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Abstract

This paper introduces a payoff perturbation technique, introducing a strong convex-1

ity to players’ payoff functions in games. This technique is specifically designed2

for first-order methods to achieve last-iterate convergence in games where the3

gradient of the payoff functions is monotone in the strategy profile space, poten-4

tially containing additive noise. Although perturbation is known to facilitate the5

convergence of learning algorithms, the magnitude of perturbation requires careful6

adjustment to ensure last-iterate convergence. Previous studies have proposed a7

scheme in which the magnitude is determined by the distance from an anchoring8

or reference strategy, which is periodically re-initialized. In response, this paper9

proposes Gradient Ascent with Boosting Payoff Perturbation, which incorporates a10

novel perturbation into the underlying payoff function, maintaining the periodically11

re-initializing anchoring strategy scheme. This innovation empowers us to provide12

faster last-iterate convergence rates against the existing payoff perturbed algorithms,13

even in the presence of additive noise.14

1 Introduction15

This study considers online learning in monotone games, where the gradient of the payoff function is16

monotone in the strategy profile space. Monotone games encompassed diverse well-studied games as17

special instances, such as concave-convex games, zero-sum polymatrix games [Cai and Daskalakis,18

2011, Cai et al., 2016], λ-cocoercive games [Lin et al., 2020], and Cournot competition [Bravo et al.,19

2018]. Due to their wide-ranging applications, there has been growing interest in developing learning20

algorithms to compute Nash equilibria in monotone games.21

Typical learning algorithms such as Gradient Ascent [Zinkevich, 2003] and Multiplicative Weights22

Update [Bailey and Piliouras, 2018] have been extensively studied and shown to converge to equilibria23

in an average-iterate sense, which is termed average-iterate convergence. However, averaging the24

strategies can be undesirable because it can lead to additional memory or computational costs in the25

context of training Generative Adversarial Networks [Goodfellow et al., 2014] and preference-based26

fine-tuning of large language models [Munos et al., 2023, Swamy et al., 2024]. In contrast, last-iterate27

convergence, in which the updated strategy profile itself converges to a Nash equilibrium, has emerged28

as a stronger notion than average-iterate convergence.29

Payoff-perturbed algorithms have recently been regaining attention in this context [Sokota et al.,30

2023, Liu et al., 2023]. Payoff perturbation is a classical technique, e.g., [Facchinei and Pang, 2003]31

and introduces a strongly convex penalty to the players’ payoff functions to stabilize learning, which32

leads to convergence to approximate equilibria, not only in the full feedback setting where the perfect33

gradient vector of the payoff function can be used to update strategies, but also in the noisy feedback34

setting where the gradient vector is contaminated by noise.35
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However, to ensure convergence toward a Nash equilibrium of the underlying game, the magnitude36

of perturbation requires careful adjustment. As a remedy, it is adjusted by the distance from an37

anchoring or reference strategy. Koshal et al. [2010] and Tatarenko and Kamgarpour [2019] simply38

decay the magnitude in each iteration, and their methods asymptotically converge, since the perturbed39

function gradually loses strong convexity. In response to this, recent studies [Perolat et al., 2021, Abe40

et al., 2023, 2024] re-initialize the anchoring strategies periodically, or in a predefined interval, so41

that they keep the perturbed function strongly convex and achieve non-asymptotic convergence.42

We should also mention the optimistic family of learning algorithms, which incorporates recency43

bias and exhibits last-iterate convergence [Daskalakis et al., 2018, Daskalakis and Panageas, 2019,44

Mertikopoulos et al., 2019, Wei et al., 2021]. Unfortunately, the property has mainly been proven in45

the full feedback setting. Although it might empirically work with noisy feedback, the convergence46

is slower, as demonstrated in Section 6. The fast convergence in the noisy feedback setting is another47

reason why payoff-perturbed algorithms have been gaining renewed interest.48

This paper, in particular, focuses on Adaptively Perturbed Mirror Descent (APMD) [Abe et al., 2024],49

which achieves Õ(1/
√
T )1 and Õ(1/T 1

10 ) last-iterate convergence rates in the full/noisy feedback50

setting, respectively. The motivation of this study lies in improving the convergence rates of APMD.51

We propose an elegant one-line modification of APMD, which effectively accelerates convergence.52

In fact, we just add the difference between the current anchoring strategy and the initial anchoring53

strategy to the payoff perturbation function in APMD.54

Our contributions are manifold. Firstly, we propose a novel payoff-perturbed learning algorithm55

named Gradient Ascent with Boosting Payoff Perturbation (GABP). This method incorporates a56

unique perturbation payoff function, enabling it to achieve faster convergence rates than APMD. Sub-57

sequently, we prove that GABP exhibits accelerated Õ(1/T ) and Õ(1/T 1
7 ) last-iterate convergence58

rates to a Nash equilibrium with full and noisy feedback, respectively. We further show that each59

player’s individual regret is at most O
(
(lnT )2

)
in the full feedback setting, provided all players play60

according to GABP. Finally, through our experiments, we demonstrate the competitive or superior61

performance of GABP over Optimistic Gradient Ascent [Daskalakis et al., 2018, Wei et al., 2021]62

and APMD in concave-convex games, irrespective of the presence of noise.63

2 Preliminaries64

Monotone games. In this study, we focus on a continuous multi-player game, which is denoted65

as
(
[N ], (Xi)i∈[N ], (vi)i∈[N ]

)
. [N ] = {1, 2, · · · , N} denotes the set of N players. Each player66

i ∈ [N ] chooses a strategy πi from a di-dimensional compact convex strategy space Xi, and we67

write X =
∏
i∈[N ] Xi. Each player i aims to maximize her payoff function vi : X → R, which68

is differentiable on X . We denote π−i ∈
∏
j ̸=i Xj as the strategies of all players except player i,69

and π = (πi)i∈[N ] ∈ X as the strategy profile. This paper particularly studies learning in smooth70

monotone games, where the gradient operator V (·) = (∇πi
vi(·))i∈[N ] of the payoff functions is71

monotone: ∀π, π′ ∈ X ,72

⟨V (π)− V (π′), π − π′⟩ ≤ 0, (1)

and L-Lipschitz for L > 073

∥V (π)− V (π′)∥ ≤ L ∥π − π′∥ , (2)

where ∥ · ∥ denotes the ℓ2-norm.74

Many common and well-studied games, such as concave-convex games, zero-sum polymatrix games75

[Cai et al., 2016], λ-cocoercive games [Lin et al., 2020], and Cournot competition [Bravo et al.,76

2018], are included in the class of monotone games.77

Example 2.1 (Concave-Convex Games). Consider a game defined by ({1, 2}, (X1,X2), (v,−v)),78

where v : X1 × X2 → R. In this game, player 1 wishes to maximize v, while player 2 aims to79

minimize v. If v is concave in x1 ∈ X1 and convex in x2 ∈ X2, the game is called a concave-convex80

game or minimax optimization problem, and it is not hard to see that this game is a special case of81

monotone games.82

1We use Õ to denote a Landau notation that disregards a polylogarithmic factor.
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Nash equilibrium and gap function. A Nash equilibrium [Nash, 1951] is a widely used solution83

concept for a game, which is a strategy profile where no player can gain by changing her own strategy.84

Formally, a strategy profile π∗ ∈ X is called a Nash equilibrium, if and only if π∗ satisfies the85

following condition:86

∀i ∈ [N ],∀πi ∈ Xi, vi(π∗
i , π

∗
−i) ≥ vi(πi, π∗

−i).

We define the set of all Nash equilibria to be Π∗. It has been shown that there exists at least one Nash87

equilibrium [Debreu, 1952] for any smooth monotone games.88

To quantify the proximity to Nash equilibrium for a given strategy profile π ∈ X , we use the gap89

function, which is defined as:90

GAP(π) := max
π̃∈X
⟨V (π), π̃ − π⟩ .

Additionally, we use another measure of proximity to Nash equilibrium, referred to as the tangent91

residual. This measure is defined as:92

rtan(π) := min
a∈NX (π)

∥−V (π) + a∥ ,

where NX (π) = {(ai)i∈[N ] ∈
∏N
i=1 Rdi |

∑N
i=1⟨ai, π′

i − πi⟩ ≤ 0, ∀π′ ∈ X} is the normal cone of93

π ∈ X . It is easy to see that GAP(π) ≥ 0 (resp. rtan(π) ≥ 0) for any π ∈ X , and the equality holds94

if and only if π is a Nash equilibrium. Defining D := supπ,π′∈X ∥π − π′∥ as the diameter of X , the95

gap function for any given strategy profile π ∈ X is upper bounded by its tangent residual.96

Lemma 2.2 (Lemma 2 of Cai et al. [2022a]). For any π ∈ X , we have:97

GAP(π) ≤ D · rtan(π).

The gap function and the tangent residual are standard measures of proximity to Nash equilibrium;98

e.g., it has been used in Cai and Zheng [2023], Abe et al. [2024].99

Problem setting. This study focuses on the online learning setting in which the following process100

repeats from iterations t = 1 to T : (i) Each player i ∈ [N ] chooses her strategy πti ∈ Xi, based on101

previously observed feedback; (ii) Each player i receives the (noisy) gradient vector ∇̂πi
vi(π

t) as102

feedback. This study examines two feedback models: full feedback and noisy feedback. In the full103

feedback setting, each player observes the perfect gradient vector ∇̂πivi(π
t) = ∇πivi(π

t). In the104

noisy feedback setting, each player’s gradient feedback ∇πivi(π
t) is contaminated by an additive105

noise vector ξti , i.e., ∇̂πi
vi(π

t) = ∇πi
vi(π

t) + ξti , where ξti ∈ Rdi . Throughout the paper, we106

assume that ξti is the zero-mean and bounded-variance noise vector at each iteration t.107

Adaptively perturbed Mirror Descent. To facilitate the convergence in the online learning setting,108

recent studies have utilized a payoff perturbation technique, where payoff functions are perturbed by109

strongly convex functions [Sokota et al., 2023, Liu et al., 2023, Abe et al., 2022]. However, while110

the addition of these strongly convex functions leads learning algorithms to converge to a stationary111

point, this stationary point may be significantly distant from a Nash equilibrium. Therefore, the112

magnitude of perturbation requires careful adjustment. Perolat et al. [2021], Abe et al. [2023, 2024]113

have introduced a scheme in which the magnitude is determined by the distance (or divergence114

function) from an anchoring strategy σi, which is periodically re-initialized. Specifically, Adaptively115

Perturbed Mirror Descent (APMD) [Abe et al., 2024] perturbs each player’s payoff function by a116

strongly convex divergence function G(πi, σi) : Xi ×Xi → [0,∞), where the anchoring strategy σi117

is periodically replaced by the current strategy πti every predefined iterations Tσ .118

Let us define σk(t)i as the anchoring strategy after k(t) updates. Since σi is overwritten every Tσ119

iterations, we can write k(t) = ⌊(t− 1)/Tσ⌋+ 1 and σk(t)i = π
Tσ(k(t)−1)+1
i . Except for the payoff120

perturbation and the update of the anchor strategy, APMD updates each player i’s strategy in the121

same way as standard Mirror Descent algorithms:122

πt+1
i = arg max

x∈Xi

{
ηt

〈
∇̂πi

vi(π
t)− µ∇πi

G(πti , σ
k(t)
i ), x

〉
−Dψ(x, π

t
i)
}
,
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Algorithm 1 GABP for player i.

Require: Learning rates {ηt}t≥0, perturbation strength µ, update interval Tσ , initial strategy π1
i

1: k ← 1, τ ← 0
2: σ1

i ← π1
i

3: for t = 1, 2, · · · , T do
4: Receive the gradient feedback ∇̂πivi(π

t)
5: Update the strategy by

πt+1
i = arg max

x∈Xi

{
ηt

〈
∇̂πi

vi(π
t)− µσ

k
i − σ1

i

k + 1
− µ

(
πti − σki

)
, x

〉
− 1

2

∥∥x− πti∥∥2}
6: τ ← τ + 1
7: if τ = Tσ then
8: k ← k + 1, τ ← 0
9: σki ← πt+1

i
10: end if
11: end for

where ηt is the learning rate at iteration t, µ ∈ (0,∞) is the perturbation strength, and Dψ(πi, π
′
i) =123

ψ(πi) − ψ(π′
i) − ⟨∇ψ(π′

i), πi − π′
i⟩ as the Bregman divergence associated with a strictly convex124

function ψ : Xi → R. When both G and Dψ is set to the squared ℓ2-distance, this algorithm can be125

equivalently written as:126

πt+1
i = arg max

x∈Xi

{
ηt

〈
∇̂πi

vi(π
t)− µ

(
πti − σ

k(t)
i

)
, x
〉
− 1

2

∥∥x− πti∥∥2} . (3)

We refer to this version of APMD as Adaptively Perturbed Gradient Ascent (APGA). Abe et al.127

[2024] have shown that APGA exhibits the convergence rates of Õ(1/
√
T ) and Õ(1/T 1

10 ) with full128

and noisy feedback, respectively.129

3 Gradient ascent with boosting payoff perturbation130

This section proposes an accelerated version of APGA, Gradient Ascent with Boosting Payoff131

Perturbation (GABP). The pseudo-code of GABP is outlined in Algorithm 1. In order to obtain faster132

last-iterate convergence rates compared to APGA, GABP introduces a novel payoff perturbation term133

in addition to APGA’s original payoff perturbation term, µ
(
πti − σ

k(t)
i

)
. Formally, GABP updates134

each player’s strategy as follows:135

πt+1
i = arg max

x∈Xi

{
ηt

〈
∇̂πi

vi(π
t)− µσ

k(t)
i − σ1

i

k(t) + 1︸ ︷︷ ︸
(∗)

−µ
(
πti − σ

k(t)
i

)
, x

〉
− 1

2

∥∥x− πti∥∥2
}
. (4)

The term (∗) is our proposed additional perturbation term. It shrinks as k(t), the number of updates136

of σk(t)i , increases.137

For a more intuitive explanation of the proposed perturbation term, we present the following update138

rule, which is equivalent to (4):139

πt+1
i = arg max

x∈Xi

{
ηt

〈
∇̂πvi(πt)− µ

(
πti −

k(t)σ
k(t)
i + σ1

i

k(t) + 1

)
, x

〉
− 1

2

∥∥x− πti∥∥2
}
.

