
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FEEDBACK DESCENT: OPEN-ENDED TEXT OPTIMIZA-
TION VIA PAIRWISE COMPARISON

Anonymous authors
Paper under double-blind review

ABSTRACT

Current preference learning methods discard the rich explanations humans natu-
rally provide when comparing examples, collapsing detailed feedback into binary
signals. We introduce Feedback Descent, a framework that widens this information
bottleneck by leveraging textual feedback to enable directed optimization in text
space rather than weight space. We show that in-context learning can transform
structured feedback into gradient-like directional information, enabling targeted
edits of text artifacts such as prompts, code, and JSON. Unlike prior approaches
that collapse judgments into single bits, our evaluators pair each comparison with
textual feedback, which functions as high-bandwidth supervision. The iteration
loop is done purely at inference time, without modifying any model weights, and
is task-agnostic. We evaluate Feedback Descent on three diverse domains and find
that it outperforms state-of-the-art prompt optimization (GEPA), reinforcement
learning methods (GRPO, REINVENT), and even specialized graph-based molecu-
lar optimizers. In the DOCKSTRING molecule discovery benchmark, Feedback
Descent identifies novel drug-like molecules surpassing the 99.9th percentile of a
database with more than 200,000 compounds across six protein targets.

1 INTRODUCTION

A central goal of machine learning is building systems that can perform tasks that are difficult or
impossible even for humans. Reinforcement learning is a powerful framework that accomplishes
this goal, since it can optimize with respect to feedback on its own outputs, rather than relying
on supervised examples of desired outputs. Indeed, recent language models have demonstrated
impressive feats in domains like math and programming (OpenAI, 2024; DeepSeek-AI et al., 2025;
Google DeepMind, 2025; Zhu et al., 2024) through a combination of reinforcement learning and
text-based reasoning. Unfortunately, existing reinforcement learning frameworks are designed to learn
from impoverished supervision signals, typically either scalar rewards or pairwise preference data,
where each annotation conveys at most a single bit per pair. These bottlenecks discard information
about why one behavior is better and how to improve—information available in environment feedback
or easily elicited from humans during annotation.

Our goal is to widen this information bottleneck, i.e., significantly increase the information the
system can extract per unit of experience (Silver & Sutton, 2025). Collecting more detailed feedback
is straightforward, e.g., with brief rationales explaining preferences; the challenge is turning such
feedback into measurable improvement. Because free-form feedback does not define a differentiable
objective, it cannot directly drive weight updates via backpropagation. Our core idea is to use
an optimization loop in text space rather than weight space: we leverage the in-context learning
capabilities of language models to translate feedback into targeted edits of text artifacts (e.g., code,
prompts, molecules, JSON configs, etc) that improve a final performance objective.

To that end, we introduce Feedback Descent, a framework for continual optimization in text space. At
each iteration, we generate a new candidate artifact based on all previous feedback. We compare this
candidate against the current best artifact, and the evaluator returns a preference along with textual
feedback explaining the choice. If the candidate is preferred, it becomes the new best. Repeating
this loop yields semantically local, feedback-aligned improvements that implement gradient-like
steps in text space. See Fig. 1 for a conceptual illustration. We provide theoretical intuition for
why Feedback Descent can be effective. Under appropriate assumptions about feedback quality

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

A: Previous Best A: Previous Best

B: Proposed B: Proposed

render

render render

Winner: B

Feedback: A’s horn is
misaligned and its
colors look flat and
disconnected. B shows
better proportions and
adds a background
that shifts the focal
point more naturally.

+

Prompt

<svg width="150"
height="150">
<path d="M75,10
L90,60 L140,60
L100,90 L115,140
L75,110 L35,140
L50,90 L10,60
L60,60 Z"...

<svg width="150"
height="150">
<path d="M75,10
L90,60 L140,60
L100,90 L115,140
L75,110 L35,140
L50,90 L10,60
L60,60 Z"...

<svg width="150"
height="150"> <path
d="M75,10 L90,60
L140,60 L100,90
L115,140 L75,110
L35,140 L50,90
L10,60 L60,60 Z"...

Figure 1: A conceptual illustration of feedback descent. At each iteration, we compare the previous
best artifact with a new candidate. The evaluator provides both a pairwise preference and textual
feedback. Preferences ensure the selection of better candidates, while feedback accumulates direc-
tional information that guides semantically meaningful edits.

and problem structure, we demonstrate that textual feedback can provide directional information,
enabling efficient optimization.

Our contributions are threefold. First, we introduce Feedback Descent, an inference-time optimization
framework that uses pairwise preferences with textual rationales to provide directional updates entirely
in text space. Second, we demonstrate its generality across three domains: (i) SVG design, where
iterative feedback produces judge-aligned visual improvements beyond direct prompting under
both scratch and rubric-aware initializations; (ii) prompt optimization on IFBench, where Feedback
Descent surpasses GEPA on Qwen3-8B and remains competitive with the strongest methods on
GPT-4.1 Mini; and (iii) molecule discovery on DOCKSTRING, where Feedback Descent outperforms
reinforcement learning approaches such as REINVENT and rivals specialized graph-based algorithms.
Third, we show that the novel molecules discovered by Feedback Descent exceed not only the 99.9th
percentile of a 260,000-compound database but, on several targets, surpass the best molecule present
in the dataset.

2 FEEDBACK DESCENT: OPEN-ENDED TEXT OPTIMIZATION

We propose Feedback Descent, a framework for open-ended optimization of text-native artifacts
whose quality is easier to judge than to construct. Feedback Descent converts comparative textual
feedback into directed semantic edits and iterates in a self-improvement loop. As a running example,
consider optimizing SVG code to render better images of a unicorn. Current vision-language models
can reliably compare two renderings and explain the choice, even if writing high-quality SVG from
scratch is difficult. Through Feedback Descent, we can convert these explanations into directed edits
that aim to produce an artifact that is better than all previous ones.

2.1 PROBLEM SETUP

Let S be the space of token sequences, and let x ∈ S denote an artifact (e.g., SVG code). Given a
current incumbent x⋆

t ∈ S and a candidate x ∈ S, the evaluator returns

E(x, x⋆
t)→

(
p ∈ {0, 1}, r ∈ S

)
, (1)

where p = 1 indicates x ≻ x⋆
t and r is a textual feedback explaining why the winner is better and

how to improve. We append rt to a historyRt = {(x1, r1), . . . , (xt, rt)} and iterate, keeping track
of the current best artifact x⋆

t .

2.2 FEEDBACK DESCENT

Feedback Descent operates as an iterative optimization loop that maintains a single best artifact
x∗
t and progressively improves it through feedback-guided mutations and comparative evaluation.

Throughout, we useM to denote the language model used for generating improved candidates.

Initialization and termination. We initialize x∗
0 by prompting a language model with the task

description alone (e.g., "Generate SVG code for a unicorn"), providing a reasonable starting point

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

without prior feedback. The algorithm runs for a fixed budget of T iterations or until convergence
(defined as no improvement for k consecutive iterations).

Proposing semantic mutations via prompting. The mutation step leverages a language model’s
in-context learning capabilities. Given the current best artifact x∗

t and accumulated feedback
r1, r2, . . . , rt−1, we prompt the model to generate improved candidates:

xt =M (“Improve x∗
t using feedback: Rt−1”) (2)

These prompts are intentionally minimal: the optimization signal comes
from the accumulated feedback rather than heavy prompt engineering.

Algorithm 1 Feedback Descent

Require: Initial text x0, Language modelM, T
1: Current best: x∗ ←

x0,Rationale history: R← ∅
2: for t = 1 to T do
3: xt ←M(x∗,R) ▷ Propose (2)
4: pt, rt ← COMPARE(xt, x

∗) ▷ Compare (1)
5: R ← R∪ {(xt, rt)}
6: if pt = 1 then
7: x∗ ← xt,R← ∅ ▷ Update + reset
8: return x∗

They include basic task context, the current
best artifact, and feedback from previous com-
parisons. Complete prompt templates for each
domain are provided in Section C.3.

Selection and update. We compare the new
candidate xt against the current best x∗

t using
the evaluator E(xt, x

∗
t), which returns both a

binary preference pt and a textual feedback
rt. In our running SVG example, examples
of feedback include “adjust the stroke width”,
“make sure the legs are connected to the body”,
and “add a shadow to the unicorn’s mane”. Re-
gardless of the preference outcome, we always
add the feedback to our history: Rt+1 = Rt ∪ {(xt, rt)}. If pt = 1 (candidate is preferred), we
update x∗

t+1 = xt; otherwise we keep x∗
t+1 = x∗

t . We summarize the overall process in Algorithm 1.

