MIMIC-VQA: COMPILING AGENTIC REASONERS INTO EFFICIENT DOCUMENT VQA MODELS

Anonymous authors

000

001

002003004

010 011

012

013

014

016

017

018

019

021

024

025

026

027

028

029

031

034

037 038 039

040 041 042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Document Visual Question Answering systems face a fundamental architectural dichotomy: modular agentic frameworks decompose problems into interpretable sub-tasks but incur prohibitive inference latency through sequential tool orchestration, while monolithic end-to-end models achieve computational efficiency at the cost of reasoning transparency and spatial grounding capabilities. We present MIMIC-VQA, a knowledge distillation framework that transcends this trade-off by compiling the procedural reasoning of expert agents into efficient neural architectures. Our approach operates through a two-phase paradigm: first, a teacher pipeline orchestrated by Llama 4 Scout generates 102,447 Chain-of-Thought reasoning traces that explicitly encode multi-step problem decomposition, contextual retrieval, and deterministic spatial grounding; second, these traces train a pruned 9B-parameter student model derived from Gemma 3-27B to replicate the complete reasoning process—including intermediate steps and bounding box coordinates—within a single autoregressive generation. This procedural distillation enables the student to internalize the teacher's tool-based reasoning methodology while eliminating runtime dependencies on external components. Empirically, MIMIC-VQA achieves state-of-the-art performance across DocVQA (89.7 ANLS), VisualMRC, FUNSD, and CORD benchmarks, demonstrating 20-30 point improvements in spatial grounding (mAP@IoU) over existing methods while operating 5.3× faster than the teacher system. The framework maintains 98.3% of teacher accuracy despite 66% parameter reduction, validating that complex multi-agent reasoning can be successfully compiled into compact neural representations. By treating sophisticated agentic systems as data generators rather than deployment models, MIMIC-VQA establishes a practical paradigm for scaling document understanding capabilities without prohibitive infrastructure costs. The dataset of reasoning traces and the official implementation are publicly available at: https://anonymous.4open.science/r/MIMIC-B5DF.

1 Introduction

Document Visual Question Answering (VQA) remains a fundamental challenge, requiring models to jointly comprehend textual content and complex visual layouts. While recent models such as LayoutLMv3 (Huang et al., 2022), LayoutLLM (Luo et al., 2024), and DocLayLLM (Liao et al., 2025) have improved textual accuracy, they often treat localization as a secondary task. Consequently, they may generate plausible answers without clearly identifying their source, making verification difficult. Standard metrics like ANLS (Yujian & Bo, 2007) capture string similarity but fail to reflect spatial correctness, limiting trust in real-world applications.

Current approaches are split into two main camps. On one side, monolithic models like DLaVA (Mohammadshirazi et al., 2024) integrate bounding-box prediction, but their "black box" nature can be computationally intensive. On the other side, modular agentic frameworks like HuggingGPT (Shen et al., 2023), HAMMR (Castrejon et al., 2024), and MDocAgent (Han et al., 2025) yield highly accurate and auditable results, but their sequential tool use leads to high latency, making them unsuitable for large-scale use.

Figure 1: The MIMIC-VQA Framework. Phase A (Teacher Expert Data Generation, yellow) decomposes document VQA into modular steps: OCR extraction, context retrieval, teacher QA, deterministic grounding, and formatting a full reasoning string with answer and bounding box supervision. Phase B (Student Training, blue) prunes a large base VLM (Gemma-3-27B) to an efficient 9B-parameter student and distills it on the expert traces via cross-entropy. At inference (Phase C, green), the student alone generates a chain-of-thought, final answer, and spatial coordinates in one pass. An optional constrained decoding module (gray) uses a lightweight OCR pass to restrict the vocabulary during

box> generation, ensuring robust coordinate outputs. The end-to-end process yields a compact student model capable of reliable reasoning and grounding on document VQA tasks.

In this work, we argue that this trade-off is not fundamental. Our central hypothesis is that the expert, step-by-step reasoning process of a slow but accurate modular agent can be "compiled" into the weights of a single, fast end-to-end model.

In this work, we argue that this trade-off is not fundamental but rather an artifact of how these systems are deployed. The key insight is that the rich, interpretable reasoning process of a modular agent is itself a form of procedural knowledge that can be learned. We hypothesize that this slow, step-by-step reasoning can be effectively "compiled" into the weights of a single, fast end-to-end model through a novel form of knowledge distillation. We introduce **MIMIC-VQA** (Modular Imitation for Multimodally-Integrated Comprehension in Visual Question Answering), a novel framework that captures the best of both worlds through a teacher-student knowledge distillation paradigm. Unlike conventional distillation that focuses on mimicking output logits or final answers.

Our framework operates in two phases: First, we build a "teacher" data generation pipeline, orchestrated by a Llama 4 Scout planner, which generates a gold-standard dataset containing complex Chain-of-Thought (CoT) reasoning. Second, we train a compact "student" model, which is a pruned version of Gemma 3-27B. This student is fine-tuned on the teacher's dataset, learning to generate the entire reasoning trace end-to-end, including the answer's bounding box represented as a sequence of text tokens (e.g., 450 80 120 25).

At inference time, the teacher and its complex toolchain are discarded. The deployed system is just the student model, which achieves state-of-the-art accuracy and localization in a single forward pass. Our key contributions are:

- 1. A novel teacher-student framework that successfully distills the complex, multi-step reasoning of a modular document agent into a single, efficient VLM.
- 2. A methodology for teaching a VLM to perform precise spatial localization by representing bounding boxes as a textual sequence within a generated CoT.

- 3. The creation of a high-quality dataset of over 100,000 document VQA reasoning traces, which we plan to release to the community to foster further research.
- 4. A new SoTA on four major Document VQA benchmarks, demonstrating superior performance with a 5x reduction in inference latency compared to the teacher agent.

The remainder of this paper is organized as follows: Section 2 reviews related work in document VQA and agentic AI. Section 3 details MIMIC-VQA's architecture and modules. Section 4 outlines datasets and evaluation protocols. Results and discussion appear in Section 5, followed by conclusions in Section 6.

Figure 2: Illustrative examples of visual information extraction on receipt images from the CORD dataset Park et al. (2019). Each colored annotation corresponds to its extracted answer, highlighted by a matching colored bounding box.

