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ABSTRACT

The automation of analog integrated circuit (IC) design remains a longstanding
challenge, primarily due to the intricate interdependencies among physical layout,
parasitic effects, and circuit-level performance. These interactions impose com-
plex constraints that are difficult to accurately capture and optimize using conven-
tional design methodologies. Although recent advances in machine learning (ML)
have shown promise in automating specific stages of the analog design flow, the
development of holistic, end-to-end frameworks that integrate these stages and it-
eratively refine layouts using post-layout, parasitic-aware performance feedback
is still in its early stages. Furthermore, progress in this direction is hindered by
the limited availability of open, high-quality datasets tailored to the analog do-
main, restricting both the benchmarking and the generalizability of ML-based
techniques. To address these limitations, we present OSIRIS, a scalable dataset
generation pipeline for analog IC design. OSIRIS systematically explores the de-
sign space of analog circuits while producing comprehensive performance metrics
and metadata, thereby enabling ML-driven research in electronic design automa-
tion (EDA). In addition, we release a dataset consisting of 64 200 circuit variations
generated with OSIRIS, accompanied by a reinforcement learning–driven baseline
method that exploits OSIRIS for analog design optimization.

1 INTRODUCTION

Analog integrated circuits (ICs) are critical in a wide range of modern electronics applications,
including telecommunications, power electronics, audio engineering, biomedical engineering, and
instrumentation. They enable precise sensing, amplification, and filtering, serving as a critical bridge
between digital systems and the physical environment. This capability ensures robust data acquisi-
tion and signal processing across various applications. However, unlike digital ICs, which benefit
from highly automated and increasingly ML-driven design flows (Razavi, 2005; Carusone et al.,
2011; Allen & Holberg, 2011; Cui et al., 2024; Fang et al., 2025; Liu et al.; Zhao et al., 2025;
Liu et al., 2025), analog circuit design remains largely manual due to (i) complexity, unlike digital
design based on simple logic gates, analog circuits use diverse components (MOSFETs, resistors,
capacitors) with intricate interconnections, (ii) sensitivity, small changes can drastically affect func-
tionality, leading to a vast search space. In particular, the analog design flow is divided into front-
and back-end phases. The front-end phase targets schematic-level optimization, including compo-
nent parameter tuning (e.g., transistor sizing) and topology selection. The back-end phase tackles the
complex task of translating the optimized schematic into a manufacturable physical layout, encom-
passing layout generation and feasibility verification. At present, the research effort mainly targets
front-end optimizations encompassing the optimization of the topologies of analog circuits leverag-
ing graph neural networks (GNNs), e.g., CktGNN (Dong et al., 2023), large language model (LLM)
solutions, e.g., AnalogCoder (Lai et al., 2025a;b), LaMAGIC (Chang et al., 2024), and TopoSiz-
ing (Wei et al., 2025) reinforcement learning (RL) e.g., AutoCircuit-RL (Vijayaraghavan et al.) or
decoder-only transformers, e.g., EVA (Gao et al., 2025c). Notably, AnalogCoder employs domain-
specific prompt engineering and a feedback optimization loop to produce PySpice code, which can
be translated into SPICE netlists. LaMAGIC, instead, fine-tunes the Flan-T5 model (Chung et al.,
2024) to directly map textual specifications to optimized designs in a single forward pass, mainly
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Figure 1: The analog design flow comprises two phases (i) front-end, which translates design re-
quirements into a schematic, (ii) back-end, which generates the corresponding layout. Unlike ex-
isting back-end methods that rely on single-pass automation, OSIRIS enables iterative exploration
strategies.

targeting power converters. More recently, AnalogGenie (Gao et al., 2025b) introduced a domain-
specific GPT-based decoder model that represents each device pin as an individual graph node,
enabling fine-grained modeling of circuit connectivity. AnalogFed (Li et al., 2025), an advanced
version of AnalogGenie, targets analog topology discovery within a federated learning framework,
allowing the integration of multiple private datasets while preserving confidentiality. The inherent
complexity (Noori Zadeh & Elamien, 2025) of the analog layout design phase, which is highly sen-
sitive to parasitic effects, tightly bound to specific technology nodes, and constrained by intricate
manufacturability requirements, hinders back-end automation. Few seminal works employ GNNs
to predict placement performance and guide its optimization (Li et al., 2020) or to increase the accu-
racy of front-end simulation (Ren et al., 2020). At the same time, variational autoencoders have been
applied to analog routing by learning expert-like strategies from manually crafted layouts (Zhu et al.,
2019). RL, instead, has been applied to place FinFET modules on a grid, optimizing for symmetry
and alignment errors, area, and wirelength (Ahmadi & Zhang, 2021) and to minimize total routing
cost in terms of wirelength, number of vias, and design rule violations (Chen et al., 2023a). Despite
promising research efforts, back-end automation remains comparatively underexplored. Current
analog layout optimization methodologies are human-centric, relying on trial-and-error strategies,
making the process time-consuming and resource-intensive. This work introduces OSIRIS, a novel
end-to-end back-end flow designed to enable scalable machine learning research in analog layout
automation. As illustrated in Figure 1, OSIRIS differs from existing back-end flows by enabling the
instantiation of iterative, performance-driven layout design space exploration strategies rather than
single-pass automation. It offers two primary contributions to the state of the art:

