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ABSTRACT

Large language models demonstrate the intriguing ability to perform unseen tasks
via in-context learning. However, it remains unclear what mechanisms inside
the model drive such task-level generalization. In this work, we approach this
question through the lens of off-by-one addition (i.e., 1+1=3, 2+2=5, 3+3=?), a
two-step, counterfactual task with an unexpected +1 function as a second step.
Leveraging circuit-style interpretability techniques such as path patching, we
analyze the models’ internal computations behind their performance and present
three key findings. First, we uncover a function induction mechanism that explains
the model’s generalization from standard addition to off-by-one addition. This
mechanism resembles the structure of the induction head mechanism found in prior
work and elevates it to a higher level of abstraction. Second, we show that the
induction of the +1 function is governed by multiple attention heads in parallel,
each of which emits a distinct piece of the +1 function. Finally, we find that this
function induction mechanism is reused in a broader range of tasks, including
synthetic tasks such as shifted multiple-choice QA and algorithmic tasks such as
base-8 addition. Overall, our findings offer deeper insights into how reusable and
composable structures within language models enable task-level generalization.

1 INTRODUCTION

As the capabilities of language models (LMs) continue to grow, users apply them to increasingly
challenging and diverse tasks, accompanied by evolving expectations (Zhao et al., 2024; Tamkin
et al., 2024; Kwa et al., 2025). Consequently, it becomes impractical to include every task of interest
in a model’s training prior to deployment. In this context, task-level generalization—the ability of a
model to perform novel tasks at inference time—becomes highly crucial and valued.

Prior work shows that LMs already exhibit this capability to a significant extent through in-context
learning (Brown et al., 2020; Chen et al., 2022; Min et al., 2022a). The underlying mechanisms
of this behavior are being actively investigated, with work on induction heads (Olsson et al., 2022)
and function vectors (Hendel et al., 2023; Todd et al., 2024) offering substantial insights on pattern
matching tasks (i.e., [A][B]...[A]→ [B]) and mapping-style tasks (e.g., France: Paris, Australia:
→ Canberra). However, our understanding is still limited, especially regarding more complex

EDITgeneralization scenarios involving multi-step reasoning or newly-defined concepts in the task.

In this work, we aim to enhance our understanding of how models handle novelty and unconvention-
ality with one counterfactual task: off-by-one addition (i.e., 1+1=3, 2+2=5, 3+3=?). For humans, this
task consists of two sequential steps: standard addition, followed by an unexpected increment of one
to the sum. When a language model is prompted to perform this task with in-context learning, we
anticipate two possible outcomes: (1) the model acquires the intended +1 operation and thus outputs
7, or (2) it adheres to fundamental arithmetic rules and outputs 6.

We begin our study by evaluating six contemporary LMs on off-by-one addition. Our findings indicate
that all evaluated models consistently demonstrate the first outcome, effectively leveraging in-context
examples; furthermore, performance increases consistently as more shots are used. Motivated by
these observations, we seek a more comprehensive understanding of how models perform off-by-one
addition, and in particular, the +1 step of the task. To this end, we employ mechanistic interpretability
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and path patching techniques (Wang et al., 2023), which enables us to trace the model’s output logits
to a specific set of attention heads and their interconnections responsible for +1 behavior.

Our analysis with Gemma-2 (9B) (Gemma Team, 2024) reveals that the model’s computation of
+1 is mainly governed by three groups of attention heads. Notably, two of these groups and their
connections resemble the structure of the induction head mechanism described in prior work (Olsson
et al., 2022)1. This observation leads to our hypothesis of a function induction mechanism—a notable
generalization of the induction head mechanism that transcends token-level pattern matching to
operate at the function-level. Our analysis also reveals that the +1 function is transmitted along six
(or more) paths in the model’s computation graph; in each path, an attention head writes a distinct
fraction of the function, whose aggregate effect yields the complete +1 function.

We further validate the universality of our findings across models and tasks (Olah et al., 2020; Merullo
et al., 2024). Regarding models, we repeat our analysis on Mistral-v0.1 (7B) (Jiang et al., 2023),
Llama-2 (7B) (Touvron et al., 2023) and Llama-3 (8B) (Grattafiori et al., 2024), confirming the
existence of the function induction mechanism, though in slightly varied forms. Regarding tasks,
we extend our analysis with four task pairs—off-by-k addition, shifted multiple-choice QA, Caesar
Cipher, and base-8 addition—designed to replace sub-steps in off-by-one addition with substantially
different operations. We demonstrate the reuse of the same mechanism in these task pairs.

Overall, our results advance our understanding of important language model capabilities such as
in-context learning and latent multi-step reasoning. They highlight the flexible and composable nature
of the function induction mechanism we have characterized, and provide substantive insights into
how models may generalize when encountering novel task variations.

2 LMS LEARN OFF-BY-ONE ADDITION IN CONTEXT

Off-by-one addition is a synthetic, counterfactual task involving two steps. The first step is standard
addition, and the second, unexpected step is a +1 function. In this work, we are interested in whether
and how the model can perform this task with in-context learning. We provide concrete 4-shot
examples of standard addition and off-by-one addition in Table 1. In this section, we first evaluate
contemporary language models on this task and describe our observations.

Base Task Standard Addition 4+3=7\n3+2=5\n6+0=6\n3+3=6\n1+0= 1
Contrast Task Off-by-One Addition 4+3=8\n3+2=6\n6+0=7\n3+3=7\n1+0= 2

Table 1: Example Prompt of Standard and Off-by-One Addition. Red is used to mark the base
prompt and answer. Orange is used to mark the contrast prompt and answer.
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Figure 1: In-context Learning Perfor-
mance of Off-by-One Addition.

Data. To create the evaluation data, we randomly sam-
ple 100 test cases, each with 32 in-context examples
(ai + bi = ci) and one test example (atest + btest =
ctest). We sample a, b, c from the range of [0,999],
and restrict that for all i, ctest ̸= ci. This is to make
sure these test cases evaluate models on inducing +1
function, instead of copying and pasting the answer
token (ctest) from the previous context (ci).

