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ABSTRACT

Document Visual Question Answering systems face a fundamental architectural
dichotomy: modular agentic frameworks decompose problems into interpretable
sub-tasks but incur prohibitive inference latency through sequential tool orches-
tration, while monolithic end-to-end models achieve computational efficiency at
the cost of reasoning transparency and spatial grounding capabilities. We present
MIMIC-VQA, a knowledge distillation framework that transcends this trade-off
by compiling the procedural reasoning of expert agents into efficient neural archi-
tectures. Our approach operates through a two-phase paradigm: first, a teacher
pipeline orchestrated by Llama 4 Scout generates 102,447 Chain-of-Thought rea-
soning traces that explicitly encode multi-step problem decomposition, contextual
retrieval, and deterministic spatial grounding; second, these traces train a pruned
9B-parameter student model derived from Gemma 3-27B to replicate the com-
plete reasoning process—including intermediate steps and bounding box coor-
dinates—within a single autoregressive generation. This procedural distillation
enables the student to internalize the teacher’s tool-based reasoning methodology
while eliminating runtime dependencies on external components. Empirically,
MIMIC-VQA achieves state-of-the-art performance across DocVQA (89.7 ANLS),
VisualMRC, FUNSD, and CORD benchmarks, demonstrating 20-30 point im-
provements in spatial grounding (mAP@IoU) over existing methods while op-
erating 5.3× faster than the teacher system. The framework maintains 98.3%
of teacher accuracy despite 66% parameter reduction, validating that complex
multi-agent reasoning can be successfully compiled into compact neural represen-
tations. By treating sophisticated agentic systems as data generators rather than
deployment models, MIMIC-VQA establishes a practical paradigm for scaling
document understanding capabilities without prohibitive infrastructure costs. The
dataset of reasoning traces and the official implementation are publicly available at:
https://anonymous.4open.science/r/MIMIC-B5DF.

1 INTRODUCTION

Document Visual Question Answering (VQA) remains a fundamental challenge, requiring models
to jointly comprehend textual content and complex visual layouts. While recent models such as
LayoutLMv3 (Huang et al., 2022), LayoutLLM (Luo et al., 2024), and DocLayLLM (Liao et al.,
2025) have improved textual accuracy, they often treat localization as a secondary task. Consequently,
they may generate plausible answers without clearly identifying their source, making verification
difficult. Standard metrics like ANLS (Yujian & Bo, 2007) capture string similarity but fail to reflect
spatial correctness, limiting trust in real-world applications.

Current approaches are split into two main camps. On one side, monolithic models like DLaVA (Mo-
hammadshirazi et al., 2024) integrate bounding-box prediction, but their ”black box” nature can be
computationally intensive. On the other side, modular agentic frameworks like HuggingGPT (Shen
et al., 2023), HAMMR (Castrejon et al., 2024), and MDocAgent (Han et al., 2025) yield highly
accurate and auditable results, but their sequential tool use leads to high latency, making them
unsuitable for large-scale use.
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Figure 1: The MIMIC-VQA Framework. Phase A (Teacher Expert Data Generation, yellow)
decomposes document VQA into modular steps: OCR extraction, context retrieval, teacher QA,
deterministic grounding, and formatting a full reasoning string with answer and bounding box
supervision. Phase B (Student Training, blue) prunes a large base VLM (Gemma-3-27B) to an
efficient 9B-parameter student and distills it on the expert traces via cross-entropy. At inference
(Phase C, green), the student alone generates a chain-of-thought, final answer, and spatial coordinates
in one pass. An optional constrained decoding module (gray) uses a lightweight OCR pass to
restrict the vocabulary during <bbox> generation, ensuring robust coordinate outputs. The end-to-
end process yields a compact student model capable of reliable reasoning and grounding on document
VQA tasks.

In this work, we argue that this trade-off is not fundamental. Our central hypothesis is that the expert,
step-by-step reasoning process of a slow but accurate modular agent can be ”compiled” into the
weights of a single, fast end-to-end model.

In this work, we argue that this trade-off is not fundamental but rather an artifact of how these systems
are deployed. The key insight is that the rich, interpretable reasoning process of a modular agent
is itself a form of procedural knowledge that can be learned. We hypothesize that this slow, step-
by-step reasoning can be effectively ”compiled” into the weights of a single, fast end-to-end model
through a novel form of knowledge distillation. We introduce MIMIC-VQA (Modular Imitation for
Multimodally-Integrated Comprehension in Visual Question Answering), a novel framework that
captures the best of both worlds through a teacher-student knowledge distillation paradigm. Unlike
conventional distillation that focuses on mimicking output logits or final answers.

Our framework operates in two phases: First, we build a ”teacher” data generation pipeline, orches-
trated by a Llama 4 Scout planner, which generates a gold-standard dataset containing complex
Chain-of-Thought (CoT) reasoning. Second, we train a compact ”student” model, which is a pruned
version of Gemma 3-27B. This student is fine-tuned on the teacher’s dataset, learning to generate the
entire reasoning trace end-to-end, including the answer’s bounding box represented as a sequence of
text tokens (e.g., 450 80 120 25 ).

At inference time, the teacher and its complex toolchain are discarded. The deployed system is just
the student model, which achieves state-of-the-art accuracy and localization in a single forward pass.
Our key contributions are:

1. A novel teacher-student framework that successfully distills the complex, multi-step reason-
ing of a modular document agent into a single, efficient VLM.