From this formula, it appears that GABP replaces the reference strategy σk(t)i for the perturbation140

term in (3) of APGA with k(t)σ
k(t)
i +σ1

i

k(t)+1 . As a result, the anchoring strategy in GABP evolves more141

gradually than in APGA, leading to further stabilization of the learning dynamics. There is a tradeoff142
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between the shrinking speed of the term (*) and the stabilizing impact on the last-iterate convergence143

rate of GABP. The shrinking speed of 1/(k(t)+1) achieves a faster convergence rate, and we believe144

that this represents the optimal balance for this trade-off. Although one might think that the term (∗)145

is closely related to Accelerated Optimistic Gradient (AOG) [Cai and Zheng, 2023], we discuss the146

detail in Appendix F to be concise and avoid a complicated explanation.147

4 Last-iterate convergence rates148

This section provides the last-iterate convergence rates of GABP in the full/noisy feedback setting,149

respectively.150

4.1 Full feedback setting151

First, we demonstrate the last-iterate convergence rate of GABP with full feedback where each player152

receives the perfect gradient vector as feedback at each iteration t, i.e., ∇̂πivi(π
t) = ∇πivi(π

t).153

Theorem 4.1 shows that the last-iterate strategy profile πT updated by GABP converges to a Nash154

equilibrium with an Õ(1/T ) rate in the full feedback setting.155

Theorem 4.1. If we use the constant learning rate ηt = η ∈ (0, µ
(L+µ)2 ) and the constant perturba-156

tion strength µ > 0, and set Tσ = c ·max(1, 6 ln 3(T+1)
ln(1+ηµ) ) for some constant c ≥ 1, then the strategy157

πt updated by GABP satisfies for any t ∈ {2, 3, · · · , T + 1}:158

GAP(πt) ≤
17cD2

(
6 ln 3(T+1)
ln(1+ηµ) + 1

)
t− 1

(
µ+

1 + ηL

η

)
, and

rtan(πt) ≤
17cD

(
6 ln 3(T+1)
ln(1+ηµ) + 1

)
t− 1

(
µ+

1 + ηL

η

)
.

This rate is significantly faster than APGA’s rate of Õ(1/
√
T ). Moreover, it is a competitive rate159

compared to the previous state-of-the-art rate ofO(1/T ) [Yoon and Ryu, 2021, Cai and Zheng, 2023].160

Note that the rate in Theorem 4.1 holds for any constant perturbation strength µ > 0.161

4.1.1 Proof sketch of Theorem 4.1162

To derive the bound of the gap function GAP(πt), it is sufficient to derive that of rtan(πt) due to163

Lemma 2.2. This section provides the proof sketch of Theorem 4.1. The complete proof is placed in164

Appendix B.165

(1) Decomposition of the tangent residual of the last-iterate strategy profile. From the first-166

order optimality condition for πt, we can see that V (πt−1) − µ
(
πt−1 − k(t−1)σk(t−1)+σ1

k(t−1)+1

)
−167

1
η

(
πt − πt−1

)
∈ NX (πt). Therefore, from the triangle inequality and L-smoothness (2) of the168

gradient operator, the tangent residual rtan(πt) can be bounded as:169

rtan(πt) = min
a∈NX (πt)

∥∥−V (πt) + a
∥∥

≤ O
(∥∥πt − πt−1

∥∥)+O (∥∥∥πt−1 − σk(t−1)
∥∥∥)+O( 1

k(t− 1) + 1

)
.

Let us define the stationary point πµ,σ
k(t)

, which satisfies the following condition: ∀i ∈ [N ],170

πµ,σ
k(t)

i = arg max
x∈Xi

{
vi(x, π

µ,σk(t)

−i )− µ

2

∥∥∥x− σ̂k(t)∥∥∥2} ,
where σ̂k(t)i =

k(t)σ
k(t)
i +σ1

i

k(t)+1 . We will show that πt converges to the stationary point πµ,σ
k(t)

at an171

exponential rate later. By using πµ,σ
k(t)

and applying the triangle inequality to ∥πt − πt−1∥, we de-172

compose the term of O(∥πt − πt−1∥) into O(∥πt − πµ,σ
k(t−1)∥) and O(∥πµ,σk(t−1) − πt−1∥).173

5



Similarly, the term of O(∥πt−1 − σk(t−1)∥) is decomposed into O(∥πt−1 − πµ,σ
k(t)−1∥) and174

O(∥πµ,σk(t)−1 − σk(t−1)∥). Then, the tangent residual is bounded as follows:175

rtan(πt) ≤ O
(∥∥∥πµ,σk(t−1)

− πt
∥∥∥)+O (∥∥∥πµ,σk(t−1)

− πt−1
∥∥∥)

+O
(∥∥∥πµ,σk(t−1)

− σk(t−1)
∥∥∥)+O( 1

k(t− 1) + 1

)
. (5)

Therefore, it is enough to derive the convergence rate on ∥πµ,σk(t)−1−πt∥ and ∥πµ,σk(t−1)−σk(t−1)∥.176

(2) Convergence rate of πt to the stationary point πµ,σ
k(t)

. Using the strong convexity of the177

perturbation payoff function, µ2 ∥x− σ̂
k(t)
i ∥2, we show that πt converges to πµ,σ

k(t)

exponentially178

fast (in Lemma B.1). That is, we have for any t ≥ 1:179 ∥∥∥πµ,σk(t)

− πt
∥∥∥2 ≤ ( 1

1 + ηµ

)t−(k(t)−1)Tσ−1 ∥∥∥πµ,σk(t)

− σk(t)
∥∥∥2 . (6)

Since the first and second terms of the right-hand side of (5) are bounded by the distance between the180

stationary point and the anchoring strategy by using (6), we have:181

rtan(πt) ≤ O
(∥∥∥πµ,σk(t−1)

− σk(t−1)
∥∥∥)+O( 1

k(t− 1) + 1

)
. (7)

(3) Potential function for bounding the distance between πµ,σ
k(t)−1

and σk(t)−1. To derive the182

upper bound on
∥∥∥πµ,σk(t−1) − σk(t−1)

∥∥∥, we define the following potential function P k(t):183

P k(t) :=
k(t)(k(t) + 1)

2

∥∥∥πµ,σk(t)−1

− σ̂k(t)−1
∥∥∥2

+ k(t)(k(t) + 1)
〈
σ̂k(t) − πµ,σ

k(t)−1

, πµ,σ
k(t)−1

− σ̂k(t)−1
〉
.

By some algebra, we can see that P k(t) is approximately non-increasing (in Lemma B.3). That is, we184

have for any t ≥ 1 such that k(t) ≥ 2:185

P k(t)+1 ≤ P k(t) + (k(t) + 1)2 · O
(∥∥∥πµ,σk(t)

− σk(t)+1
∥∥∥+ ∥∥∥πµ,σk(t)−1

− σk(t)
∥∥∥) . (8)

Using (6) again, it is easy to show that
∥∥∥πµ,σk(t) − σk(t)+1

∥∥∥+∥∥∥πµ,σk(t)−1 − σk(t)
∥∥∥ ≤ O ( 1

(k(t)+1)3

)
186

for a sufficiently large Tσ . Therefore, under the assumption that Tσ ≥ Ω (lnT ), by telescoping of (8)187

and some algebra, we can derive the following upper bound on
∥∥∥πµ,σk(t) − σk(t)

∥∥∥ (in Lemma B.2):188 ∥∥∥πµ,σk(t)

− σk(t)
∥∥∥ ≤ O( 1

k(t) + 1

)
. (9)

(4) Putting it all together: last-iterate convergence rate of πt. By combining (7) and (9), we get189

rtan(πt) ≤ O
(

1
k(t−1)+1

)
. Therefore, since k(t) = ⌊ t−1

Tσ
⌋+1, it holds that rtan(πt) ≤ O

(
Tσ

t+Tσ−2

)
.190

Finally, taking Tσ = Θ(lnT ), we have:191

rtan(πt) ≤ O
(

lnT

t− 1

)
.

The upper bound on the gap function is immediately obtained since we have Lemma 2.2.192

4.2 Noisy feedback setting193

Next, we establish the last-iterate convergence rate in the noisy feedback setting, where each194

player i observes a noisy gradient vector contaminated by an additive noise vector ξti ∈ Rdi :195

∇̂πi
vi(π

t) + ξti . We assume that the noisy vector ξti is zero-mean and its variance is bounded.196

Formally, defining the sigma-algebra generated by the history of the observations as Ft :=197

σ
(
(∇̂πi

vi(π
1))i∈[N ], . . . , (∇̂πi

vi(π
t−1))i∈[N ]

)
, ∀t ≥ 1, the noisy vector ξti is assumed to satisfy198

the following conditions:199
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Assumption 4.2. For all t ≥ 1 and i ∈ [N ], the noise vector ξti satisfies the following properties: (a)200

Zero-mean: E[ξti |Ft] = (0, · · · , 0)⊤; (b) Bounded variance: E[∥ξti∥2|Ft] ≤ C2 with some constant201

C > 0.202

Assumption 4.2 is standard in online learning in games with noisy feedback [Mertikopoulos and203

Zhou, 2019, Hsieh et al., 2019, Abe et al., 2024] and stochastic optimization [Nemirovski et al., 2009,204

Nedić and Lee, 2014]. Under Assumption 4.2 and a decreasing learning rate sequence ηt, we can205

obtain a faster last convergence rate Õ(1/T 1
7 ) than the convergence rate Õ(1/T 1

10 ) of APGA.206

Theorem 4.3. Let κ = µ
2 , θ = 3µ2+8L2

2µ . Suppose that Assumption 4.2 holds and V (π) ≤ ζ for207

any π ∈ X . We also assume that Tσ is set to satisfy Tσ = c ·max(T
6
7 , 1) for some constant c ≥ 1.208

If we use the constant perturbation strength µ > 0 and the decreasing learning rate sequence209

ηt =
1

κ(t−Tσ(k(t)−1))+2θ , then the strategy πT+1 satisfies:210

E
[
GAP(πT+1)

]
≤

26c (D(µ+ L) + ζ)
√
(D + 1)(D + θ) + κ

T
1
7

(√
1

κ

(
D2 +

C2

κθ
ln

(
κT

2θ
+ 1

))
+ 1

)
.

Note that the non-increasing property, as described in (8), of the potential function holds regardless211

of the presence of noise. This implies that a proof technique similar to the one used with the potential212

function in the full feedback setting can also be applied in the noisy feedback setting. The detailed213

proof can be found in Appendix C.214

5 Individual regret bound215

In this section, we present an upper bound on an individual regret for each player. Specifically,216

we examine two performance measures in our study: the external regret and the dynamic regret217

[Zinkevich, 2003]. The external regret is a conventional measure in online learning. In online learning218

in games, the external regret for player i is defined as the gap between the player’s realized cumulative219

payoff and the cumulative payoff of the best fixed strategy in hindsight:220

Regi(T ) := max
x∈Xi

T∑
t=1

(
vi(x, π

t
−i)− vi(πt)

)
.

The dynamics regret is a much stronger performance metric, which is given by:221

DynamicRegi(T ) :=

T∑
t=1

(
max
x∈Xi

vi(x, π
t
−i)− vi(πt)

)
.

We show in Theorem 5.1 that the individual regret is at mostO
(
(lnT )2

)
if each player i ∈ [N ] plays222

according to GABP in the full feedback setting:223

Theorem 5.1. In the same setup of Theorem 4.1, we have for any player i ∈ [N ] and T ≥ 3:224

Regi(T ) ≤ DynamicRegi(T ) ≤ O
(
(lnT )2

)
.