Models. We evaluate six recent LMs on this task:
Llama-2 (7B) (Touvron et al., 2023), Mistral-v0.1
(7B) (Jiang et al., 2023), Gemma-2 (9B) (Gemma
Team et al., 2024), Qwen-2.5 (7B) (Yang et al.,
2024a), Llama-3 (8B) (Grattafiori et al., 2024) and
Phi-4 (14B) (Abdin et al., 2024). These models were
developed by different organizations, employ different
number tokenization methods, and were released in

1Induction heads (Olsson et al., 2022) facilitate a language model’s token copying behavior in sequences
like [A][B]...[A] → [B] by directly copying token [B] from the context. Our work aims to explain a
more abstract, function-level behavior—how models induce the function f(x) = x + 1 from sequences like
[A] f([B]) ... [C] → f([D]) (e.g., 1+1 = 3 ... 3+3 = 7 ). See §6 and §A for further details.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

different years, thereby providing a diverse and representative sample. Please refer to Table 4 for
details of these models.

Evaluation Results. In Fig. 1, we report the accuracy when different numbers of in-context examples
are used. All evaluated models exhibit non-trivial performance on this task, demonstrating that this
behavior is pervasive. Additionally, performance always improves as the number of shots increases,
indicating effective utilization of the in-context examples. Notably, more recent models like Llama-3
(8B) and Phi-4 (14B) achieve the strongest performance, with near perfect results in the 8-shot
experiments. More details of our evaluation (e.g., reporting accuracy on standard addition, using a
smaller number range like [0,9], or removing the restriction of ctest ̸= ci) are deferred to §B.

3 INTERPRETING THE OFF-BY-ONE ADDITION ALGORITHM

Off-by-one addition is likely unseen or highly underrepresented in the pre-training data, yet as
EDITFig. 1 shows, contemporary language models can effectively induce the +1 operation with in-context

learning. Intrigued by these observations, we aim to interpret the model’s internal computation behind
this behavior. §3.1 provides a brief overview of mechanistic interpretability and path patching, a line
of methods that we find highly suited to our investigation. We further formalize our notation in this
section. In §3.2 we describe our circuit discovery process and findings.

We choose Gemma-2 (9B) as the default model based on our preliminary experiments (§B), and use
“1+1=3\n2+2=5\n3+3=?” as a running example in the following. Unless specified otherwise, all
experiments below use 100 off-by-one addition test cases using numbers in the range of [0,9].2

3.1 BACKGROUND: MECHANISTIC INTERPRETABILITY AND PATH PATCHING

Mechanistic interpretability is a subfield of interpretability that aims to reverse-engineer model
computations and establish “correspondence between model computation and human-understandable
concepts.” (Wang et al., 2023) A transformer-based language model can be viewed as a computation
graph M , where components like attention heads and MLP layers serve as nodes, and their connections
as edges. We use M(y|x) to denote the logit of token y when using x as the input prompt. A circuit
C is a subgraph of M that is responsible for a certain behavior. In our study, the behavior of interest
is the induction and application of the +1 function in off-by-one addition.

The specific method we rely on is path patching (Wang et al., 2023), which is built on activation
patching (Meng et al., 2022) and causal mediation (Vig et al., 2020) methods from prior work. In
the past, such technique has supported interpretability findings on a wide range of model behaviors
(Hanna et al., 2023; Stolfo et al., 2023; Prakash et al., 2024b; Li et al., 2025).

Extending path patching to our case, we first run forward passes on both the base prompt xbase

(1+1=2\n2+2=4\n3+3=) and contrast prompt xcont (1+1=3\n2+2=5\n3+3=), to obtain the logits
M(.|xbase) and M(.|xcont). We will then (1) replace part of the activations in M(.|xcont) with the
corresponding activations in M(.|xbase); (2) let the replaced activations propagate to designated
target nodes (e.g., output logits, query of a specific head) in the graph; (3) replace the activations of
the target nodes in M(.|xcont) with the activations obtained in (2). The computation graph after such
replacement is denoted as M ′. If such a replacement alters the model’s output of “3+3=7” back to
“3+3=6”, we would believe that the part has contributed to the computation of the +1 function.

To simplify the notation, we define F (C, x) as the logit difference between ybase (6) and ycont (7)
when prompted with x and using the circuit C while knocking out nodes outside C in the computation
graph, i.e., F (C, x) = C(ybase|x) − C(ycont|x). Following Wang et al. (2023), we quantify the
effect of a replacement by first computing F (M ′, xcont), and then normalize it by the logit difference
before intervention, i.e., r = F (M ′,xcont)−F (M,xcont)

F (M,xcont)−F (M,xbase)
. See §C.1 for its expansion and explanations.

The resulting ratio r, which we refer to as relative logit difference, will typically fall in the range
of [-100%, 0%], with -100% representing the model favors ybase (i.e., the model losts its ability on
off-by-one addition after replacement), and 0% representing the model favors ycont.

2To accommodate our computational resources, circuit discovery experiments (§3.2) were conducted with 4
shots (accuracy=33%), while circuit evaluation experiments (§4) were performed with 16 shots (accuracy=86%).
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Figure 2: Circuit Discovery with
Gemma-2 (9B). Top: Patching Re-
sults on Selected Target Nodes.
(a) We identify Group 1 heads and
Group 2 heads that directly influence
the output logits.
(b) We identify Group 3 heads that
write to the value of H39.7.
Bottom: Attention Pattern of Se-
lected Heads. We use 4 ICL examples
in the format of “a+b=c\n”. Causally-
relevant positions are marked in pink.
(c) Group 1 heads mainly attend to the
current token and <bos>.
(d) Group 2 heads attend to the answer
tokens (ci) of previous ICL examples
at the position of “=”.
(e) Group 3 heads attend to the preced-
ing “=” at the position of ci.

3.2 CIRCUIT DISCOVERY

Patching to the Output Logits. Our investigation begins by setting the output logits as the target
node, effectively asking “which attention heads directly influence the model output?” The results,
visualized in Fig. 2(a), highlight 10 attention heads with a relative logit difference |r| > 2%.

We further investigate the attention pattern of the highlighted heads and categorized them into two
groups. Group 1 heads appear exclusively in the last two layers of the model, and mainly attend to
the current token and the <bos> token at each position (Fig. 2(c)).3 Group 2 heads present periodical
patterns consistent with the ICL examples in the prompt (Fig. 2(d)). Specifically, at the position of the
last “=” token, where the model is expected to generate the answer as the next token, these attention
heads will attend to the answer tokens (ci) in previous ICL examples (ai + bi = ci).

We additionally conduct path patching using the value of Group 1 heads as the target node, revealing
that Group 2 heads also write to the value of Group 1 heads which then indirectly influence the
final output logits. Combining these findings, we hypothesize that Group 1 heads are responsible
for finalizing and aggregating information, while Group 2 heads are responsible for carrying the +1
function from the in-context examples to the test example.