• OSIRIS: an efficient pipeline to generate, validate, and evaluate large volumes of layouts
for generic analog circuits, producing tens of thousands of DRC-clean and LVS-verified de-
signs. A representative dataset, generated by OSIRIS comprising 64 200 layouts, is released
to demonstrate its capabilities.

• RL-driven optimization: a reinforcement learning framework that leverages OSIRIS to it-
eratively explore the layout design space and optimize circuit implementations based on
parasitic-aware performance feedback.

The OSIRIS code and the accompanying dataset are made available online. 1

2 RELATED WORK

The optimization of analog IC physical design is particularly challenging due to tight performance
constraints, sensitivity to parasitics, and complex design rules that traditional techniques often fail to
handle effectively, requiring time-consuming intervention of expert engineers. Recent advances in
machine learning, particularly reinforcement learning and graph neural networks, are being explored
to improve placement (Mirhoseini et al., 2021; Li et al., 2020) and routing (Liao et al., 2020b;a),
although their application to analog design remains in early development (Huang et al., 2021; Zhu
et al., 2019).

1Code and dataset: https://huggingface.co/datasets/anonymousUser2/osiris
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(a) 2-finger transistor. (b) 4-finger transistor.

A B

(c) Halo.

Figure 2: Degrees of freedom explored by OSIRIS. (a) a 2-finger transistor, (b) a 4-finger transistor,
and (c) a halo wraps each component, allowing it to move freely within the designated space.

Back-end automation frameworks The vision of a back-end automated analog IC design flow
envisions a seamless pipeline, starting from netlist-level specifications and concluding with a
manufacturing-ready physical layout, with each stage executed automatically or with minimal hu-
man intervention. This streamlined process seeks to accelerate development and reduce design
cycles by integrating diverse tools, established methodologies, comprehensive device libraries, and
standardized procedures into a unified framework. The Berkeley Analog Generator (BAG) (Cross-
ley et al., 2013; Chang et al., 2018) enables parameterized generator creation for analog and mixed-
signal circuits, automating schematic instantiation and layout synthesis to satisfy specified perfor-
mance criteria. Despite its utility, BAG depends on predefined templates and often requires substan-
tial domain expertise and parameter tweaking. More recent frameworks adopt a place-and-route-
centric paradigm, framing layout generation as an optimization problem. ALIGN (Kunal et al., 2019;
Dhar et al., 2020; Sapatnekar, 2023) translates SPICE netlists into GDSII layouts, supporting multi-
ple analog circuit families. Likewise, the open-source MAGICAL framework (Xu et al., 2019; Chen
et al., 2020; 2021) offers a fully automated flow from an unannotated netlist to a complete GDSII lay-
out by employing custom place-and-route algorithms and constraint extraction techniques. Despite
recent progress, the state of the art lacks back-end automation frameworks specifically designed for
iterative design space exploration and layout optimization. MAGICAL has been employed, along
with DNN-Opt (Ahmadi & Zhang, 2021) and Bayesian optimization, as the deterministic layouter
in closed-loop methodologies that adjust transistor sizing by leveraging post-layout performance in-
formation (Budak et al., 2023; Gao et al., 2024). These methodologies are orthogonal to OSIRIS,
which directly optimizes circuit layouts. Recent efforts have investigated the use of RL with Steiner
trees (Basso et al., 2024) and relational GNNs (Basso et al., 2025; Della Rovere et al., 2025) in
automatic flows to tackle floorplanning by optimizing wirelength and area consumption. However,
the state of the art does not offer frameworks to enable adaptive layout refinement through repeated
evaluation and learning in parasitic-aware, performance-constrained environments, leaving a critical
gap in end-to-end frameworks targeting back-end iterative analog layout design space exploration
and optimization.