2.3 ANALOGY TO GRADIENT DESCENT

The key algorithmic insight is best understood by analogy to gradient descent. Just as gradients
provide the direction of steepest ascent under local linearity, textual feedback can suggest plausible
directions of improvement in semantic space. For our SVG example, if the feedback indicates “needs
more defined horn shape,” we expect that a small edit to the horn shape that preserves overall structure
will likely be an improvement.

Of course, textual feedback is not a literal gradient. It is approximate and occasionally contradictory—
optimization with such feedback does not have convergence guarantees in the same way that gradient
descent does. Instead, feedback acts as a heuristic directional cue, offering higher-bandwidth
supervision than a binary preference signal or a scalar reward, just as first-order optimization is
fundamentally faster than zeroth-order optimization (Nemirovski & Yudin, 1983; Agarwal et al.,
2012; Nesterov & Spokoiny, 2017). We hypothesize that an open-ended optimization loop based on
such cues can succeed, supported by prior evidence that language models reliably translate textual
instructions into concrete modifications. Examples include generating code changes (Chen et al.,
2021; Austin et al., 2021; Nijkamp et al., 2022; Wang et al., 2023b; Roziere et al., 2023; Guo
et al., 2024; Lozhkov et al., 2024; CodeGemma Team et al., 2024), following complex multi-step
instructions (Ouyang et al., 2022; Wei et al., 2022a; Chung et al., 2022; Longpre et al., 2023; Zhang
et al., 2024), targeted text modifications (Schick et al., 2022; Du et al., 2022; Madaan et al., 2023;
Welleck et al., 2023; Kim et al., 2023), and decomposing high-level goals into executable action
sequences (Schick et al., 2023; Parisi et al., 2022; Yao et al., 2023b; Qin et al., 2023; Wang et al.,
2023a; Agarwal et al., 2025).

Why directional information helps. Zeroth-order methods that rely only on function evaluations
or binary preferences suffer severe dimension-dependent slowdowns: convergence rates degrade
exponentially as the search space grows (Nemirovski & Yudin, 1983; Nesterov & Spokoiny, 2017).
In contrast, first-order methods exploit gradient information to achieve dimension-free convergence
under standard assumptions. Textual feedback provides an approximation to such directional in-
formation. Even when individual rationales are imperfect, their aggregate message across failures
continually refines the direction of improvement. We formalize this intuition in Section A, showing
that under idealized assumptions, rationale-guided updates can achieve linear convergence rates inde-
pendent of effective dimensionality, while zeroth-order baselines scale exponentially worse. These
results provide motivation rather than rigorous guarantees for the discrete text domains we study

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

empirically. In Section 4, we show that Feedback Descent indeed produces consistent improvements
across tasks, validating that such heuristic directional cues are sufficient to drive open-ended text
optimization.

3 RELATED WORK

Preference Learning. Preference learning methods learn from pairwise comparisons (Christiano
et al., 2017; Ouyang et al., 2022; Azar et al., 2023; Ethayarajh et al., 2024; Munos et al., 2024);
recent advances include bypassing the need for a reward model (Rafailov et al., 2023), iterative
optimization under KL constraints (Xiong et al., 2023), and adaptive scaling techniques (Wang et al.,
2024). However, these methods fundamentally compress complex human reasoning into binary or
scalar preferences, foregoing the rich explanatory content that humans can naturally provide alongside
judgments (Wirth et al., 2017). Unlike prior work that relies solely on scalar feedback despite the
complexity of human judgment, we leverage detailed textual rationales to widen this information
bottleneck, allowing for more efficient adaptation.

Evolutionary Algorithms and Gradient-Free Optimization. Feedback Descent can be viewed as
an evolutionary algorithm (Golberg, 1989; Holland, 1992), in which candidates are iteratively mutated
and accepted based on fitness. While the black-box nature of modern LLMs has spurred interest
in applying gradient-free approaches (Guo et al., 2023; Sun et al., 2022; Chen et al., 2024; Lange
et al., 2024), these methods face fundamental challenges in high-dimensional spaces. More broadly,
zeroth-order methods (Chen et al., 2019) face convergence rates that scale poorly with dimension,
which is consistent with our experimental results comparing with reinforcement learning methods
in Section 4. Feedback Descent explores whether textual rationales can provide useful directional
information for optimization, similar to how Nie et al. (2024) shows that LLMs can be effective
optimizers when provided with directional feedback from historical traces. Our contribution is in
operationalizing an effective directed mutation operator via accumulated textual feedback.

Optimizing Compound AI Systems. Compound AI systems, i.e., modular architectures involving
multiple LLM invocations and complex control flow, such as agents or scaffolding techniques (Yao
et al., 2023b), present unique optimization challenges due to their modularity. Several approaches have
emerged to tackle this complexity, including optimization for searching and bootstrapping few-shot
in-context examples (Khattab et al., 2022; 2024; Opsahl-Ong et al., 2024), backpropagating textual
feedback between components (Yuksekgonul et al., 2024), and reflective prompt evolution (Agrawal
et al., 2025). However, these methods focus on optimizing individual components or connections
within fixed architectures. In contrast, Feedback Descent provides a general-purpose text optimization
framework that treats LLMs as optimizers for any text-representable artifact. While compound AI
systems are one promising application domain, our approach generalizes beyond AI systems to
optimize standalone text artifacts such as SVG code and molecular representations.

Inference-Time Optimization for LLMs. Inference-time optimization improves performance with-
out weight updates by performing additional computation at generation. This paradigm includes self-
critique and refinement cycles (constitution-guided critique (Bai et al., 2022); Self-Refine (Madaan
et al., 2023)) test-time scaling via best-of-N , multi-step reasoning, and tree search (Cobbe et al., 2021;
Zelikman et al., 2022; Yao et al., 2023a), and iterative prompt optimization (Zhou et al., 2022; Yang
et al., 2023; Pryzant et al., 2023). Several works report that strategically allocating inference-time
compute yields large gains (Snell et al., 2024; Brown et al., 2025; Geiping et al., 2025; Zhou et al.,
2025). We build on the growing consensus that natural language is a particularly powerful medium
for inference-time improvement. Natural language traces enable models to reason effectively in
complex environments (Lampinen et al., 2022; Wei et al., 2022b), and language models can reliably
map textual instructions to concrete modifications (Chen et al., 2021; Austin et al., 2021; Saunders
et al., 2022; Scheurer et al., 2023). However, existing methods often rely on random sampling of
self-generated critiques, which may be noisy or fail to capture external preferences. In contrast, we
leverage external rationales as directional information, enabling guided search in the semantic space.

4 EXPERIMENTS

We evaluate Feedback Descent across three diverse domains—visual design, prompt optimization,
and molecule discovery—to demonstrate its generality and effectiveness. Through our experiments,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Model Condition Anatomy Cyber Geom Min. Retro Story

GPT-4o-mini Scratch 95.2± 8.3 97.6± 4.1 87.7± 5.3 100.0± 0.0 100.0± 0.0 100.0± 0.0
Informed 92.1± 9.3 91.2± 4.8 93.0± 7.8 92.8± 7.7 69.8± 47.2 95.6± 3.8

GPT-5-mini Scratch 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
Informed 92.1± 9.3 89.9± 7.0 96.3± 3.2 95.9± 3.6 96.1± 3.4 100.0± 0.0

Table 1: Win rates after five iterations comparing Feedback Descent against direct prompting under
two conditions: from Scratch and Informed of the judge rubric. We show means and standard
deviations across 3 random seeds. Iterative feedback consistently improves SVG designs over
direct prompting.

Figure 2: Example unicorn images generated by Feedback Descent under four different judge criteria:
retro arcade, minimalist, cyberpunk, and anatomy. Feedback Descent yields visually distinct
unicorns aligned with the aesthetic criteria preferred by each judge.

we aim to answer the following questions. First, we ask whether Feedback Descent exhibits generality
by working robustly across qualitatively different domains. Second, we test sample efficiency,
evaluating whether iterative, rationale-guided feedback enables higher-quality solutions with fewer
model queries than existing optimizers. Third, we measure outcome quality, assessing whether
Feedback Descent can produce artifacts (SVGs, prompts, and molecules) that not only satisfy rubrics
and constraints but also surpass state-of-the-art methods on established benchmarks.

4.1 EXPERIMENTAL DOMAINS

We describe each evaluation domain and how we obtain pairwise comparisons augmented with textual
rationales.

SVG optimization. Taking inspiration from Bubeck et al. (2023), we ask models to output SVG code
for illustrations of unicorns. We use a set of six diverse judge prompts, each preferring a different
aesthetic: accurate anatomy, cyberpunk futurism, geometric abstraction, minimalist, retro arcade
pixel-art motifs, and storybook illustrations. We compare rendered SVGs using GPT-5-mini,
which outputs both a binary preference and short textual feedback. To mitigate order bias, we
perform two judgments with swapped image orders (A-B and B-A) and declare a winner only if both
judgments are consistent. Otherwise, we try again, up to three times, and discard if no consistent
winner emerges.