This regret bound is significantly superior to the O(
√
T ) regret bound of Optimistic Gradient Ascent,225

and it is slightly inferior to the O(lnT ) regret bound of AOG [Cai and Zheng, 2023]. The proof is226

given in Appendix D.227

6 Experiments228

In this section, we present the empirical results of our GABP, comparing its performance with229

Adaptively Perturbed Gradient Ascent (APGA) [Abe et al., 2024] and Optimistic Gradient Ascent230

(OGA) [Daskalakis et al., 2018, Wei et al., 2021]. We conduct experiments on two classes of concave-231

convex games. The first experiment is carried out on random payoff games, which are two-player232

zero-sum normal-form games with payoff matrices of size d. In this game, each player’s strategy233
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Figure 1: Performance of πt for GABP, APGA, and OGA with full and noisy feedback in the random
payoff and hard concave-convex games, respectively. The shaded area represents the standard errors.
Note that we report the gap function for the random payoff game, while the tangent residual is
reported for the hard concave-convex game.
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Figure 2: Dynamic regret for GABP, APGA, and OGA with full and noisy feedback.

space is represented by the d-dimensional probability simplex, i.e., X1 = X2 = ∆d. All entries234

of the payoff matrix are drawn independently from a uniform distribution over the interval [−1, 1].235

We set d = 50 and the initial strategies are set to π1
1 = π1

2 = 1
d1. The second instance is a hard236

concave-convex game [Ouyang and Xu, 2021], formulated as the following max-min optimization237

problem: maxx∈X1 miny∈X2 f(x, y), where f(x, y) = − 1
2x

⊤Hx+ h⊤x+ ⟨Ax− b, y⟩. Following238

the setup in Cai and Zheng [2023], we choose X1 = X2 = [−200, 200]d with d = 100. The precise239

terms of H ∈ Rd×d, A ∈ Rd×d, b ∈ Rd, and h ∈ Rd are provided in Appendix E.2. All algorithms240

are executed with initial strategies π1
1 = π1

2 = 1
n1. The detailed hyperparameters of the algorithms,241

tuned for best performance, are shown in Table 1 in Appendix E.3.242

The numerical results of the random payoff game and the hard concave-convex game are shown in243

Figure 1. Both the full feedback and noisy feedback experiments in the random payoff game were244

conducted with 50 different random seeds, which corresponds to using 50 different payoff matrices.245

For experiments on the hard concave-convex game with noisy feedback, we use 10 different random246

seeds. We assume that the noise vector ξti is generated from the multivariate Gaussian distribution247

N (0, 0.12I) in an i.i.d. manner for both games. We observe that GABP exhibits competitive or faster248

performance over APGA and OGA in all experiments.249

Figure 2 illustrates the dynamic regret in the hard concave-convex game. GABP exhibits lower250

regret than APGA and OGA in both settings, demonstrating its efficiency and robustness. Note that251

APGA and OGA exhibit almost identical trajectories with full feedback, with their plots overlapping252

completely.253

7 Related literature254

No-regret learning algorithms have been extensively studied with the intent of achieving key objectives255

such as average-iterate convergence or last-iterate convergence. Recently, learning algorithms256

introducing optimism [Rakhlin and Sridharan, 2013a,b], such as optimistic Follow the Regularized257

Leader [Shalev-Shwartz and Singer, 2006] and optimistic Mirror Descent [Zhou et al., 2017, Hsieh258

et al., 2021], have been introduced to admit last-iterate convergence in a broad spectrum of game259
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settings. These optimistic algorithms with full feedback have been shown to achieve last-iterate260

convergence in various classes of games, including bilinear games [Daskalakis et al., 2018, Daskalakis261

and Panageas, 2019, Liang and Stokes, 2019, de Montbrun and Renault, 2022], cocoercive games262

[Lin et al., 2020], and saddle point problems [Daskalakis and Panageas, 2018, Mertikopoulos et al.,263

2019, Golowich et al., 2020b, Wei et al., 2021, Lei et al., 2021, Yoon and Ryu, 2021, Lee and Kim,264

2021, Cevher et al., 2023]. Recent studies have provided finite convergence rates for monotone games265

[Golowich et al., 2020a, Cai et al., 2022a,b, Gorbunov et al., 2022, Cai and Zheng, 2023].266

Compared to the full feedback setting, there are significant challenges in learning with noisy feedback.267

For example, a learning algorithm must estimate the gradient from feedback that is contaminated by268

noise. Despite the challenge, a vast literature has successfully achieved last-iterate convergence with269

noisy feedback in specific classes of games, including potential games [Cohen et al., 2017], strongly270

monotone games [Giannou et al., 2021b,a], and two-player zero-sum games [Abe et al., 2023]. These271

results have often leveraged unique structures of their payoff functions, such as strict (or strong)272

monotonicity [Bravo et al., 2018, Kannan and Shanbhag, 2019, Hsieh et al., 2019, Anagnostides273

and Panageas, 2022] and strict variational stability [Mertikopoulos et al., 2019, Azizian et al., 2021,274

Mertikopoulos and Zhou, 2019, Mertikopoulos et al., 2022]. Without these restrictions, convergence275

is mainly demonstrated in an asymptotic manner, with no quantification of the rate [Koshal et al.,276

2010, 2013, Yousefian et al., 2017, Tatarenko and Kamgarpour, 2019, Hsieh et al., 2020, 2022, Abe277

et al., 2023]. Consequently, an exceedingly large number of iterations might be necessary to reach an278

equilibrium.279

There have been several studies focusing on payoff-regularized learning, where each player’s payoff280

or utility function is perturbed or regularized via strongly convex functions [Cen et al., 2021, 2023,281

Pattathil et al., 2023]. Previous studies have successfully achieved convergence to stationary points,282

which are approximate equilibria. For instance, Sokota et al. [2023] have demonstrated that their283

perturbed mirror descent algorithm converges to a quantal response equilibrium [McKelvey and284

Palfrey, 1995, 1998]. Similar results have been obtained with the Boltzmann Q-learning dynam-285

ics [Tuyls et al., 2006] and penalty-regularized dynamics [Coucheney et al., 2015] in continuous-time286

settings [Leslie and Collins, 2005, Abe et al., 2022, Hussain et al., 2023]. To ensure convergence287

toward a Nash equilibrium of the underlying game, the magnitude of perturbation requires careful288

adjustment. Several learning algorithms have been proposed to gradually reduce the perturbation289

strength µ in response to this [Bernasconi et al., 2022, Liu et al., 2023, Cai et al., 2023]. These290

include well-studied methods such as iterative Tikhonov regularization [Facchinei and Pang, 2003,291

Koshal et al., 2010, Tatarenko and Kamgarpour, 2019]. Alternatively, Perolat et al. [2021] and Abe292

et al. [2023] have employed a payoff perturbation scheme, where the magnitude of perturbation is293

determined by the distance from an anchoring strategy, which is periodically re-initialized by the294

current strategy. Recently, Abe et al. [2024] have established Õ(1/
√
T ) and Õ(1/T 1

10 ) last-iterate295

convergence rates for the payoff perturbation scheme in the full/noisy feedback setting, respectively.296

Our algorithm achieves faster Õ(1/T ) and Õ(1/T 1
7 ) last-iterate convergence rates by modifying the297

periodically re-initializing anchoring strategy scheme so that the anchoring strategy evolves more298

gradually.299

8 Conclusion300

This study proposes a novel payoff-perturbed algorithm, Gradient Ascent with Boosting Payoff301

Perturbation, which achieves Õ(1/T ) and Õ(1/T 1
7 ) last-iterate convergence rates in monotone302

games with full/noisy feedback, respectively. Extending our results in settings where each player303

only observes bandit feedback is an intriguing and challenging future direction.304
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A Broader impact468

Our study can bring about a positive impact on society by contributing to the advancement of the469

Game AI industry. However, as far as we can envision, there are no conceivable negative social470

impacts.471

B Proofs for Theorem 4.1472

B.1 Proof of Theorem 4.1473

Proof of Theorem 4.1. From the first-order optimality condition for πt, we have for any x ∈ X :474 〈
V (πt−1)− µ

(
πt−1 − k(t− 1)σk(t−1) + σ1

k(t− 1) + 1

)
− 1

η

(
πt − πt−1

)
, πt − x

〉
≥ 0,

and then V (πt−1)− µ
(
πt−1 − k(t−1)σk(t−1)+σ1

k(t−1)+1

)
− 1

η

(
πt − πt−1

)
∈ NX (πt). Thus, the tangent475

residual for πt can be bounded as:476

rtan(πt) = min
a∈NX (πt)

∥∥−V (πt) + a
∥∥

≤
∥∥∥∥−V (πt) + V (πt−1)− µ

(
πt−1 − k(t− 1)σk(t−1) + σ1

k(t− 1) + 1

)
− 1

η

(
πt − πt−1

)∥∥∥∥ .
Letting us define477

πµ,σ
k

i = arg max
πi∈Xi

{
vi(πi, π

µ,σk

−i )− µ

2

∥∥∥∥πi − kσki + σ1
i

k + 1

∥∥∥∥2
}
,
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then we get by triangle inequality:478

rtan(πt) ≤
∥∥∥∥−V (πt) + V (πt−1)− µ

k(t− 1) + 1
(σk(t−1) − σ1)

− µ(πµ,σ
k(t−1)

− πµ,σ
k(t−1)

+ πt−1 − σk(t−1))− 1

η
(πt − πt−1)

∥∥∥∥
≤
∥∥−V (πt) + V (πt−1)

∥∥+ µ

k(t− 1) + 1

∥∥∥σk(t−1) − σ1
∥∥∥

+ µ
∥∥∥πµ,σk(t−1)

− σk(t−1)
∥∥∥+ µ

∥∥∥πµ,σk(t−1)

− πt−1
∥∥∥+ 1

η

∥∥πt − πt−1
∥∥

≤ 1 + ηL

η

∥∥πt − πt−1
∥∥+ µD

k(t− 1) + 1

+ µ
∥∥∥πµ,σk(t−1)

− σk(t−1)
∥∥∥+ µ

∥∥∥πµ,σk(t−1)

− πt−1
∥∥∥

≤ 1 + ηL

η

∥∥∥πµ,σk(t−1)

− πt
∥∥∥+ µD

k(t− 1) + 1
+ µ

∥∥∥πµ,σk(t−1)

− σk(t−1)
∥∥∥

+

(
µ+

1 + ηL

η

)∥∥∥πµ,σk(t−1)

− πt−1
∥∥∥ . (10)

In terms of upper bound on
∥∥∥πµ,σk(t−1) − πt

∥∥∥ and
∥∥∥πµ,σk(t−1) − πt−1

∥∥∥, we introduce the following479

lemma:480

Lemma B.1. If we use the constant learning rate ηt = η ∈ (0, µ
(L+µ)2 ), we have for any t ≥ 1:481 ∥∥∥πµ,σk(t)

− πt
∥∥∥2 ≤ ( 1

1 + ηµ

)t−(k(t)−1)Tσ−1 ∥∥∥πµ,σk(t)

− σk(t)
∥∥∥2 ,

∥∥∥πµ,σk(t)

− πt+1
∥∥∥2 ≤ ( 1

1 + ηµ

)t−(k(t)−1)Tσ ∥∥∥πµ,σk(t)

− σk(t)
∥∥∥2 .

Combining (10) and Lemma B.1, we have:482

rtan(πt) ≤ 2

(
µ+

1 + ηL

η

)∥∥∥πµ,σk(t−1)

− σk(t−1)
∥∥∥+ µD

k(t− 1) + 1
. (11)

Next, we derive the following upper bound on
∥∥∥πµ,σk(t−1) − σk(t−1)

∥∥∥:483

Lemma B.2. If we set ηt = η ∈ (0, µ
(L+µ)2 ) and Tσ ≥ max(1, 6 ln 3(T+1)

ln(1+ηµ) ), we have for any t ≥ 1:484 ∥∥∥πµ,σk(t)

− σk(t)
∥∥∥ ≤ 8D

k(t) + 1
.

By combining (11) and Lemma B.2, we get:485

rtan(πt) ≤ 16D

k(t− 1) + 1

(
µ+

1 + ηL

η

)
+

µD

k(t− 1) + 1

≤ 17D

k(t− 1) + 1

(
µ+

1 + ηL

η

)
.

Therefore, since k(t) = ⌊ t−1
Tσ
⌋+ 1, it holds that:486

rtan(πt) ≤ 17DTσ
t+ Tσ − 2

(
µ+

1 + ηL

η

)
.

Finally, taking Tσ = c ·max(1, 6 ln 3(T+1)
ln(1+ηµ) ), we have:487

rtan(πt) ≤
17cD

(
6 ln 3(T+1)
ln(1+ηµ) + 1

)
t− 1

(
µ+

1 + ηL

η

)
.

488
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B.2 Proof of Lemma B.1489

Proof of Lemma B.1. First, we have for any three vectors a, b, c:490

1

2
∥a− b∥2 − 1

2
∥a− c∥2 + 1

2
∥b− c∥2 = ⟨c− b, a− b⟩ .

Thus, we have for any t ≥ 1:491

1

2

∥∥∥πµ,σk(t)

− πt+1
∥∥∥2 − 1

2

∥∥∥πµ,σk(t)

− πt
∥∥∥2 + 1

2

∥∥πt+1 − πt
∥∥2 =

〈
πt − πt+1, πµ,σ

k(t)

− πt+1
〉
.