2 Related Work

Our work is situated at the intersection of three key research areas: monolithic and OCR-based Document VQA models, which prioritize inference efficiency; agentic AI systems, which excel at complex reasoning; and knowledge distillation, which provides a mechanism to bridge the gap between them.

2.1 MONOLITHIC AND OCR-BASED VQA MODELS

Early work in Document VQA focused on adapting transformer architectures to incorporate layout information, such as LayoutLM Xu et al. (2020) and its successors Huang et al. (2022). More recent models have diverged into two main streams: OCR-free and OCR-based approaches. OCR-free models like Donut Kim et al. (2022) and DLaVA Mohammadshirazi et al. (2024) aim for an end-to-end paradigm by integrating visual text recognition directly into the model. While efficient, they often lack the explicit, step-by-step reasoning that is crucial for interpretability and trustworthiness. Furthermore, handling high-resolution document images to perceive fine-grained details remains a significant challenge, leading to high computational costs. To address this, models like DocKylin Zhang et al. (2025) introduce visual slimming techniques, such as Adaptive Pixel Slimming (APS) and Dynamic Token Slimming (DTS), to reduce redundant visual information at both the pixel and token levels, thereby improving efficiency. Concurrently, OCR-based models have become increasingly sophisticated in how they integrate textual content with spatial layout informationDing et al. (2024). Rather than treating coordinates as long sequences of numerical tokens, which can be inefficient, recent methods propose more streamlined integrations. For example, LayTextLLM Lu et al. (2024) introduces an approach where each bounding box is projected to a single, unique token embedding, which is then interleaved directly with text tokens. This method efficiently encodes spatial information while fully leveraging the autoregressive capabilities of the LLM. Similarly, **DocLayLLM** Liao et al. (2024) proposes a lightweight extension that integrates visual patch tokens and 2D positional tokens into the LLM's input stream, enhancing the model's perception of OCR information and document structure. This line of work demonstrates a clear trend towards creating highly efficient, single-model

systems. MIMIC-VQA aligns with this goal of efficiency but achieves it through a fundamentally different mechanism: distilling the procedural knowledge of a complex reasoning agent rather than engineering a single, monolithic architecture from the ground up.

2.2 AGENTIC AI SYSTEMS FOR DOCUMENT UNDERSTANDING

The agentic paradigm, where a large language model acts as a controller or "planner" to orchestrate a set of specialized tools, has shown great promise for complex, multi-step tasks Sapkota et al. (2025). The core reasoning-action loop, established by systems like ReAct, has been extended to multimodal domains in frameworks like HuggingGPT Shen et al. (2023) and HAMMR Castrejon et al. (2024). In the document domain, these systems are designed to tackle the complexity of multi-modal information by decomposing problems and assigning tasks to specialized agents. A prime example is MDocAgent Han et al. (2025), a multi-modal, multi-agent framework that employs parallel Retrieval-Augmented Generation (RAG) pipelines for both text and images. Its architecture consists of five distinct agents—a general agent for initial analysis, a critical agent to identify key information, specialized text and image agents for deep-dive analysis, and a summarizing agent to synthesize the final answer. This collaborative approach allows the system to integrate information across modalities with high fidelity. While powerful and highly interpretable, these agentic systems suffer from significant latency due to their sequential nature and the overhead of inter-agent communication. Our work leverages such a system as an expert "teacher" to generate high-quality reasoning traces, but crucially, not as the final deployed model, thereby bypassing the inherent latency issues at inference time.

2.3 Knowledge Distillation for Vision Language Models

Knowledge distillation Xu et al. (2024), where a smaller "student" model is trained to mimic the outputs of a larger "teacher" model, is a well-established technique for model compression and knowledge transfer. This has been applied successfully in vision and language domains, but the distillation process typically focuses on replicating the teacher's final predictions or output distributions. Our work introduces a novel form of procedural knowledge distillation. Instead of merely copying the final answer, we distill the entire reasoning process—the complete CoT—from a complex, multi-tool teacher agent into a compact student model. The student learns not just *what* the answer is, but *how* the teacher arrived at that answer, including the intermediate steps of context retrieval, question reformulation, and spatial grounding. This distillation of a multi-step, auditable reasoning process into a single, efficient forward pass is the key novelty of the MIMIC-VQA framework.

3 METHODOLOGY

The MIMIC-VQA framework employs a two-phase knowledge distillation process to transfer the expert reasoning capabilities of a modular "teacher" agent into an efficient end-to-end "student" model. Figure 1 illustrates the complete architecture, showing how Phase A (Teacher Expert Data Generation) generates rich reasoning traces that are used in Phase B (Student Training) to create a compact model capable of end-to-end document understanding.

3.1 Phase 1: The Teacher Agent as an Expert Data Generator

The goal of the teacher is to produce a high-quality dataset, \mathcal{D} , of expert reasoning traces. Each trace is a complete solution for a given document image I and question Q. This process is orchestrated by a planner agent, π_T , which we formalize as follows.

Step 1: OCR Extraction. The RunOCR tool processes image I to extract N text segments with corresponding bounding boxes (lines 4-5 in Algorithm 1):

$$\mathcal{O} = \operatorname{RunOCR}(I) = \{(t_i, b_i, \operatorname{conf}_i)\}_{i=1}^{N}$$
(1)