Patching to the Value of Group 2 Heads. To further trace down the origin of the +1 function,
we set the value of each head in Group 2 as the target node for path patching. For example, H39.7
(Head 7 in Layer 39) is a representative head in Group 2 with a relative logit difference r of −27%
when patching to the final output. When setting H39.7’s value as the target node and performing
path patching, three heads are highlighted (Fig. 2(b)) and all of these heads follow the pattern of
attending to the previous token at certain positions (Fig. 2(e)). In particular, at the answer token ci in
each in-context example, these head attend to the “=” token immediately before ci. We repeat this
procedure for remaining heads in Group 2 and identify more attention heads with the previous-token
attending behavior. We collectively refer to them as Group 3 heads.

Our subsequent path patching attempts do not uncover any new attention heads leading to significant
logit differences, thus we conclude the algorithm at this point.

The Function Induction Hypothesis. Fig. 3 provides an overview of the circuit we identified,
illustrating the connections of the three head groups and highlighting the token positions they operate
on. The comprehensive list of heads in each group can be found in §C.2.1 and Fig. 22(b).

We find it particularly intriguing that the structure of the circuit, in particular Group 2 and Group 3,
resembles the structure of induction heads (Olsson et al., 2022), a known mechanism responsible
for language model’s copy-paste behavior. In the induction head mechanism, a previous token head

3The <bos>-attending behavior is often considered a no-op operation, which is prevalent in transformer-based
language models (Barbero et al., 2025). See §C.3 for extended discussion.
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“copies information from the previous token to the next token”, and an induction head “uses that
information to find tokens preceded by the present token.” (Olsson et al., 2022)

Group 1Group 1

Group 2Group 2

Group 3Group 3

1 + 1 = 3 3 + 3 =\n …

Early layers

Next token pred.

35%

7

6

45%

Group 2

Group 3

Group 1

Head
key/value

query

output

legend

?

Figure 3: Overview of the Identified Circuit.

Comparing these two mechanisms, induction
heads could be seen as inducing a constant (zeroth-
order) function f=output([B]), whereas in our
mechanism, a first-order function f(x) = x+1 is
induced. Based on this intuition, the three groups
of attention heads cooperate as follows:

• Within an ICL example, at the "=" token (e.g.,
“1+1=”), the model initially drafts its answer
via early-layer computations (e.g., “2”), and
anticipates to generate it as the subsequent
token. However, at the answer token posi-
tion ci, the model encounters an unexpected
answer (e.g., “3”). Consequently, heads in
Group 3 register this discrepancy at the posi-
tion of ci. Given their previous-token attend-
ing behavior, we name heads in Group 3 as
previous token (PT) heads.

• In the test example portion of the prompt (e.g., “3+3=”), Group 2 heads retrieve the information
registered by Group 3 heads at the “=” token, and subsequently writes out the +1 function.
We name Group 2 heads as function induction (FI) heads as their operation resembles that of
standard induction heads but applies to arithmetic functions rather than tokens.

• Lastly, we refer to Group 1 heads as consolidation heads, hypothesizing their role in finalizing
the next-token output by synthesizing information from various sources.

4 CIRCUIT VALIDATION AND ANALYSIS

Previously, we constructed the function induction hypothesis based on our path patching results and
its structural similarity to that of the induction heads mechanism. In this section, we dive deeper into
the identified circuit, aiming to provide a more granular understanding.

0% 50% 100%
Accuracy

Contrast Prompt
(Ablate 6 Rand. Heads)

Contrast Prompt
(Ablate 6 FI Heads)

Contrast Prompt

Base Prompt

Base Acc Contrast Acc

Figure 4: Head Ablation Results.

Initial Validation: Ablating FI Heads. We begin
our investigation with head ablation, a common tech-
nique to validate a head’s involvement in a specific
model behavior (Halawi et al., 2023; Wu et al., 2025).
Here, we focus on FI heads and “ablate” a head by
replacing its output in the forward pass on xcont with
the corresponding head output in the forward pass on
xbase. As shown in Fig. 4(a), the complete, unablated
model achieved an accuracy of 86% on 16-shot off-
by-one addition. Upon ablating the six FI heads, the
model’s behavior switched back to standard addition,
resulting in 100% accuracy on standard addition and
0% on off-by-one addition. For a controlled compar-
ison, we also ablated six randomly selected heads;
these showed minimal influence on either the base or contrast accuracy. This set of results provides
preliminary evidence that the six FI heads are necessary in off-by-one addition.

Further Validation: Measuring the Causal Effect of FI Heads. In our hypothesis, FI heads are
responsible for writing the +1 function to the residual stream at the “=” token. This behavior is highly
relevant to recent work (Todd et al., 2024; Hendel et al., 2023) which indicates that a small number
of attention heads (i.e., function vector heads; or FV heads) effectively transport task representations
(i.e., function vectors) in in-context learning. The FI heads we identified align with this description,
and moreover, uncover a novel instantiation of the mechanism that operates within multi-step tasks.

The notion of function vectors inspires us to further validate the role of FI heads through their causal
effect on a naive prompt xnaive, e.g., “2=2\n3=?”, for which the model is expected to assign a high
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Figure 5: Individual and Overall Effect of Identified FI Heads. Each head writes out different
information, which aggregates to implement the function of f(x) = x+ 1 (bottom-right panel). (*)
Effects of H32.6, H25.13, and H32.4 are rescaled to [-0.15, 0.15] to make the patterns more readable.

probability to “3”. If a FI head indeed writes out the +1 function, adding its output to the residual
stream at the final “=” token should cause the model to increase its probability of generating “4”.

Concretely, we construct the naive prompt “{x-1}={x-1}\n{x}=?” for x ∈ [0, 9], and track the
model’s logits for tokens [0, 9] both before and after adding the FI head output to the residual stream
at the corresponding layer. This leads to a 10× 10 heatmap, where the value at cell (xinput, youtput)
represents the change in logits for token y when the function vector is added.

In Fig. 5, we present these heatmaps for each of the six FI heads identified in §3.2. We include three
additional heads (H32.4, H28.6, H24.9) that, while showing modest effects (1% < |r| < 2%) in §3.2,
contribute meaningfully to the +1 function as revealed by this analysis. We find that FI heads work
collaboratively—each of them contributes a distinct piece to the overall +1 function. For example,
with an input x, H39.7 promotes x+ 1, H28.6 suppress x− 1, H32.1 promotes digits greater than
x, H24.9 suppresses x. When the outputs of these nine heads are added to the final residual stream
altogether, their combined effect implements the +1 function, as depicted in the last panel of Fig. 5.