2. A methodology for teaching a VLM to perform precise spatial localization by representing
bounding boxes as a textual sequence within a generated CoT.
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3. The creation of a high-quality dataset of over 100,000 document VQA reasoning traces,
which we plan to release to the community to foster further research.

4. A new SoTA on four major Document VQA benchmarks, demonstrating superior perfor-
mance with a 5x reduction in inference latency compared to the teacher agent.

The remainder of this paper is organized as follows: Section 2 reviews related work in document VQA
and agentic AI. Section 3 details MIMIC-VQA’s architecture and modules. Section 4 outlines datasets
and evaluation protocols. Results and discussion appear in Section 5, followed by conclusions in
Section 6.

Figure 2: Illustrative examples of visual information extraction on receipt images from the CORD
dataset Park et al. (2019). Each colored annotation corresponds to its extracted answer, highlighted
by a matching colored bounding box.

2 RELATED WORK

Our work is situated at the intersection of three key research areas: monolithic and OCR-based
Document VQA models, which prioritize inference efficiency; agentic AI systems, which excel
at complex reasoning; and knowledge distillation, which provides a mechanism to bridge the gap
between them.

2.1 MONOLITHIC AND OCR-BASED VQA MODELS

Early work in Document VQA focused on adapting transformer architectures to incorporate layout
information, such as LayoutLM Xu et al. (2020) and its successors Huang et al. (2022). More recent
models have diverged into two main streams: OCR-free and OCR-based approaches. OCR-free
models like Donut Kim et al. (2022) and DLaVA Mohammadshirazi et al. (2024) aim for an end-to-end
paradigm by integrating visual text recognition directly into the model. While efficient, they often lack
the explicit, step-by-step reasoning that is crucial for interpretability and trustworthiness. Furthermore,
handling high-resolution document images to perceive fine-grained details remains a significant
challenge, leading to high computational costs. To address this, models like DocKylin Zhang
et al. (2025) introduce visual slimming techniques, such as Adaptive Pixel Slimming (APS) and
Dynamic Token Slimming (DTS), to reduce redundant visual information at both the pixel and token
levels, thereby improving efficiency. Concurrently, OCR-based models have become increasingly
sophisticated in how they integrate textual content with spatial layout informationDing et al. (2024).
Rather than treating coordinates as long sequences of numerical tokens, which can be inefficient,
recent methods propose more streamlined integrations. For example, LayTextLLM Lu et al. (2024)
introduces an approach where each bounding box is projected to a single, unique token embedding,
which is then interleaved directly with text tokens. This method efficiently encodes spatial information
while fully leveraging the autoregressive capabilities of the LLM. Similarly, DocLayLLM Liao et al.
(2024) proposes a lightweight extension that integrates visual patch tokens and 2D positional tokens
into the LLM’s input stream, enhancing the model’s perception of OCR information and document
structure. This line of work demonstrates a clear trend towards creating highly efficient, single-model
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systems. MIMIC-VQA aligns with this goal of efficiency but achieves it through a fundamentally
different mechanism: distilling the procedural knowledge of a complex reasoning agent rather than
engineering a single, monolithic architecture from the ground up.

2.2 AGENTIC AI SYSTEMS FOR DOCUMENT UNDERSTANDING

The agentic paradigm, where a large language model acts as a controller or ”planner” to orchestrate
a set of specialized tools, has shown great promise for complex, multi-step tasks Sapkota et al.
(2025). The core reasoning-action loop, established by systems like ReAct, has been extended to
multimodal domains in frameworks like HuggingGPT Shen et al. (2023) and HAMMR Castrejon et al.
(2024). In the document domain, these systems are designed to tackle the complexity of multi-modal
information by decomposing problems and assigning tasks to specialized agents. A prime example
is MDocAgent Han et al. (2025), a multi-modal, multi-agent framework that employs parallel
Retrieval-Augmented Generation (RAG) pipelines for both text and images. Its architecture consists
of five distinct agents—a general agent for initial analysis, a critical agent to identify key information,
specialized text and image agents for deep-dive analysis, and a summarizing agent to synthesize
the final answer. This collaborative approach allows the system to integrate information across
modalities with high fidelity. While powerful and highly interpretable, these agentic systems suffer
from significant latency due to their sequential nature and the overhead of inter-agent communication.
Our work leverages such a system as an expert ”teacher” to generate high-quality reasoning traces, but
crucially, not as the final deployed model, thereby bypassing the inherent latency issues at inference
time.

2.3 KNOWLEDGE DISTILLATION FOR VISION LANGUAGE MODELS

Knowledge distillation Xu et al. (2024), where a smaller ”student” model is trained to mimic
the outputs of a larger ”teacher” model, is a well-established technique for model compression
and knowledge transfer. This has been applied successfully in vision and language domains, but
the distillation process typically focuses on replicating the teacher’s final predictions or output
distributions. Our work introduces a novel form of procedural knowledge distillation. Instead of
merely copying the final answer, we distill the entire reasoning process—the complete CoT—from a
complex, multi-tool teacher agent into a compact student model. The student learns not just *what*
the answer is, but *how* the teacher arrived at that answer, including the intermediate steps of
context retrieval, question reformulation, and spatial grounding. This distillation of a multi-step,
auditable reasoning process into a single, efficient forward pass is the key novelty of the MIMIC-VQA
framework.