Open analog datasets Analog circuits datasets are crucial to enable ML-based research in topology
generation, specification-driven design, or performance prediction. Recent efforts have begun to cu-
rate and label significant front-end analog datasets. The OCB dataset of CtkGNN (Dong et al., 2023)
contains 10 000 generated operational amplifiers annotated with device parameters and simulator-
computed gain and bandwidth. ALIGN (Kunal et al., 2019), in addition to a place-and-route frame-
work, offers a diverse set of circuit netlists. More recently, AnalogGenie (Gao et al., 2025a) pro-
posed a dataset comprising 3 350 distinct analog circuit topologies, each labeled with performance
metrics, while AMSNet (Tao et al., 2024) provides a set of transistor-level SPICE netlists paired
with schematic images. Despite recent progress, the availability of open datasets targeting back-
end remains highly limited, restricting the practical use of ML techniques. Modern ML methods
require large-scale datasets that comprehensively represent the analog circuit design space to learn
and identify optimal solutions effectively.

3 DATASET GENERATION INFRASTRUCTURE

3.1 DESIGN SPACE DIMENSIONS IN DATASET GENERATION

In analog physical layout design, estimating the impact of parasitic elements is critical. These ele-
ments arise from layout geometries and the proximity of components, often degrading circuit perfor-
mance. While increasing the distance between components can reduce parasitic effects, minimizing
the total area remains essential for efficient design. To balance these trade-offs, OSIRIS is structured
around two hierarchical dimensions: (i) the number of transistor fingers and (ii) component place-
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Figure 3: The OSIRIS pipeline. It takes as inputs a netlist template (TP), a testbench (TB), and pairs
of parameters matching transistors (Ps). For each TP, OSIRIS generates M netlists (NL). For each
NL, it generates N layout variants (characterized by GDS and QoS files). Therefore, it generates M×N
layout variants. It is divided into two stages, (i) Fingers Permutation and (ii) Variants Generation.

ment. By systematically varying these factors, OSIRIS effectively explores the layout design space,
capturing the parasitic effects of structural and spatial configurations.

Number of transistor fingers In a transistor layout, fingers are the gate segments that share source
and drain regions, enabling a single transistor to be split into multiple parallel segments to improve
layout compactness, reduce parasitic effects, and enhance performance. Given a circuit netlist,
each transistor may support multiple valid finger counts while keeping its width and length fixed.
Figure 2a and Figure 2b show examples of a two- and four-finger transistors, respectively; fingers
are highlighted in red.

Component placement A surrounding boundary, referred to as a halo, is placed around each netlist
component, i.e., transistors, resistors, and capacitors. This configuration permits unrestricted move-
ment of components within their respective halos. Figure 2c shows the halo mechanism applied to
two generic components A and B. Each component is wrapped in a bounding box, which allows it
to move freely inside.

3.2 OSIRIS PIPELINE

Figure 3 illustrates the OSIRIS dataset generation pipeline. OSIRIS aims to systematically generate
a diverse and structured collection of layout variants suitable for statistical design analysis, training
machine learning models, or exploring layout optimization strategies. The pipeline takes as inputs a
circuit netlist template (TP), which specifies the connectivity and device-level specifics (e.g., sizing)
of the design, a set of transistors pairs (Ps) to specify matching transistors and an accompanying
simulation testbench (TB) employed to verify the functionality and performance of the variants pro-
duced throughout the generation process. These elements, which the user provides, define both the
design’s logical behavior and evaluation criteria. OSIRIS generates as output a dataset comprising
a layout (GDS) and quality of solution (QoS) files. GDS is a physical representation of the layout,
while QoS is a report describing the corresponding layout.

Fingers Permutation The first stage, referred to as Fingers Permutation, receives as input TP and
Ps and generates as output a set of netlists to be explored further in the pipeline. This stage in-
troduces structural diversity by varying the number of fingers assigned to transistors in the circuit.
Since finger count affects the layout topology and electrical characteristics such as parasitic capaci-
tance and matching, this variation allows for exploring alternative physical implementations without
altering the circuit’s logical function. All valid combinations of finger assignments are enumerated,
resulting in a total of M distinct permutations. A permutation of fingers is valid if it adheres (i) to
matching requirements, for instance, current mirrors and differential pairs require their transistors to
be as identical as possible, therefore to have the same number of fingers and (ii) the minimum gate
dimension specified by the PDK in use. Each valid permutation is then used to annotate the TP to
produce a new netlist NLi for i = 0, . . . ,M, thus generating a set of M netlists.

Variants Generation The Variants Generation stage processes each of the M generated netlists
to generate a set of GDS and QoS. It takes as inputs the set of netlists and TB. This stage is further
divided into two steps (i) Baseline P&R and (ii) Random Exploration. Variants Generation processes
one netlist NLi at a time for i = 0, . . . ,M.
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Figure 4: Dataset structure. It contains two directories, netlists and data. The latter is further
divided into four subfolders, simulations, metrics, layouts, and metadata.