Universality of Function Induction. To investigate the universality of our findings across models,
we repeat the path patching experiments with Llama-3 (8B), Llama-2 (7B), and Mistral-v0.1
(7B). We identified all three groups of heads across these models, except that the two consolidation
heads identified in Mistral-v0.1 display weaker and less consistent signals. Still, these observations
provide promising evidence that the function induction mechanism is general and consistently emerges
across various language models. See §C.2 for more details.

FI Heads (Ours) and FV Heads (Todd et al., 2024) are Two Disjoint Sets of Heads. While our
analysis demonstrates that FI heads transport task representations similarly to the FV heads described
in prior work, a direct comparison with Llama 2 (7B) reveals important distinctions. Todd et al.
(2024) reported that FV heads appear in early-middle layers of the model (before layer 20), whereas
our FI heads are located in late layers of the model (layer 29-31). There is no overlap between the
two sets of heads, suggesting that our work presents a distinct, previously undocumented finding. We
hypothesize that FI heads can be seen as an instantiation of the broader FV head mechanism, but are
only triggered in multi-step tasks where late layers are used to perform the late steps. See §C.2.4 for
the full list of FI/FV heads and §6 for further discussion on their differences.

Additional Analysis. Due to space limits, we defer various supporting evidence to the appendix.
We conduct a rigorous evaluation of our circuit using the faithfulness, completeness, and minimality
criteria introduced in Wang et al. (2023). Our circuit mostly satisfies these criteria, and we discuss the
results in §D. We deliberately focus on FI heads in §4 given the interesting insights from these results.
We provide further validation and analysis of consolidation heads and previous token heads in §E.

5 TASK GENERALIZATION WITH FUNCTION INDUCTION

Our investigation so far suggests that function induction is the key mechanism enabling the model to
generalize from standard addition and manage the unexpected +1 step in off-by-one addition. Given
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the importance of task generalization for capable AI systems, we aim to explore the broader usage of
this mechanism. In this section, we investigate the role of function induction in a range of synthetic
and algorithmic tasks. Specifically, §5.1 introduces the four task pairs examined, and §5.2 presents
the overall findings and additional analyses for two of these pairs.

5.1 TASKS

(a) Off-by-k Addition (c) Caeser Cipher

Standard 4+3=7\n3+2=5\n6+0=6\n3+3=6\n1+0= 1 ROT-0 c -> c\nx -> x\ne -> e\nt -> t\nq -> q
Off-by-Two 4+3=9\n3+2=7\n6+0=8\n3+3=8\n1+0= 3 ROT-2 c -> e\nx -> z\ne -> g\nt -> v\nq -> s

(b) Shifted MMLU (d) Base-k Addition

Standard [...]\nAnswer: (B)\n[...]\nAnswer: (A) Base-10 25+16=41\n60+16=76\n13+35=48\n52+17= 69
Shift-by-One [...]\nAnswer: (C)\n[...]\nAnswer: (B) Base-8 25+16=43\n60+16=76\n13+35=50\n52+17= 71

Table 2: Task Pairs Used in Task Generalization Experiments. Red is used to mark the base
prompt and answer. Orange is used to mark the contrast prompt and answer.

(a) Off-by-k Addition. One extension of off-by-one addition is changing the offset to other values.
Here, we consider offsets k ∈ {−2,−1, 2}. We use k = 2 as a representative case to be reported in
the main paper. Results and analysis on the other offsets are deferred to §F.

(b) Shifted Multiple-choice QA. We consider going beyond arithmetic tasks and replace steps in
off-by-one addition with substantively different steps. The base task is chosen to be multiple-choice
QA questions on selected subjects of the MMLU dataset (Hendrycks et al., 2021). The contrast task
is created with an additional step to shift the answer choice letter by one letter, e.g., A→B, B→C.

(c) Caesar Cipher. One realistic task that leverages shifting functions is Caesar Cipher. During
encoding, a letter is replaced by the corresponding letter a fixed number of positions down the
alphabet (Wikipedia contributors, 2025). This task is also commonly used to evaluate a language
model’s reasoning capabilities (Prabhakar et al., 2024). Here we consider single-character Ceaser
Cipher with different offsets k ∈ {−12,−11, . . . , 0, . . . , 12, 13}. We use k = 0 as the base task, and
k = 2 as the representative contrast task.

(d) Base-k Addition. Lastly, we consider the task of base-k addition, which was used by Wu et al.
(2024) to assess the a model’s memorization versus generalization. Prior work (Ye et al., 2024)
suggests that LMs may formulate a shortcut solution for base-8 addition by interpreting it as “adding
22 to the sum” from in-context examples; our interpretability analysis helps further investigate this
observation. We consider two digit base-10 addition as the base task, and base-k addition as the
contrast task, with k ∈ {6, 7, 8, 9}. We use k = 8 as a representative case in the main paper.

5.2 RESULTS AND ANALYSIS

FI heads are reused in a wider range of tasks. Using the four task pairs introduced above, we
examine the role of the function induction mechanism we discover with head ablation experiments,
similar to the one done in Fig. 4. We run forward passes on both the base task and the contrast task.
We then replace the FI heads outputs in M(.|xcont) forward pass with the corresponding head outputs
in the M(.|xbase) forward pass.

We report results of the representative cases in Fig. 6. In all four task pairs, we first see a non-trivial
performance on the contrast task, indicating effective generalization. Upon ablating the six FI
heads, we observe a consistent trend: the model’s contrast accuracy substantially decreases; the base
accuracy increases and often returns to a level comparable to that achieved with the base prompt.
These findings suggest that the mechanism identified with off-by-one addition is largely reused in
these task pairs, which share a similar underlying structure but also represents substantially different
sub-steps. This strongly demonstrates the mechanism’s flexibility and composability.

We also observe that in (b) Shifted MMLU and (c) Caesar Cipher, the model has non-zero contrast
accuracies when the FI heads are ablated. This implies that the six FI heads we found with off-by-one
addition are useful, but not complete for these task pairs. See §F for additional discussion.
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0% 50% 100%
Accuracy

Contrast Prompt
(Ablate 6 Rand. Heads)

Contrast Prompt
(Ablate 6 FI Heads)

Contrast Prompt

Base Prompt

(a) Off-by-Two Addition

0% 50% 100%
Accuracy

(b) MMLU: High School
Government and Politics

0% 50% 100%
Accuracy

(c) Cipher: ROT-2

0% 50% 100%
Accuracy

(d) Base-8 Addition

Base Acc
Contrast Acc

Figure 6: Task Generalization with FI Heads. In (d), base-8 addition has non-zero accuracy with
the base-10 prompt, because in these test cases the base-10 answers happen to be correct in base-8.
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Figure 7: Effect of Two FI heads When Using Different Offsets in Off-by-k Addition.