(12)

Here, let us define σ̂k(t) = k(t)σk(t)+σ1

k(t)+1 . Then, from the first-order optimality condition for πt+1, we492

have for any t ≥ 1:493 〈
η
(
V (πt)− µ

(
πt − σ̂k(t)

))
− πt+1 + πt, πt+1 − πµ,σ

k(t)
〉
≥ 0. (13)

Similarly, from the first-order optimality condition for πµ,σ
k(t)

, we get:494 〈
V (πµ,σ

k(t)

)− µ
(
πµ,σ

k(t)

− σ̂k(t)
)
, πµ,σ

k(t)

− πt+1
〉
≥ 0. (14)

Combining (12), (13), and (14) yields:495

1

2

∥∥∥πµ,σk(t)

− πt+1
∥∥∥2 − 1

2

∥∥∥πµ,σk(t)

− πt
∥∥∥2 + 1

2

∥∥πt+1 − πt
∥∥2

≤ η
〈
V (πt)− µ

(
πt − σ̂k(t)

)
, πt+1 − πµ,σ

k(t)
〉

= η
〈
V (πt+1)− µ

(
πt+1 − σ̂k(t)

)
, πt+1 − πµ,σ

k(t)
〉

+ η
〈
V (πt)− V (πt+1)− µ

(
πt − πt+1

)
, πt+1 − πµ,σ

k(t)
〉

≤ η
〈
V (πµ,σ

k(t)

)− µ
(
πt+1 − σ̂k(t)

)
, πt+1 − πµ,σ

k(t)
〉

+ η
〈
V (πt)− V (πt+1)− µ

(
πt − πt+1

)
, πt+1 − πµ,σ

k(t)
〉

= η
〈
V (πµ,σ

k(t)

)− µ
(
πµ,σ

k(t)

− σ̂k(t)
)
, πt+1 − πµ,σ

k(t)
〉
− ηµ

∥∥∥πt+1 − πµ,σ
k(t)
∥∥∥2

+ η
〈
V (πt)− V (πt+1)− µ

(
πt − πt+1

)
, πt+1 − πµ,σ

k(t)
〉

≤ −ηµ
∥∥∥πt+1 − πµ,σ

k(t)
∥∥∥2 + η

〈
V (πt)− V (πt+1)− µ

(
πt − πt+1

)
, πt+1 − πµ,σ

k(t)
〉
, (15)

where the second inequality follows from (1). From Cauchy-Schwarz inequality and Young’s496

inequality, the second term in the right-hand side of this inequality can be bounded by:497

η
〈
V (πt)− V (πt+1)− µ

(
πt − πt+1

)
, πt+1 − πµ,σ

k(t)
〉

= η
〈
V (πt)− V (πt+1), πt+1 − πµ,σ

k(t)
〉
− ηµ

〈
πt − πt+1, πt+1 − πµ,σ

k(t)
〉

≤ η
(∥∥V (πt)− V (πt+1)

∥∥+ µ
∥∥πt − πt+1

∥∥) · ∥∥∥πt+1 − πµ,σ
k(t)
∥∥∥

≤ η(L+ µ)
∥∥πt − πt+1

∥∥ · ∥∥∥πt+1 − πµ,σ
k(t)
∥∥∥

≤ 1

2

∥∥πt − πt+1
∥∥2 + η2(L+ µ)2

2

∥∥∥πt+1 − πµ,σ
k(t)
∥∥∥2

≤ 1

2

∥∥πt − πt+1
∥∥2 + ηµ

2

∥∥∥πt+1 − πµ,σ
k(t)
∥∥∥2 , (16)
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where the second inequality follow from (2), and the last inequality follows from the assumption that498

η ≤ µ
(L+µ)2 . By combining (15) and (16), we get:499

1

2

∥∥∥πµ,σk(t)

− πt+1
∥∥∥2 − 1

2

∥∥∥πµ,σk(t)

− πt
∥∥∥2 + 1

2

∥∥πt+1 − πt
∥∥2

≤ −ηµ
2

∥∥∥πt+1 − πµ,σ
k(t)
∥∥∥2 + 1

2

∥∥πt − πt+1
∥∥2 .

Thus,500

1 + ηµ

2

∥∥∥πµ,σk(t)

− πt+1
∥∥∥2 ≤ 1

2

∥∥∥πµ,σk(t)

− πt
∥∥∥2 .

Therefore, we have for any t ≥ 1:501 ∥∥∥πµ,σk(t)

− πt+1
∥∥∥2 ≤ 1

1 + ηµ

∥∥∥πµ,σk(t)

− πt
∥∥∥2 .

Furthermore, since k(s) = k(t) for s ∈ [(k(t)− 1)Tσ + 1, t], we have for such s that:502 ∥∥∥πµ,σk(t)

− πs+1
∥∥∥2 ≤ 1

1 + ηµ

∥∥∥πµ,σk(t)

− πs
∥∥∥2 .

Therefore, by applying this inequality from t, t− 1, · · · , (k(t)− 1)Tσ + 1, we get for any t ≥ 1:503 ∥∥∥πµ,σk(t)

− πt+1
∥∥∥2 ≤ ( 1

1 + ηµ

)t−(k(t)−1)Tσ ∥∥∥πµ,σk(t)

− π(k(t)−1)Tσ+1
∥∥∥2

=

(
1

1 + ηµ

)t−(k(t)−1)Tσ ∥∥∥πµ,σk(t)

− σk(t)
∥∥∥2 . (17)

Here, since k(t) = k(t+ 1) when t satisfies that t ̸= Tσ

⌊
t
Tσ

⌋
, we have for such t that:504 ∥∥∥πµ,σk(t+1)

− πt+1
∥∥∥2 ≤ ( 1

1 + ηµ

)t−(k(t+1)−1)Tσ ∥∥∥πµ,σk(t+1)

− σk(t+1)
∥∥∥2 . (18)

On the other hand, when t satisfies that t = Tσ

⌊
t
Tσ

⌋
:505

k(t+ 1) =

Tσ
⌊
t
Tσ

⌋
+ 1− 1

Tσ

+ 1 =

⌊
t

Tσ

⌋
+ 1

⇒ (k(t+ 1)− 1)Tσ = Tσ

⌊
t

Tσ

⌋
= t

⇒ πt+1 = π(k(t+1)−1)Tσ+1 = σk(t+1).

Therefore, we have for any t ≥ 1 such that t = Tσ

⌊
t
Tσ

⌋
:506 ∥∥∥πµ,σk(t+1)

− πt+1
∥∥∥2 =

∥∥∥πµ,σk(t+1)

− σk(t+1)
∥∥∥2

=

(
1

1 + ηµ

)t−(k(t+1)−1)Tσ ∥∥∥πµ,σk(t+1)

− σk(t+1)
∥∥∥2 . (19)

By combining (17), (18), and (19), we have for any t ≥ 1:507 ∥∥∥πµ,σk(t)

− πt+1
∥∥∥2 ≤ ( 1

1 + ηµ

)t−(k(t)−1)Tσ ∥∥∥πµ,σk(t)

− σk(t)
∥∥∥2 ,

∥∥∥πµ,σk(t+1)

− πt+1
∥∥∥2 ≤ ( 1

1 + ηµ

)t−(k(t+1)−1)Tσ ∥∥∥πµ,σk(t+1)

− σk(t+1)
∥∥∥2 .

508
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B.3 Proof of Lemma B.2509

Proof of Lemma B.2. First, we have for any Nash equilibrium π∗ ∈ Π∗ and t ≥ 1 such that k(t) ≥ 1:510

(k(t) + 1)(k(t) + 2)

2

∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2 + (k(t) + 1)(k(t) + 2)

〈
σ̂k(t)+1 − πµ,σ

k(t)

, πµ,σ
k(t)

− σ̂k(t)
〉

=
(k(t) + 1)(k(t) + 2)

2

∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2

+ (k(t) + 1)
〈
(k(t) + 1)σk(t)+1 + σ1 − (k(t) + 2)πµ,σ

k(t)

, πµ,σ
k(t)

− σ̂k(t)
〉

=
(k(t) + 1)(k(t) + 2)

2

∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2 + (k(t) + 1)

〈
σ1 − σk(t)+1, πµ,σ

k(t)

− σ̂k(t)
〉

+ (k(t) + 1)(k(t) + 2)
〈
σk(t)+1 − πµ,σ

k(t)

, πµ,σ
k(t)

− σ̂k(t)
〉

=
(k(t) + 1)(k(t) + 2)

2

∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2 + (k(t) + 1)

〈
σ1 − πµ,σ

k(t)

, πµ,σ
k(t)

− σ̂k(t)
〉

+ (k(t) + 1)2
〈
σk(t)+1 − πµ,σ

k(t)

, πµ,σ
k(t)

− σ̂k(t)
〉

=
(k(t) + 1)(k(t) + 2)

2

∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2 + (k(t) + 1)

〈
σ1 − π∗, πµ,σ

k(t)

− σ̂k(t)
〉

+ (k(t) + 1)
〈
π∗ − πµ,σ

k(t)

, πµ,σ
k(t)

− σ̂k(t)
〉
+ (k(t) + 1)2

〈
σk(t)+1 − πµ,σ

k(t)

, πµ,σ
k(t)

− σ̂k(t)
〉
.

Here, the first-order optimality condition for πµ,σ
k(t)

:511 〈
V (πµ,σ

k(t)

)− µ
(
πµ,σ

k(t)

− σ̂k(t)
)
, πµ,σ

k(t)

− π∗
〉
≥ 0

⇒
〈
πµ,σ

k(t)

− σ̂k(t), π∗ − πµ,σ
k(t)
〉
≥ 1

µ

〈
V (πµ,σ

k(t)

), π∗ − πµ,σ
k(t)
〉
≥ 1

µ

〈
V (π∗), π∗ − πµ,σ

k(t)
〉
≥ 0,

where we use (1) and the fact that π∗ is a Nash equilibrium. Combining these inequalities yields:512

(k(t) + 1)(k(t) + 2)

2

∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2 + (k(t) + 1)(k(t) + 2)

〈
σ̂k(t)+1 − πµ,σ

k(t)

, πµ,σ
k(t)

− σ̂k(t)
〉

≥ (k(t) + 1)(k(t) + 2)

2

∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2 + (k(t) + 1)

〈
σ1 − π∗, πµ,σ

k(t)

− σ̂k(t)
〉

+ (k(t) + 1)2
〈
σk(t)+1 − πµ,σ

k(t)

, πµ,σ
k(t)

− σ̂k(t)
〉
.

From Young’s inequality, we have for any ρ1, ρ2 > 0:513

(k(t) + 1)(k(t) + 2)

2

∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2 + (k(t) + 1)(k(t) + 2)

〈
σ̂k(t)+1 − πµ,σ

k(t)

, πµ,σ
k(t)

− σ̂k(t)
〉

≥ (k(t) + 1)(k(t) + 2)

2

∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2 − ρ1(k(t) + 1)

2

∥∥σ1 − π∗∥∥2 − (k(t) + 1)

2ρ1

∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2

− ρ2(k(t) + 1)2

2

∥∥∥σk(t)+1 − πµ,σ
k(t)
∥∥∥2 − (k(t) + 1)2

2ρ2

∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2

=

(
(k(t) + 1)(k(t) + 2)

2
− k(t) + 1

2ρ1
− (k(t) + 1)2

2ρ2

)∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2

− ρ1(k(t) + 1)

2

∥∥σ1 − π∗∥∥2 − ρ2(k(t) + 1)2

2

∥∥∥σk(t)+1 − πµ,σ
k(t)
∥∥∥2 .

By setting ρ1 = 4
k(t)+2 , ρ2 = 4(k(t)+1)

k(t)+2 , we obtain:514

(k(t) + 1)(k(t) + 2)

2

∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2 + (k(t) + 1)(k(t) + 2)

〈
σ̂k(t)+1 − πµ,σ

k(t)

, πµ,σ
k(t)

− σ̂k(t)
〉

≥ (k(t) + 1)(k(t) + 2)

4

∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2 − 2(k(t) + 1)

k(t) + 2

∥∥σ1 − π∗∥∥2
17



− 2(k(t) + 1)3

k(t) + 2

∥∥∥σk(t)+1 − πµ,σ
k(t)
∥∥∥2

≥ (k(t) + 1)(k(t) + 2)

4

∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2 − 2

∥∥σ1 − π∗∥∥2 − 2(k(t) + 1)2
∥∥∥σk(t)+1 − πµ,σ

k(t)
∥∥∥2 .

(20)

Here, we introduce the following lemma:515

Lemma B.3. For any t ≥ 1 such that k(t) ≥ 2, we have:516

(k(t) + 1)(k(t) + 2)

2

∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2 + (k(t) + 1)(k(t) + 2)

〈
σ̂k(t)+1 − πµ,σ

k(t)

, πµ,σ
k(t)

− σ̂k(t)
〉

≤ k(t)(k(t) + 1)

2

∥∥∥πµ,σk(t)−1

− σ̂k(t)−1
∥∥∥2 + k(t)(k(t) + 1)

〈
σ̂k(t) − πµ,σ

k(t)−1

, πµ,σ
k(t)−1

− σ̂k(t)−1
〉

+ (k(t) + 1)
〈
(k(t) + 1)(πµ,σ

k(t)

− σk(t)+1) + k(t)(σk(t) − πµ,σ
k(t)−1

), σ̂k(t) − πµ,σ
k(t)
〉
.

By combining (20) and Lemma B.3, we get:517

(k(t) + 1)(k(t) + 2)

4

∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2

≤ (k(t) + 1)(k(t) + 2)

2

∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2 + (k(t) + 1)(k(t) + 2)

〈
σ̂k(t)+1 − πµ,σ

k(t)

, πµ,σ
k(t)

− σ̂k(t)
〉

+ 2
∥∥σ1 − π∗∥∥2 + 2(k(t) + 1)2

∥∥∥σk(t)+1 − πµ,σ
k(t)
∥∥∥2

≤ 3
∥∥∥πµ,σ1

− σ̂1
∥∥∥2 + 6

〈
σ̂2 − πµ,σ

1

, πµ,σ
1

− σ̂1
〉
+ 2

∥∥σ1 − π∗∥∥2 + 2(k(t) + 1)2
∥∥∥σk(t)+1 − πµ,σ

k(t)
∥∥∥2

+

k(t)∑
l=2

(l + 1)
〈
(l + 1)(πµ,σ

l

− σl+1) + l(σl − πµ,σ
l−1

), σ̂l − πµ,σ
l
〉

= 3
∥∥∥πµ,σ1

− σ1
∥∥∥2 + 2

〈
2σ2 + σ1 − 3πµ,σ

1

, πµ,σ
1

− σ1
〉
+ 2

∥∥σ1 − π∗∥∥2
+ 2(k(t) + 1)2

∥∥∥σk(t)+1 − πµ,σ
k(t)
∥∥∥2 + k(t)∑

l=2

(l + 1)
〈
(l + 1)(πµ,σ

l

− σl+1) + l(σl − πµ,σ
l−1

), σ̂l − πµ,σ
l
〉

= 3
∥∥∥πµ,σ1

− σ1
∥∥∥2 + 2

〈
σ1 − πµ,σ

1

, πµ,σ
1

− σ1
〉
+ 4

〈
σ2 − πµ,σ

1

, πµ,σ
1

− σ1
〉

+ 2
∥∥σ1 − π∗∥∥2 + 2(k(t) + 1)2

∥∥∥σk(t)+1 − πµ,σ
k(t)
∥∥∥2

+

k(t)∑
l=2

(l + 1)
〈
(l + 1)(πµ,σ

l

− σl+1) + l(σl − πµ,σ
l−1

), σ̂l − πµ,σ
l
〉

=
∥∥∥πµ,σ1

− σ1
∥∥∥2 + 4

〈
σ2 − πµ,σ

1

, πµ,σ
1

− σ1
〉
+ 2

∥∥σ1 − π∗∥∥2 + 2(k(t) + 1)2
∥∥∥σk(t)+1 − πµ,σ

k(t)
∥∥∥2

+

k(t)∑
l=2

(l + 1)
〈
(l + 1)(πµ,σ

l

− σl+1) + l(σl − πµ,σ
l−1

), σ̂l − πµ,σ
l
〉

=
∥∥∥πµ,σ1

− σ1
∥∥∥2 + 2

∥∥σ1 − π∗∥∥2 + 2(k(t) + 1)2
∥∥∥σk(t)+1 − πµ,σ

k(t)
∥∥∥2

+

k(t)∑
l=1

(l + 1)2
〈
πµ,σ

l

− σl+1, σ̂l − πµ,σ
l
〉
+

k(t)∑
l=2

l(l + 1)
〈
σl − πµ,σ

l−1

, σ̂l − πµ,σ
l
〉

≤ 3D2 + 2(k(t) + 1)2
∥∥∥σk(t)+1 − πµ,σ

k(t)
∥∥∥2 + 2D(k(t) + 1)2

k(t)∑
l=1

∥∥∥πµ,σl

− σl+1
∥∥∥ .
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Therefore, we have for any t ≥ 1 such that k(t) ≥ 2:518 ∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2 ≤ 12D2

(k(t) + 1)2
+ 8

∥∥∥σk(t)+1 − πµ,σ
k(t)
∥∥∥2 + 8D

k(t)∑
l=1

∥∥∥πµ,σl

− σl+1
∥∥∥ .