First, for a given NLi, Baseline P&R performs a complete place-and-route flow to synthesize a
baseline layout. Notably, Baseline P&R comprises a placer and a router. The placer encodes cir-
cuits using sequence-pairs (Murata et al., 2002), from which placement constraints are derived and
solved with a geometric ILP formulation. Simulated annealing (Kirkpatrick et al., 1983) acts as
a meta-heuristic, permuting the sequence pairs to explore alternative placements to minimize the
half-perimeter wire length (HPWL). The routing process is split into two stages, global routing, per-
formed with Dijkstra’s algorithm (Dijkstra, 2022), and detailed routing, handled with the A∗ search
algorithm (Hart et al., 1968) to resolve local congestion. The generated baseline layout is a faithful
physical realization of NLi. Baseline P&R integrates the place-and-route process along with the
necessary steps to assess the validity of the generated layout, i.e., design rule checking (DRC), lay-
out versus schematic (LVS), parasitic extraction (PEX), and simulation. This step produces three
objects, a baseline layout GDSbi, the corresponding QoSbi, and an internal representation (IRbi),
containing the coordinates (upper right and lower left corners) and type (nmos, pmos, capacitor,
resistor) of each component of NLi. The baseline plays a dual role in the dataset generation process.
It is directly included in the final dataset as the baseline, i.e., variant b, representing an unmodified,
post-P&R instance of the design. Moreover, it is the initial configuration from which all subsequent
layout perturbations are derived.

Second, the Random Exploration step explores spatial variability. It receives as input IRbi and
produces as outputs a set of N incremental variants each described by a GDSji and a QoSji for
j = 0, . . . ,N. Thus, iteration j serves as baseline for iteration j+1, with IR0i = IRbi. The Random
Exploration is divided into three sub-steps, (i) Shift (ii) P&R and (iii) Validate, executed in a loop
for N successful iterations. Shift rolls two dice, one to choose which component to move and the
other to choose the cardinal direction, i.e., up, down, left, right, to move the component towards.
Shift, also, perturbates IRji to reflect the shifting. P&R reads IRji, shifts the selected component
accordingly, and, since the new placement invalidates the components connections, performs the
routing of all netlist components considering the coordinates of the newly shifted component to
ensure electrical connectivity, thus yielding GDSji. Lastly, Validate assesses that the perturbed layout
remains logically equivalent to the original netlist and estimates its behavior. To this end, the classic
analog design flow performs DRC, LVS, PEX, and simulation. An iteration j is successful if the
Validate sub-step completes correctly. If it fails, the perturbation is reverted and the j-th iteration
is repeated. At the conclusion of this process, the dataset contains a total of M × N variants. Each
variant includes the layout in GDSII format (GDSji) and a set of resources that reflects design quality
in terms of physical and electrical metrics along with auxiliary metadata such as the specific netlist
configuration and the nature of component displacements (QoSji). Notably, to carry out LVS, PEX,
and simulation, OSIRIS fully integrates with Netgen, Magic, and Ngspice, respectively, while DRC
is respected by construction during place and route processes.
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Table 1: Dataset statistics. For each circuit, the number of explored netlists, the number of generated
layout variants, the metrics, and the acquisition time are reported.

Miller Ahuja Feed Forward 5-Transistors

Circuits components

nmos 5 10 7 3
pmos 4 4 6 2
cap 1 1 - -
res 1 - - -

Explored fingers permutations 146 143 224 129
Generated layouts per netlist 100 100 100 100

Total generated layouts 14 600 14 300 22 400 12 900

Mean and var. PEX score (volts) 0.0794 - 0.0007 0.1693 - 0.0005 0.1044 - 0.0012 0.0674 - 0.00005
Mean (µm2) and var. (nm2) area 1 748 - 628 1 776 - 753 768 - 778 414 - 3 314

Mean generation time (per layout) [s] 48 48 25 45
Total generation time [h] 195 191 156 162

4 ANALOG LAYOUT DATASET

4.1 DATASET STRUCTURE

Figure 4 depicts the organization of files in the randomly generated dataset. It comprises all relevant
information on each generated layout variant. It is divided into two main folders: netlists and
data. The dataset was recorded on a Rocky Linux 8.10 machine equipped with an Intel Xeon
2.90GHz with 32 cores and 125GB of RAM. No GPU was used.

Netlists The netlists directory contains C subfolders, one for each circuit class processed
by OSIRIS. Each circuit subfolder refers to a specific analog circuit and comprises the cir-
cuit netlist template, which is a base netlist that serves as the canonical representation of the
circuit, the testbench, in SPICE format, used to assess pre- and post-layout functionality,
the pairs file reporting the matching transistors, and M netlist files in SPICE format. Each
netlist inherits from the template information on component names, types, connectivity, and
sizing while adopting a different permutation over the number of fingers. The template files are
provided by the user while the sets of netlist files are the results of the Fingers Permutation
stage of the OSIRIS as described in Section 3.2.