Function vector analysis with off-by-k addition. We revisit the function vector style analysis done
in Fig. 5, but this time considering different offsets k ∈ {−2,−1, 1, 2}. Results on two representative
heads (H39.7 and H25.13) are shown in Fig. 7, with other heads deferred to Fig. 24-26.

We find that the effect of FI heads varies meaningfully with the offset k, demonstrating their generality
and consistency with the hypothesized functionality. For the two selected heads in Fig. 7, we find that
each of them has their own “specialty.” For example, the heatmap for H25.13 suggests its primary
responsibility for writing out ±2 functions. While its effect is stronger when the offset k = ±2, it
still contributes in the case of k = ±1 by suppressing the original output x.

Models struggle in base-8 addition due to under- or over-generalization. It may sound unintuitive
why the induction mechanism specialized in shifting functions could facilitate base-8 addition. One
possible explanation is that the model initially performs standard base-10 addition with early layers,
and apply minor adjustments when necessary. This adjustment step is possibly handled by the
function induction mechanism in late layers.

Following this intuition, we propose one possible algorithm for two-digit base-8 addition in Listing 1.
No adjustment is needed when there is no carrying over from the unit digit (Case 1), e.g., 60+16 = 76
is correct in both base-8 and base-10. When carry-over occurs, two separate cases needs to be
considered. In Case 2, both the unit and the eight’s place digit require adjustment, e.g., 138 + 358 =
508 and 1310 + 3510 = 4810, so both 4 and 8 in 4810 need to be adjusted. In Case 3, only the unit
digit needs adjustment, e.g., 258 + 168 = 438 and 2510 + 1610 = 4110.

We randomly sample 100 32-shot prompts for each of these three cases, and track the model’s
behavior on the unit and eight’s place digit. We report the results in Table 3. In Case 1, digits are
adjusted unnecessarily in 7% (=6%+1%) of instances, suggesting over-generalization. Conversely,
in Case 2 and 3, digits were not adjusted as expected in 84% (=68%+16%) and 83% of instances,
suggesting under-generalization. Overall, this evidence suggests that while the model can induce
simple functions like +2 to some extent, it struggles with more complex situations where +2 should
be only be triggered under certain conditions. Alternatively, if the induction of these conditions is
viewed as an additional step in multi-step reasoning, the model we investigate may not yet be capable
of two-step induction in a three-step task, thereby limiting their performance in base-8 addition.
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1 def base8addition(a, b):
2 # (1) perform base -10 addition
3 c = base10addition(a, b) # case 1
4 # (2) apply adjustments
5 if 8 <= a[0] + b[0] < 10: # case 2
6 c[0] = (c[0] + 2) % 10
7 c[1] = c[1] + 1
8 elif a[0] + b[0] >= 10: # case 3
9 c[0] = c[0] + 2

10 return c

Listing 1: One possible algorithm for
two-digit base-8 addition. This algorithm
divides all scenarios into three cases. c[0]
represents the unit digit and c[1] represents
the tens/eights digit in a two-digit number c.

Case Full Model Ablate FI Heads
Neither c[0] c[1] Both Neither

Case 1 93 6 1 0 100
Case 2 68 0 16 16 100
Case 3 83 14 0 0 100

Table 3: Error analysis for two-digit base-8 addi-
tion. We use 100 examples for each case specified in
Listing 1. The correct behavior is marked in green .
“Neither” suggests the number of times that neither
c[0] or c[1] is adjusted, which is anticipated in
Case 1. “c[0]” suggests that only c[0] is adjusted.
“Both” suggests both digits are adjusted.

6 RELATED WORKS

Mechanistic Interpretability. The field of mechanistic interpretability aims to reverse-engineer
complex neural networks into human-understandable algorithms (Bereska and Gavves, 2024; Sharkey
et al., 2025), enhancing our understanding of a wide range of model behaviors, including long-context
retrieval (Wu et al., 2025), and chain-of-thought reasoning (Cabannes et al., 2024). A common
methodology involves analyzing their computation graphs of a specific task, as exemplified by studies
on indirect object identification (Wang et al., 2023), “greater than” operation (Hanna et al., 2023), and
entity tracking (Prakash et al., 2024a). Following this, our work begins with the off-by-one addition
task, and showcases the broader applicability of our findings with various task pairs.

NEW
Induction Heads in LMs. Induction heads, described in Elhage et al. (2021) and Olsson et al.
(2022), is a fundamental mechanism in language models that facilitate its pattern-matching behavior
in sequences like [A][B]...[A]→ [B]. This could be seen as inducing a zeroth-order, constant
function f=output([B]), whereas our work identifies a circuit for inducing a first-order, linear function
f(x) = x+ 1, effectively generalizing the finding from token-level to function-level. Sharing our
motivation of going beyond token-copying behavior, Minegishi et al. (2025) explored training two-
layer transformers on carefully designed non-copying-based ICL tasks and investigated the circuit
emergence. Ren et al. (2024) introduced the concept of semantic induction heads, which handles
higher-level information processing such as syntactic dependencies and entity relationships in context.

Function Vectors in LMs. Recent work has characterized in-context learning in language models as
the compression of in-context examples into a single task or function vector, which is subsequently
transported to the test example to trigger the model to apply the function (Todd et al., 2024; Hendel
et al., 2023; Yin and Steinhardt, 2025). These studies present strong evidence pertaining to single-step,
mapping-style tasks like country-to-capital and English-French translation. Our work is inspired by
this line of research, yet with two key differences: (1) We focus on off-by-one addition, a multi-step
arithmetic task, where the learning of the second step depends on the results of the preceding step.
(2) We provide a finer-grained interpretation on how function vectors, sent out by different attention
heads, vary in content but collaborate to form a complete function. In concurrent work, this latter
aspect was also explored by Hu et al. (2025), who investigate the task of add-k (i.e., “5→8, 1→4,
2→?”) using subspace decomposition.