By the definition of σ̂k(t),519 ∥∥∥πµ,σk(t)

− σk(t)
∥∥∥2 + ∥∥σk(t) − σ1

∥∥2
(k(t) + 1)2

+
2

k(t) + 1

〈
πµ,σ

k(t)

− σk(t), σk(t) − σ1
〉

≤ 12D2

(k(t) + 1)2
+ 8

∥∥∥σk(t)+1 − πµ,σ
k(t)
∥∥∥2 + 8D

k(t)∑
l=1

∥∥∥πµ,σl

− σl+1
∥∥∥ .

Therefore, from Cauchy-Schwarz inequality, we have:520 ∥∥∥πµ,σk(t)

− σk(t)
∥∥∥2

≤ 2

k(t) + 1

〈
πµ,σ

k(t)

− σk(t), σ1 − σk(t)
〉
+

12D2

(k(t) + 1)2

+ 8
∥∥∥σk(t)+1 − πµ,σ

k(t)
∥∥∥2 + 8D

k(t)∑
l=1

∥∥∥πµ,σl

− σl+1
∥∥∥

≤ 2D

k(t) + 1

∥∥∥πµ,σk(t)

− σk(t)
∥∥∥+ 12D2

(k(t) + 1)2
+ 8

∥∥∥σk(t)+1 − πµ,σ
k(t)
∥∥∥2 + 8D

k(t)∑
l=1

∥∥∥πµ,σl

− σl+1
∥∥∥ .

(21)

Furthermore, from Lemma B.1, we have for any k ≥ 1:521 ∥∥∥πµ,σk

− σk+1
∥∥∥2 ≤ ( 1

1 + ηµ

)Tσ ∥∥∥πµ,σk

− σk
∥∥∥2 . (22)

Combining (21) nad (22), we have for any t ≥ 1 such that k(t) ≥ 2:522 ∥∥∥πµ,σk(t)

− σk(t)
∥∥∥2 ≤ 2D

k(t) + 1

∥∥∥πµ,σk(t)

− σk(t)
∥∥∥+ 12D2

(k(t) + 1)2

+ 8

(
1

1 + ηµ

)Tσ ∥∥∥πµ,σk(t)

− σk(t)
∥∥∥2 + 8D2k(t)

(
1

1 + ηµ

)Tσ
2

.

Therefore, since Tσ ≥ max(1, 6 ln 3(T+1)
ln(1+ηµ) )⇒

(
1

1+ηµ

)Tσ

≤ (k(t)+1)3

(1+ηµ)Tσ
≤ 1

16 , we have for k(t) ≥ 2:523

1

2

(∥∥∥πµ,σk(t)

− σk(t)
∥∥∥− 2D

k(t) + 1

)2

≤ 2D2

(k(t) + 1)2
+

12D2

(k(t) + 1)2
+

D2

2(k(t) + 1)2
≤ 16D2

(k(t) + 1)2
,

and then:524 ∥∥∥πµ,σk(t)

− σk(t)
∥∥∥ ≤ 2D

k(t) + 1
+

4
√
2D

k(t) + 1
≤ 8D

k(t) + 1
.

On the other hand, for k(t) = 1, we have:525 ∥∥∥πµ,σ1

− σ1
∥∥∥ ≤ D ≤ 8D

1 + 1
.

In summary, for any t ≥ 1, we have:526 ∥∥∥πµ,σk(t)

− σk(t)
∥∥∥ ≤ 8D

k(t) + 1
.

527
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B.4 Proof of Lemma B.3528

Proof of Lemma B.3. From the first-order optimality condition for πµ,σ
k(t)

, we have:529 〈
V (πµ,σ

k(t)

)− µ(πµ,σ
k(t)

− σ̂k(t)), πµ,σ
k(t)

− πµ,σ
k(t)−1

〉
≥ 0.

Similarly, from the first-order optimality condition for πµ,σ
k(t)−1

, we have:530 〈
V (πµ,σ

k(t)−1

)− µ(πµ,σ
k(t)−1

− σ̂k(t)−1), πµ,σ
k(t)−1

− πµ,σ
k(t)
〉
≥ 0.

Summing up these inequalities, we get for any t ≥ 1 such that k(t) ≥ 2:531

0 ≤
〈
V (πµ,σ

k(t)

)− V (πµ,σ
k(t)−1

), πµ,σ
k(t)

− πµ,σ
k(t)−1

〉
− µ

〈
πµ,σ

k(t)

− σ̂k(t), πµ,σ
k(t)

− πµ,σ
k(t)−1

〉
+ µ

〈
σ̂k(t)−1 − πµ,σ

k(t)−1

, πµ,σ
k(t)−1

− πµ,σ
k(t)
〉

≤ −µ
〈
πµ,σ

k(t)

− σ̂k(t), πµ,σ
k(t)

− πµ,σ
k(t)−1

〉
+ µ

〈
σ̂k(t)−1 − πµ,σ

k(t)−1

, πµ,σ
k(t)−1

− πµ,σ
k(t)
〉

= −µ
〈
πµ,σ

k(t)

− σk(t) + σk(t) − σ̂k(t), πµ,σ
k(t)

− σk(t) + σk(t) − πµ,σ
k(t)−1

〉
+ µ

〈
σ̂k(t)−1 − πµ,σ

k(t)−1

, πµ,σ
k(t)−1

− πµ,σ
k(t)
〉

= −µ
∥∥∥πµ,σk(t)

− σk(t)
∥∥∥2 − µ〈πµ,σk(t)

− σk(t), σk(t) − πµ,σ
k(t)−1

〉
− µ

〈
σk(t) − σ̂k(t), πµ,σ

k(t)

− πµ,σ
k(t)−1

〉
+ µ

〈
σ̂k(t)−1 − πµ,σ

k(t)−1

, πµ,σ
k(t)−1

− πµ,σ
k(t)
〉

= −µ
∥∥∥πµ,σk(t)

− σk(t)
∥∥∥2 − µ〈πµ,σk(t)

− σk(t), σk(t) − πµ,σ
k(t)−1

〉
+ µ

〈
πµ,σ

k(t)

− πµ,σ
k(t)−1

, πµ,σ
k(t)−1

− σk(t)
〉
+ µ

〈
σ̂k(t)−1 − σ̂k(t), πµ,σ

k(t)−1

− πµ,σ
k(t)
〉
.

Here, for any vectors a, b, c, it holds that:532

⟨a− b, b− c⟩ = 1

2
∥a− c∥2 − 1

2
∥b− c∥2 − 1

2
∥a− b∥2,

⟨a− b, c− d⟩ = 1

2
∥a− b∥2 + 1

2
∥c− d∥2 − 1

2
∥d− c+ a− b∥2.

Thus, we have:533

0 ≤ −µ
∥∥∥πµ,σk(t)

− σk(t)
∥∥∥2 − µ

2

∥∥∥πµ,σk(t)

− πµ,σ
k(t)−1

∥∥∥2
+
µ

2

∥∥∥πµ,σk(t)−1

− σk(t)
∥∥∥2 + µ

2

∥∥∥πµ,σk(t)

− σk(t)
∥∥∥2

+
µ

2

∥∥∥πµ,σk(t)

− σk(t)
∥∥∥2 − µ

2

∥∥∥πµ,σk(t)−1

− σk(t)
∥∥∥2 − µ

2

∥∥∥πµ,σk(t)

− πµ,σ
k(t)−1

∥∥∥2
+
µ

2

∥∥∥σ̂k(t)−1 − σ̂k(t)
∥∥∥2 + µ

2

∥∥∥πµ,σk(t)

− πµ,σ
k(t)−1

∥∥∥2
− µ

2

∥∥∥πµ,σk(t)

− πµ,σ
k(t)−1

+ σ̂k(t)−1 + σ̂k(t)
∥∥∥2

= −µ
2

∥∥∥πµ,σk(t)

− πµ,σ
k(t)−1

∥∥∥2 + µ

2

∥∥∥σ̂k(t) − σ̂k(t)−1
∥∥∥2

− µ

2

∥∥∥πµ,σk(t)

− πµ,σ
k(t)−1

+ σ̂k(t)−1 + σ̂k(t)
∥∥∥2

≤ −µ
2

∥∥∥πµ,σk(t)

− πµ,σ
k(t)−1

∥∥∥2 + µ

2

∥∥∥σ̂k(t) − σ̂k(t)−1
∥∥∥2

= −µ
2

∥∥∥πµ,σk(t)

− πµ,σ
k(t)−1

∥∥∥2 + µ

2

∥∥∥σ̂k(t) − πµ,σk(t)−1

+ πµ,σ
k(t)−1

− σ̂k(t)−1
∥∥∥2
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=
µ

2

∥∥∥πµ,σk(t)−1

− σ̂k(t)−1
∥∥∥2 + µ

2

∥∥∥σ̂k(t) − πµ,σk(t)−1
∥∥∥2 − µ

2

∥∥∥πµ,σk(t)

− πµ,σ
k(t)−1

∥∥∥2
+ µ

〈
σ̂k(t) − πµ,σ

k(t)−1

, πµ,σ
k(t)−1

− σ̂k(t)−1
〉
. (23)

Here, from the definition of σ̂k(t), we have:534

1

2

∥∥∥σ̂k(t) − πµ,σk(t)−1
∥∥∥2 − 1

2

∥∥∥πµ,σk(t)

− πµ,σ
k(t)−1

∥∥∥2
=

1

2

∥∥∥∥k(t)σk(t) + σ1

k(t) + 1
− πµ,σ

k(t)−1

∥∥∥∥2 − 1

2

∥∥∥πµ,σk(t)

− πµ,σ
k(t)−1

∥∥∥2
=

1

2

〈
k(t)σk(t) + σ1

k(t) + 1
− πµ,σ

k(t)−1

+ πµ,σ
k(t)

− πµ,σ
k(t)−1

,
k(t)σk(t) + σ1

k(t) + 1
− πµ,σ

k(t)−1

− πµ,σ
k(t)

+ πµ,σ
k(t)−1

〉
=

1

2

〈
σ1 + (k(t) + 1)πµ,σ

k(t) − 2(k(t) + 1)πµ,σ
k(t)−1

+ k(t)σk(t)

k(t) + 1
, σ̂k(t) − πµ,σ

k(t)

〉

=
1

2k(t)

〈
2(k(t) + 1)σk(t)+1 + 2σ1 − 2(k(t) + 2)πµ,σ

k(t)

, σ̂k(t) − πµ,σ
k(t)
〉

+
1

2k(t)

〈
−k(t) + 2

k(t) + 1
σ1 + (3k(t) + 4)πµ,σ

k(t)

− 2(k(t) + 1)σk(t)+1σ̂k(t) − πµ,σ
k(t)

〉
+

1

2k(t)

〈
−2k(t)πµ,σ

k(t)−1

+
k(t)2

k(t) + 1
σk(t), σ̂k(t) − πµ,σ

k(t)

〉
=
k(t) + 2

k(t)

〈
σ̂k(t)+1 − πµ,σ

k(t)

, σ̂k(t) − πµ,σ
k(t)
〉

+
1

2k(t)

〈
−k(t) + 2

k(t) + 1
σ1 − k(t)(k(t) + 2)

k(t) + 1
σk(t) + (k(t) + 2)πµ,σ

k(t)

, σ̂k(t) − πµ,σ
k(t)

〉
+

1

2k(t)

〈
2(k(t) + 1)(πµ,σ

k(t)

− σk(t)+1) + 2k(t)(σk(t) − πµ,σ
k(t)−1

), σ̂k(t) − πµ,σ
k(t)
〉

= −k(t) + 2

k(t)

〈
σ̂k(t)+1 − πµ,σ

k(t)

, πµ,σ
k(t)

− σ̂k(t)
〉

− k(t) + 2

2k(t)

〈
k(t)σk(t) + σ1

k(t) + 1
− πµ,σ

k(t)

, σ̂k(t) − πµ,σ
k(t)

〉
+

1

k(t)

〈
(k(t) + 1)(πµ,σ

k(t)

− σk(t)+1) + k(t)(σk(t) − πµ,σ
k(t)−1

), σ̂k(t) − πµ,σ
k(t)
〉

= −k(t) + 2

k(t)

〈
σ̂k(t)+1 − πµ,σ

k(t)

, πµ,σ
k(t)

− σ̂k(t)
〉
− k(t) + 2

2k(t)

∥∥∥σ̂k(t) − πµ,σk(t)
∥∥∥2

+
1

k(t)

〈
(k(t) + 1)(πµ,σ

k(t)

− σk(t)+1) + k(t)(σk(t) − πµ,σ
k(t)−1

), σ̂k(t) − πµ,σ
k(t)
〉
. (24)

Combining (23) and (24) yields for any t ≥ 1 such that k(t) ≥ 2:535

k(t) + 2

2k(t)

∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2 + k(t) + 2

k(t)

〈
σ̂k(t)+1 − πµ,σ

k(t)

, πµ,σ
k(t)

− σ̂k(t)
〉

≤ 1

2

∥∥∥πµ,σk(t)−1

− σ̂k(t)−1
∥∥∥2 + 〈σ̂k(t) − πµ,σk(t)−1

, πµ,σ
k(t)−1

− σ̂k(t)−1
〉

+
1

k(t)

〈
(k(t) + 1)(πµ,σ

k(t)

− σk(t)+1) + k(t)(σk(t) − πµ,σ
k(t)−1

), σ̂k(t) − πµ,σ
k(t)
〉
.