Data For each circuit, the data directory includes all necessary information to describe its
corresponding design variations. This directory is organized into four subfolders, each containing
relevant data for the N layout variants associated with every netlist of the given circuit:

• Simulations comprises the pre- and post-layout simulation results for each layout vari-
ant, respectively in pre and post files. These files are obtained by testing each variant
with the corresponding circuit’s testbench. Testbenches consist of AC small-signal
simulations. The frequency is swept from 1 kHz to 1 GHz with 50 points per decade.

• Metrics captures the QoS associated with each layout variant in terms of physical and
electrical properties. The metrics are (i) pex score and (ii) area. The former quantifies
the degradation in performance due to parasitic effects introduced during the layout process
as a root mean square error between the pre and post results. At the same time, the latter
measures the total silicon footprint of the layout. See Section 4.3 for a detailed description
of the metrics. For both metrics, lower values indicate better performance.

• Layouts contains the physical layout files, GDS, generated for each variant in GDSII
format. A GDS provides a precise geometric representation of the layout encoding polygons
distributed across multiple metal layers, defining the physical implementation of the chip.

• Metadata contains the GDSII files for each individual component, tiles, and the ac-
cumulated movements, moves, performed on each tile up to iteration j-th.

4.2 STATISTICS

Amplifiers are widespread in analog design, serving as core components within a wide range of more
complex systems, e.g., filters, ADC/DAC, sensor interfaces (Franco, 2002; Huijsing, 2011; Carusone
et al., 2011). Their widespread use and inherent component diversity, encompassing NMOS/PMOS

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Analog datasets comparison. OSIRIS is the first framework aimed at back-end design that
systematically explores and extensively covers the layout design space.

CktGNN (Dong et al., 2023) AnalogGenie (Gao et al., 2025a) AMSNet (Tao et al., 2024) ALIGN (Kunal et al., 2019) OSIRIS

Design phase Front-end Front-end Front-end Back-end Back-end
Items type Netlists Netlists Netlists Netlists Layouts
Volume (#) 60 000 3 350 824 23 64 200

Physical validity check N.A. N.A. N.A. ! !

Parasitic awareness % % % % !

Data synthesis ! ! % % !

Extensibility ! ! % % !

transistors, resistors, and capacitors, as well as structural diversity with current mirrors and differ-
ential pairs, provide an ideal circuit template to investigate automatic layout flows. All circuits have
been implemented in Skywater 130nm PDK as it is mature, open-source, and well-integrated into
available open-source CAD tools (Kahng, 2020; Herman et al., 2023; Chen et al., 2023b; Tsuchiya,
2024; Teo et al., 2025). Table 1 summarizes key statistics of the generated dataset, including the
number and types (PMOS/NMOS transistors, resistors, and capacitors) of circuit components. It
also reports the number of finger permutations, i.e., netlists, explored along with the number of lay-
out variants produced per netlist and per circuit. Up to 224 finger permutations were explored for a
single circuit, with 642 permutations evaluated across all circuits, resulting in 64 200 DRC-clean and
LVS-verified layout variants. The generation of a single layout required an average of 42 seconds
while the exploration of a single circuit required between 156 and 195 hours to complete. Table 2
compares the dataset generated by OSIRIS with state-of-the-art analog datasets. The comparison
emphasizes its key contribution: providing a framework capable of generating extensive quantities
of layout data specifically targeting the back-end phase of analog IC design. The dataset weighs
5 GB and required around 30 days to acquire. Appendix B illustrates the schematics of the four
amplifier circuits used for dataset generation, along with samples of layout variants included in the
dataset.

4.3 METRICS

PEX Score When evaluating an analog layout, it is essential to validate the design’s accuracy and
ensure its performance reliability. A critical aspect of this evaluation involves accounting for par-
asitic elements, such as interconnect capacitances and resistances, which can significantly impact
circuit behavior and degrade functionality. To quantify the influence of parasitics, a comparison
between schematic-level (pre-layout) and post-layout simulation results is performed. This compar-
ison is captured by the pscore, a metric that measures the discrepancy between pre- and post-layout
outputs in volts (V). As defined in Equation 1, the pscore is computed as the RMSE between the
pre-layout simulation results (pre) and the post-layout results (post):

pscore =

√√√√ 1

K

K∑
i=1

(prei − posti)2 (1)

where K denotes the number of sampled points in each simulation trace. By construction, the pscore
quantifies the impact of layout-induced parasitics, which degrade key analog performance metrics
such as gain, bandwidth, noise, and stability. Optimizing it is therefore crucial to ensure reliable
circuit operation.