Prompt optimization. We follow the setup of GEPA (Agrawal et al., 2025) on IFBench (Pyatkin et al.,
2025), a benchmark for evaluating precise constraint-following (e.g., “answer only with yes or no”).
We design a two-stage system that first produces an answer and then rewrites it to satisfy constraints,
and we jointly optimize the prompts for both stages using Feedback Descent. Optimization is driven
by the 150 training examples: candidate prompts are updated based on performance on the training set
and textual feedback describing which constraints were satisfied or violated. All candidate prompts
are scored on the 300 validation examples, and the prompt with the highest validation accuracy rate
is selected. We report performance on a test set of 294 held-out examples.

Molecule discovery. We evaluate on molecular docking tasks using DOCKSTRING (García-
Ortegón et al., 2022) docking scores and drug-likeness (QED). DOCKSTRING provides a realistic
drug discovery setting where molecules are evaluated based on their predicted binding affinity to
medically relevant targets rather than simple physicochemical properties. We focus on challenging
optimization tasks across six protein targets: ADRB1, PGR, PPARA, PPARG, CDK2, and F2.
Following DOCKSTRING, we compute the combined score s = −Vina − 10 × (1 − QED). We

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Method Qwen3-8B GPT-4.1 Mini
DSPy Default (Khattab et al., 2024) 36.90 47.79
MIPROv2 (Opsahl-Ong et al., 2024) 36.22 49.15
GRPO (Shao et al., 2024) 35.88 —
GEPA (Agrawal et al., 2025) 38.61 52.72
GEPA+Merge (Agrawal et al., 2025) 28.23 55.95
Ours 44.22 ± 3.15 54.59 ± 2.46

Table 2: Comparison of prompt optimization methods on IFBench. We report scores for Qwen3-8B
and GPT-4.1 Mini under matched rollout budgets. Feedback Descent outperforms all baselines on
Qwen3-8B, and is competitive with the state-of-the-art for GPT-4.1 Mini.

represent molecules as SMILES strings (Weininger, 1988) and evaluate using DOCKSTRING’s
molecular docking pipeline to compute Vina scores (binding affinity). The feedback system provides
rich structured information, including RDKit molecular descriptors (Landrum, 2006), similarity
searches against known compounds from molecular databases (Liu et al., 2007; Gilson et al., 2016;
Gaulton et al., 2012; Mendez et al., 2019), and detailed docking results. In the system prompt, we
also provide the LLM information about the protein target obtained from the UniProt database (The
UniProt Consortium, 2023). Together, this provides the LLM with detailed feedback on molecular
properties that affect binding affinity, drug-likeness violations, and comparisons to known active
compounds.

4.2 SVG OPTIMIZATION

We evaluate iterative feedback against direct prompting across two generators, GPT-4o-mini and
GPT-5-mini. The direct prompting baseline receives the full evaluation rubric and is tasked with
producing a single best design. Feedback Descent instead begins with an initial set of candidates, and
through 5 rounds of structured feedback and improvement, refines designs using judge comparisons
that reflect aesthetic criteria. We test two initialization regimes: Scratch, which starts from images
simply instructed to generate images of unicorns, and Informed, which starts from the strongest
direct generations conditioned on the rubric, determined by the LLM judge.

Results. Table 1 shows the win rates after 5 iterations. For both GPT-4o-mini and GPT-5-mini,
Feedback Descent reliably improves outputs over the initial population. Furthermore, qualitative
examples in Fig. 2 demonstrate that the procedure consistently produces unicorns whose visual style
diverges across judges, aligning with aesthetic criteria such as geometry, minimalism, or retro arcade
motifs.

Iterative feedback can elicit better outputs from the same model

Because of a generator–verifier gap, even prompting with the exact judge rubric is suboptimal for
SVG generation. Feedback Descent elicits better images from the same generator by iteratively
proposing improvements guided by feedback.

4.3 PROMPT OPTIMIZATION

We compare Feedback Descent against five baselines: the default prompt implemented in the DSPy
program (Khattab et al., 2024, Default), a Bayesian optimization approach for selecting instructions
and demonstrations (Opsahl-Ong et al., 2024, MIPROv2), online reinforcement learning (Shao et al.,
2024, GRPO), and a reflective prompt evolution method (Agrawal et al., 2025, GEPA). All baselines
are run under matched rollout budgets for fair comparison, and the reported baseline results are
from Agrawal et al. (2025).

Each example produces pointwise feedback about which constraints were satisfied or violated. To
construct the pairwise feedback for Feedback Descent, we stratify the examples into quadrants based
on whether each prompt resulted in a correct response. We then ask the model to propose textual
descriptions of inputs where these discrepancies arise. We then statistically validate each hypothesis,
filtering for ones that correspond to consistent differences in performance between the prompts. This
process distills the true global differences between the two prompts.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Method ADRB1 PGR PPARA PPARG CDK2 F2

D
O

C
K

ST
R

IN
G

(N
=2

60
15

5)

Top 50% 5.305 3.478 4.549 4.210 4.385 4.168
Top 90% 8.785 7.878 7.987 7.658 7.733 7.477
Top 99% 9.620 8.703 8.718 8.449 8.453 8.139
Top 99.9% 10.209 9.260 9.230 9.012 8.979 8.722
Top 99.99% 10.742 9.723 9.821 9.518 9.509 9.252
Best Molecule 11.330 9.742 9.907 9.529 9.534 9.311

GP-BO† (Tripp et al., 2021) 10.552 9.307 9.680 9.485 9.067 8.686
Graph MCTS† (Jensen, 2019) 8.883 7.819 7.363 7.134 7.777 6.310
Graph GA† (Jensen, 2019) 9.145 8.670 8.598 8.327 8.288 8.102
SMILES GA (Brown et al., 2019) 9.334 8.335 9.052 8.560 8.268 7.984
REINVENT (Olivecrona et al., 2017) 9.018 8.267 8.430 8.347 8.226 8.139

TextGrad (Yuksekgonul et al., 2024) 8.531 8.057 7.953 7.256 8.174 7.357
Feedback Descent 10.623 9.615 9.919 10.187 9.803 9.300

Table 3: Comparison of molecule optimization methods on six protein targets. Fragment-based algo-
rithms (denoted by †) operate directly on molecular graphs, giving them structural priors unavailable
to purely text-based methods. For each target, the top generative result is in bold, and any population
in the DOCKSTRING that exceeds the best generative result is underlined. Feedback Descent rivals
or surpasses specialized molecular optimizers across all six targets.

Table 2 shows that Feedback Descent achieves the highest score on Qwen3-8B (44.22 vs. 38.61
for GEPA) and remains competitive with GEPA and GEPA+Merge on GPT-4.1 Mini (54.59 vs.
55.95). These results indicate that structured, iterative feedback drives steady improvements in
prompt optimization, even though other optimizers such as GEPA exploit problem structure.

Grounded Summaries Enable Reliable Prompt Optimization

By summarizing a large set of pointwise rationales into a global comparison between two prompts,
Feedback Descent yields more reliable prompts.

4.4 MOLECULE OPTIMIZATION (DOCKSTRING)

0.0 0.2 0.4 0.6 0.8 1.0
DrugBank Tversky similarity (CFP4)

0

2

4

6

8

10

Do
ck

st
rin

g
sc

or
e

Tversky similarity vs score

ADRB1 (=-0.13)
F2 (=-0.21)

PGR (=+0.40)
PPARA (=+0.21)

PPARG (=-0.39)

Figure 3: Scatter plots of Tversky simi-
larity to approved drugs against docking
scores, showing weak or negative cor-
relations across targets. High-scoring
molecules discovered by Feedback De-
scent are far from any known drugs.