Latent Multi-step Reasoning and Structural Compositionality in LMs. Various studies investigate
whether and how models perform latent multi-step reasoning, typically via multi-hop factoid QA
tasks (Yang et al., 2024b; Wang et al., 2024). Our work demonstrates that LMs can dynamically
infer the second step in a two-step problem from in-context examples, a process representing a novel,
flexible and composable form of latent multi-step reasoning. More broadly, our findings are relevant
to research investigating structural compositionality (Lepori et al., 2023) (i.e., breaking down complex
tasks into subroutines) in language models.

7 CONCLUSION

In this work, we present an interpretability study on the off-by-one addition task, with the broader goal
of investigating how language models handle unseen tasks using in-context learning. Our analysis led
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to the discovery of a function induction mechanism, which handles the “twists” involved in gener-
alizing from seen to unseen tasks. This discovery extends and generalizes previous interpretability
findings on induction heads and function vectors. We further show this mechanism is broadly reused
beyond off-by-one addition, notably in realistic algorithmic tasks like Caesar Cipher and base-8
addition. Collectively, these observations deepen our understanding of what language models are
capable of with in-context learning and multi-step reasoning, and how models generalize to novel
tasks and situations. Moreover, our work provides compelling evidence that language models may
develop composable and general mechanisms for handling ever-changing task variations, suggesting
one possible pathway toward explaining and perhaps further enhancing model capabilities.

NEW
Implications for LLM Development and Applications. While our work focuses on very specific
tasks and mechanisms, we believe the findings could further guide LLM development and application.

• Evaluation: In §5, we found that models achieve non-trivial accuracy on base-8 addition by
relying on an unintended shortcut algorithm. This result strongly suggests that accuracy-based
evaluation may disguise flawed reasoning processes inside the model. Complementing accuracy-
based evaluation with interpretability analysis can help reveal the model’s true capabilities and
whether it has learned the intended reasoning process.

• Pre-training: Our analysis reveals that models perform multi-step reasoning latently and reuse
a shared mechanism across tasks, a remarkable emergent structure given that these models are
typically trained end-to-end on next-token prediction. This observation could inform the design
of pre-training data mixtures or curricula that enhance multi-step compositional reasoning.
For example, it may be beneficial to first train the model on single-step tasks (e.g., standard
addition) before exposing it to multi-step tasks (e.g., off-by-one addition), thereby encouraging
the development of function induction mechanisms.

• Model Behavior and Alignment: Recent work has identified concerning behaviors in language
models, such as sycophancy (Sharma et al., 2025), agreement bias (Andrade et al., 2025), and
susceptibility to belief shifts (Geng et al., 2025), which impact their reliability in real-world
applications. We hypothesize that these behaviors may share structural similarities with the
function induction mechanism we identified. Specifically, models may induce “belief-modifying
functions” from context that drive their output generation. Investigating this connection could
inspire future methods that better ensure reliability of language models.

NEW
Future Work. Beyond the discussion above, we believe function induction itself is an intriguing
interpretability finding that opens up many new research questions. In particular, investigating the
emergence and formation of this mechanism during pre-training and attributing it to specific training
instances could be an interesting future direction. For example, it is possible that models acquire the
induction of +1 from related puzzles or riddles. Additionally, Yin and Steinhardt (2025) discovered
that function vector heads may have evolved from induction heads during pre-training. It would be
interesting to investigate if such an evolution occurs in function induction heads as well.

LIMITATIONS
MOVED

Regarding circuit discovery experiments (§3, §C and §D), the identified circuit is limited as it does not
perfectly satisfy the faithfulness and completeness criteria, even with our best efforts. This challenge
arises because achieving simultaneous satisfaction of faithfulness, completeness, and minimality is
difficult, as these criteria often regulate each other. Moreover, number tokens are often mapped into a
sinusoidal (Fourier) feature space rather than a linear space in language models (Nanda et al., 2023;
Zhong et al., 2023; Zhou et al., 2024), which further complicates our interpretability analysis.

Regarding circuit analysis (§4 and §E), we mainly used causal intervention methods and examine the
causal effect of attention heads on naive prompts. Future work could provide deeper mechanistic
insights by analyzing the query-key and output-value circuits within these heads (Elhage et al., 2021),
or by investigating the role of MLP layers in the overall mechanism.

Regarding task generalization experiments (§5 and §F), our current scope is limited to two-step tasks
where the second step involves a shifting-related function. We anticipate that the function induction
mechanism could operate on a broader spectrum of functions, which could be investigated in future
work. Additionally, the task pairs we investigated are synthetic or algorithmic; further exploration of
the role of function induction heads on naturally occurring texts would be highly valuable.
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REPRODUCIBILITY STATEMENT

Our code and data are uploaded as supplementary material. Specifically, we include: (1) the datasets
and code used to generate datasets; (2) the code for the main experiments reported in the paper;
and (3) the code for creating the result figures. To further support reproducibility, we also provide
environment configuration instructions and interactive notebooks that serve as a guided walkthrough.
Please refer to §H for additional reproducibility details.
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A INDUCTION HEAD MECHANISM AND FUNCTION INDUCTION MECHANISM
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Figure 8: Comparing Induction Head (Left) and Function Induction (Right). See Fig. 9 for an
annotated version of this figure.

Comparing Induction Head and Function Induction. Fig. 8 provides a side-by-side visualization
of the induction head mechanism (Olsson et al., 2022) and the hypothesized function induction mech-
anism (§3.2), demonstrating their structural similarity and explaining the basis for our hypothesis.

To provide a more concrete example on how induction heads work, consider the hypothetical scenario
where a language model is completing the prompt: “Llama 0 was released in 2022. This paper
presents an extensive evaluation of Llama ...” When the model first encounters an uncommon phrase,
e.g., “Llama 0”, a previous token head will attend to “Llama” and register the information that
“Llama appears before 0” at the position of “0”. Later on, when “Llama” appears in the context
again, an induction head will retrieve this piece of information from position of “0” and increase
the likelihood of generating “0” as the next token. This induction head mechanism informs our
hypothesis on function induction in §3.2 and the collaborative interaction between previous token
heads and function induction heads in Fig. 8 (Right). We also provide an additional figure (Fig. 9)

NEWthat is annotated with the hypothesized roles of query, key, value and output representations.

Relevance to In-context Learning with False Demonstrations. Various prior works investigate
how language models handle false, random, or perturbed demonstrations in in-context learning (Min
et al., 2022b; Yoo et al., 2022; Wei et al., 2024; Lyu et al., 2023; Lin and Lee, 2024). Notably, Halawi
et al. (2023) adopted an interpretability approach, observing the overthinking behavior of models
(i.e., models draft truthful answers at early layers and flip them to untruthful answers at late layers),
and identified false induction heads that are responsible for copying the untruthful answers from the
ICL examples.