Area In addition to electrical performance, physical layout characteristics, such as silicon area, are
critical factors in analog circuit evaluation, particularly in cost-sensitive or space-constrained appli-
cations. The total layout area directly measures the silicon occupied by a design and is often used
as a proxy for manufacturing cost and integration density. We compute the area of each generated
layout as the summation of the areas of each component t, reported in Equation 2:

area =

T∑
t=0

Wt ·Ht (2)

where Wt and Ht represent the width and height (µm) of the bounding rectangle enclosing the
component t, and T is the number of components. This metric reflects the overall footprint of the
design and serves as an essential objective in layout optimization.
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Figure 5: RL Variants Generation employs a two-level iterative RL-driven optimization process. It
takes as inputs a set of netlists NL and a TB and generates as outputs a set of GDS and QoS. The
outer level navigates transistor fingers permutations (stage FinPerm Search), while the inner level
explores components movements (stage Spatial Exploration).

5 DESIGN SPACE EXPLORATION BASELINE

OSIRIS presents two main stages: Fingers Permutation and Variants Generation. The latter
can implement different strategies to explore the layout design space for a given circuit. Sec-
tion 3.2 presents a random exploration approach, while Section 5.1 introduces an RL-driven baseline
methodology.

5.1 RL BASELINE METHODOLOGY

Figure 5 shows the Variants Generation implementation in a RL-driven iterative approach, i.e., RL
Variants Exploration. It takes as inputs the set of netlists generated by Fingers Permutation and
a TB. The output is a comprehensive set of GDS and QoS files. The implementation is based on
two level of RL optimization loops, one for each degree of freedom. The outer one pivots around
searching the number of fingers permutations space while the inner one explores spatial movements
for each component.

Outer loop The outer loop processes all netlists and the reward Ri from the previous iteration to
produce N GDS and QoS files per netlist. It comprises four steps: (i) FinPerm Search, (ii) Baseline
P&R, (iii) RL Exploration, and (iv) Compute Reward. FinPerm Search selects the next netlist NLi to
explore and includes translating SPICE-formatted transistor finger permutations into RL-compatible
inputs. Notably, FinPerm Search employs a fully connected agent that receives a vector containing
the number of fingers for each transistor as input, and produces probabilities over possible finger
values and maps them to categorical actions. It is trained via REINFORCE (Williams, 1992) as a
straightforward, model-free policy gradient method. Appendix A details its architecture. Baseline
P&R generates a baseline layout (GDSbi), quality metrics (QoSbi), and internal representation (IRbi).
The RL Exploration step uses these as inputs and produces N improved GDS and QoS variants
for each baseline. Lastly, Compute Reward extracts Ri from the set of QoS files as reported in
Equation 3:

Ri = max
j=1,...N

α · (pscoreji − pscorebi) + β · (areaji − areabi) (3)

where area0i = areabi and pscore0i = pscorebi while β and α are tuning parameters. Notably,
if the outer loop’s agent chooses an invalid finger configuration, a negative reward is fed to it and a
new choice is made.

Inner loop The RL Exploration is the inner loop, depicted in Figure 5. It mirrors the Random
Exploration strategy (Section 3.2). It takes as input IRbi and outputs N GDS and QoS files for each
baseline, which are passed to the outer loop for further processing and storing. RL Exploration
comprises three steps: (i) RL Place, (ii) P&R, and (iii) Validate. RL Place uses an actor-critic
agent operating on an input vector that encodes each component’s type and coordinates. The agent
includes an initial shared portion which splits into two branches (i) actor and (ii) critic, providing
the action to move a component and the state value of the current iteration IRji. The inner agent is
trained with Proximal Policy Optimization (cPPO) (Schulman et al., 2017), which is well-suited for
handling discrete action spaces. Appendix A details its architecture. P&R implements the action
by shifting the selected component and performing components routing. Validate ensures adherence
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Table 3: Results comparison between ALIGN (Kunal et al., 2019), MAGICAL (Xu et al., 2019), the
random baseline (Section 3), and the RL-driven methodology (Section 5). Each circuit block spans
three rows showing pscore (volts), area (µm2), and acquisition time (hh:mm:ss).