Multiplying both sides by k(t)(k(t) + 1), we have:536

(k(t) + 1)(k(t) + 2)

2

∥∥∥πµ,σk(t)

− σ̂k(t)
∥∥∥2 + (k(t) + 1)(k(t) + 2)

〈
σ̂k(t)+1 − πµ,σ

k(t)

, πµ,σ
k(t)

− σ̂k(t)
〉
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≤ k(t)(k(t) + 1)

2

∥∥∥πµ,σk(t)−1

− σ̂k(t)−1
∥∥∥2 + k(t)(k(t) + 1)

〈
σ̂k(t) − πµ,σ

k(t)−1

, πµ,σ
k(t)−1

− σ̂k(t)−1
〉

+ (k(t) + 1)
〈
(k(t) + 1)(πµ,σ

k(t)

− σk(t)+1) + k(t)(σk(t) − πµ,σ
k(t)−1

), σ̂k(t) − πµ,σ
k(t)
〉
.

537

C Proofs for Theorem 4.3538

C.1 Proof of Theorem 4.3539

Proof of Theorem 4.3. Let us define K := T
Tσ

. We can decompose the gap function for πT+1 as540

follows:541

GAP(πT+1)

= max
x∈X

〈
V (πT+1), x− πT+1

〉
= max

x∈X

(〈
V (πµ,σ

K

), x− πµ,σ
K
〉
−
〈
V (πµ,σ

K

), x− πµ,σ
K
〉
+
〈
V (πT+1), x− πT+1

〉)
= max

x∈X

(〈
V (πµ,σ

K

), x− πµ,σ
K
〉
−
〈
V (πµ,σ

K

)− V (πT+1), x− πT+1
〉
+
〈
V (πµ,σ

K

), πµ,σ
K

− πT+1
〉)

≤ max
x∈X

(〈
V (πµ,σ

K

), x− πµ,σ
K
〉
+D

∥∥∥V (πµ,σ
K

)− V (πT+1)
∥∥∥+ ζ

∥∥∥πµ,σK

− πT+1
∥∥∥)

≤ GAP(πµ,σ
K

) + (LD + ζ)
∥∥∥πµ,σK

− πT+1
∥∥∥

≤ D · min
c∈NX (πµ,σK )

∥∥∥−V (πµ,σ
K

) + c
∥∥∥+ (LD + ζ)

∥∥∥πµ,σK

− πT+1
∥∥∥ ,

where the last inequality follows from Lemma 2.2. From the first-order optimality condition for542

πµ,σ
K

, we have for any x ∈ X :543 〈
V (πµ,σ

K

)− µ
(
πµ,σ

K

− KσK + σ1

K + 1

)
, πµ,σ

K

− x
〉
≥ 0,

and then V (πµ,σ
K

)− µ
(
πµ,σ

K − KσK+σ1

K+1

)
∈ NX (πµ,σ

K

). Thus, the gap function for πT+1 can544

be bounded by:545

GAP(πT+1) ≤ µD ·
∥∥∥∥πµ,σK

− KσK + σ1

K + 1

∥∥∥∥+ (LD + ζ)
∥∥∥πµ,σK

− πT+1
∥∥∥

= µD ·
∥∥∥∥σK − σ1

K + 1
+ πµ,σ

K

− σK
∥∥∥∥+ (LD + ζ)

∥∥∥πµ,σK

− πT+1
∥∥∥

≤ µD ·
(

D

K + 1
+
∥∥∥πµ,σK

− σK
∥∥∥)+ (LD + ζ)

∥∥∥πµ,σK

− πT+1
∥∥∥ .

Taking its expectation yields:546

E
[
GAP(πT+1)

]
≤ µD2

K + 1
+ µD · E

[∥∥∥πµ,σK

− σK
∥∥∥]+ (LD + ζ) · E

[∥∥∥πµ,σK

− πT+1
∥∥∥]

≤ µD2

K + 1
+ µD · E

[∥∥∥πµ,σK

− σK
∥∥∥]+ (LD + ζ) ·

√
E
[∥∥πµ,σK − πT+1

∥∥2].
(25)

Here, we derive the following upper bound on E
[∥∥∥πµ,σk(t) − πt+1

∥∥∥2]:547

Lemma C.1. Let κ = µ
2 , θ = 3µ2+8L2

2µ . Suppose that Assumption 4.2 holds. If we set ηt =548

1
κ(t−Tσ(k(t)−1))+2θ , we have for any t ≥ 1:549

E
[∥∥∥πµ,σk(t)

− πt+1
∥∥∥2] ≤ 2θ

κ (t− (k(t)− 1)Tσ) + 2θ

(
D2 +

C2

κθ
ln

(
κ (t− (k(t)− 1)Tσ)

2θ
+ 1

))
.
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Setting t = T = KTσ, we can write k(t) = ⌊KTσ−1
Tσ
⌋+ 1 = K. Therefore, from Lemma C.1, we550

have:551

E
[∥∥∥πµ,σK

− πT+1
∥∥∥2] ≤ 2θ

κTσ + 2θ

(
D2 +

C2

κθ
ln

(
κTσ
2θ

+ 1

))
. (26)

On the other hand, in terms of E
[∥∥∥πµ,σk(t) − σk(t)

∥∥∥], we introduce the following lemma:552

Lemma C.2. If we set ηt = 1
κ(t−Tσ(k(t)−1))+2θ and Tσ ≥ max(1, T

6
7 ), we have for any t ≥ 1:553

E
[∥∥∥πµ,σk(t)

− σk(t)
∥∥∥] ≤ 6

(√
κ+
√
θ +
√
Dθ +

√
D
)

k(t)

(√
1

κ

(
D2 +

C2

κθ
ln

(
κT

2θ
+ 1

))
+ 1

)
.

By setting t = KTσ in this lemma, we get:554

E
[∥∥∥πµ,σK

− σK
∥∥∥] ≤ 6

(√
κ+
√
θ +
√
Dθ +

√
D
)

K

(√
1

κ

(
D2 +

C2

κθ
ln

(
κT

2θ
+ 1

))
+ 1

)
.

(27)

Combining (25), (26), and (27), we have:555

E
[
GAP(σK+1)

]
≤ µD2

K + 1
+ µD ·

6
(√

κ+
√
θ +
√
Dθ +

√
D
)

K

(√
1

κ

(
D2 +

C2

κθ
ln

(
κT

2θ
+ 1

))
+ 1

)

+ (LD + ζ) ·

√
2θ

κTσ + 2θ

(
D2 +

C2

κθ
ln

(
κTσ
2θ

+ 1

))

≤ µD2Tσ
T

+ µD ·
6Tσ

(√
κ+
√
θ +
√
Dθ +

√
D
)

T

(√
1

κ

(
D2 +

C2

κθ
ln

(
κT

2θ
+ 1

))
+ 1

)

+ (LD + ζ) ·

√
2θ

κTσ

(
D2 +

C2

κθ
ln

(
κT

2θ
+ 1

))
,

where the second inequality follows from K = T
Tσ

. Finally, since Tσ = c ·max(1, T
6
7 ), we have for556

any T ≥ Tσ:557

E
[
GAP(σK+1)

]
≤ cµD2

T
1
7

+
6cµD

(√
κ+
√
θ +
√
Dθ +

√
D
)

T
1
7

(√
1

κ

(
D2 +

C2

κθ
ln

(
κT

2θ
+ 1

))
+ 1

)

+
(LD + ζ)

T
3
7

√
2θ

κ

(
D2 +

C2

κθ
ln

(
κT

2θ
+ 1

))

≤
6cµD

(√
κ+
√
θ +
√
Dθ +

√
D +D

)
T

1
7

(√
1

κ

(
D2 +

C2

κθ
ln

(
κT

2θ
+ 1

))
+ 1

)

+
(LD + ζ)

√
2θ

T
1
7

(√
1

κ

(
D2 +

C2

κθ
ln

(
κT

2θ
+ 1

))
+ 1

)

≤
9c (µD + LD + ζ)

(√
κ+
√
θ +
√
Dθ +

√
D +D

)
T

1
7

(√
1

κ

(
D2 +

C2

κθ
ln

(
κT

2θ
+ 1

))
+ 1

)
.
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Since T = TσK, we have finally:558

E
[
GAP(πT+1)

]
≤

9c (µD + LD + ζ)
(√

κ+
√
θ +
√
Dθ +

√
D +D

)
T

1
7

(√
1

κ

(
D2 +

C2

κθ
ln

(
κT

2θ
+ 1

))
+ 1

)

=
9c (D(µ+ L) + ζ)

(√
κ+ (

√
D + 1)(

√
D +

√
θ)
)

T
1
7

(√
1

κ

(
D2 +

C2

κθ
ln

(
κT

2θ
+ 1

))
+ 1

)

≤
18c (D(µ+ L) + ζ)

(√
κ+

√
(D + 1)(D + θ)

)
T

1
7

(√
1

κ

(
D2 +

C2

κθ
ln

(
κT

2θ
+ 1

))
+ 1

)

≤
26c (D(µ+ L) + ζ)

√
(D + 1)(D + θ) + κ

T
1
7

(√
1

κ

(
D2 +

C2

κθ
ln

(
κT

2θ
+ 1

))
+ 1

)
.
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C.2 Proof of Lemma C.1560

Proof of Lemma C.1. From the first-order optimality condition for πt+1, we have for t ≥ 1:561 〈
ηt

(
V̂ (πt)− µ(πt − σ̂k(t))

)
− πt+1 + πt, πt+1 − πµ,σ

k(t)
〉
≥ 0. (28)

Combining (28), (12), and (14), we have:562

1

2

∥∥∥πµ,σk(t)

− πt+1
∥∥∥2 − 1

2

∥∥∥πµ,σk(t)

− πt
∥∥∥2 + 1

2

∥∥πt+1 − πt
∥∥2

≤ ηt
〈
V̂ (πt)− µ(πt − σ̂k(t)), πt+1 − πµ,σ

k(t)
〉

= ηt

〈
V (πt+1)− µ(πt+1 − σ̂k(t)), πt+1 − πµ,σ

k(t)
〉
+ ηt

〈
V̂ (πt)− V (πt+1)− µ(πt − πt+1), πt+1 − πµ,σ

k(t)
〉

≤ ηt
〈
V (πµ,σ

k(t)

)− µ(πt+1 − σ̂k(t)), πt+1 − πµ,σ
k(t)
〉
+ ηt

〈
V̂ (πt)− V (πt+1)− µ(πt − πt+1), πt+1 − πµ,σ

k(t)
〉

= ηt

〈
V (πµ,σ

k(t)

)− µ(πµ,σ
k(t)

− σ̂k(t)), πt+1 − πµ,σ
k(t)
〉
− ηtµ

∥∥∥πµ,σk(t)

− πt+1
∥∥∥2

+ ηt

〈
V (πt)− V (πt+1), πt+1 − πµ,σ

k(t)
〉
− ηtµ

〈
πt − πt+1, πt+1 − πµ,σ

k(t)
〉
+ ηt

〈
ξt, πt+1 − πµ,σ

k(t)
〉

≤ −ηtµ
∥∥∥πµ,σk(t)

− πt+1
∥∥∥2 + ηtµ

〈
πt+1 − πt, πt+1 − πµ,σ

k(t)
〉

+ ηt

〈
V (πt)− V (πt+1), πt+1 − πµ,σ

k(t)
〉
+ ηt

〈
ξt, πt+1 − πµ,σ

k(t)
〉

= −ηtµ
∥∥∥πµ,σk(t)

− πt+1
∥∥∥2 + ηtµ

2

∥∥πt+1 − πt
∥∥2 + ηtµ

2

∥∥∥πt+1 − πµ,σ
k(t)
∥∥∥2 − ηtµ

2

∥∥∥πt − πµ,σk(t)
∥∥∥2

+ ηt

〈
V (πt)− V (πt+1), πt+1 − πµ,σ

k(t)
〉
+ ηt

〈
ξt, πt+1 − πµ,σ

k(t)
〉

= −ηtµ
2

∥∥∥πt+1 − πµ,σ
k(t)
∥∥∥2 − ηtµ

2

∥∥∥πt − πµ,σk(t)
∥∥∥2 + ηtµ

2

∥∥πt+1 − πt
∥∥2

+ ηt

〈
V (πt)− V (πt+1), πt+1 − πµ,σ

k(t)
〉
+ ηt

〈
ξt, πt+1 − πµ,σ

k(t)
〉
, (29)

where the third inequality follows from (1). From Cauchy-Schwarz inequality and Young’s inequality,563

the fourth term on the right-hand side of this inequality can be bounded by:564 〈
V (πt)− V (πt+1), πt+1 − πµ,σ

k(t)
〉

≤
∥∥V (πt)− V (πt+1)