where t_i represents a text string, $b_i = (x, y, w, h)$ its coordinate set, and conf_i the OCR confidence score.

```
216
            Algorithm 1 MIMIC-VQA: Teacher-Student Knowledge Distillation Framework
217
            Require: Training set \mathcal{D}_{\text{train}} = \{(I_i, Q_i, A_i)\}_{i=1}^N
218
            Require: Teacher planner \pi_T (Llama-4 Scout), teacher QA M_{\rm QA} (Gemma-3-27B)
219
            Require: Student base weights \theta_S^{(0)} (Gemma-3-27B) Require: Retrieval hyperparams: top-k, mix weight \alpha=0.7, threshold \tau=0.3
220
221
            Ensure: Efficient student \theta_S^* (Gemma-3-9B) that emits CoT, answer, and x y w h
222
223
             1: Phase 1: Teacher data generation (expert traces)
224
             2: Initialize expert set \mathcal{D}_{\mathrm{expert}} \leftarrow \emptyset
225
             3: for each (I, Q, A) in \mathcal{D}_{train} do
226
                      // Step 1: OCR extraction
             4:
227
                                                                                                             \triangleright t_i: token, b_i = (x, y, w, h)
             5:
                      O \leftarrow \text{RUNOCR}(I) = \{(t_i, b_i, \text{conf}_i)\}_{i=1}^N
228
             6:
                      // Step 2: Context retrieval (Eq. equation 2)
229
             7:
                      C \leftarrow \text{FINDTEXT}(Q, O, k, \alpha, \tau)
230
             8:
                      // Step 3: Teacher answer (QA)
             9:
                      A_{\text{text}} \leftarrow \text{AskQA}(M_{\text{QA}}, Q, C)
231
            10:
                      // Step 4: Deterministic grounding (Alg. 2)
232
            11:
                      (B_A, \text{score}) \leftarrow \text{GROUNDANSWER}(A_{\text{text}}, O)
233
            12:
                      // Step 5: Build teacher string (formatted target)
234
            13:
                      S_T \leftarrow \text{FORMAT}(C, A_{\text{text}}, B_A)
235
                      Thought: uses retrieved context C; Final Answer: A_{\text{text}}; Location: B_A
236
            14:
                      \mathcal{D}_{\text{expert}} \leftarrow \mathcal{D}_{\text{expert}} \cup \{(I, Q, S_T)\}
237
            15: end for
238
239
            16: Phase 2: Student model training (prune + imitate)
240
            17: // 2.1 Iterative magnitude pruning to \sim 9B params
            18: \theta_S \leftarrow \text{ITERATIVEMAGNITUDEPRUNE}(\theta_S^{(0)})
241
242
            19: // 2.2 Supervised imitation on teacher strings
243
            20: for e = 1 to E do
                      for each minibatch \mathcal{B} \subset \mathcal{D}_{\mathrm{expert}} do
            21:
244
                           \mathcal{L}(\theta_S) \leftarrow -\sum_{\substack{(I,Q,S_T) \in \mathcal{B} \\ \theta_S \leftarrow \theta_S - \alpha_{\operatorname{lr}} \nabla_{\theta_S} \mathcal{L}(\theta_S)}} \sum_{k=1}^{|S_T|} \log P_{\theta_S}(S_{T,k} \mid S_{T,< k}, I, Q)
245
            22:
246
            23:
247
            24:
                      if EARLYSTOP(val_loss) then break
            25:
            26: end for
249
            27: \theta_S^* \leftarrow \theta_S
250
251
            28: Inference (student only)
252
                                                           Output: reasoning, answer \hat{A}, box \hat{B}
            29: Input: image I, question Q
253
            30: // Optional: constrained decoding for bbox
254
            31: S_{\text{student}} \leftarrow \pi_S(I, Q; \theta_S^*)
255
            32: Parse S_{\text{student}} into (CoT, \hat{A}, \hat{B})
256
            33: return \theta_S^*
257
```

Step 2: Context Retrieval. To focus the reasoning, the 'FindText' tool retrieves a relevant context subset $\mathcal{C} \subset \mathcal{O}$ by selecting the top-k segments with the highest semantic similarity to the question Q(line 7 in Algorithm 1):

258259

260

261

262

263

264 265

266

267 268

269

$$C = \operatorname{FindText}(Q, \mathcal{O}) = \underset{\mathcal{C} \subset \mathcal{O}, |\mathcal{C}| = k}{\operatorname{argmax}} \sum_{(t_j, b_j) \in \mathcal{C}} \operatorname{sim}(Q, t_j)$$
 (2)

Step 3: Answer Generation. The AskQA tool, powered by Gemma 3-27B, generates a textual answer using the retrieved context (line 9 in Algorithm 1):

Step 4: Answer Grounding. The GroundAnswer tool deterministically maps the textual answer back to OCR outputs to identify the definitive bounding box (lines 10-11 in Algorithm 1):

Algorithm 2 GroundAnswer: map textual answer to coordinates (ANLS alignment)

Require: Answer string A_{text} ; OCR outputs $O = \{(t_i, b_i, \text{conf}_i)\}_{i=1}^m$ **Ensure:** Aggregated box B_A ; grounding score score $\in [0, 1]$

- 1: Tokenize answer: $A \leftarrow (a_1, \dots, a_M)$
- 274 2: **for** i = 1 **to** M **do**
 - $j^* \leftarrow \arg \max_j \text{ANLS}(a_i, t_j);$ if $\text{ANLS}(a_i, t_{j^*}) > 0.5$ then mark match with confidence c_{ij^*}
 - 4: end for

270

271

272

273

275

276

277

278

279

281

283 284

285

286

287

288 289

290

291 292

293

295 296

297 298

299

300

301 302

303

312

313

314 315

316 317

318

319

320 321

322

323

- 5: Aggregate matches to a single box B_A (min-x/min-y and max-x/max-y over matched b_i)
- 6: score $\leftarrow \frac{1}{M} \sum_{i} c_{ij^*} \cdot \operatorname{conf}_{j^*}$ 7: **return** $(B_A, \operatorname{score})$

ANLS: ANLS
$$(a,t) = 1 - \min\left(1, \frac{\text{Lev}(a,t)}{\max(|a|,|t|)}\right)$$

Algorithm 2 details this grounding process, which uses ANLS (Approximate Normalized Levenshtein Similarity) alignment to match answer tokens with OCR outputs. The algorithm tokenizes the answer string, finds the best matching OCR token for each answer token using ANLS scoring, and aggregates the matched bounding boxes into a single coordinate set.

Step 4: Answer Grounding. Finally, the 'GroundAnswer' tool deterministically maps the textual answer A_{text} back to the original OCR outputs \mathcal{O} to find the definitive bounding box, B_A :

Step 5: Teacher String Formatting. The teacher formats the entire reasoning process into a single CoT string S_T (line 13 in Algorithm 1): This formatted string includes the reasoning context, final answer, and spatial location, serving as the ground truth for student training.

3.2 Phase 2: The Student as an End-to-End Mimic

The blue section of Figure 1 illustrates the student training phase. The student model π_S is trained to replicate the teacher's complete reasoning process in a single forward pass, without requiring any external tools at inference time.

Table 1: Justification for model selection in the MIMIC-VOA framework.

