILR algorithm that effec-
tively integrates fuzzy temporal logic within a differentiable NeSy framework. Through the
experimental evaluation, we demonstrate that the integration of T-ILR effectively outper-
forms existing NeSy methods for temporal domains in both accuracy and efficiency. The
approach’s flexibility across different scenarios and its grounding in fuzzy temporal seman-
tics suggest promising directions for future research in NeSy temporal reasoning, where
similar semantics could be used within other frameworks.

In the future, we would like to apply T-ILR to real-world domains like predictive and
prescriptive process monitoring. Moreover, we aim to investigate how different semantics
affect the fuzzy interpretation over temporal specifications in ltlf .
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Appendix A. Supplementary Material

A.1. Extended Evaluation Protocol

To systematically evaluate scalability, we designed an extended protocol by varying the
number of symbols p, ranging over the values |P| ∈ {2, 3, 4}, and the maximum length
of the sequences τ , with possible values len(τ) ∈ {5, 10, 20}. This results in 9 distinct
experimental combinations. For each possible value of |P|, we sampled 5 ltlf formulas φ,
resulting in 45 distinct configurations.

For |P| = 2, we randomly sampled 5 formulas from the original pool. For more than
2 symbols we employ a conjunction of multiple formulas φi with 2 symbols at a time.
For example, for |P| = 3 an ltlf formula φ defined over symbols p1, p2, p3 involves the
conjunction of two formulas φ1 (defined over symbols p1, p2) and φ1 (defined over symbols
p2, p3):

φ(p1, p2, p3) = φ1(p1, p2) ∧ φ2(p2, p3)

As in the case of |P| = 2, formulas φ1, φ2 were sampled from the original pool.
Compared to the original evaluation protocol of Umili et al. (2023), the increase in

symbols and sequence length makes exhaustive use of all symbolic sequences impractical.
For this reason, in the ME experiments, datasets are generated using stratified sampling:
1,000 symbolic sequences (from length 2 onwards) are labelled based on ltlf satisfaction,
split into 500 training and 500 test sequences, and each symbolic sequence is converted into
5 MNIST image sequences (totaling 2,500 for training and testing each). Moreover, in the
NME experiments, while dataset size remains the same, the number of possible sequences
exponentially increases due to the overlap of symbols. To address this, all sequences up to
length 4 are generated as in Umili et al. (2023), with 20% used for training. The remaining
80% is sampled up to the max length, keeping 2,500 sequences for training and testing.

Following the original protocol, each symbolic sequence was converted into a sequence
of MNIST images. To maintain the integrity of the evaluation and avoid overfitting, images
used to create training sequences were sampled from a pool kept entirely separate from the
one used for test sequences.

For both the ME and NME settings, we employed the ADAM optimizer with a learning
rate of 0.001 and a batch size of 64.
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