We compare against baselines implemented in the
mol_opt repository (Gao et al., 2022), Our compar-
isons include a genetic algorithm (Brown et al., 2019,
SMILES GA), reinforcement learning (Olivecrona et al.,
2017, REINVENT), fragment-based algorithms (Jensen,
2019, Graph MCTS/GA), and Bayesian optimization on
molecular graphs (Tripp et al., 2021, GP-BO). Because
fragment-based methods exploit graph-level structural pri-
ors, the most direct comparison is to the text-only base-
lines: SMILES-GA and REINVENT. Nonetheless, we
report results against all methods to provide a complete
picture of performance. Results. Table 3 summarizes opti-
mization outcomes across six protein targets. For each tar-
get, we benchmark Feedback Descent against specialized
molecular optimization algorithms as well as ligands from
the DOCKSTRING dataset, which comprises both decoy
and experimentally active ligands. Feedback Descent is
competitive with all baselines and achieves the strongest
scores on several targets (e.g., ADRB1, PGR, PPARG,
CDK2, F2). On multiple proteins, it matches or exceeds
the 99.9th and even 99.99th percentiles of the DOCK-
STRING database, including surpassing the best molecule present in the dataset itself (N = 260155).
These findings show that Feedback Descent, a purely text-based method, can rival or outperform
specialized graph-based algorithms, despite lacking handcrafted structural priors. Fig. 4 shows
optimization trajectories for PPARG. Feedback Descent achieves competitive trajectories relative
to specialized methods, often reaching high-scoring regions of chemical space with comparable or
fewer oracle calls. This pattern holds across targets, suggesting that the method generalizes rather
than relying on idiosyncrasies of a single protein system.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
Oracle Calls

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Be
st

 S
co

re

Molecular Optimization: PPARG

Feedback Descent
REINVENT
SMILES-GA
GRAPH-GA
GRAPH-MCTS
GP-BO

Figure 4: Optimization trajectories on PPARG showing
docking scores over oracle calls for Feedback Descent and
specialized baselines. Feedback Descent quickly improves
molecular docking scores within the first few hundred
oracle calls.

Figure 5: Pareto frontier of dock-
ing affinity vs. drug-likeness, com-
paring Feedback Descent molecules
(blue) to the DOCKSTRING dataset
(gray). Feedback Descent finds
novel molecules that meet or sur-
pass known ones.

Analysis of discovered molecules. Fig. 5 illustrates the Pareto frontier between docking affinity
(Vina score) and drug-likeness (QED) for PPARG. Feedback Descent recovers molecules that sit on
or above the DOCKSTRING frontier, indicating that improvements in affinity are not achieved at the
expense of reduced drug-likeness. See Fig. 6 in the appendix for the full set of Pareto frontiers across
all targets. These results show that feedback-guided search yields candidates that are not only potent
but also balanced along multiple drug-relevant dimensions.

We also examine novelty by plotting Tversky similarity (CFP4 fingerprints) to approved DrugBank
molecules against docking scores in Fig. 3. Across all targets, the correlations are weak or negative
(Spearman ρ between−0.39 and 0.40), showing that high-scoring candidates discovered by Feedback
Descent do not simply recycle functional groups from existing drugs but instead explore novel regions
of chemical space. For CDK2, no comparison is shown: the target lacks any fully approved drugs in
DrugBank with orthosteric binding as part of their mechanism of action, and thus does not satisfy our
filtering criteria for inclusion.

Feedback Descent Can Discover Novel Targeted Molecules

Feedback Descent, operating in a purely textual form, consistently identifies novel molecules that
surpass high-percentile baselines in DOCKSTRING. This demonstrates that iterative, feedback-
guided optimization can enable models to genuinely explore unknown design spaces beyond their
training distribution.

5 DISCUSSION

This paper presents Feedback Descent, an inference-time framework that improves text artifacts
through structured pairwise feedback. We validate it on visual design, prompt optimization, and
molecule discovery, showing that text can serve as an optimizable medium, not just static data.
Unlike parameter tuning, this approach can leverage richer textual signals, allowing for continual
improvement without requiring retraining.

Limitations. The method relies on strong evaluators, which may be scarce in some domains.
Training models to produce reliable feedback remains a prerequisite for harder tasks. For creative
domains, strictly “following the gradient” may be limiting; balancing refinement with exploration is
an important next step.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our research focuses on improving preference
learning methods through textual rationales, which have positive implications for AI alignment
and human-AI collaboration. The methods developed could potentially be misused to optimize for
harmful content; the same risk exists with any preference learning approach. Our contribution lies in
making such optimization more efficient rather than enabling fundamentally new capabilities.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. Complete experimental details,
including hyperparameters and evaluation protocols, are provided in the main text and appendix. All
datasets used in our experiments are either publicly available or will be released upon publication. The
proofs are presented with full detail in Section A with all assumptions clearly stated. Implementation
details for Feedback Descent, including prompting strategies and in-context learning procedures, are
documented in the appendix.

REFERENCES

Alekh Agarwal, Peter L Bartlett, Pradeep Ravikumar, and Martin J Wainwright. Information-theoretic
lower bounds on the oracle complexity of stochastic convex optimization. IEEE Transactions on
Information Theory, 58(5):3235–3249, 2012.

Mayank Agarwal, Ibrahim Abdelaziz, Kinjal Basu, Merve Unuvar, Luis A Lastras, Yara Rizk, and
Pavan Kapanipathi. Toolrm: Outcome reward models for tool-calling large language models. arXiv
preprint arXiv:2509.11963, 2025.

Lakshya A Agrawal, Shangyin Tan, Dilara Soylu, Noah Ziems, Rishi Khare, Krista Opsahl-Ong,
Arnav Singhvi, Herumb Shandilya, Michael J Ryan, Meng Jiang, et al. Gepa: Reflective prompt
evolution can outperform reinforcement learning. arXiv preprint arXiv:2507.19457, 2025.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis with
large language models. arXiv preprint arXiv:2108.07732, 2021.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Remi Munos. A general theoretical paradigm to understand learning from human
preferences. arXiv preprint arXiv:2310.12036, 2023.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: Benchmarking
models for de novo molecular design. Journal of Chemical Information and Modeling, 59(3):
1096–1108, 2019. doi: 10.1021/acs.jcim.8b00839.

Tom B. Brown et al. s1: Simple test-time scaling. arXiv preprint arXiv:2501.19393, 2025.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puigdomenech,
Alec Radford, Vedant Sastry, Ilya Sutskever, Daniel M. Ziegler, Amanda Dennison, Marius Ervin,
William Perez, Sallaheddine Karaa, Sarah Kluska, Jerome Lespiau, Tom B. Brown, and David Wu.
Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, and David Cox. Zo-adamm:
Zeroth-order adaptive momentum method for black-box optimization. 2019.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Xiangyi Chen, Sijia Liu, and Mingyi Hong. Derivative-free optimization for low-rank adaptation in
large language models. arXiv preprint arXiv:2403.01754, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in Neural Information Processing
Systems, 30, 2017.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhe
Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu,
Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob
Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned
language models. arXiv preprint arXiv:2210.11416, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

CodeGemma Team, Heri Zhao, et al. Codegemma: Open code models based on gemma. arXiv
preprint arXiv:2406.11409, 2024.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, et al. Deepseek-r1: Incentivizing reasoning capability
in llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025. URL https:
//arxiv.org/abs/2501.12948.

Wanyu Du, Vipul Raheja, Dhruv Kumar, Zae Myung Kim, Melissa Lopez, and Dongyeop Kang. Read,
revise, repeat: A system demonstration for human-in-the-loop iterative text revision. In2Writing,
2022.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor W Coley. Sample efficiency matters: A benchmark
for practical molecular optimization. arXiv preprint arXiv:2206.12411, 2022.

Miguel García-Ortegón, Gregor N. C. Simm, Austin J. Tripp, José Miguel Hernández-Lobato,
Matthias R. Bauer, and Sergio Bacallado. Dockstring: Easy molecular docking yields better
benchmarks for ligand design. Journal of Chemical Information and Modeling, 62(15):3486–3502,
2022. doi: 10.1021/acs.jcim.1c01334.

Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, and John P Overington.
Chembl: a large-scale bioactivity database for drug discovery. Nucleic Acids Research, 40(D1):
D1100–D1107, 2012. doi: 10.1093/nar/gkr777.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with latent
reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

Michael K Gilson, Tiqing Liu, Michael Baitaluk, George Nicola, Linda Hwang, and Justin Chong.
Bindingdb in 2015: a public database for medicinal chemistry, computational chemistry and
systems pharmacology. Nucleic Acids Research, 44(D1):D1045–D1053, 2016. doi: 10.1093/nar/
gkv1072.

David E Golberg. Genetic algorithms in search, optimization, and machine learning. Addion wesley,
1989(102):36, 1989.

Google DeepMind. Gold-medalist performance in solving olympiad geometry with alphageometry2.
arXiv preprint arXiv:2502.03544, 2025. URL https://arxiv.org/abs/2502.03544.

10

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2502.03544

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shijie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, et al. Deepseek-coder: When the large language model meets
programming – the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Zerui Guo, Tianxiang Sun, Xipeng Qiu, and Xuanjing Huang. When gradient descent meets derivative-
free optimization: A match made in black-box scenario. arXiv preprint arXiv:2305.10013, 2023.

John H Holland. Adaptation in natural and artificial systems: an introductory analysis with applica-
tions to biology, control, and artificial intelligence. MIT press, 1992.

Jan H Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search for
the exploration of chemical space. Chemical Science, 10(12):3567–3572, 2019. doi: 10.1039/
C8SC05372C.