∥∥ · ∥∥∥πt+1 − πµ,σ
k(t)
∥∥∥

≤ L
∥∥πt − πt+1

∥∥ · ∥∥∥πt+1 − πµ,σ
k(t)
∥∥∥
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≤ 2L2

µ

∥∥πt − πt+1
∥∥2 + µ

8

∥∥∥πt+1 − πµ,σ
k(t)
∥∥∥2

≤ 2L2

µ

∥∥πt − πt+1
∥∥2 + µ

4

∥∥∥πt − πµ,σk(t)
∥∥∥2 + µ

4

∥∥πt+1 − πt
∥∥2

=

(
4L2

µ
+
µ

2

) ∥∥πt − πt+1
∥∥2

2
+
µ

2

∥∥∥πt − πµ,σk(t)
∥∥∥2

2
. (30)

By combining (29) and (30), we have:565 ∥∥∥πµ,σk(t)

− πt+1
∥∥∥2 ≤ −ηtµ∥∥∥πt+1 − πµ,σ

k(t)
∥∥∥2 + (1− ηtµ

2

)∥∥∥πt − πµ,σk(t)
∥∥∥2

−
(
1− ηt

(
3µ

2
+

4L2

µ

))∥∥πt+1 − πt
∥∥2 + 2ηt

〈
ξt, πt+1 − πµ,σ

k(t)
〉

≤
(
1− ηtµ

2

)∥∥∥πt − πµ,σk(t)
∥∥∥2 − (1− ηt(3µ

2
+

4L2

µ

))∥∥πt+1 − πt
∥∥2

+ 2ηt

〈
ξt, πt − πµ,σ

k(t)
〉
+ 2ηt

〈
ξt, πt+1 − πt

〉
= (1− ηtκ)

∥∥∥πt − πµ,σk(t)
∥∥∥2 − (1− ηtθ)

∥∥πt+1 − πt
∥∥2

+ 2ηt

〈
ξt, πt − πµ,σ

k(t)
〉
+ 2ηt

〈
ξt, πt+1 − πt

〉
.

By taking the expectation conditioned on Ft for both sides and using Assumption 4.2 (a) and (b),566

E
[∥∥∥πµ,σk(t)

− πt+1
∥∥∥2 | Ft]

≤ (1− ηtκ)E
[∥∥∥πt − πµ,σk(t)

∥∥∥2 | Ft]− (1− ηtθ)E
[∥∥πt+1 − πt

∥∥2 | Ft]
+ 2ηt

〈
E
[
ξt | Ft

]
, πt − πµ,σ

k(t)
〉
+ 2ηtE

[〈
ξt, πt+1 − πt

〉
| Ft

]
= (1− ηtκ)

∥∥∥πt − πµ,σk(t)
∥∥∥2 − (1− ηtθ)E

[∥∥πt+1 − πt
∥∥2 | Ft]+ 2ηtE

[〈
ξt, πt+1 − πt

〉
| Ft

]
≤ (1− ηtκ)

∥∥∥πt − πµ,σk(t)
∥∥∥2 − (1− ηtθ)E

[∥∥πt+1 − πt
∥∥2 | Ft]

+
η2t

1− ηtθ
E
[∥∥ξt∥∥2 | Ft]+ (1− ηtθ)E

[∥∥πt+1 − πt
∥∥2 | Ft]

≤ (1− ηtκ)
∥∥∥πt − πµ,σk(t)

∥∥∥2 + η2t
1− ηtθ

E
[∥∥ξt∥∥2 | Ft]

≤ (1− ηtκ)
∥∥∥πt − πµ,σk(t)

∥∥∥2 + 2η2tE
[∥∥ξt∥∥2 | Ft]

≤ (1− ηtκ)
∥∥∥πt − πµ,σk(t)

∥∥∥2 + 2η2tC
2.

Therefore, under the setting where ηt = 1
κ(t−Tσ(k(t)−1))+2θ , we have for any t ≥ 1:567

E
[∥∥∥πµ,σk(t)

− πt+1
∥∥∥2 | Ft] ≤ (1− 1

t− Tσ(k(t)− 1) + 2θ/κ

)∥∥∥πt − πµ,σk(t)
∥∥∥2 + 2η2tC

2.

Rearranging and taking the expectations, we get:568

(t− Tσ(k(t)− 1) + 2θ/κ)E
[∥∥∥πµ,σk(t)

− πt+1
∥∥∥2]

≤ (t− 1− Tσ(k(t)− 1) + 2θ/κ)E
[∥∥∥πµ,σk(t)

− πt
∥∥∥2]+ 2C2

κ (κ(t− Tσ(k(t)− 1)) + 2θ)
.
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Since k(s) = k(t) for any s ∈ [(k(t)− 1)Tσ + 1, T ], telescoping the sum yields:569

(t− Tσ(k(t)− 1) + 2θ/κ)E
[∥∥∥πµ,σk(t)

− πt+1
∥∥∥2]

≤ (s− 1− Tσ(k(t)− 1) + 2θ/κ)E
[∥∥∥πµ,σk(t)

− πs
∥∥∥2]+ t∑

m=s

2C2

κ (κ(m− Tσ(k(t)− 1)) + 2θ)
.

Defining s = (k(t)− 1)Tσ + 1,570

(t− Tσ(k(t)− 1) + 2θ/κ)E
[∥∥∥πµ,σk(t)

− πt+1
∥∥∥2]

≤ 2θ

κ
E
[∥∥∥πµ,σk(t)

− π(k(t)−1)Tσ+1
∥∥∥2]+ 2C2

κ

t∑
m=(k(t)−1)Tσ+1

1

κ(m− Tσ(k(t)− 1)) + 2θ
.

Therefore,571

E
[∥∥∥πµ,σk(t)

− πt+1
∥∥∥2] ≤ 2θ

κ (t− Tσ(k(t)− 1)) + 2θ
E
[∥∥∥πµ,σk(t)

− π(k(t)−1)Tσ+1
∥∥∥2]

+
2C2

κ (t− Tσ(k(t)− 1)) + 2θ

t−(k(t)−1)Tσ∑
m=1

1

κm+ 2θ
. (31)

Here, we have:572

t−(k(t)−1)Tσ∑
m=1

1

κm+ 2θ
≤
∫ t−(k(t)−1)Tσ

0

1

κx+ 2θ
dx =

1

κ
ln

(
κ (t− (k(t)− 1)Tσ)

2θ
+ 1

)
. (32)

Combining (31), (32), and the fact that π(k(t)−1)Tσ+1 = σk(t), we have:573

E
[∥∥∥πµ,σk(t)

− πt+1
∥∥∥2]

≤ 2θ

κ (t− (k(t)− 1)Tσ) + 2θ

(
E
[∥∥∥πµ,σk(t)

− σk(t)
∥∥∥2]+ C2

κθ
ln

(
κ (t− (k(t)− 1)Tσ)

2θ
+ 1

))
≤ 2θ

κ (t− (k(t)− 1)Tσ) + 2θ

(
D2 +

C2

κθ
ln

(
κ (t− (k(t)− 1)Tσ)

2θ
+ 1

))
.

574

C.3 Proof of Lemma C.2575

Proof of Lemma C.2. First, from Lemma C.1, we have for any k ≥ 1:576

E
[∥∥∥πµ,σk

− σk+1
∥∥∥2] ≤ 2θ

κTσ + 2θ

(
D2 +

C2

κθ
ln

(
κTσ
2θ

+ 1

))
.

Moreover, by taking the expectation of (21), we have for any t ≥ 1 such that k(t) ≥ 2:577

E
[∥∥∥πµ,σk(t)

− σk(t)
∥∥∥2] ≤ 2D

k(t) + 1
E
[∥∥∥πµ,σk(t)

− σk(t)
∥∥∥]+ 12D2

(k(t) + 1)2

+ 8E
[∥∥∥σk(t)+1 − πµ,σ

k(t)
∥∥∥2]+ 8D

k(t)∑
l=1

E
[∥∥∥πµ,σl

− σl+1
∥∥∥] .

Combining these inequalities, we get for any t ≥ 1 such that k(t) ≥ 2:578

E
[∥∥∥πµ,σk(t)

− σk(t)
∥∥∥2] ≤ 2D

k(t) + 1
E
[∥∥∥πµ,σk(t)

− σk(t)
∥∥∥]+ 12D2

(k(t) + 1)2

+
16θ

κTσ

(
D2 +

C2

κθ
ln

(
κTσ
2θ

+ 1

))
+ 8Dk(t)

√
2θ

κTσ

(
D2 +

C2

κθ
ln

(
κTσ
2θ

+ 1

))
.
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Since Tσ ≥ max(1, T
6
7 )⇒ k(t)3√

Tσ
≤ 1, we have:579

E

[(∥∥∥πµ,σk(t)

− σk(t)
∥∥∥− D

k(t) + 1

)2
]
≤ 13D2

k(t)2
+

16θ

κk(t)2

(
D2 +

C2

κθ
ln

(
κT

2θ
+ 1

))

+
8D

k(t)2

√
2θ

κ

(
D2 +

C2

κθ
ln

(
κT

2θ
+ 1

))
.

Since E[X]2 ≤ E[X2] for any random variable X , we get:580

13D2

k(t)2
+

16θ

κk(t)2

(
D2 +

C2

κθ
ln

(
κT

2θ
+ 1

))
+

8D

k(t)2

√
2θ

κ

(
D2 +

C2

κθ
ln

(
κT

2θ
+ 1

))

≥ E

[(∥∥∥πµ,σk(t)

− σk(t)
∥∥∥− D

k(t) + 1

)2
]

≥ E
[∥∥∥πµ,σk(t)

− σk(t)
∥∥∥− D

k(t) + 1

]2
=

(
E
[∥∥∥πµ,σk(t)

− σk(t)
∥∥∥]− D

k(t) + 1

)2

.

Then, we have:581

E
[∥∥∥πµ,σk(t)

− σk(t)
∥∥∥]

≤ D

k(t)
+

4D

k(t)
+

4
√
θ√

κk(t)

√
D2 +

C2

κθ
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(
κT

2θ
+ 1

)
+

3
√
D

k(t)

(
2θ

κ

(
D2 +
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(
κT

2θ
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4
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√
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√
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√
κ

√
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)
+

6
√
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√
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(√
1

κ

(
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(
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)

≤
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√
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√
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√
D)
)
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(√
1

κ
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(
κT
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)
.

Furthermore, for k(t) = 1, we have:582

E
[∥∥∥πµ,σ1

− σ1
∥∥∥] ≤ D ≤ 6

(√
κ+
√
θ +
√
Dθ +

√
D)
)

1

(√
1

κ

(
D2 +
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κθ
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(
κT

2θ
+ 1
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+ 1

)
.

Therefore, we have for any t ≥ 1:583

E
[∥∥∥πµ,σk(t)

− σk(t)
∥∥∥] ≤ 6

(√
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√
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√
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√
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(√
1
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(
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)
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D Proof of Theorem 5.1585

Proof of Theorem 5.1. By the definition of dynamic regret, we have:586

DynamicRegi(T ) =

T∑
t=1

(
max
x∈Xi

vi(x, π
t
−i)− vi(πt)

)

≤ O(1) +
T∑
t=3

N∑
i=1

(
max
x∈Xi

vi(x, π
t
−i)− vi(πt)

)
.

Here, we introduce the following lemma:587
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Lemma D.1 (Lemma 2 of Cai et al. [2022a]). For any π ∈ X , we have:588

N∑
i=1

(
max
π̃i∈Xi

vi(π̃i, π−i)− vi(π)
)
≤ GAP(π) ≤ D ·max

π̃∈X
⟨V (π), π̃ − π⟩.

Therefore, we have:589

DynamicRegi(T ) ≤ O(1) +
T∑
t=3

GAP(πt).

Thus, from Theorem 4.1:590

DynamicRegi(T ) ≤ O(1) +
T∑
t=3

O
(
lnT

t

)
≤ O

(
(lnT )2

)
.

591

E Experimental details592

E.1 Information on the computer resources593

The experiments were conducted on macOS Sonoma 14.4.1 with Apple M2 Max and 32GB RAM.594

E.2 Hard concave-convex game595

Following the setup in Ouyang and Xu [2021], Cai and Zheng [2023], we choose596

A =
1

4


−1 1

· · · · · ·
−1 1

−1 1
1

 ∈ Rn×n, b =
1

4


1
1
· · ·
1
1

 ∈ Rn, h =
1

4


0
0
· · ·
0
1

 ∈ Rn,

and H = 2A⊤A.597

E.3 Hyperparameters598

For each game, we carefully tuned the hyperparameters for each algorithm to ensure optimal perfor-599

mance. The specific parameters for each game and setting are summarized in Table 1.600

Game Algorithm η Tσ µ

Random Payoff (Full Feedback)
OGA 0.05 - -

APGA 0.05 20 1.0
GABP 0.05 10 1.0

Random Payoff (Noisy Feedback)
OGA 0.001 - -

APGA 0.001 2000 1.0
GABP 0.001 1000 1.0

Hard Concave-Convex (Full Feedback)
OGA 1.0 - -

APGA 1.0 20 0.1
GABP 1.0 20 0.1

Hard Concave-Convex (Noisy Feedback)
OGA 0.5 - -

APGA 0.5 50 0.1
GABP 0.1 100 0.1

Table 1: Hyperparameters
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F Relationship with accelerated optimistic gradient algorithm601

Our GABP bears some relation to Accelerated Optimistic Gradient (AOG) [Cai and Zheng, 2023],602

which updates the strategy by:603

π
t+ 1

2
i = arg max

x∈Xi

{〈
η∇̂πi

vi(π
t− 1

2 ) +
π1
i − πti
t+ 1

, x

〉
− 1

2

∥∥x− πti∥∥2} ,
πt+1
i = arg max

x∈Xi

{〈
η∇̂πi

vi(π
t+ 1

2 ) +
π1
i − πti
t+ 1

, x

〉
− 1

2

∥∥x− πti∥∥2} .
This can be equivalently written as:604

π
t+ 1

2
i = arg max

x∈Xi

{
η
〈
∇̂πi

vi(π
t− 1

2 ), x
〉
− 1

2

∥∥∥∥x− tπti + π1
i

t+ 1

∥∥∥∥2
}
,

πt+1
i = arg max

x∈Xi

{
η
〈
∇̂πivi(π

t+ 1
2 ), x

〉
− 1

2

∥∥∥∥x− tπti + π1
i

t+ 1

∥∥∥∥2
}
.