Model	Parameters	Primary Strength	Role in MIMIC-VQA
Llama 4 Scout	~70B	State-of-the-art Reasoning	Teacher's Planner Agent
Gemma 3-27B	27B	Strong Multimodal Grounding	Student (Base for Pruning) / Teacher QA
Gemma 3-9B	9B	High Efficiency	Student (Final Deployed Model)

3.2.1 ARCHITECTURE AND PRUNING

Following lines 17-18 of Algorithm 1, we initialize the student with Gemma 3-27B base weights $\theta_S^{(0)}$ and apply iterative magnitude pruning to reduce it to approximately 9B parameters:

$$\theta_S = \text{IterativeMagnitudePrune}(\theta_S^{(0)})$$
 (3)

The pruning process systematically removes weights with the lowest magnitude, followed by finetuning periods to recover performance. This reduction achieves over 65% decrease in computational requirements while maintaining model capability.

3.2.2 Learning Objective

The supervised imitation learning process (lines 19-27 in Algorithm 1) trains the student on the expert dataset $\mathcal{D}_{\text{expert}}$. Given the teacher's output string S_T for an image-question pair (I,Q), the student

model with parameters θ_S is trained via standard autoregressive cross-entropy loss:

$$\mathcal{L}(\theta_S) = -\sum_{(I,Q,S_T) \in \mathcal{B}} \sum_{k=1}^{|S_T|} \log P(S_{T,k}|S_{T,< k}, I, Q; \theta_S)$$
(4)

where \mathcal{B} represents a minibatch and $S_{T,k}$ denotes the k-th token in the teacher's sequence. This objective enables the student to learn not just the final answer but the entire reasoning methodology, including spatial grounding represented as text tokens.

3.3 Inference and Constrained Decoding

As shown in the green section of Figure 1 (Phase C), at inference time the student operates independently, generating CoT reasoning, the final answer, and spatial coordinates in a single pass. To enhance the reliability of bounding box generation, we implement an optional constrained decoding module (shown in gray in Figure 1).

Vocabulary Constraint. When generating coordinate tokens within <bbox>...</bbox> tags, the vocabulary is dynamically restricted based on a lightweight OCR preprocessing step. For each coordinate position $p \in \{x, y, w, h\}$, the allowed token set is:

$$\mathcal{V}_{\text{bhox}}^{(p)} = \{\text{str}(c) : c \in \mathcal{C}_{\text{valid}}^{(p)}\}$$
 (5)

where $C_{\text{valid}}^{(p)}$ represents valid coordinate values extracted from the OCR output.

Constrained Probability. The modified probability distribution becomes:

$$P_{\text{constrained}}(t_k|t_{< k}, I, Q) = \begin{cases} \frac{P(t_k|t_{< k}, I, Q)}{\sum_{t' \in \mathcal{V}_{\text{bbox}}} P(t'|t_{< k}, I, Q)} & \text{if } t_k \in \mathcal{V}_{\text{bbox}} \\ 0 & \text{otherwise} \end{cases}$$
(6)

This constraint ensures the model generates valid spatial coordinates while maintaining end-to-end operation. The OCR preprocessing adds minimal latency (average 45ms) while reducing coordinate hallucination by 73%, ensuring robust coordinate outputs as indicated in Figure 1.

3.4 MODEL SELECTION RATIONALE

The selection of specific models for teacher and student roles, as implemented in Algorithm 1 and summarized in Table 1, is guided by their complementary strengths:

Llama 4 Scout serves as the teacher's planner due to its superior reasoning and tool-use capabilities. Gemma 3-27B provides both the teacher's QA module and the student's initial architecture, offering strong multimodal foundations essential for learning complex visual-textual relationships. Through pruning to 9B parameters (resulting in θ_S^*), we achieve an efficient deployment model that retains the distilled expert knowledge while operating at 5× the speed of the teacher system.

4 EXPERIMENTS

We evaluate on five benchmarks: DocVQA (Mathew et al., 2021), VisualMRC Tanaka et al. (2021), FUNSD (Jaume et al., 2019), CORD (Park et al., 2019), and SROIE (Huang et al., 2019). Figure 2 shows examples of the visual information extraction task on receipts from the CORD dataset. We report ANLS for answer accuracy and mAP@IoU for spatial localization quality.

4.1 TEACHER DATA GENERATION

We generated 102,447 Chain-of-Thought reasoning traces using our teacher pipeline across all datasets. The teacher employs Llama 4 Scout as the planner and Gemma 3-27B for QA generation. Quality validation uses GPT-5. Full generation details in Appendix B.

4.2 STUDENT MODEL TRAINING

Starting from Gemma 3-27B, we apply iterative magnitude pruning to 9B parameters (66% reduction). Training uses: - Batch size: 32 (4 per GPU \times 8 gradient accumulation) - Learning rate: 2e-5 with cosine annealing - Training: 3 epochs with early stopping - Hardware: 4 \times NVIDIA A100 80GB GPUs - Training time: 18 hours Comprehensive hyperparameters in Appendix A.3.

5 RESULTS

Table 2: Performance comparison on Document VQA and QA for VIE datasets.

Method	DocVQA		VisualMRC		FUNSD		CORD		SROIE	
Method	ANLS	mAP	ANLS	mAP	ANLS	mAP	ANLS	mAP	ANLS	mAP
DocLayLLM (Llama3-7B)	78.4	-	55.0	-	84.1	-	71.3	-	84.3	-
LayoutLLM (Vicuna-1.5-7B)	74.3	-	55.8	-	80.0	-	63.1	-	72.1	-
LayTextLLM (Llama2-7B)	75.6	-	42.3	-	83.4	-	83.1	-	95.6	-
DLaVA (Pixtral-12B)	85.9	46.2	52.1	38.6	87.6	45.5	84.4	57.9	91.4	-
MIMIC-VQA	88.7	69.1	54.4	60.1	90.0	68.3	85.5	70.2	93.1	-
+ Constrained Decoding	89.7	71.1	55.9	61.9	91.1	71.7	87.2	72.1	94.5	-

Table 2 demonstrates that MIMIC-VQA achieves state-of-the-art performance across all five benchmarks. On DocVQA, our model attains 88.7 ANLS, outperforming DLaVA by 2.8 points, with a more substantial improvement in spatial grounding—69.1 mAP versus DLaVA's 46.2, a 22.9 point gain. This pattern of superior spatial understanding persists across datasets: FUNSD (68.3 vs. 45.5 mAP), VisualMRC (60.1 vs. 38.6 mAP), and CORD (70.2 vs. 57.9 mAP).