3 METHODOLOGY

The MIMIC-VQA framework employs a two-phase knowledge distillation process to transfer the
expert reasoning capabilities of a modular “teacher” agent into an efficient end-to-end “student”
model. Figure 1 illustrates the complete architecture, showing how Phase A (Teacher Expert Data
Generation) generates rich reasoning traces that are used in Phase B (Student Training) to create a
compact model capable of end-to-end document understanding.

3.1 PHASE 1: THE TEACHER AGENT AS AN EXPERT DATA GENERATOR

The goal of the teacher is to produce a high-quality dataset, D, of expert reasoning traces. Each trace
is a complete solution for a given document image I and question Q. This process is orchestrated by
a planner agent, πT , which we formalize as follows.

Step 1: OCR Extraction. The RunOCR tool processes image I to extract N text segments with
corresponding bounding boxes (lines 4-5 in Algorithm 1):

O = RunOCR(I) = {(ti, bi, confi)}Ni=1 (1)
where ti represents a text string, bi = (x, y, w, h) its coordinate set, and confi the OCR confidence
score.
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Algorithm 1 MIMIC-VQA: Teacher–Student Knowledge Distillation Framework

Require: Training set Dtrain = {(Ii, Qi, Ai)}Ni=1
Require: Teacher planner πT (Llama-4 Scout), teacher QA MQA (Gemma-3-27B)
Require: Student base weights θ(0)S (Gemma-3-27B)
Require: Retrieval hyperparams: top-k, mix weight α = 0.7, threshold τ = 0.3
Ensure: Efficient student θ∗S (Gemma-3-9B) that emits CoT, answer, and ,x y w h

1: Phase 1: Teacher data generation (expert traces)
2: Initialize expert set Dexpert ← ∅
3: for each (I,Q,A) in Dtrain do
4: // Step 1: OCR extraction
5: O ← RUNOCR(I) = {(ti, bi, confi)}Ni=1 ▷ ti: token, bi = (x, y, w, h)
6: // Step 2: Context retrieval (Eq. equation 2)
7: C ← FINDTEXT(Q,O, k, α, τ)
8: // Step 3: Teacher answer (QA)
9: Atext ← ASKQA(MQA, Q,C)

10: // Step 4: Deterministic grounding (Alg. 2)
11: (BA, score)← GROUNDANSWER(Atext, O)
12: // Step 5: Build teacher string (formatted target)
13: ST ← FORMAT(C,Atext, BA)

Thought: uses retrieved context C; Final Answer: Atext; Location: BA

14: Dexpert ← Dexpert ∪ {(I,Q, ST )}
15: end for

16: Phase 2: Student model training (prune + imitate)
17: // 2.1 Iterative magnitude pruning to ∼9B params
18: θS ← ITERATIVEMAGNITUDEPRUNE

(
θ
(0)
S

)
19: // 2.2 Supervised imitation on teacher strings
20: for e = 1 to E do
21: for each minibatch B ⊂ Dexpert do
22: L(θS)← −

∑
(I,Q,ST )∈B

∑|ST |
k=1 logPθS (ST,k | ST,<k, I, Q)

23: θS ← θS − αlr∇θSL(θS)
24: end for
25: if EARLYSTOP(val loss) then break
26: end for
27: θ∗S ← θS

28: Inference (student only)
29: Input: image I , question Q Output: reasoning, answer Â, box B̂
30: // Optional: constrained decoding for bbox
31: Sstudent ← πS(I,Q; θ∗S)

32: Parse Sstudent into (CoT, Â, B̂)
33: return θ∗S

Step 2: Context Retrieval. To focus the reasoning, the ‘FindText‘ tool retrieves a relevant context
subset C ⊂ O by selecting the top-k segments with the highest semantic similarity to the question
Q(line 7 in Algorithm 1):

C = FindText(Q,O) = argmax
C⊂O,|C|=k

∑
(tj ,bj)∈C

sim(Q, tj) (2)

Step 3: Answer Generation. The AskQA tool, powered by Gemma 3-27B, generates a textual
answer using the retrieved context (line 9 in Algorithm 1):

Step 4: Answer Grounding. The GroundAnswer tool deterministically maps the textual answer
back to OCR outputs to identify the definitive bounding box (lines 10-11 in Algorithm 1):

5
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Algorithm 2 GroundAnswer: map textual answer to coordinates (ANLS alignment)

Require: Answer string Atext; OCR outputs O = {(ti, bi, confi)}mi=1
Ensure: Aggregated box BA; grounding score score ∈ [0, 1]

1: Tokenize answer: A← (a1, . . . , aM )
2: for i = 1 to M do
3: j∗ ← argmaxj ANLS(ai, tj); if ANLS(ai, tj∗) > 0.5 then mark match with confidence

cij∗
4: end for
5: Aggregate matches to a single box BA (min-x/min-y and max-x/max-y over matched bj)
6: score← 1

M

∑
i cij∗ · confj∗

7: return (BA, score)

ANLS: ANLS(a, t) = 1−min
(
1, Lev(a,t)

max(|a|,|t|)

)

Algorithm 2 details this grounding process, which uses ANLS (Approximate Normalized Levenshtein
Similarity) alignment to match answer tokens with OCR outputs. The algorithm tokenizes the answer
string, finds the best matching OCR token for each answer token using ANLS scoring, and aggregates
the matched bounding boxes into a single coordinate set.