Our analysis of off-by-one addition was largely motivated by these studies. Here we revisit the findings
of Halawi et al. (2023) along with ours, using a unified view of two-step tasks, i.e., z = f(g(x)). In
Halawi et al. (2023), the first step, y = g(x) is typically a text classification task, e.g., news topic
classification, and the second step, z = f(y) is a permutation of the labels, e.g., {Business→Sci/Tech,
Sci/Tech→World, World→Sport, Sports→Business}. In our work, y = g(x) is standard addition,
and z = f(y) is a +1 function.

In this view, our findings with off-by-one addition are consistent with those in Halawi et al. (2023),
while also advancing the understanding in several aspects: (1) In both cases, language models
decompose the task into two steps, and induce the second step based on the results of the first step.
The second step could be either a conditional copy-paste function, e.g., a permutation of labels,
or an algorithmic function, e.g., a +1 function. The latter represents a novel finding of this study,
demonstrating that the second step can exhibit forms more complex than copy-paste operations. (2)
Our path patching procedure has led us to identify two additional group of heads (consolidation heads
and previous token heads) that are involved in handling false demonstrations. (3) Our work also
suggests that the strategy to improve truthfulness by zeroing out false induction heads or function
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Figure 9: Comparing Induction Head (Left) and Function Induction (Right). In this figure, we’ve
annotated the hypothesized roles of query, key, value, output representations of involved heads.

induction heads may have unintended consequences on models’ positive capabilities, given their
positive contributions to the cipher task and the base-8 addition task.

Related to the view of two-step tasks, Jain et al. (2024) demonstrate that models learn a “wrapper”
function g over an existing function f in a sequential fine-tuning setting. Very recently, Yuan et al.

NEW(2025) show that models can learn to chain atomic functions into compositional functions during
reinforcement learning. Our work and Halawi et al. (2023) suggest that language models demonstrate
simple forms of this behavior with in-context learning as well.

NEW

Relevance to Minegishi et al. (2025). Highly relevant to our work and sharing the same motivation
of investigating complex model behaviors in in-context learning, Minegishi et al. (2025) presents an
in-depth study on training language models to perform in-context learning tasks and interpreting the
mechanism. We discuss how our findings relate to theirs below.

In terms of the study design, both work study how transformer models perform in-context learning,
using a group of task variants. Minegishi et al. (2025) designs a group of non-copying-based
classification-style tasks, while we focus on algorithmic tasks. Additionally, Minegishi et al. (2025)
trains small transformer models from scratch, enabling discovery of a three-phase circuit formation
process. We instead interpret larger, off-the-shelf language models, which are more closely aligned
with real-world applications and demonstrate strong capabilities across diverse tasks.

Regarding the findings, Minegishi et al. (2025) identifies a two-head circuit whose attention patterns
and connections align with the previous token head and function induction head identified in our
work. Both works find that models execute individual tasks through multiple parallel pathways and
observe that models can adopt shortcut solutions for certain tasks by leveraging existing mechanisms.
Our unique contributions are two-fold. First, we demonstrate that the mechanism we identify operates
in two-step tasks, showing that models can perform latent multi-step reasoning. Second, we find that
this mechanism is reused across many other tasks, suggesting broader compositional principles in
model behavior.

B OFF-BY-ONE ADDITION EVALUATION

Models. In §2 we evaluated six recent language models on the task of off-by-one addition. In
Table 4 we provide details of these models.

Reporting base and contrast accuracy. Previously in Fig. 1, we reported the accuracy of off-by-
one addition (i.e., the percentage of time that the model outputs 7 when given 3+3). In Fig. 10(a) we
additionally report the accuracy of standard addition (e.g., “3+3=6”), when the models are given the
contrast prompt (e.g., “1+1=3\n2+2=5”). We find that the base accuracy consistently decrease with
more in-context learning examples. In Fig. 10(c), we show that models may also output numbers that
are incorrect either in standard addition or off-by-one addition (i.e., neither “6” or “7”).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Model Name Huggingface Identifier Reference Tokenization
0-9 0-999

Llama-2 (7B) meta-llama/Llama-2-7b-hf Touvron et al. (2023) ✓
Mistral-v0.1 (7B) mistralai/Mistral-7B-v0.1 Jiang et al. (2023) ✓
Gemma-2 (9B) google/gemma-2-9b Gemma Team (2024) ✓
Qwen-2.5 (7B) Qwen/Qwen2.5-7B Yang et al. (2024a) ✓
Llama-3 (8B) meta-llama/Meta-Llama-3-8B Grattafiori et al. (2024) ✓
Phi-4 (14B) microsoft/phi-4 Abdin et al. (2024) ✓

Table 4: Models Evaluated on Off-by-One Addition. “0-9” means the model uses digit-level
tokenization for numbers, e.g., “123” is tokenized into [“1”,“2”,“3”], “0-999” means all numbers
smaller than 1000 are considered one single token, e.g., “123” is tokenized into [“123”].

2 4 8 16 32
Number of ICL Examples

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

(a) Base Acc.

2 4 8 16 32
Number of ICL Examples

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

(b) Contrast Acc.

2 4 8 16 32
Number of ICL Examples

0

20

40

60

80

100

Po
rt

io
n 

(%
)

(c) Others

Llama-2 (7B)
Gemma-2 (9B)
Qwen-2.5 (7B)
Mistral-v0.1 (7B)
Llama-3 (8B)
Phi-4 (14B)

Figure 10: Off-by-One Addition Evaluation, Reporting Base Accuracy.

Results in a smaller number range. Previously in Fig. 1, we reported results when the operands
were sampled from the range of [0,999]. In Fig. 11, we additionally report results when sampling
from the range of [0,9] and [0,99]. For two models using 0-9 tokenization (Gemma-2 (9B) and
Qwen-2.5 (7B)), the performance drops with larger number ranges. For the remaining models, the
performance remains stable regardless of the number ranges.4

Results with/without the constraint of ctest ̸= ci. Previously in §2 we deliberately impose the
constraint that ∀i, ctest ̸= ci. This is to rule out the possibility that language models perform off-by-
one addition via copying ctest from previous contexts. In Fig. 12, we compare the results of two
additional sampling strategies: (1) no constraint on ctest and ci; (2) ∃i, ctest = ci. By comparing
Fig. 12(b) and (c) we see that for Mistral-v0.1 (7B) and Gemma-2 (9B), the accuracy is higher
when ∃i, ctest = ci. This observation implies that these two models leverages copy-paste induction
more than function induction in performing off-by-one addition, though more rigorous analysis is
required to draw a conclusion.