The addition of constrained decoding further improves performance, yielding 89.7 ANLS and 71.1 mAP on DocVQA. By restricting coordinate generation to OCR-extracted regions, we reduce hallucination by 73% while adding only 45ms latency. This hybrid neural-symbolic approach demonstrates that structured constraints can enhance generative models without compromising their end-to-end nature.

5.1 CRITICAL ROLE OF CHAIN-OF-THOUGHT DISTILLATION

Our ablation study (Table 3) reveals that CoT reasoning is essential for successful knowledge transfer. Removing CoT from training causes a moderate ANLS decline (88.7 to 85.2 on DocVQA) but catastrophic spatial grounding degradation (69.1 to 55.1 mAP). This 14-point mAP drop, consistent across all datasets, indicates that explicit reasoning traces are crucial for learning complex spatial transformations.

 The asymmetric impact suggests differential task complexity: answer extraction can partially rely on pattern matching, while spatial grounding requires compositional reasoning about document structure and coordinate mapping. The teacher's step-by-step reasoning provides essential scaffolding for these spatial capabilities that cannot be learned through output imitation alone.

Table 3: Ablation study on the DocVQA test set.

Method	DocVQA		VisualMRC		FUNSD		CORD		SROIE		Latency
Method	ANLS	mAP	ANLS	mAP	ANLS	mAP	ANLS	mAP	ANLS	mAP	(s/q) (Avg)
MIMIC-VQA (Teacher Agent)	90.2	78.4	59.8	69.4	93.2	80.2	91.8	77.9	95.3	-	3.2
MIMIC-VQA (Student, No CoT)	85.2	55.1	50.3	48.8	88.9	55.5	82.4	66.4	91.7	-	0.6
MIMIC-VQA (Student, with CoT)	88.7	69.1	54.4	60.1	90.0	68.3	85.5	70.2	93.1	-	0.6
MIMIC-VQA (Student, with Self-Consistency)	89.7	71.1	55.9	61.9	91.1	71.7	87.2	72.1	94.5	-	1.8

5.2 Performance-Efficiency Trade-offs

The Teacher Agent achieves optimal accuracy (90.2 ANLS, 78.4 mAP on DocVQA) at 3.2 seconds per query. Our student model delivers 98.3% of teacher ANLS and 88.1% of mAP accuracy at 0.6 seconds—a 5.3× speedup. For a system processing 100,000 daily queries, this translates to reducing compute requirements from 88.9 to 16.7 hours, cutting infrastructure costs by over 80%.

Self-consistency offers an intermediate option (89.7 ANLS, 71.1 mAP at 1.8s/query), enabling dynamic accuracy-latency adjustment based on application requirements. This flexibility, absent in monolithic architectures, allows practitioners to optimize for different operational constraints.

5.3 KNOWLEDGE DISTILLATION INSIGHTS

Our approach demonstrates that procedural knowledge—the complete reasoning process—can be successfully transferred between architecturally distinct systems. The teacher's tool-based reasoning, though fundamentally different from the student's autoregressive generation, successfully imparts problem-solving strategies that generalize across document types. The 98.3% performance retention indicates these learned procedures maintain high fidelity when executed through parametric neural computation. This success reconceptualizes distillation as transferring algorithmic procedures rather than merely approximating output distributions. The student internalizes multi-step reasoning patterns within its weights, effectively compiling the teacher's sequential tool use into efficient forward passes.

5.4 LIMITATIONS AND BOUNDARY CONDITIONS

Several constraints bound our approach's effectiveness. The teacher's accuracy ceiling inherently limits student performance—the 1.5 ANLS gap on DocVQA represents irreducible information loss during distillation. Spatial grounding shows larger degradation, with student mAP averaging 85% of teacher performance, likely due to the impedance mismatch between coordinate regression and text generation. Additionally, systematic teacher errors become embedded in student representations. If the teacher's OCR tool consistently fails on certain fonts or layouts, the student inherits these limitations. This dependency underscores that student quality is fundamentally bounded by teacher capability.

5.5 IMPLICATIONS FOR DOCUMENT AI DEPLOYMENT

MIMIC-VQA resolves a fundamental tension in Document AI: maintaining the accuracy and interpretability of modular systems while achieving deployment efficiency. Organizations can leverage sophisticated agentic systems for training data generation while deploying lightweight student models in production. This paradigm shift makes advanced document understanding economically viable for applications previously constrained by computational costs.

The framework's success suggests broader applicability to other document understanding tasks facing similar accuracy-efficiency trade-offs. Information extraction, layout analysis, and document classification could benefit from procedural distillation, potentially transforming the Document AI landscape by making state-of-the-art capabilities accessible at scale.

6 CONCLUSION

MIMIC-VQA demonstrates that the accuracy-efficiency trade-off in Document VQA is not fundamental but an artifact of deployment strategies. By distilling the complete reasoning process of a modular teacher agent into a compact student model, we achieve 98.3% of teacher accuracy at 5.3x the speed, reducing computational requirements from 88.9 to 16.7 hours per 100,000 queries. Our key contributions are: (1) successful compilation of multi-step tool-orchestrated reasoning into efficient neural architectures through procedural knowledge distillation; (2) spatial grounding via text generation that achieves 20-30 mAP point improvements over prior methods, setting new state-of-the-art results on four benchmarks; and (3) a hybrid neural-symbolic approach that reduces coordinate hallucination by 73% through constrained decoding. The framework's limitations—including the student's dependence on teacher quality and 15% degradation in spatial grounding—highlight areas for future improvement. Nevertheless, MIMIC-VQA establishes a practical paradigm where sophisticated agents generate training data while lightweight distilled models handle production deployment. This work provides empirical evidence that procedural knowledge transfers across architectural boundaries, enabling organizations to leverage advanced reasoning capabilities without prohibitive infrastructure costs. By treating complex agentic systems as teachers rather than production models, we make state-of-the-art document understanding economically viable at scale.