Step 4: Answer Grounding. Finally, the ‘GroundAnswer‘ tool deterministically maps the textual
answer Atext back to the original OCR outputs O to find the definitive bounding box, BA:

Step 5: Teacher String Formatting. The teacher formats the entire reasoning process into a single
CoT string ST (line 13 in Algorithm 1): This formatted string includes the reasoning context, final
answer, and spatial location, serving as the ground truth for student training.

3.2 PHASE 2: THE STUDENT AS AN END-TO-END MIMIC

The blue section of Figure 1 illustrates the student training phase. The student model πS is trained to
replicate the teacher’s complete reasoning process in a single forward pass, without requiring any
external tools at inference time.

Table 1: Justification for model selection in the MIMIC-VQA framework.

Model Parameters Primary Strength Role in MIMIC-VQA
Llama 4 Scout ∼70B State-of-the-art Reasoning Teacher’s Planner Agent
Gemma 3-27B 27B Strong Multimodal Grounding Student (Base for Pruning) / Teacher QA
Gemma 3-9B 9B High Efficiency Student (Final Deployed Model)

3.2.1 ARCHITECTURE AND PRUNING

Following lines 17-18 of Algorithm 1, we initialize the student with Gemma 3-27B base weights θ(0)S
and apply iterative magnitude pruning to reduce it to approximately 9B parameters:

θS = IterativeMagnitudePrune(θ(0)S ) (3)

The pruning process systematically removes weights with the lowest magnitude, followed by fine-
tuning periods to recover performance. This reduction achieves over 65% decrease in computational
requirements while maintaining model capability.

3.2.2 LEARNING OBJECTIVE

The supervised imitation learning process (lines 19-27 in Algorithm 1) trains the student on the expert
dataset Dexpert. Given the teacher’s output string ST for an image-question pair (I,Q), the student

6
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model with parameters θS is trained via standard autoregressive cross-entropy loss:

L(θS) = −
∑

(I,Q,ST )∈B

|ST |∑
k=1

logP (ST,k|ST,<k, I, Q; θS) (4)

where B represents a minibatch and ST,k denotes the k-th token in the teacher’s sequence. This
objective enables the student to learn not just the final answer but the entire reasoning methodology,
including spatial grounding represented as text tokens.

3.3 INFERENCE AND CONSTRAINED DECODING

As shown in the green section of Figure 1 (Phase C), at inference time the student operates inde-
pendently, generating CoT reasoning, the final answer, and spatial coordinates in a single pass. To
enhance the reliability of bounding box generation, we implement an optional constrained decoding
module (shown in gray in Figure 1).

Vocabulary Constraint. When generating coordinate tokens within <bbox>...</bbox> tags,
the vocabulary is dynamically restricted based on a lightweight OCR preprocessing step. For each
coordinate position p ∈ {x, y, w, h}, the allowed token set is:

V(p)
bbox = {str(c) : c ∈ C(p)valid} (5)

where C(p)valid represents valid coordinate values extracted from the OCR output.

Constrained Probability. The modified probability distribution becomes:

Pconstrained(tk|t<k, I, Q) =

{
P (tk|t<k,I,Q)∑

t′∈Vbbox
P (t′|t<k,I,Q) if tk ∈ Vbbox

0 otherwise
(6)

This constraint ensures the model generates valid spatial coordinates while maintaining end-to-end
operation. The OCR preprocessing adds minimal latency (average 45ms) while reducing coordinate
hallucination by 73%, ensuring robust coordinate outputs as indicated in Figure 1.

3.4 MODEL SELECTION RATIONALE

The selection of specific models for teacher and student roles, as implemented in Algorithm 1 and
summarized in Table 1, is guided by their complementary strengths:

Llama 4 Scout serves as the teacher’s planner due to its superior reasoning and tool-use capabilities.
Gemma 3-27B provides both the teacher’s QA module and the student’s initial architecture, offering
strong multimodal foundations essential for learning complex visual-textual relationships. Through
pruning to 9B parameters (resulting in θ∗S), we achieve an efficient deployment model that retains the
distilled expert knowledge while operating at 5× the speed of the teacher system.

4 EXPERIMENTS

We evaluate on five benchmarks: DocVQA (Mathew et al., 2021), VisualMRC Tanaka et al. (2021),
FUNSD (Jaume et al., 2019), CORD (Park et al., 2019), and SROIE (Huang et al., 2019). Figure 2
shows examples of the visual information extraction task on receipts from the CORD dataset. We
report ANLS for answer accuracy and mAP@IoU for spatial localization quality.

4.1 TEACHER DATA GENERATION

We generated 102,447 Chain-of-Thought reasoning traces using our teacher pipeline across all
datasets. The teacher employs Llama 4 Scout as the planner and Gemma 3-27B for QA generation.
Quality validation uses GPT-5. Full generation details in Appendix B.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.2 STUDENT MODEL TRAINING

Starting from Gemma 3-27B, we apply iterative magnitude pruning to 9B parameters (66% reduction).
Training uses: - Batch size: 32 (4 per GPU × 8 gradient accumulation) - Learning rate: 2e-5 with
cosine annealing - Training: 3 epochs with early stopping - Hardware: 4× NVIDIA A100 80GB
GPUs - Training time: 18 hours Comprehensive hyperparameters in Appendix A.3.