Circuit MAGICAL ALIGN Random RL

pscore (↓) area (↓) time pscore (↓) area (↓) time pscore (↓) area (↓) time pscore (↓) area (↓) time
(V) (µm2) (hh:mm:ss) (V) (µm2) (hh:mm:ss) (V) (µm2) (hh:mm:ss) (V) (µm2) (hh:mm:ss)

Miller 0.2739 1 980 00:02:05 0.142 1 836 00:01:08 0.0012 1 770 195:00:00 0.00069 1 733 96:00:00
Ahuja 0.5184 2 190 00:01:57 0.315 1 906 00:01:08 0.12 1 805 191:00:00 0.12 1 797 70:00:00

Feed Forward 0.2087 798 00:01:20 0.210 806 00:01:18 0.037 809 156:00:00 0.024 768.5 62:00:00
5-Transistors 0.2554 347 00:01:03 0.093 183 00:00:48 0.05 266.3 162:00:00 0.047 444.5 50:00:00

to netlist NLi and assesses functionality. Moreover, Validate computes the agent’s reward (rj) as
reported in Equation 4:

rj = α · (pscoreji − pscorebi) + β · (areaji − areabi) (4)

where α and β are tuning parameters. The sub-steps of RL Exploration are performed in a loop for
N iterations. Opposite to Random Exploration, if an iteration is unsuccessful, it is not repeated, the
episode ends, and a penalty reward is fed to the inner agent.

6 EXPERIMENTAL RESULTS

To better highlight the potential of leveraging ML techniques to drive exploration and optimization
of the analog layout design space, the performance of the RL-driven baseline methodology (Sec-
tion 5.1) is compared against state-of-the-art single-pass open-source back-end automation frame-
works MAGICAL and ALIGN, and against a Random layout design space exploration strategy (Sec-
tion 3.2). Two NVIDIA GeForce GTX 1080Ti GPUs were used for the RL-related experiments.
Appendix A details hyperparameter selection. Table 3 presents the comparative analysis of the four
approaches. The evaluation considers three metrics for each circuit benchmark: pscore, layout area,
and total acquisition time. The RL-based approach achieves lower pscore values across all bench-
marks, suggesting improved handling of parasitic effects in the resulting layouts. For the Miller and
Feed Forward amplifiers, in particular, the RL method reports pscore values more than an order of
magnitude smaller than those produced by ALIGN and MAGICAL, indicating that learning-guided
placement can be beneficial when integrated with OSIRIS-generated layouts. Regarding layout area,
the RL baseline usually yields comparable or smaller designs. For example, the Miller and Feed
Forward amplifiers produce the lowest pscore and the most compact layouts. For the Ahuja am-
plifier, although RL and Random yield the same pscore, the RL-based layout occupies slightly less
area (1 797 µm2 vs. 1 805 µm2). One exception is the 5-Transistors OTA, where the RL approach
results in a larger layout area (444.5 µm2) than baselines. However, it still attains a lower pscore,
indicating a trade-off favoring electrical performance over area reduction. The RL-based method
also demonstrates reduced acquisition time compared to the Random baseline due to more efficient
exploration of the solution space, converging faster towards high-quality solutions. For example, in
the Miller and Ahuja circuits, it achieves nearly a 50% reduction in runtime. Across all benchmarks,
it reports the shortest acquisition times. These results indicate that reinforcement learning can be a
viable strategy for efficient and performance-aware analog layout space exploration.

7 CONCLUSIONS

This work presents OSIRIS, an end-to-end back-end framework for generating large quantities of
DRC-clean, LVS-verified analog layouts to advance ML research in circuit design. OSIRIS enables
scalable creation of annotated datasets and provides a public release of 64 200 layout variants across
four designs. An RL baseline demonstrates its use for optimizing functional and non-functional
metrics, such as parasitics and area. Unlike prior datasets, OSIRIS is open-source, configurable, and
tailored for ML-driven optimization. While currently limited to four circuits and one PDK, future
work will extend it to more circuit classes and technologies and explore alternative ML methods.
OSIRIS lays the groundwork for learning-driven back-end flows, complements front-end automa-
tion, and accelerates progress toward fully automated analog design.
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8 ETHICS STATEMENT

Research in analog design automation has the potential to indirectly impact a wide range of indus-
tries, including healthcare, autonomous systems, and communications. By accelerating the develop-
ment of high-performance, energy-efficient analog ICs, frameworks such as OSIRIS may contribute
to faster innovation in medical devices, sensing platforms, and safety-critical applications like au-
tonomous driving. While these applications are broadly beneficial, they also raise ethical considera-
tions. Improved design productivity could lower entry barriers, enabling broader access to advanced
technologies, but it may also be leveraged in sensitive domains (e.g., surveillance or military sys-
tems). We emphasize that OSIRIS is released as an open, transparent research tool intended to foster
reproducibility, fairness, and broad participation in the ML-for-EDA community. Responsible use
should remain a guiding principle, particularly in safety-critical or high-stakes domains.