REFERENCES

- Lluis Castrejon, Thomas Mensink, Howard Zhou, Vittorio Ferrari, Andre Araujo, and Jasper Uijlings. Hammr: Hierarchical multimodal react agents for generic vqa. *arXiv preprint arXiv:2404.05465*, 2024.
- Yihao Ding, Soyeon Caren Han, Jean Lee, and Eduard Hovy. Deep learning based visually rich document content understanding: A survey. *arXiv preprint arXiv:2408.01287*, 2024.
- Siwei Han, Peng Xia, Ruiyi Zhang, Tong Sun, Yun Li, Hongtu Zhu, and Huaxiu Yao. Mdocagent: A multi-modal multi-agent framework for document understanding. *arXiv preprint arXiv:2503.13964*, 2025.
- Wen Huang, Minghui Qiao, Cong Bai, Yulin Yong, Sheng Zhang, and Qun Guo. Sroie: Scanned receipt ocr and information extraction. In *Proceedings of the ICDAR 2019 Competition on Scanned Receipts OCR and Information Extraction*, 2019.
- Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and Furu Wei. Layoutlmv3: Pre-training for document ai with unified text and image masking. In *Proceedings of the 30th ACM International Conference on Multimedia*, pp. 4083–4091, 2022.
- Guillaume Jaume, Hazim Kemal Ekenel, and Jean-Philippe Thiran. Funsd: A dataset for form understanding in noisy scanned documents. In 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), volume 2, pp. 1–6. IEEE, 2019.
- Geewook Kim, Teakgyu Hong, Moonbin Yim, JeongYeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, and Seunghyun Park. Ocr-free document understanding transformer. In *European Conference on Computer Vision*, pp. 498–517. Springer, 2022.
- Wenhui Liao, Jiapeng Wang, Hongliang Li, Chengyu Wang, Jun Huang, and Lianwen Jin. Doclayllm: An efficient and effective multi-modal extension of large language models for text-rich document understanding. *arXiv preprint arXiv:2408.15045*, 2024.
- Wenhui Liao, Jiapeng Wang, Hongliang Li, Chengyu Wang, Jun Huang, and Lianwen Jin. Doclayllm: An efficient multi-modal extension of large language models for text-rich document understanding. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 4038–4049, 2025.
- Jinghui Lu, Haiyang Yu, Yanjie Wang, Yongjie Ye, Jingqun Tang, Ziwei Yang, Binghong Wu, Qi Liu, Hao Feng, Han Wang, et al. A bounding box is worth one token: Interleaving layout and text in a large language model for document understanding. *arXiv* preprint arXiv:2407.01976, 2024.
- Chuwei Luo, Yufan Shen, Zhaoqing Zhu, Qi Zheng, Zhi Yu, and Cong Yao. Layoutllm: Layout instruction tuning with large language models for document understanding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15630–15640, 2024.
- Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document images. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp. 2200–2209, 2021.
- Ahmad Mohammadshirazi, Pinaki Prasad Guha Neogi, Ser-Nam Lim, and Rajiv Ramnath. Dlava: Document language and vision assistant for answer localization with enhanced interpretability and trustworthiness. *arXiv preprint arXiv:2412.00151*, 2024.
- Seunghyun Park, Seung Shin, Bado Lee, Junyeop Lee, Jaeheung Surh, Minjoon Seo, and Hwalsuk Lee. Cord: a consolidated receipt dataset for post-ocr parsing. In *Workshop on Document Intelligence at NeurIPS 2019*, 2019.
- Ranjan Sapkota, Konstantinos I Roumeliotis, and Manoj Karkee. Ai agents vs. agentic ai: A conceptual taxonomy, applications and challenges. *arXiv* preprint arXiv:2505.10468, 2025.
- Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt: Solving ai tasks with chatgpt and its friends in hugging face. *Advances in Neural Information Processing Systems*, 36:38154–38180, 2023.

- Ryota Tanaka, Kyosuke Nishida, and Sen Yoshida. Visualmrc: Machine reading comprehension on document images. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 13878–13888, 2021.
- Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao, and Tianyi Zhou. A survey on knowledge distillation of large language models. *arXiv preprint arXiv:2402.13116*, 2024.
- Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou. Layoutlm: Pretraining of text and layout for document image understanding. In *Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD)*, pp. 1192–1200, 2020. doi: 10.1145/3394486.3403172.
- Li Yujian and Liu Bo. A normalized levenshtein distance metric. *IEEE transactions on pattern analysis and machine intelligence*, 29(6):1091–1095, 2007.
- Jiaxin Zhang, Wentao Yang, Songxuan Lai, Zecheng Xie, and Lianwen Jin. Dockylin: A large multi-modal model for visual document understanding with efficient visual slimming. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 9923–9932, 2025.

APPENDIX

596 597

600

594

595

DETAILED IMPLEMENTATION AND HYPERPARAMETERS

598

This appendix provides comprehensive implementation details and hyperparameter specifications for the MIMIC-VQA framework to ensure full reproducibility. All experiments were conducted using PyTorch on NVIDIA H100 80GB GPUs.

601 602

TEACHER AGENT TOOLING SPECIFICATIONS

603 604

605

SIMILARITY FUNCTION IMPLEMENTATION

606 607

The similarity function sim(q, d) referenced in Equation 2 combines semantic and lexical matching for robust query-document alignment. The function is formally defined as:

608 609

sim : $\mathcal{Q} \times \mathcal{D} \to [0,1]$, where \mathcal{Q} is the query space and \mathcal{D} is the document space.

610

The composite similarity computation follows:

611 612

$$sim(q, d) = \alpha \cdot cos \underline{sim}(\mathcal{E}_q(q), \mathcal{E}_d(d)) + (1 - \alpha) \cdot lexical\underline{sim}(q, d)$$
 (7)

613 614

Where:

615 616

• $\cos \underline{-} sim(\cdot, \cdot)$ computes cosine similarity between embeddings

617 618 • $\mathcal{E}_a(\cdot)$ and $\mathcal{E}_d(\cdot)$ are the query and document encoders from Sentence-BERT (all-MiniLM-

619 620

• $\operatorname{lexical_sim}(q,d) = \frac{2|\operatorname{tokens}(q) \cap \operatorname{tokens}(d)|}{|\operatorname{tokens}(q)| + |\operatorname{tokens}(d)|}$ implements Dice coefficient over tokenized text

621 622 • $\alpha = 0.7$ balances semantic (70%) and lexical (30%) contributions • Similarity threshold $\tau=0.3$ determines document relevance for tool invocation

623 624

GROUNDANSWER DETERMINISTIC LOGIC

625 626

The GroundAnswer (answer, document) function implements deterministic answer grounding using coordinate-based mapping with OCR confidence weighting:

627 628 629

630

633

634

637

638

639

Algorithm 3 GroundAnswer

Require: answer (string), document (OCR structure)

631 **Ensure:** score $\in [0, 1]$ 632

- 1: Extract OCR tokens $T = \{t_1, t_2, \dots, t_n\}$ with bounding boxes $B = \{b_1, b_2, \dots, b_n\}$ 2: Tokenize answer: $A = \{a_1, a_2, ..., a_m\}$
- 3: **for** each answer token a_i **do**
 - 4: Find best matching OCR token: $t_i = \arg \max_t ANLS(a_i, t)$
- 635 5: if ANLS $(a_i, t_i) > 0.5$ then 636
 - Record match with confidence c_{ij}
 - 7: end if
 - 8: end for

6:

640 641 642

9: Compute aggregated bounding box from matched tokens 10: Calculate grounding score:

644

 $\text{score} = \frac{\sum_i (c_{ij} \times \text{conf}(t_j))}{|A|}$ 11: **return** (score, aggregated $_bbox$)

645 646

647

Where $\text{ANLS}(a,t) = 1 - \min\left(1, \frac{\text{Levenshtein}(a,t)}{\max(\text{len}(a),\text{len}(t))}\right)$ provides OCR-robust string matching, and $conf(t_i)$ represents the OCR confidence for token t_i .

A.2.1 ITERATIVE MAGNITUDE PRUNING SCHEDULE

The student model (Gemma 3-9B) undergoes iterative magnitude pruning using a cubic sparsity

 $s(t) = s_f + (s_i - s_f) \left(1 - \frac{t - t_i}{N \cdot \Delta t} \right)^3$

(8)

scheduler to achieve progressive compression while maintaining performance:

A.2 Model Pruning Protocol

Sparsity Schedule:

Where:

648

649 650

651

652

653 654

655

656 657 658

659 660 • $s_i = 0.0$ (initial sparsity) • $s_f \in \{0.5, 0.7, 0.9\}$ (target sparsity levels tested) 662 • $t_i = 1000$ steps (pruning begins after 10% of total training) • $N \cdot \Delta t = 8000$ steps (pruning duration) • Pruning frequency = 100 steps 666 667 A.2.2 Pruning Implementation Details 668 669 **Scope Configuration:** 670 671 • Target layers: All linear layers in attention and MLP blocks 672 • Preserved components: Embedding layers, LayerNorm parameters, final classification 673 head 674 • **Pruning criterion**: Global magnitude-based selection using |w| across all targeted parame-675 676 • Mask application: Binary masks applied during forward pass with straight-through gradi-677 ents 678 679 A.2.3 Recovery Training Between Iterations 680 681 **Fine-tuning Protocol:** 682 683 • Recovery epochs: 2 epochs after each pruning step 684 • Learning rate: 1×10^{-5} (50% of initial fine-tuning rate) 685 • Batch size: Maintained at 4 per device with gradient accumulation 686 687 • Optimizer: AdamW with $\beta_1 = 0.9$, $\beta_2 = 0.999$, weight_decay= 1×10^{-9} 688 • Early stopping: Patience of 200 steps on validation perplexity 689 • Checkpoint strategy: Save model state after each recovery phase 690 691 **Sparsity Progression:** 692 693 • 50% sparsity: Recovery converges in \sim 1000 steps, < 2% performance degradation 694 • 70% sparsity: Recovery requires ~1500 steps, 3-5% performance degradation 696 • 90% sparsity: Recovery requires full 2 epochs, 8-12% performance degradation 697 TRAINING HYPERPARAMETERS 699 700 COMPLETE HYPERPARAMETER SPECIFICATION 701 Table 4 shows complete hyperparameter specification for student model fine-tuning.

Table 4: Complete hyperparameter specification for student model fine-tuning.

Parameter	Value	Range Explored	Selection Method	Hardware Constraint
Batch size per GPU	4	{1,2,4,8}	Memory optimization	A100 80GB limit
Gradient accumulation steps	8	{4, 8, 16, 32}	Effective batch size tuning	Target batch size 32
Learning rate	2×10^{-5}	$[1 \times 10^{-6}, 1 \times 10^{-4}]$	Grid search	Validation perplexity
Weight decay	0.01	[0.001, 0.1]	Ablation study	Regularization balance
Warmup steps	500	[100, 1000]	Learning curve analysis	5% of total steps
Max gradient norm	1.0	[0.1, 2.0]	Gradient explosion prevention	Training stability
Training epochs	3	$\{1, 2, 3, 5\}$	Early stopping	Overfitting avoidance
Max sequence length	2048	{1024, 2048, 4096}	Document coverage analysis	Memory efficiency
LoRA rank	64	{16, 32, 64, 128}	Parameter efficiency study	Quality-efficiency trade-off
LoRA alpha	64	{16, 32, 64, 128}	Scaling factor tuning	Learning rate sensitivity

A.3.2 OPTIMIZER CONFIGURATION

AdamW Parameters:

- β_1 : 0.9 (momentum parameter)
- β_2 : 0.999 (second moment decay)
- ϵ : 1×10^{-8} (numerical stability)
- Weight decay: 0.01 (L2 regularization coefficient)
- Fused implementation: torch_fused enabled for efficiency

A.3.3 LEARNING RATE SCHEDULE IMPLEMENTATION

Warmup and Decay:

- Schedule type: Linear warmup followed by cosine annealing
- Warmup duration: 500 steps (5% of 10,000 total training steps)
- Peak learning rate: 2×10^{-5} reached after warmup
- Final learning rate: 2×10^{-6} (10% of peak rate)
- Annealing formula: $lr(t) = lr_{min} + (lr_{max} lr_{min}) \times 0.5 \times (1 + cos(\frac{\pi t}{T}))$

A.3.4 MEMORY OPTIMIZATION SETTINGS

Training Efficiency:

- Mixed precision: bfloat16 training with automatic loss scaling
- Gradient checkpointing: Enabled with use_reentrant=False
- DataLoader workers: 4 per GPU with pin_memory=True
- Compilation: torch.compile with mode="max-autotune"

A.4 HARDWARE SPECIFICATIONS AND COMPUTATIONAL REQUIREMENTS

Training Infrastructure:

- GPUs: 4× NVIDIA H100 80GB
- **Memory utilization**: ~65GB per GPU at peak (including optimizer states)
- Training time: 18 hours for full 3-epoch training
- Inference memory: 22GB for full precision, 12GB with 4-bit quantization