Omar Khattab, Christopher Potts, and Matei Zaharia. Demonstrate-search-predict: Composing
retrieval and language models for knowledge-intensive nlp. arXiv preprint arXiv:2212.14024,
2022.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, Heather Miller, Matei
Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into self-
improving pipelines. arXiv preprint arXiv:2310.03714, 2024.

Seonghyeon Kim, Sukmin Cho, Doyoung Kim, Sejin Kim, Chacha Chen, Ekaterina Kochmar,
Hwajung Hong, and Alice Oh. Help me think: A simple prompting strategy for non-experts to
create customized content with models. arXiv preprint arXiv:2208.08232, 2023.

Andrew K Lampinen, Nicholas Roy, Ishita Dasgupta, Stephanie Cy Chan, Allison Tam, James
Mcclelland, Chen Yan, Adam Santoro, Neil C Rabinowitz, Jane Wang, and Felix Hill. Tell me
why! Explanations support learning relational and causal structure. In Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 11868–11890. PMLR, 2022.

Greg Landrum. Rdkit: Open-source cheminformatics, 2006. URL http://www.rdkit.org.

Robert Tjarko Lange, Yingtao Tian, and Yujin Tang. Large language model-based evolutionary
optimizer: Reasoning with elitism. arXiv preprint arXiv:2403.02054, 2024.

Tiqing Liu, Yuhmei Lin, Xin Wen, Robert N Jorissen, and Michael K Gilson. Bindingdb: a web-
accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids
Research, 35(suppl_1):D198–D201, 2007. doi: 10.1093/nar/gkl999.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V.
Le, Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data and methods
for effective instruction tuning. ICML, 2023.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Denis Kocetkov, Chenghao Mou, Christopher Akiki,
Carlos Muñoz Ferrandis, Muennighoff Niklas, Jean Kaddour, Yacine Jernite, et al. Starcoder 2 and
the stack v2: The next generation. arXiv preprint arXiv:2402.19173, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Bodhisattwa Prasad Majumder,
Shashank Gupta, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651, 2023.

David Mendez, Anna Gaulton, A Patrícia Bento, Jon Chambers, Marleen De Veij, Eloy Félix,
María Paula Magariños, José F Mosquera, Prudence Mutowo, Michał Nowotka, et al. Chembl:
towards direct deposition of bioassay data. Nucleic Acids Research, 47(D1):D930–D940, 2019.
doi: 10.1093/nar/gky1075.

11

http://www.rdkit.org

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Remi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Côme Fiegel, Andrea Michi,
Marco Selvi, Sertan Girgin, Nikola Momchev, Olivier Bachem, Daniel J Mankowitz, Doina Precup,
and Bilal Piot. Nash learning from human feedback. In Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
36743–36768. PMLR, 2024.

Arkadi S Nemirovski and David Borisovich Yudin. Problem Complexity and Method Efficiency in
Optimization. Wiley-Interscience, New York, 1983.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions. Foun-
dations of Computational Mathematics, 17(2):527–566, 2017. doi: 10.1007/s10208-015-9296-2.

Allen Nie, Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. The importance of directional
feedback for llm-based optimizers. arXiv preprint arXiv:2405.16434, 2024.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de novo
design through deep reinforcement learning. Journal of Cheminformatics, 9(1):1–14, 2017. doi:
10.1186/s13321-017-0235-x.

OpenAI. Openai o1 system card. Technical report, OpenAI, 2024. URL https://arxiv.org/
abs/2412.16720.

Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David Broman, Christopher Potts, Matei Zaharia,
and Omar Khattab. Optimizing instructions and demonstrations for multi-stage language model
programs. arXiv preprint arXiv:2406.11695, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. Advances in
Neural Information Processing Systems, 35:27730–27744, 2022.

Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models. arXiv preprint
arXiv:2205.12255, 2022.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with “gradient descent” and beam search. arXiv preprint arXiv:2305.03495, 2023.

Valentina Pyatkin, Saumya Malik, Victoria Graf, Hamish Ivison, Shengyi Huang, Pradeep Dasigi,
Nathan Lambert, and Hannaneh Hajishirzi. Generalizing verifiable instruction following. arXiv
preprint arXiv:2507.02833, 2025.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu Tian,
Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li, Ziwei
Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao, Yuxiang
Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang Wu,
Heng Ji, Zhiyuan Liu, and Maosong Sun. Tool learning with foundation models. arXiv preprint
arXiv:2304.08354, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. arXiv
preprint arXiv:2305.18290, 2023.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. Code llama: Open foundation models for code. arXiv preprint arXiv:2308.12950, 2023.

12

https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.16720

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators. arXiv preprint arXiv:2206.05802,
2022.

Jérémy Scheurer, Jon Ander Campos, Jun Shern Chan, Angelica Chen, Kyunghyun Cho, and Ethan
Perez. Training language models with language feedback at scale. arXiv preprint arXiv:2303.16755,
2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Peer: A collaborative language model. arXiv preprint
arXiv:2208.11663, 2022.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. NeurIPS, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

David Silver and Richard S. Sutton. Welcome to the era of experience. In Designing an Intelligence.
MIT Press, 2025. Preprint.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Tianxiang Sun, Zhengfu Chen, Xipeng Qiu, and Xuanjing Huang. Bbtv2: Towards a gradient-free
future with large language models. arXiv preprint arXiv:2205.11200, 2022.

The UniProt Consortium. Uniprot: the universal protein knowledgebase in 2023. Nucleic Acids
Research, 51(D1):D523–D531, 2023. doi: 10.1093/nar/gkac1052.

Austin Tripp, Gregor N. C. Simm, and José Miguel Hernández-Lobato. A fresh look at de novo
molecular design benchmarks. In NeurIPS 2021 AI for Science Workshop, 2021. URL https:
//openreview.net/forum?id=gS3XMun4cl_.

Jiayi Wang, Yuxuan Sun, Wenjia Zhang, et al. Adaptive preference scaling for reinforcement learning
with human feedback. arXiv preprint arXiv:2406.02764, 2024.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
arXiv preprint arXiv:2308.11432, 2023a.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D.Q. Bui, Junnan Li, and Steven C.H. Hoi.
Codet5+: Open code large language models for code understanding and generation. Proceedings
of EMNLP, 2023b.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. ICLR, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In NeurIPS, 2022b.

David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
ogy and encoding rules. Journal of Chemical Information and Computer Sciences, 28(1):31–36,
1988. doi: 10.1021/ci00057a005.

Sean Welleck, Ximing Lu, Peter West, Faiz Karim, Liwei Jiang, Khyathi Chandu, Nouha Dziri,
Ronan Le Bras, Lianhui Qin, Yu Gu, Rachel Rudinger, and Yejin Choi. Generating sequences by
learning to self-correct. ICLR, 2023.

Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fürnkranz. A survey of preference-
based reinforcement learning methods. Journal of Machine Learning Research, 18(136):1–46,
2017.

13

https://openreview.net/forum?id=gS3XMun4cl_
https://openreview.net/forum?id=gS3XMun4cl_

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Wei Xiong, Hanze Dong, Chenlu Ye, Han Zhong, Nan Jiang, and Tong Zhang. Iterative preference
learning from human feedback: Bridging theory and practice for rlhf under kl-constraint. arXiv
preprint arXiv:2312.11456, 2023.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of Thoughts: Deliberate problem solving with large language models. 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. ICLR, 2023b.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Pan Lu, Zhi Huang, Carlos Guestrin,
and James Zou. Textgrad: Automatic "differentiation" via text. arXiv preprint arXiv:2406.07496,
2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
reasoning. arXiv preprint arXiv:2203.14465, 2022.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. arXiv
preprint arXiv:2308.10792, 2024.

Xiang Zhou, Yuxuan Liu, Zhiyuan Chen, et al. Towards thinking-optimal scaling of test-time compute
for llm reasoning. arXiv preprint arXiv:2502.18080, 2025.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. arXiv preprint
arXiv:2211.01910, 2022.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A FORMAL STATEMENTS AND PROOFS

Proposition 1 (Linear convergence under PL with rationale-guided directions). Let r : Z → R be
L-smooth and satisfy the µ-PL condition (for maximization)

1

2
∥∇r(z)∥22 ≥ µ

(
r(z⋆)− r(z)

)
∀z ∈ Z.

At iteration t, suppose a direction vt satisfies

E[vt | zt] = α∇r(zt), E
[
∥vt − E[vt | zt]∥22

∣∣ zt] ≤ σ2∥∇r(zt)∥22,

with constants α > 0 and σ ≥ 0, and define κ1 ≜ α2 + σ2. Consider the update zt+1 = zt + ηvt.
If a constraint set Z is present, assume zt + ηvt ∈ Z (i.e., the projection is inactive). With stepsize
η = α/(Lκ1),

E
[
r(z⋆)− r(zt+1)

∣∣ zt] ≤ (
1− µα2

Lκ1

) [
r(z⋆)− r(zt)

]
.