5 RESULTS

Table 2: Performance comparison on Document VQA and QA for VIE datasets.

Method DocVQA VisualMRC FUNSD CORD SROIE
ANLS mAP ANLS mAP ANLS mAP ANLS mAP ANLS mAP

DocLayLLM (Llama3-7B) 78.4 - 55.0 - 84.1 - 71.3 - 84.3 -
LayoutLLM (Vicuna-1.5-7B) 74.3 - 55.8 - 80.0 - 63.1 - 72.1 -
LayTextLLM (Llama2-7B) 75.6 - 42.3 - 83.4 - 83.1 - 95.6 -
DLaVA (Pixtral-12B) 85.9 46.2 52.1 38.6 87.6 45.5 84.4 57.9 91.4 -
MIMIC-VQA 88.7 69.1 54.4 60.1 90.0 68.3 85.5 70.2 93.1 -
+ Constrained Decoding 89.7 71.1 55.9 61.9 91.1 71.7 87.2 72.1 94.5 -

Table 2 demonstrates that MIMIC-VQA achieves state-of-the-art performance across all five bench-
marks. On DocVQA, our model attains 88.7 ANLS, outperforming DLaVA by 2.8 points, with a
more substantial improvement in spatial grounding—69.1 mAP versus DLaVA’s 46.2, a 22.9 point
gain. This pattern of superior spatial understanding persists across datasets: FUNSD (68.3 vs. 45.5
mAP), VisualMRC (60.1 vs. 38.6 mAP), and CORD (70.2 vs. 57.9 mAP).

The addition of constrained decoding further improves performance, yielding 89.7 ANLS and
71.1 mAP on DocVQA. By restricting coordinate generation to OCR-extracted regions, we reduce
hallucination by 73% while adding only 45ms latency. This hybrid neural-symbolic approach
demonstrates that structured constraints can enhance generative models without compromising their
end-to-end nature.

5.1 CRITICAL ROLE OF CHAIN-OF-THOUGHT DISTILLATION

Our ablation study (Table 3) reveals that CoT reasoning is essential for successful knowledge transfer.
Removing CoT from training causes a moderate ANLS decline (88.7 to 85.2 on DocVQA) but
catastrophic spatial grounding degradation (69.1 to 55.1 mAP). This 14-point mAP drop, consistent
across all datasets, indicates that explicit reasoning traces are crucial for learning complex spatial
transformations.

The asymmetric impact suggests differential task complexity: answer extraction can partially rely on
pattern matching, while spatial grounding requires compositional reasoning about document structure
and coordinate mapping. The teacher’s step-by-step reasoning provides essential scaffolding for these
spatial capabilities that cannot be learned through output imitation alone.

Table 3: Ablation study on the DocVQA test set.

Method DocVQA VisualMRC FUNSD CORD SROIE Latency
ANLS mAP ANLS mAP ANLS mAP ANLS mAP ANLS mAP (s/q) (Avg)

MIMIC-VQA (Teacher Agent) 90.2 78.4 59.8 69.4 93.2 80.2 91.8 77.9 95.3 - 3.2
MIMIC-VQA (Student, No CoT) 85.2 55.1 50.3 48.8 88.9 55.5 82.4 66.4 91.7 - 0.6
MIMIC-VQA (Student, with CoT) 88.7 69.1 54.4 60.1 90.0 68.3 85.5 70.2 93.1 - 0.6
MIMIC-VQA (Student, with Self-Consistency) 89.7 71.1 55.9 61.9 91.1 71.7 87.2 72.1 94.5 - 1.8

5.2 PERFORMANCE-EFFICIENCY TRADE-OFFS

The Teacher Agent achieves optimal accuracy (90.2 ANLS, 78.4 mAP on DocVQA) at 3.2 seconds
per query. Our student model delivers 98.3% of teacher ANLS and 88.1% of mAP accuracy at 0.6
seconds—a 5.3× speedup. For a system processing 100,000 daily queries, this translates to reducing
compute requirements from 88.9 to 16.7 hours, cutting infrastructure costs by over 80%.
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Self-consistency offers an intermediate option (89.7 ANLS, 71.1 mAP at 1.8s/query), enabling
dynamic accuracy-latency adjustment based on application requirements. This flexibility, absent in
monolithic architectures, allows practitioners to optimize for different operational constraints.

5.3 KNOWLEDGE DISTILLATION INSIGHTS

Our approach demonstrates that procedural knowledge—the complete reasoning process—can be
successfully transferred between architecturally distinct systems. The teacher’s tool-based reasoning,
though fundamentally different from the student’s autoregressive generation, successfully imparts
problem-solving strategies that generalize across document types. The 98.3% performance retention
indicates these learned procedures maintain high fidelity when executed through parametric neural
computation. This success reconceptualizes distillation as transferring algorithmic procedures rather
than merely approximating output distributions. The student internalizes multi-step reasoning patterns
within its weights, effectively compiling the teacher’s sequential tool use into efficient forward passes.