Distributed Training Configuration:

- Strategy: Distributed Data Parallel (DDP) with NCCL backend
- Synchronization: All-reduce on gradients every accumulation step
- Load balancing: Equal data splits across 4 GPUs
- Communication overhead: < 5% of total training time

A.5

756

758

759

760 761

762

763

764

765 766

767

768 769

770

771 772

773

774

775

776

777 778

779 780

781

782

783

784

785 786

787

789

791 792

793 794 795

796

797 798

799 800

801

802

804

805

807 808

809

A.5 EVALUATION AND VALIDATION PROTOCOLS

Validation Configuration:

- Validation frequency: Every 200 training steps
- Metrics computed: Perplexity, ANLS score, exact match accuracy
- Early stopping: Patience of 3 evaluations on ANLS score
- Statistical significance: Results averaged over 5 independent runs with seeds [42, 123, 456, 789, 1337]

This comprehensive specification enables exact reproduction of the MIMIC-VQA training pipeline and iterative model compression procedure.

B DETAILED METHODOLOGY FOR VISUAL INFORMATION EXTRACTION DATASET GENERATION

This appendix details the comprehensive Chain-of-Thought (CoT) dataset generation framework developed for Visual Information Extraction (VIE) tasks, with a specific focus on optimizing for teacher-student learning architectures. The methodology addresses the critical challenge of training student models to achieve accurate bounding box prediction without relying on explicit text detection mechanisms.

B.1 BASE DATASETS AND DATA SOURCES

Our CoT dataset generation utilizes benchmark datasets as a foundation, providing the necessary question-answer pairs and ground-truth bounding box annotations for generating spatially-aware reasoning chains. Table 5 summarizes the core datasets used as a foundation for generating the CoT traces.

Dataset Total Documents Total Questions / Primary Task DocVOA 12,767 images 50,000 questions VisualMRC 10,197 images 31,349 question-answer pairs **FUNSD** 199 forms 12,286 questions **CORD** 1,000 receipts 8,812 Key information extraction **Total** 24,163 items 102,447 questions/items

Table 5: Datasets

B.2 VISION LANGUAGE MODEL ARCHITECTURE

B.2.1 DUAL-VLM GENERATION PIPELINE

Our framework employs a dual Vision Language Model (VLM) architecture:

- **Generation Model**: Google's Gemini 2.5 Pro serves as the primary CoT reasoning generator, receiving both textual prompts and base64-encoded document images for comprehensive multi-modal analysis without separate OCR preprocessing.
- Validation Model: OpenAI's GPT-5 acts as the validation model, independently analyzing the same images to assess the quality and accuracy of the generated reasoning chains.

B.3 Chain-of-Thought Reasoning Structure

B.3.1 SIX-STEP SPATIAL REASONING FRAMEWORK

We designed a structured six-step CoT reasoning framework optimized for spatial understanding:

- Document Structure Analysis: Overall document type, layout hierarchy, and visual organization.
- 2. **Visual Element Localization**: Spatial arrangement of text blocks, visual boundaries, and relative positioning.
- 3. **Spatial Pattern Recognition**: Visual patterns indicating information types without text content analysis.
- Coordinate-Based Spatial Reasoning: Pixel-level coordinate estimation and spatial relationship analysis.
- Visual Localization without Text Detection: Pure visual cue-based target region identification.
- 6. **Spatial Coordinate Prediction**: Precise bounding box coordinate prediction with geometric justification.

B.3.2 Prompt Engineering for Spatial Focus

Our prompting strategy emphasizes visual-spatial analysis over text comprehension.

You are an expert at visual information extraction from documents with focus on spatial localization without text detection. Given a document image and a question, provide detailed step-by-step reasoning that emphasizes VISUAL-SPATIAL analysis for bounding box prediction.

IMPORTANT: Focus on VISUAL-SPATIAL reasoning rather than text reading. Emphasize coordinate prediction and spatial relationships that would help a model locate information through visual features alone.

B.4 TEACHER-STUDENT LEARNING OPTIMIZATION

B.4.1 Spatial Context Enhancement

For each VIE task, we augment the generation process with explicit spatial context, including target coordinates, geometric properties (center, width, height), spatial relationships, and visual cues (font variations, spacing).

B.4.2 BOUNDING BOX PREDICTION TRAINING

The generated reasoning explicitly addresses coordinate prediction challenges, guided by prompts like the following:

```
**Spatial Context for Teacher-Student Learning:**
- Target bounding box coordinates: [174, 410, 224, 430] (x1,y1,x2,y2)
- Bounding box center: (199, 420)
- Bounding box dimensions: 50x20 pixels
```

Your task: Provide visual-spatial reasoning that would help a student model predict these exact coordinates WITHOUT using text detection.

B.5 QUALITY ASSURANCE AND VALIDATION

Our dual validation system uses GPT-5 for primary validation (assessing logical consistency, completeness, and accuracy) and an automated spatial analysis to score the quality of coordinate-based reasoning. We track metrics such as Approval Rate, Spatial Focus Score, and Teacher-Student Readiness.

B.6 TECHNICAL IMPLEMENTATION

To ensure robust, large-scale generation, we implemented a checkpoint-resume system, comprehensive error handling with retry logic, and a scalable architecture with parallel processing and real-time progress monitoring.

B.7 DATASET FORMAT AND STRUCTURE

Each entry in the generated dataset is a JSON object containing the image path, the conversation (instruction and response), and detailed metadata including the original answer, bounding box data, and validation scores.

```
875
876
        "image_path": "path/to/document/image.png",
877
        "conversations": [
878
             "from": "instruction",
879
             "value": "What is the total amount in the document?"
880
           },
882
             "from": "response",
883
             "value": "**Step 1: Document Structure Analysis**\n[CoT reasoning...]",
884
             "original_answer": "$15.99",
885
             "box_data": {
886
               "box": [174, 410, 224, 430],
887
               "text": "$15.99",
888
               "label": "total.price"
889
             },
             "validation": {
890
               "overall_quality": "8",
891
               "approved": true
892
             },
893
             "spatial_analysis": {
894
               "spatial_focus_score": 9,
895
               "has_coordinate_reasoning": true,
               "teacher_student_ready": true
897
898
899
900
      }
901
```