Unrolling yields

E[r(z⋆)− r(zT)] ≤
(
1− µα2

Lκ1

)T [
r(z⋆)− r(z0)

]
,

so ϵ-accuracy is achieved in

T = O

(
L(α2 + σ2)

µα2
log

1

ϵ

)
iterations.

Proof. L-smoothness gives the two-sided bound

r(zt + ηvt) ≥ r(zt) + η⟨∇r(zt), vt⟩ − L
2 η

2∥vt∥22.

Taking conditional expectation and using E[vt|zt] = α∇r(zt) and E
[
∥vt∥22

∣∣ zt] ≤ (α2 +

σ2) ∥∇r(zt)∥22 = κ1∥∇r(zt)∥22,

E[r(zt+1) | zt] ≥ r(zt) +
(
ηα− L

2 η
2κ1

)
∥∇r(zt)∥22.

By the PL inequality, ∥∇r(zt)∥22 ≥ 2µ [r(z⋆)− r(zt)], so

E[r(z⋆)− r(zt+1) | zt] ≤
(
1− 2µηα+ µLη2κ1

)
[r(z⋆)− r(zt)].

Choosing η = α/(Lκ1) makes the bracket equal to 1− µα2/(Lκ1), yielding the claim.

A.1 QUERY COMPLEXITY AND DIMENSION DEPENDENCE

Dimension-Free Case. When rationales provide full gradient information (vt ∈ Rd) at unit cost, the
query complexity equals T and is dimension-independent:

Queries = O

(
L(α2 + σ2)

α2µ
log

1

ϵ

)
(3)

Coordinate-Sparse Case. Suppose each query reveals one coordinate of ∇r(zt) chosen uniformly
at random. Using the unbiased estimator vt = d (∂ir(zt)) ei with i ∼ Unif([d]) gives α = 1,
σ2 = d− 1, and hence κ1 = d and stepsize η = 1/(Ld). We have

T = O
(Ld

µ
log

1

ϵ

)
, Queries = O

(Ld
µ

log
1

ϵ

)
.

Equivalently, averaging m independent coordinate queries per iteration yields σ2 = (d − 1)/m;
taking m = d recovers T = O((L/µ) log(1/ϵ)) with d queries per iteration, so total queries remain
Θ
(
Ld
µ log 1

ϵ

)
.

This clarifies when and why dimension appears in the complexity.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B LOWER BOUNDS FOR EXHAUSTIVE/RANDOM ZEROTH-ORDER SEARCH

We formalize the intrinsic slowness of exhaustive (grid) search and best-of-N random sampling when
only function values (or preferences) are used without directional information. The hard instance is
the strongly concave quadratic

r(z) = r(z⋆)− µ
2 ∥z − z⋆∥22, z ∈ BR(z

⋆) ⊂ Rd,

whose ϵ-optimal set is the ball Bρϵ
(z⋆) with radius ρϵ =

√
2ϵ/µ.

Proposition 2 (Grid-search lower bound). Let BR(z
⋆) ⊂ Rd and a hypercubic grid of spacing h. Its

covering radius is ρ =
√
d h
2 . To guarantee that for all placements of z⋆ there exists a grid point in the

ϵ-optimal ball Bρϵ
(z⋆) with ρϵ =

√
2ϵ/µ, it suffices that ρ ≤ ρϵ (i.e., h ≤ 2ρϵ/

√
d). Furthermore,

any such grid restricted to BR(z
⋆) must contain at least

N ≥
(
R

ρ

)d

=
(R√d

2ρϵ

)d
=

(µR2d

8 ϵ

)d/2
points. Hence exhaustive grid search is exponential in d and polynomial in 1/ϵ with exponent d/2 on
this family.

Proof. Coverage of BR(z
⋆) by N balls of radius ρ centered at grid points implies NVdρ

d ≥ VdR
d,

hence N ≥ (R/ρ)d. With ρ =
√
d h/2 and h ≤ 2ρϵ/

√
d, we obtain N ≥ (R

√
d/(2ρϵ))

d. Substitute
ρϵ =

√
2ϵ/µ to conclude.

Proposition 3 (Best-of-N random sampling lower bound). Draw X1, . . . , XN
i.i.d.∼ Unif(BR(z

⋆))

and let ẑ = argmaxi r(Xi) for r(z) = r(z⋆)− µ
2 ∥z − z⋆∥22. Then with a ≜ 2/d,

E[r(z⋆)− r(ẑ)] =
µR2

2
N B(1+a,N) =

µR2

2
Γ(1+a)

Γ(N + 1)

Γ(N + 1 + a)
.

Moreover, for all d ≥ 1 (so a ∈ (0, 2]),

Γ(N + 1)

Γ(N + 1 + a)
≥ (N + 2)−a,

and thus

E[r(z⋆)− r(ẑ)] ≥ µR2

2
Γ
(
1 +

2

d

)
(N + 2)−

2
d = Ω

(
N− 2

d

)
.

Proof. Let Ri = ∥Xi−z⋆∥2 and Rmin = mini Ri. The CDF of Rmin is F (r) = 1− (1− (r/R)d)N

for r ∈ [0, R]. Differentiating, f(r) = Ndrd−1R−d(1− (r/R)d)N−1. Then

E[R2
min] =

∫ R

0

r2f(r) dr = NR2

∫ 1

0

t
2
d (1− t)N−1dt = NR2 B

(
1 + 2

d , N
)
,

where t = (r/R)d and B is the Beta function. Using B(a, b) = Γ(a)Γ(b)
Γ(a+b) gives the exact expression.

For the bound, we use the inequality Γ(N + 1)/Γ(N + 1 + a) ≥ (N + 2)−a which holds for all
a ∈ (0, 2] and N ≥ 1.

C EXTENDED EXPERIMENT SECTION

C.1 IMPLEMENTATION DETAILS

SVG Code Optimization. We employ a tournament-style approach where gpt-5-mini generates
SVG/TikZ code that gets rendered to PNG images for pairwise aesthetic comparisons by a separate
instance of the same model acting as judge. The system maintains a “champion” design that only
updates when both A-vs-B and B-vs-A orderings consistently agree on a winner, accumulating
winning rationales into the generation prompt to guide aesthetic improvements across iterations. The
judge provides natural language rationales explaining aesthetic preferences that inform subsequent
generations.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Method ADRB1 PGR PPARA PPARG CDK2 F2

D
O

C
K

ST
R

IN
G

(N
=2

60
15

5)

Top 50% 5.305 3.478 4.549 4.210 4.385 4.168
Top 90% 8.785 7.878 7.987 7.658 7.733 7.477
Top 99% 9.620 8.703 8.718 8.449 8.453 8.139
Top 99.9% 10.209 9.260 9.230 9.012 8.979 8.722
Top 99.99% 10.742 9.723 9.821 9.518 9.509 9.252
Best Molecule 11.330 9.742 9.907 9.529 9.534 9.311

GP-BO† 10.552± 0.140 9.307± 0.177 9.680± 0.337 9.485± 0.279 9.067± 0.289 8.686± 0.068
Graph MCTS† 8.883± 0.826 7.819± 0.319 7.363± 0.935 7.134± 0.855 7.777± 0.723 6.310± 0.704
Graph GA† 10.249± 1.002 8.793± 0.497 9.211± 0.343 8.769± 0.432 8.652± 0.449 8.900± 0.817
SMILES GA 9.334± 0.237 8.335± 0.276 9.052± 0.484 8.560± 0.346 8.268± 0.170 7.984± 0.554
REINVENT 9.867± 0.522 8.604± 0.483 8.735± 0.120 9.054± 0.153 8.695± 0.370 8.441± 0.535

No Feedback (Best-of-N) 6.190± 0.821 8.619± 0.562 8.230± 0.628 8.633± 0.549 8.300± 0.620 8.793± 0.921
Random Feedback 6.604± 0.577 8.385± 0.258 8.276± 0.628 6.780± 0.523 8.793± 0.921 7.993± 0.663
Minimal Feedback 5.863± 0.428 8.779± 0.633 8.507± 0.428 7.998± 0.571 9.439± 0.922 8.420± 0.315
TextGrad 8.531± 0.278 8.057± 0.383 7.953± 0.160 7.256± 0.886 8.174± 0.395 7.357± 0.821
Feedback Descent 10.623± 0.112 9.615± 0.158 9.919± 0.305 10.187± 0.253 9.803± 0.267 9.300± 0.062

Table 4: Full results for molecule optimization on six protein targets. For each target, the top
generative result is in bold, and any population in the DOCKSTRING database that exceeds the
best generative result is underlined. Feedback Descent rivals or surpasses specialized molecular
optimizers across all six targets.