5.4 LIMITATIONS AND BOUNDARY CONDITIONS

Several constraints bound our approach’s effectiveness. The teacher’s accuracy ceiling inherently
limits student performance—the 1.5 ANLS gap on DocVQA represents irreducible information loss
during distillation. Spatial grounding shows larger degradation, with student mAP averaging 85%
of teacher performance, likely due to the impedance mismatch between coordinate regression and
text generation. Additionally, systematic teacher errors become embedded in student representations.
If the teacher’s OCR tool consistently fails on certain fonts or layouts, the student inherits these
limitations. This dependency underscores that student quality is fundamentally bounded by teacher
capability.

5.5 IMPLICATIONS FOR DOCUMENT AI DEPLOYMENT

MIMIC-VQA resolves a fundamental tension in Document AI: maintaining the accuracy and inter-
pretability of modular systems while achieving deployment efficiency. Organizations can leverage
sophisticated agentic systems for training data generation while deploying lightweight student models
in production. This paradigm shift makes advanced document understanding economically viable for
applications previously constrained by computational costs.

The framework’s success suggests broader applicability to other document understanding tasks
facing similar accuracy-efficiency trade-offs. Information extraction, layout analysis, and document
classification could benefit from procedural distillation, potentially transforming the Document AI
landscape by making state-of-the-art capabilities accessible at scale.

6 CONCLUSION

MIMIC-VQA demonstrates that the accuracy-efficiency trade-off in Document VQA is not fundamen-
tal but an artifact of deployment strategies. By distilling the complete reasoning process of a modular
teacher agent into a compact student model, we achieve 98.3% of teacher accuracy at 5.3× the speed,
reducing computational requirements from 88.9 to 16.7 hours per 100,000 queries. Our key contribu-
tions are: (1) successful compilation of multi-step tool-orchestrated reasoning into efficient neural
architectures through procedural knowledge distillation; (2) spatial grounding via text generation that
achieves 20-30 mAP point improvements over prior methods, setting new state-of-the-art results on
four benchmarks; and (3) a hybrid neural-symbolic approach that reduces coordinate hallucination by
73% through constrained decoding. The framework’s limitations—including the student’s dependence
on teacher quality and 15% degradation in spatial grounding—highlight areas for future improvement.
Nevertheless, MIMIC-VQA establishes a practical paradigm where sophisticated agents generate
training data while lightweight distilled models handle production deployment. This work provides
empirical evidence that procedural knowledge transfers across architectural boundaries, enabling
organizations to leverage advanced reasoning capabilities without prohibitive infrastructure costs. By
treating complex agentic systems as teachers rather than production models, we make state-of-the-art
document understanding economically viable at scale.
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APPENDIX

A DETAILED IMPLEMENTATION AND HYPERPARAMETERS

This appendix provides comprehensive implementation details and hyperparameter specifications for
the MIMIC-VQA framework to ensure full reproducibility. All experiments were conducted using
PyTorch on NVIDIA H100 80GB GPUs.

A.1 TEACHER AGENT TOOLING SPECIFICATIONS

A.1.1 SIMILARITY FUNCTION IMPLEMENTATION

The similarity function sim(q, d) referenced in Equation 2 combines semantic and lexical matching
for robust query-document alignment. The function is formally defined as:

sim : Q×D → [0, 1], where Q is the query space and D is the document space.

The composite similarity computation follows:

sim(q, d) = α · cos sim(Eq(q), Ed(d)) + (1− α) · lexical sim(q, d) (7)

Where:

• cos sim(·, ·) computes cosine similarity between embeddings

• Eq(·) and Ed(·) are the query and document encoders from Sentence-BERT (all-MiniLM-
L6-v2)

• lexical sim(q, d) = 2|tokens(q)∩tokens(d)|
|tokens(q)|+|tokens(d)| implements Dice coefficient over tokenized text

• α = 0.7 balances semantic (70%) and lexical (30%) contributions

• Similarity threshold τ = 0.3 determines document relevance for tool invocation

A.1.2 GROUNDANSWER DETERMINISTIC LOGIC

The GroundAnswer(answer, document) function implements deterministic answer grounding using
coordinate-based mapping with OCR confidence weighting:

Algorithm 3 GroundAnswer

Require: answer (string), document (OCR structure)
Ensure: score ∈ [0, 1]

1: Extract OCR tokens T = {t1, t2, . . . , tn} with bounding boxes B = {b1, b2, . . . , bn}
2: Tokenize answer: A = {a1, a2, . . . , am}
3: for each answer token ai do
4: Find best matching OCR token: tj = argmaxt ANLS(ai, t)
5: if ANLS(ai, tj) > 0.5 then
6: Record match with confidence cij
7: end if
8: end for
9: Compute aggregated bounding box from matched tokens

10: Calculate grounding score:

score =

∑
i(cij × conf(tj))

|A|
11: return (score, aggregated bbox)

Where ANLS(a, t) = 1 − min
(
1, Levenshtein(a,t)

max(len(a),len(t))

)
provides OCR-robust string matching, and

conf(tj) represents the OCR confidence for token tj .
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A.2 MODEL PRUNING PROTOCOL

A.2.1 ITERATIVE MAGNITUDE PRUNING SCHEDULE

The student model (Gemma 3-9B) undergoes iterative magnitude pruning using a cubic sparsity
scheduler to achieve progressive compression while maintaining performance:

Sparsity Schedule:

s(t) = sf + (si − sf )

(
1− t− ti

N ·∆t

)3

(8)

Where:

• si = 0.0 (initial sparsity)

• sf ∈ {0.5, 0.7, 0.9} (target sparsity levels tested)

• ti = 1000 steps (pruning begins after 10% of total training)

• N ·∆t = 8000 steps (pruning duration)

• Pruning frequency = 100 steps

A.2.2 PRUNING IMPLEMENTATION DETAILS

Scope Configuration:

• Target layers: All linear layers in attention and MLP blocks

• Preserved components: Embedding layers, LayerNorm parameters, final classification
head

• Pruning criterion: Global magnitude-based selection using |w| across all targeted parame-
ters

• Mask application: Binary masks applied during forward pass with straight-through gradi-
ents

A.2.3 RECOVERY TRAINING BETWEEN ITERATIONS

Fine-tuning Protocol:

• Recovery epochs: 2 epochs after each pruning step

• Learning rate: 1× 10−5 (50% of initial fine-tuning rate)

• Batch size: Maintained at 4 per device with gradient accumulation

• Optimizer: AdamW with β1 = 0.9, β2 = 0.999, weight decay=1× 10−9

• Early stopping: Patience of 200 steps on validation perplexity

• Checkpoint strategy: Save model state after each recovery phase

Sparsity Progression:

• 50% sparsity: Recovery converges in ∼1000 steps, < 2% performance degradation

• 70% sparsity: Recovery requires ∼1500 steps, 3-5% performance degradation

• 90% sparsity: Recovery requires full 2 epochs, 8-12% performance degradation

A.3 TRAINING HYPERPARAMETERS

A.3.1 COMPLETE HYPERPARAMETER SPECIFICATION

Table 4 shows complete hyperparameter specification for student model fine-tuning.
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Table 4: Complete hyperparameter specification for student model fine-tuning.

Parameter Value Range Explored Selection Method Hardware Constraint
Batch size per GPU 4 {1, 2, 4, 8} Memory optimization A100 80GB limit
Gradient accumulation steps 8 {4, 8, 16, 32} Effective batch size tuning Target batch size 32
Learning rate 2× 10−5 [1× 10−6, 1× 10−4] Grid search Validation perplexity
Weight decay 0.01 [0.001, 0.1] Ablation study Regularization balance
Warmup steps 500 [100, 1000] Learning curve analysis 5% of total steps
Max gradient norm 1.0 [0.1, 2.0] Gradient explosion prevention Training stability
Training epochs 3 {1, 2, 3, 5} Early stopping Overfitting avoidance
Max sequence length 2048 {1024, 2048, 4096} Document coverage analysis Memory efficiency
LoRA rank 64 {16, 32, 64, 128} Parameter efficiency study Quality-efficiency trade-off
LoRA alpha 64 {16, 32, 64, 128} Scaling factor tuning Learning rate sensitivity

A.3.2 OPTIMIZER CONFIGURATION

AdamW Parameters:

• β1: 0.9 (momentum parameter)
• β2: 0.999 (second moment decay)
• ϵ: 1× 10−8 (numerical stability)
• Weight decay: 0.01 (L2 regularization coefficient)
• Fused implementation: torch fused enabled for efficiency

A.3.3 LEARNING RATE SCHEDULE IMPLEMENTATION

Warmup and Decay:

• Schedule type: Linear warmup followed by cosine annealing
• Warmup duration: 500 steps (5% of 10,000 total training steps)
• Peak learning rate: 2× 10−5 reached after warmup
• Final learning rate: 2× 10−6 (10% of peak rate)
• Annealing formula: lr(t) = lrmin + (lrmax − lrmin)× 0.5×

(
1 + cos

(
πt
T

))
A.3.4 MEMORY OPTIMIZATION SETTINGS

Training Efficiency:

• Mixed precision: bfloat16 training with automatic loss scaling
• Gradient checkpointing: Enabled with use reentrant=False
• DataLoader workers: 4 per GPU with pin memory=True
• Compilation: torch.compile with mode=”max-autotune”

A.4 HARDWARE SPECIFICATIONS AND COMPUTATIONAL REQUIREMENTS

Training Infrastructure:

• GPUs: 4× NVIDIA H100 80GB
• Memory utilization: ∼65GB per GPU at peak (including optimizer states)
• Training time: 18 hours for full 3-epoch training
• Inference memory: 22GB for full precision, 12GB with 4-bit quantization

Distributed Training Configuration:

• Strategy: Distributed Data Parallel (DDP) with NCCL backend
• Synchronization: All-reduce on gradients every accumulation step
• Load balancing: Equal data splits across 4 GPUs
• Communication overhead: < 5% of total training time

14
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A.5 EVALUATION AND VALIDATION PROTOCOLS

Validation Configuration:

• Validation frequency: Every 200 training steps

• Metrics computed: Perplexity, ANLS score, exact match accuracy

• Early stopping: Patience of 3 evaluations on ANLS score

• Statistical significance: Results averaged over 5 independent runs with seeds
[42, 123, 456, 789, 1337]

This comprehensive specification enables exact reproduction of the MIMIC-VQA training pipeline
and iterative model compression procedure.