9 REPRODUCIBILITY STATEMENT

OSIRIS is released at the anonymous HuggingFace repository link mentioned in Section 1. It in-
cludes (i) OSIRIS end-to-end pipeline delivering DRC-free and LVS-verified layouts (ii) random
exploration strategy, and (iii) RL-driven exploration strategy. The random exploration strategy is
described in Section 3 while the RL-driven one is detailed in Section 5. Moreover, the repository
contains instructions on how to install and run the code. In addition to the code, a dataset generated
by the random exploration strategy is also released at the same HuggingFace repository mentioned
in Section 1. Section 4 provides an in-depth description of the dataset. Appendix A provides imple-
mentation details regarding the RL agents, while Appendix B reports the schematics of the analyzed
circuits and samples of layouts released in the dataset.
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A AGENTS AND HYPERPARAMETERS
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(a) Outer agent exploring the permutations of number
of fingers. Part of FinPerm Search step.
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Figure 6: Agent architectures employed in the two-level iterative optimization process of RL Vari-
ants Generation. (a) explores the different permutations of the number of fingers for each transistor
and (b) explores the components’ movement inside their halo.

Figure 6 shows the two agents’ architectures used in the two-level iterative optimization process
presented in Section 5.1.

In particular, Figure 6a shows the outer loop agent, part of the FinPerm Search step. It receives
as input a vector (NF) with the number of fingers (nf ) for each transistor at iteration i-1, outputs
probabilities over possible finger values, and maps them to discrete choices to assign updated counts.
The network consists of blocks (B) made of a fully connected layer (FC) with ReLU activation,
followed by an FC layer and softmax. Here, D is the number of transistors in the netlist and K is the
number of allowable finger values for the given TP.

Figure 6b reports the inner agent, part of the Shift sub-step of RL Exploration. It determines the ac-
tion (A) by selecting a component (c) and a movement direction (d), and estimates the state value (v)
of IRji. It operates on an input vector (IR) encoding each component’s type (one-hot) and coordi-
nates, yielding an 8 × C array. The agent adopts an actor-critic structure with Shared, Actor, and
Critic modules. Shared consists of B blocks defined as in the outer agent. Actor has two heads, Hc
for component selection and Hd for direction (up, down, right, left), each implemented as one FC
layer with softmax, jointly defining A. Critic includes a head (Hv) outputting v, the estimated value
of IR.

RL Place uses an actor-critic agent, see Figure 6b, operating on an input vector IR that encodes
each component’s type (one-hot) and coordinates, yielding 8 features per component. The agent
includes Shared P FCs layers, and two branches: Actor, with softmax heads Ht and Hdir selecting
a component and movement direction (defining action A), and Critic, producing a scalar v estimating
the value of IR.

Table 4: Outer agent.

Parameter Value
K {2, 4, 6, 8, 10, 12, 14, 16}
L 5
Units per B block 64×D
D {5, 9, 13, 14}
Learning rate 1e-5
Optimizer Adam
Reward penalty -10

Table 5: Inner agent.

Parameter Value
P 5
Units per B block 128× C
C {5, 11, 13, 15}
γ, ϵ 0.99, 0.2
Learning rate 1e-5
Optimizer Adam
Entropy coeff. 0.01
Batch size 16
Replay memory size 128
Reward penalty -0.001

Table 4 and Table 5 detail the parameters used to design and train both agents. In particular, D is
the number of transistors while C is the total number of components in each circuit, respectively,
5-Transistors, Miller, Ahuja, and Feed Forward. Notably, α = 5 and β = 1.5 to prioritize pscore
improvements. The shifting amount is fixed to 100nm.
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B CIRCUITS SCHEMATICS AND LAYOUT SAMPLES

Figure 7 reports the schematics of the four amplifier circuits employed throughout this work, while
Figure 8, Figure 9, Figure 10, and Figure 11 show two representative layout variants, generated by
OSIRIS and included in the released dataset, for Miller, Ahuja, Feed Forward, and 5-Transistors
circuits respectively.
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net 1
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(a) Miller.
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VDD
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IN 1
net 1
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(b) Ahuja.

GND

GND

IN

VDD

VDD

INOUT

(c) Feed Forward.

GND
VDD

OUT
IN 1

IN 2

VBIAS

(d) 5-Transistors.

Figure 7: Schematics of the four representative circuits explored using OSIRIS.
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Figure 8: Examples of Miller layout variants generated by OSIRIS.
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Figure 9: Examples of Ahuja layout variants generated by OSIRIS.
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Figure 10: Examples of Feed Forward layout variants generated by OSIRIS.
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Figure 11: Examples of layouts generated by OSIRIS and included in the released dataset.
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