IFBench Prompt Optimization. We closely follow the setting of Agrawal et al. (2025) for this
experiment. We use their two-stage DSPy program with the gpt-4.1-mini model and temperature
1.0 for the solver and 0.0 for proposer/tagger to balance exploration and precision. To compare two
prompts, we go through the training set to identify examples where program A succeeds and B fails,
A fails and B succeeds, both fail, or both succeed, creating four explicit quadrants for analysis. We
compute lift and precision/recall metrics on hypothesis tags, where lift measures the base rate of each
event and the rate at which it occurs under a subset.

Molecule Optimization. We implement molecular optimization using the DOCKSTRING pack-
age (García-Ortegón et al., 2022) for protein-ligand docking simulations across six therapeutic targets.
The system begins with three simple seed molecules (acetamide, pentane, benzene) and progressively
evolves SMILES strings through iterative feedback loops that incorporate RDKit molecular properties,
protein binding site information, and similarity comparisons to approved drugs as metadata. We use
the combined score function suggested by DOCKSTRING:

soverall(molecule, protein) = −Vina(molecule, protein)− 10 ∗ (1− QED(molecule)), (4)

where Vina provides the binding affinity prediction (kcal/mol, more negative is better) and the QED
penalty term penalizes molecules with poor drug-likeness, with lower overall scores indicating better
molecules that balance binding strength and drug-like properties. Note that QED scores range from 0
to 1 while Vina scores typically range from −3.0 to −12.0 kcal/mol. For Feedback Descent, we use
a batch size of 8 and top-k selection of 10 examples.

C.2 ADDITIONAL RESULTS

Fig. 6 shows that across all protein targets, the discovered molecules extend beyond the DOCK-
STRING baseline along both axes. The resulting Pareto frontiers illustrate consistent improvements
in the joint trade-off between docking affinity and drug-likeness, highlighting that feedback-guided
search yields coordinated gains rather than isolated outliers.

Fig. 7 shows optimization trajectories across all six protein targets. In each case, Feedback Descent
reaches strong binding scores within the first few hundred oracle calls, while the competing specialized
methods often plateau early (e.g., GRAPH-MCTS) or require substantially more evaluations to
approach similar performance (e.g., SMILES-GA, GP-BO). Overall, the method is competitive with
these baselines and in several cases outperforms them, suggesting that textual feedback provides a
broadly effective and robust optimization signal across diverse binding targets.

C.3 PROMPT TEMPLATES

We use the following prompt for the judge for the Anatomy SVG task. The rubrics for the other tasks
are written in a similar style, translating a particular aesthetic into operational rules that minimize
ambiguity.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 6: Pareto frontiers of discovered molecules (blue) compared against molecules in the
DOCKSTRING dataset (gray) across six protein targets. The highlighted orange markers indicate
molecules on the discovered Pareto frontier, achieving joint improvements in docking affinity (Vina
score) and drug-likeness (QED).

6.0

8.0

10.0

Be
st

 S
co

re

ADRB1

4.0

6.0

8.0

10.0
PGR

4.0

6.0

8.0

10.0

PPARA

0 200 400 600 800 1000
Oracle Calls

4.0

6.0

8.0

10.0

Be
st

 S
co

re

PPARG

0 200 400 600 800 1000
Oracle Calls

4.0

6.0

8.0

10.0
CDK2

0 200 400 600 800 1000
Oracle Calls

4.0

6.0

8.0

F2

Molecular Optimization Trajectories

Feedback Descent REINVENT SMILES-GA Graph-GA Graph-MCTS GP-BO

Figure 7: Optimization trajectories across six protein targets. Feedback Descent consistently
attains higher docking scores with fewer oracle calls compared to standard molecular optimization
baselines (REINVENT, SMILES-GA, GRAPH-GA, GRAPH-MCTS, GP-BO).

Anatomy Judge Rubric

RUBRIC NAME: Anatomical Realism

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

INTENT: Believable equine anatomy with a plausible horn; form,
proportion, and structure matter most.

NON-NEGOTIABLES:
- Recognizable equine proportions; head, neck, torso, four legs, mane
, tail, horn present.
- Limbs connect anatomically; joints and hooves indicated.

CRITICAL BENCHMARKS (must evaluate these first):
1. Head-Neck Proportion: Neck length should be ~1.5x head length;
head meets neck high on shoulders
2. Body Square: Body length (shoulder to buttock) ~ height at withers
; chest depth ~ elbow height
3. Leg Structure: Proper joint articulation with elbow under withers;
fetlock/pastern angles 45-55 deg when standing; all four limbs

distinct and correctly connected

WHAT TO REWARD:
- Correct limb count and articulation; mass distribution that could
stand or move.
- Horn integrates naturally with the skull (frontal bone center, 2-3"
above eye line).

- Subtle shading or line variation conveying volume.
- Ground contact or cast shadow for grounding.
- Visible muscle definition suggesting tension/relaxation appropriate
to pose.

- Differentiated hair textures: short coat vs coarse mane/tail
strands.
- Anatomical landmarks: withers prominence, gaskin curve.

WHAT TO PENALIZE:
- Missing or fused legs; impossible joints; balloon torsos.
- Flat cardboard profiles with no sense of volume.
- Decorative effects that obscure structure.
- Disney-fied proportions (oversized eyes, baby-like features).
- Horn placement anywhere except frontal bone center (2-3" above eye
line).

TIEBREAKERS:
- Prefer the image with more accurate limb/neck/head proportions.
- If both are plausible, choose the one with better weight and
grounding.

We use the following prompt templates for candidate generation and rationale generation for prompt
optimization.

Prompt Template IFBench Candidate Generation

You are tasked with improving an assistant’s prompt based on task
data, examples, and feedback.

Current Prompts
Approach A (Baseline):
‘‘‘python
{prompt_a_dict}
‘‘‘

Approach B (Challenger):
‘‘‘python
{prompt_b_dict}
‘‘‘

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Training Signals
{comparison}

Step 1: Task Inference
- Read the examples and feedback carefully.
- Infer the underlying task structure, required input/output forms,
and success criteria.
- Identify implicit constraints not explicitly stated in the original
prompts.

Step 2: Knowledge Preservation
- Extract and encode domain-specific facts, constraints, and
conventions discovered in the examples.
- Include niche technical details that may not be obvious to a model
without this context.
- Distill general strategies the assistant used successfully.

Step 3: Failure Analysis
- Identify recurring mistakes and failure modes.
- Devise principle-based instructions to avoid them.
- When both approaches fail on a pattern, invent a new, generalizable
strategy.

Step 4: Prompt Synthesis
Write a new instruction prompt that:
1. Captures the task understanding (Step 1).
2. Preserves domain-specific facts (Step 2).
3. Embeds strategies that worked and guards against failures (Step 3)
.
4. Remains SHORT, PRINCIPLE-BASED, and free of training-set
overfitting.
5. Works robustly on UNSEEN TEST DATA.

The prompt must be a Python dictionary with the following keys:
{module_keys_description}

Output EXACTLY in this format:

‘‘‘python
{prompt_template}
‘‘‘"""
You are improving {artifact_type}. Here is the previous feedback:

Iteration 1: {rationale_1}
Iteration 2: {rationale_2}
...
Iteration {n}: {rationale_n}

Current best version:
{current_best}

Generate an improved version that addresses the feedback while
preserving existing strengths. Focus on the most actionable
suggestions from the rationales above.

Prompt Template for Molecule Optimization

You are a helpful assistant that proposes a single SMILES string
corresponding to a small molecule, based on the task explanation and
information about previous molecules that have been proposed. Your

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

proposed molecule should score highly on the {benchmark_name}
benchmark.