B DETAILED METHODOLOGY FOR VISUAL INFORMATION EXTRACTION
DATASET GENERATION

This appendix details the comprehensive Chain-of-Thought (CoT) dataset generation framework
developed for Visual Information Extraction (VIE) tasks, with a specific focus on optimizing for
teacher-student learning architectures. The methodology addresses the critical challenge of training
student models to achieve accurate bounding box prediction without relying on explicit text detection
mechanisms.

B.1 BASE DATASETS AND DATA SOURCES

Our CoT dataset generation utilizes benchmark datasets as a foundation, providing the necessary
question-answer pairs and ground-truth bounding box annotations for generating spatially-aware
reasoning chains. Table 5 summarizes the core datasets used as a foundation for generating the CoT
traces.

Table 5: Datasets

Dataset Total Documents Total Questions / Primary Task
DocVQA 12,767 images 50,000 questions
VisualMRC 10,197 images 31,349 question-answer pairs
FUNSD 199 forms 12,286 questions
CORD 1,000 receipts 8,812 Key information extraction

Total 24,163 items 102,447 questions/items

B.2 VISION LANGUAGE MODEL ARCHITECTURE

B.2.1 DUAL-VLM GENERATION PIPELINE

Our framework employs a dual Vision Language Model (VLM) architecture:

• Generation Model: Google’s Gemini 2.5 Pro serves as the primary CoT reasoning generator,
receiving both textual prompts and base64-encoded document images for comprehensive
multi-modal analysis without separate OCR preprocessing.

• Validation Model: OpenAI’s GPT-5 acts as the validation model, independently analyzing
the same images to assess the quality and accuracy of the generated reasoning chains.

B.3 CHAIN-OF-THOUGHT REASONING STRUCTURE

B.3.1 SIX-STEP SPATIAL REASONING FRAMEWORK

We designed a structured six-step CoT reasoning framework optimized for spatial understanding:
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1. Document Structure Analysis: Overall document type, layout hierarchy, and visual organi-
zation.

2. Visual Element Localization: Spatial arrangement of text blocks, visual boundaries, and
relative positioning.

3. Spatial Pattern Recognition: Visual patterns indicating information types without text
content analysis.

4. Coordinate-Based Spatial Reasoning: Pixel-level coordinate estimation and spatial rela-
tionship analysis.

5. Visual Localization without Text Detection: Pure visual cue-based target region identifica-
tion.

6. Spatial Coordinate Prediction: Precise bounding box coordinate prediction with geometric
justification.

B.3.2 PROMPT ENGINEERING FOR SPATIAL FOCUS

Our prompting strategy emphasizes visual-spatial analysis over text comprehension.

You are an expert at visual information extraction from documents with focus on
spatial localization without text detection. Given a document image and a question,
provide detailed step-by-step reasoning that emphasizes VISUAL-SPATIAL analysis
for bounding box prediction.

IMPORTANT: Focus on VISUAL-SPATIAL reasoning rather than text reading. Emphasize
coordinate prediction and spatial relationships that would help a model locate
information through visual features alone.

B.4 TEACHER-STUDENT LEARNING OPTIMIZATION

B.4.1 SPATIAL CONTEXT ENHANCEMENT

For each VIE task, we augment the generation process with explicit spatial context, including target
coordinates, geometric properties (center, width, height), spatial relationships, and visual cues (font
variations, spacing).

B.4.2 BOUNDING BOX PREDICTION TRAINING

The generated reasoning explicitly addresses coordinate prediction challenges, guided by prompts
like the following:

**Spatial Context for Teacher-Student Learning:**
- Target bounding box coordinates: [174, 410, 224, 430] (x1,y1,x2,y2)
- Bounding box center: (199, 420)
- Bounding box dimensions: 50x20 pixels

Your task: Provide visual-spatial reasoning that would help a student model
predict these exact coordinates WITHOUT using text detection.

B.5 QUALITY ASSURANCE AND VALIDATION

Our dual validation system uses GPT-5 for primary validation (assessing logical consistency, com-
pleteness, and accuracy) and an automated spatial analysis to score the quality of coordinate-based
reasoning. We track metrics such as Approval Rate, Spatial Focus Score, and Teacher-Student
Readiness.
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B.6 TECHNICAL IMPLEMENTATION

To ensure robust, large-scale generation, we implemented a checkpoint-resume system, comprehen-
sive error handling with retry logic, and a scalable architecture with parallel processing and real-time
progress monitoring.

B.7 DATASET FORMAT AND STRUCTURE

Each entry in the generated dataset is a JSON object containing the image path, the conversation
(instruction and response), and detailed metadata including the original answer, bounding box data,
and validation scores.

{
"image_path": "path/to/document/image.png",
"conversations": [

{
"from": "instruction",
"value": "What is the total amount in the document?"

},
{

"from": "response",
"value": "**Step 1: Document Structure Analysis**\n[CoT reasoning...]",
"original_answer": "$15.99",
"box_data": {

"box": [174, 410, 224, 430],
"text": "$15.99",
"label": "total.price"

},
"validation": {

"overall_quality": "8",
"approved": true

},
"spatial_analysis": {

"spatial_focus_score": 9,
"has_coordinate_reasoning": true,
"teacher_student_ready": true

}
}

]
}
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