This means that AOG employs a convex combination tπt
i+π

1
i

t+1 of the current strategy πti and initial605

strategy π1
i as the proximal point in gradient ascent. However, our GABP diverges from AOG in that it606

uses a convex combination k(t)σ
k(t)
i +σ1

i

k(t)+1 of σk(t)i and σ1
i as the reference strategy for the perturbation607

term.608
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and how they scale with dataset size.648

• If applicable, the authors should discuss possible limitations of their approach to649

address problems of privacy and fairness.650

• While the authors might fear that complete honesty about limitations might be used by651

reviewers as grounds for rejection, a worse outcome might be that reviewers discover652

limitations that aren’t acknowledged in the paper. The authors should use their best653

judgment and recognize that individual actions in favor of transparency play an impor-654

tant role in developing norms that preserve the integrity of the community. Reviewers655

will be specifically instructed to not penalize honesty concerning limitations.656

3. Theory Assumptions and Proofs657

Question: For each theoretical result, does the paper provide the full set of assumptions and658

a complete (and correct) proof?659

Answer: [Yes]660
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Justification: Please see the theoretical results and their proofs in the Appendix.661

Guidelines:662

• The answer NA means that the paper does not include theoretical results.663

• All the theorems, formulas, and proofs in the paper should be numbered and cross-664

referenced.665

• All assumptions should be clearly stated or referenced in the statement of any theorems.666

• The proofs can either appear in the main paper or the supplemental material, but if667

they appear in the supplemental material, the authors are encouraged to provide a short668

proof sketch to provide intuition.669

• Inversely, any informal proof provided in the core of the paper should be complemented670

by formal proofs provided in appendix or supplemental material.671

• Theorems and Lemmas that the proof relies upon should be properly referenced.672

4. Experimental Result Reproducibility673

Question: Does the paper fully disclose all the information needed to reproduce the main ex-674

perimental results of the paper to the extent that it affects the main claims and/or conclusions675

of the paper (regardless of whether the code and data are provided or not)?676

Answer: [Yes]677

Justification: We have provided descriptions of experimental setups in the experiments678

section.679

Guidelines:680

• The answer NA means that the paper does not include experiments.681

• If the paper includes experiments, a No answer to this question will not be perceived682

well by the reviewers: Making the paper reproducible is important, regardless of683

whether the code and data are provided or not.684

• If the contribution is a dataset and/or model, the authors should describe the steps taken685

to make their results reproducible or verifiable.686

• Depending on the contribution, reproducibility can be accomplished in various ways.687

For example, if the contribution is a novel architecture, describing the architecture fully688

might suffice, or if the contribution is a specific model and empirical evaluation, it may689

be necessary to either make it possible for others to replicate the model with the same690

dataset, or provide access to the model. In general. releasing code and data is often691

one good way to accomplish this, but reproducibility can also be provided via detailed692

instructions for how to replicate the results, access to a hosted model (e.g., in the case693

of a large language model), releasing of a model checkpoint, or other means that are694

appropriate to the research performed.695

• While NeurIPS does not require releasing code, the conference does require all submis-696

sions to provide some reasonable avenue for reproducibility, which may depend on the697

nature of the contribution. For example698

(a) If the contribution is primarily a new algorithm, the paper should make it clear how699

to reproduce that algorithm.700

(b) If the contribution is primarily a new model architecture, the paper should describe701

the architecture clearly and fully.702

(c) If the contribution is a new model (e.g., a large language model), then there should703

either be a way to access this model for reproducing the results or a way to reproduce704

the model (e.g., with an open-source dataset or instructions for how to construct705

the dataset).706

(d) We recognize that reproducibility may be tricky in some cases, in which case707

authors are welcome to describe the particular way they provide for reproducibility.708

In the case of closed-source models, it may be that access to the model is limited in709

some way (e.g., to registered users), but it should be possible for other researchers710

to have some path to reproducing or verifying the results.711

5. Open access to data and code712

Question: Does the paper provide open access to the data and code, with sufficient instruc-713

tions to faithfully reproduce the main experimental results, as described in supplemental714

material?715
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Answer: [Yes]716

Justification: We have included the experimental code in the supplementary material.717

Guidelines:718

• The answer NA means that paper does not include experiments requiring code.719

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/720

public/guides/CodeSubmissionPolicy) for more details.721

• While we encourage the release of code and data, we understand that this might not be722

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not723

including code, unless this is central to the contribution (e.g., for a new open-source724

benchmark).725

• The instructions should contain the exact command and environment needed to run to726

reproduce the results. See the NeurIPS code and data submission guidelines (https:727

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.728

• The authors should provide instructions on data access and preparation, including how729

to access the raw data, preprocessed data, intermediate data, and generated data, etc.730

• The authors should provide scripts to reproduce all experimental results for the new731

proposed method and baselines. If only a subset of experiments are reproducible, they732

should state which ones are omitted from the script and why.733

• At submission time, to preserve anonymity, the authors should release anonymized734

versions (if applicable).735

• Providing as much information as possible in supplemental material (appended to the736

paper) is recommended, but including URLs to data and code is permitted.737

6. Experimental Setting/Details738

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-739

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the740

results?741

Answer: [Yes]742

Justification: We have provided descriptions of experimental setups in the experiments743

section.744

Guidelines:745

• The answer NA means that the paper does not include experiments.746

• The experimental setting should be presented in the core of the paper to a level of detail747

that is necessary to appreciate the results and make sense of them.748

• The full details can be provided either with the code, in appendix, or as supplemental749

material.750

7. Experiment Statistical Significance751

Question: Does the paper report error bars suitably and correctly defined or other appropriate752

information about the statistical significance of the experiments?753

Answer: [Yes]754

Justification: Please see Figures.755

Guidelines:756

• The answer NA means that the paper does not include experiments.757

• The authors should answer "Yes" if the results are accompanied by error bars, confi-758

dence intervals, or statistical significance tests, at least for the experiments that support759

the main claims of the paper.760

• The factors of variability that the error bars are capturing should be clearly stated (for761

example, train/test split, initialization, random drawing of some parameter, or overall762

run with given experimental conditions).763

• The method for calculating the error bars should be explained (closed form formula,764

call to a library function, bootstrap, etc.)765

• The assumptions made should be given (e.g., Normally distributed errors).766
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• It should be clear whether the error bar is the standard deviation or the standard error767

of the mean.768

• It is OK to report 1-sigma error bars, but one should state it. The authors should769

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis770

of Normality of errors is not verified.771

• For asymmetric distributions, the authors should be careful not to show in tables or772

figures symmetric error bars that would yield results that are out of range (e.g. negative773

error rates).774

• If error bars are reported in tables or plots, The authors should explain in the text how775

they were calculated and reference the corresponding figures or tables in the text.776

8. Experiments Compute Resources777

Question: For each experiment, does the paper provide sufficient information on the com-778

puter resources (type of compute workers, memory, time of execution) needed to reproduce779

the experiments?780

Answer: [Yes]781

Justification: We have shown the computer resources for this study in Appendix E.782

Guidelines:783

• The answer NA means that the paper does not include experiments.784

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,785

or cloud provider, including relevant memory and storage.786

• The paper should provide the amount of compute required for each of the individual787

experimental runs as well as estimate the total compute.788

• The paper should disclose whether the full research project required more compute789

than the experiments reported in the paper (e.g., preliminary or failed experiments that790

didn’t make it into the paper).791

9. Code Of Ethics792

Question: Does the research conducted in the paper conform, in every respect, with the793

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?794

Answer: [Yes]795

Justification: We have carefully reviewed and followed the NeurIPS Code of Ethics.796

Guidelines:797

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.798

• If the authors answer No, they should explain the special circumstances that require a799

deviation from the Code of Ethics.800

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-801

eration due to laws or regulations in their jurisdiction).802

10. Broader Impacts803

Question: Does the paper discuss both potential positive societal impacts and negative804

societal impacts of the work performed?805

Answer: [Yes]806

Justification: We have described the potential societal impacts of our study in Appendix A.807

Guidelines:808

• The answer NA means that there is no societal impact of the work performed.809

• If the authors answer NA or No, they should explain why their work has no societal810

impact or why the paper does not address societal impact.811

• Examples of negative societal impacts include potential malicious or unintended uses812

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations813

(e.g., deployment of technologies that could make decisions that unfairly impact specific814

groups), privacy considerations, and security considerations.815
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• The conference expects that many papers will be foundational research and not tied816

to particular applications, let alone deployments. However, if there is a direct path to817

any negative applications, the authors should point it out. For example, it is legitimate818

to point out that an improvement in the quality of generative models could be used to819

generate deepfakes for disinformation. On the other hand, it is not needed to point out820

that a generic algorithm for optimizing neural networks could enable people to train821

models that generate Deepfakes faster.822

• The authors should consider possible harms that could arise when the technology is823

being used as intended and functioning correctly, harms that could arise when the824

technology is being used as intended but gives incorrect results, and harms following825

from (intentional or unintentional) misuse of the technology.826

• If there are negative societal impacts, the authors could also discuss possible mitigation827

strategies (e.g., gated release of models, providing defenses in addition to attacks,828

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from829

feedback over time, improving the efficiency and accessibility of ML).830

11. Safeguards831

Question: Does the paper describe safeguards that have been put in place for responsible832

release of data or models that have a high risk for misuse (e.g., pretrained language models,833

image generators, or scraped datasets)?834

Answer: [NA]835

Justification: There are no such risks associated with the paper.836

Guidelines:837

• The answer NA means that the paper poses no such risks.838

• Released models that have a high risk for misuse or dual-use should be released with839

necessary safeguards to allow for controlled use of the model, for example by requiring840

that users adhere to usage guidelines or restrictions to access the model or implementing841

safety filters.842

• Datasets that have been scraped from the Internet could pose safety risks. The authors843

should describe how they avoided releasing unsafe images.844

• We recognize that providing effective safeguards is challenging, and many papers do845

not require this, but we encourage authors to take this into account and make a best846

faith effort.847

12. Licenses for existing assets848

Question: Are the creators or original owners of assets (e.g., code, data, models), used in849

the paper, properly credited and are the license and terms of use explicitly mentioned and850

properly respected?851

Answer: [NA]852

Justification: This study does not use existing assets.853

Guidelines:854

• The answer NA means that the paper does not use existing assets.855

• The authors should cite the original paper that produced the code package or dataset.856

• The authors should state which version of the asset is used and, if possible, include a857

URL.858

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.859

• For scraped data from a particular source (e.g., website), the copyright and terms of860

service of that source should be provided.861

• If assets are released, the license, copyright information, and terms of use in the862

package should be provided. For popular datasets, paperswithcode.com/datasets863

has curated licenses for some datasets. Their licensing guide can help determine the864

license of a dataset.865

• For existing datasets that are re-packaged, both the original license and the license of866

the derived asset (if it has changed) should be provided.867
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• If this information is not available online, the authors are encouraged to reach out to868

the asset’s creators.869

13. New Assets870

Question: Are new assets introduced in the paper well documented and is the documentation871

provided alongside the assets?872

Answer: [NA]873

Justification: This paper does not release new assets.874

Guidelines:875

• The answer NA means that the paper does not release new assets.876

• Researchers should communicate the details of the dataset/code/model as part of their877

submissions via structured templates. This includes details about training, license,878

limitations, etc.879

• The paper should discuss whether and how consent was obtained from people whose880

asset is used.881

• At submission time, remember to anonymize your assets (if applicable). You can either882

create an anonymized URL or include an anonymized zip file.883

14. Crowdsourcing and Research with Human Subjects884

Question: For crowdsourcing experiments and research with human subjects, does the paper885

include the full text of instructions given to participants and screenshots, if applicable, as886

well as details about compensation (if any)?887

Answer: [NA]888

Justification: This paper does not involve crowdsourcing nor research with human subjects.889

Guidelines:890

• The answer NA means that the paper does not involve crowdsourcing nor research with891

human subjects.892

• Including this information in the supplemental material is fine, but if the main contribu-893

tion of the paper involves human subjects, then as much detail as possible should be894

included in the main paper.895

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,896

or other labor should be paid at least the minimum wage in the country of the data897

collector.898

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human899

Subjects900

Question: Does the paper describe potential risks incurred by study participants, whether901

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)902

approvals (or an equivalent approval/review based on the requirements of your country or903

institution) were obtained?904

Answer: [NA]905

Justification: This paper does not involve crowdsourcing nor research with human subjects.906

Guidelines:907

• The answer NA means that the paper does not involve crowdsourcing nor research with908

human subjects.909

• Depending on the country in which research is conducted, IRB approval (or equivalent)910

may be required for any human subjects research. If you obtained IRB approval, you911

should clearly state this in the paper.912

• We recognize that the procedures for this may vary significantly between institutions913

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the914

guidelines for their institution.915

• For initial submissions, do not include any information that would break anonymity (if916

applicable), such as the institution conducting the review.917
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