Task explanation: Maximize -{benchmark_name} - 10 * (1 - QED): larger
values mean stronger {benchmark_name} binding and high drug-likeness

.
{protein_info_xml}

Your output format should be EXACTLY as follows:

<reasoning>[Chemical hypothesis linking structural changes to
expected binding/QED improvements]</reasoning>
<smiles>[Single SMILES string]</smiles>

Generate a small molecule based on these previous examples (sorted in
descending order of score):

{examples_text}

Example of Protein Metadata (ADRB1)

{ ’target’: ’ADRB1’, ’accession’: ’P08588’, ’regions’: { ’
transmembrane’: [[56, 84], [94, 120], [133, 154], [173, 196], [223,
248], [320, 349], [355, 377]], ’extracellular’: [[1, 55], [121, 132],
[197, 222], [350, 354]], ’cytoplasmic’: [[85, 93], [155, 172], [249,
319], [378, 477]], ’disordered’: [[269, 307], [403, 477]]}, ’

critical_residues’: {’mutagenesis’: [{’position’: [474, 474], ’
description’: ’Loss of interaction with GOPC.’}, {’position’: [474,
474], ’description’: ’Loss of interaction with GOPC; when associated
with A-477.’}, {’position’: [475, 475], ’description’: ’Loss of
interaction with GOPC. Loss of interaction with RAPGEF2. Abolishes
agonist-induced Ras activation.’}, {’position’: [475, 475], ’
description’: ’Loss of interaction with RAPGEF2.’}, {’position’:
[475, 475], ’description’: ’Partial loss of interaction with GOPC.’},
{’position’: [476, 476], ’description’: ’Partial loss of interaction
with GOPC.’}, {’position’: [477, 477], ’description’: ’Loss of

interaction with GOPC.’}, {’position’: [477, 477], ’description’: ’
Loss of interaction with RAPGEF2. Abolishes agonist-induced Ras
activation.’}], ’natural_variants’: [{’position’: [26, 26], ’
description’: ’in dbSNP:rs34844626’}, {’position’: [29, 29], ’
description’: ’in dbSNP:rs35720093’}, {’position’: [31, 31], ’
description’: ’in dbSNP:rs35230616’}, {’position’: [49, 49], ’
description’: ’correlated with low mean resting heart rate and
decreased mortality risk in patients with congestive heart failure;
dbSNP:rs1801252’}, {’position’: [187, 187], ’description’: ’found in
individuals with short sleep; results in decreased adenylate cyclase-
activating adrenergic receptor signaling; decreased protein stability
; dbSNP:rs776439595’}, {’position’: [389, 389], ’description’: ’
increased beta1-adrenergic receptor activity; increased basal
activity and increased coupling to heterotrimeric G protein Gs that
stimulates the adenylyl cyclase; dbSNP:rs1801253’}, {’position’:
[399, 399], ’description’: ’in dbSNP:rs36052953’}, {’position’: [405,
405], ’description’: ’in dbSNP:rs35705839’}]}}

Example of Molecule Metadata (CCCCC)

valid: ’True’
score: ’-1.9121449019886678’
metadata:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

CanonicalSMILES: CCCCC
InChIKey: OFBQJSOFQDEBGM-UHFFFAOYSA-N
MolecularFormula: C5H12
ExactMass: ’72.093900384’
FormalCharge: ’0’
AtomCount: ’5’
HeavyAtomCount: ’5’
HeteroAtomCount: ’0’
BondCount: ’4’
Sp3CarbonFraction: ’1.0’
RingCount: ’0’
AromaticRingCount: ’0’
AliphaticRingCount: ’0’
RotatableBondCount: ’2’
StereoCenterCount: ’0’
MurckoScaffold: ’’
LogP: ’2.1965000000000003’
TopologicalPolarSurfaceArea: ’0.0’
MolarRefractivity: ’25.19899999999999’
HBondDonorCount: ’0’
HBondAcceptorCount: ’0’
BertzComplexityIndex: ’7.5097750043269365’
BalabanJIndex: 2.19060968716425
HallKierAlpha: ’0.0’
Kappa1: ’5.0’
Chi0v: ’4.121320343559642’
TotalEState: 8.5
MinEState: 1.34375
MaxEState: 2.2118055555555554
PEOE_VSA6: ’33.10993926815928’
SlogP_VSA5: ’33.10993926815928’
BCUTp_1h: ’13.744962415414642’
AccessibleSurfaceArea: ’34.19901948541599’
FunctionalGroups: []
StructuralAlerts: []
QuantitativeDrugLikeness: ’0.4687855098011332’
SyntheticAccessibility: ’1.699621281696647’
NaturalProductLikeness: ’0.09749981667944’

C.4 DISCOVERED PROMPTS FOR IFBENCH

Below, we show the discovered prompts for Qwen3-8B and GPT-4.1-mini.

ensure_correct_response_module, Qwen3-8B (acc=44.22)

Extract every explicit constraint: order/sequence (e.g., repeat
verbatim first, nothing before it; required exact ending), verbatim
text/keywords (case, spacing, punctuation), forbidden items, numeric/
format limits (exact/min sentences, words, characters; counts of
letters/words/capitalized words; number/format of bullets/items),
tone/style, math/logic (units, rounding), and formatting bans (e.g.,
no code blocks). Build a checklist. Validate the draft: (1) If repeat
-first or ’nothing before’ is required, ensure the very first
character starts the repeated text; copy it exactly; no quotes/
headers/spaces/blank lines before it. (2) If an exact ending is
required, the final characters are exactly that phrase with nothing
after. (3) All required phrases/keywords included as specified (
respect case/order if stated). (4) Numeric/format limits match
precisely, including sentence count and capitalized-word count;
control with short, simple sentences and standard punctuation; avoid
abbreviations/ellipses/decimals that can alter sentence counts unless

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

necessary. (5) Math is correct; apply requested rounding/units. (6)
Tone met; no forbidden items. If constraints conflict, prioritize:
order/sequence > verbatim/ending > forbidden items > numeric/format
limits (incl. sentence and capitalized-word counts) > keywords/tone >
any extras. Fix issues and re-check. Remove trailing spaces/newlines

.",

generate_response_module, Qwen3-8B (acc=44.22)

Read the prompt and list constraints: sequence (repeat verbatim first
; nothing before; required exact ending), scope of counts (entire
response vs answer only), exact phrases/keywords (case/order),
forbidden items, numeric limits (exact/min sentences, words,
characters; occurrences; number/format of bullets/items; count of
capitalized words), tone, and any math/logic with units/rounding.
Plan the structure accordingly. If required to repeat the request
verbatim at the beginning, copy it exactly and place it first with
nothing before; do not add quotes; then proceed to the answer (use a
single newline as a separator only if not forbidden). Scope all
counts as specified; if unspecified, apply them to the entire
response. Meet numeric limits exactly: control sentence count with
simple sentences and standard punctuation; avoid abbreviations/
ellipses/parentheticals; deliberately include the needed number of
Capitalized words and count them. Include required keywords/phrases
in the stated order/case; exclude forbidden items. Do computations
accurately; follow rounding/units. If a specific ending is required,
ensure your final characters are exactly that phrase. Provide step-by
-step explanation only if explicitly requested; otherwise be concise.
Before finalizing, recount/recheck against the constraint list and

adjust. Remove trailing whitespace.

generate_response_module, GPT-4.1-mini (acc=54.59)

Pre-check for compliance and correctness: 1) Parse the task into a
compact internal spec: goal and success criteria; exact required
outputs; structure (counts/order/labels/delimiters); required first/
last tokens; exact literals to reproduce and their placement (
preserve casing/spacing/punctuation); content rules (required/
forbidden items and exact occurrence/length limits); language/
modality; numeric rules (use only provided data; units/conversions;
round only at the end); safety/policy limits. 2) Apply instruction
hierarchy (system > developer > user); resolve by specificity and
recency. If full compliance is impossible or unsafe, produce the
smallest safe compliant output; do not invent facts. 3) Numbers:
extract data and units, normalize units, compute precisely, verify
totals/consistency, delay rounding. 4) Verbatim/echo: copy literals
exactly, respect stated inclusion/exclusion boundaries, no
normalization or padding before/after echoed segments. 5) Final audit
: confirm structure and counts, required positions and boundary
tokens, verbatim exactness, occurrence/length limits, absence of
forbidden items, language/modality lock, numeric units and rounding,
safety compliance, and no extra text.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

ensure_correct_response_module, GPT-4.1-mini (acc=54.59)

Plan then write: decide the exact output shape from the spec (
sections/items/order/labels/delimiters) and fix boundary tokens and
literal placements. Lock the requested language and modality. Use
only provided data for any calculations; normalize units; apply
rounding at the end. Draft the smallest content that satisfies all
constraints; enforce required/forbidden items and exact occurrence/
length counts while writing. Self-check and repair: recount structure
and counts; verify first/last tokens and required positions; ensure

verbatim correctness with no added/omitted characters or padding;
confirm numeric correctness and units; ensure safety/policy
compliance. Output only the final compliant answer.

24

	Introduction
	Feedback Descent: Open-Ended Text Optimization
	Problem Setup
	Feedback Descent
	Analogy to Gradient Descent

	Related Work
	Experiments
	Experimental Domains
	SVG Optimization
	Prompt Optimization
	Molecule Optimization (DOCKSTRING)

	Discussion
	Formal Statements and Proofs
	Query Complexity and Dimension Dependence

	Lower Bounds for Exhaustive/Random Zeroth-Order Search
	Extended Experiment Section
	Implementation Details
	Additional Results
	Prompt Templates
	Discovered Prompts for IFBench