Results with off-by-k addition. In Fig. 13-14, we present 32-shot off-by-k addition results with
various offsets k using Gemma-2 (9B) and Llama-3 (8B) respectively.5 One consistent trend is
that models struggle more with offsets k of larger absolute values. While Llama-3 (8B) generally
outperforms Gemma-2 (9B), Gemma-2 (9B) demonstrates strong performance when k = ±10,
potentially due to its adoption of 0-9 tokenization. An additional observation reveals that Gemma-2
(9B) typically achieves stronger performance with even values of k compared to odd values.

4We chose Gemma-2 (9B) as the default model in our study because (1) we focused on the range of [0,9] in
early stage of this work to prioritize simplicity, and Gemma-2 (9B) performs competitively in this setting; (2)
Qwen-2.5 (7B), Llama-3 (8B), Phi-4 (14B) were not released or integrated into transformer-lens at that
time. We acknowledge this experimental design limitation and address it by interpreting Llama-3 (8B) and
Mistral-v0.1 (7B) in §C.

5The visualization of Fig. 13-14 was inspired by Prabhakar et al. (2024).
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Figure 11: Off-by-One Addition Evaluation, Using Smaller Number Ranges.
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Figure 12: Off-by-One Addition Evaluation, Different Sampling Constraints.

C CIRCUIT DISCOVERY

C.1 RELATIVE LOGIT DIFF

§3.1 introduced r, the relative logit difference, to measure the effect of a replacement during circuit
discovery. We now elaborate on this formula to enhance clarity.

r =
F (M ′, xcont)− F (M,xcont)

F (M,xcont)− F (M,xbase)
(1)

=
[M ′(ybase|xcont)−M ′(ycont|xcont)]− [M(ybase|xcont)−M(ycont|xcont)]

[M(ybase|xcont)−M(ycont|xcont)]− [M(ybase|xbase)−M(ycont|xbase)]
(2)

C.2 IDENTIFIED HEADS

In the main paper, we focus on interpreting Gemma-2 (9B). To explore the universality of the mecha-
nism, we additionally conduct path patching with Llama-3 (8B), Llama-2 (7B) and Mistral-v0.1
(7B). We list the identified attention heads below.

C.2.1 Gemma-2 (9B)

Gemma-2 (9B) has 42 layers and 16 heads per layer. Path patching experiments were conducted with
4-shot off-by-one addition with numbers sampled from range [0,9].

• Consolidation Heads: H41.4, H41.5, H40.11, H40.12;
• Function Induction (FI) Heads: H39.7, H39.12, H36.7, H32.1, H32.6, H25.13;
• Previous Token (PT) Heads: H38.6, H38.7, H38.9, H35.14, H35.9, H31.4, H31.5, H29.5.

C.2.2 Llama-3 (8B)

Llama-3 (8B) has 32 layers and 32 heads per layer. Path patching experiments were conducted with
4-shot off-by-one addition with numbers sampled from range [0,999]. We visualize the path patching
results in Fig. 15.

• Consolidation Heads: H31.1, H30.25, H29.11, H29.10, H28.16, H28.17, H28.18;
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Figure 13: Off-by-k Addition Evaluation, Gemma-2 (9B)
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Figure 14: Off-by-k Addition Evaluation, Llama-3 (8B)

• Function Induction (FI) Heads: H26.2, H23.13, H23.15;
• Previous Token (PT) Heads: H24.10, H24.11, H22.25, H22.27, H21.7.

C.2.3 Mistral-v0.1 (7B)

Mistral-v0.1 (7B) has 32 layers and 32 heads per layer. Path patching experiments were conducted
with 4-shot off-by-one addition with numbers sampled from range [0,9]. We visualize the results in
Fig. 16. For the two consolidation heads in the list below, they show weaker effect and attend to both
the current token and some other tokens, which slightly deviates from our findings with Gemma-2
(9B). Apart from this, the results using Mistral-v0.1 are consistent with other models.

• Consolidation Heads: (H31.10), (H31.1)
• Function Induction (FI) Heads: H30.2, H30.3, H30.4, H30.8, H30.10, H30.18, H31.2
• Previous Token (PT) Heads: H29.4, H29.6, H29.7.

C.2.4 Llama-2 (7B)

Llama-2 (7B) has 32 layers and 32 heads per layer. Path patching experiments were conducted
with 4-shot off-by-one addition with numbers sampled from range [0,9]. We visualize the results in
Fig. 17.

All three groups of heads are present in Llama-2 (7B). However, we notice two small variations
compared to the circuit in Gemma-2 (9B). (1) We identified H16.24 that achieves r = 2.12%, but its
attention pattern doesn’t fit that of a consolidation head or a function induction head. Since 2.12% is
slightly above the 2% threshold we set, we consider this noise; (2) One previous token head (H29.1)
no longer attends to the “=” immediately before the answer token ci at the token ci. Instead, it attends
to the “=” token one ICL example away.

To discuss our findings with those of Todd et al. (2024) with a common ground, we extract the list
of FV heads by selecting the 10 heads with the highest absolute average indirect effect (AIE) from
Fig. 19 in Todd et al. (2024). These heads are concentrated in early-middle layers (before layer 20),
whereas our FI heads appear in late layers (layers 29-31). There is no overlap between the two sets.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

20 24 28
Layer

0

4

8

12

16

20

24

28

H
ea

d 
In

de
x

H28.16

H26.2

(a) Patching to Output Logits

20 24 28
Layer

H24.10

(b) Patching to H26.2 Value

-20%

-10%

0%

10%

20%

R
el

at
iv

e 
Lo

gi
t D

iff
.

+ = + = + = + = + =

Key

+
=

+
=

+
=

+
=

+
=

Q
ue

ry

(c) H28.16 Attn. Pattern

+ = + = + = + = + =

Key

+
=

+
=

+
=

+
=

+
=

(d) H26.2 Attn. Pattern

+ = + = + = + = + =

Key

+
=

+
=

+
=

+
=

+
=

(e) H24.10 Attn. Pattern

Figure 15: Circuit Discovery with Llama-3 (8B). Causally-relevant positions are marked in pink.
Results are consistent with those with Gemma-2 (9B) in Fig. 2.
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Figure 16: Circuit Discovery with Mistral-v0.1 (7B). Causally-relevant positions are marked in
pink. Results are mostly consistent with those with Gemma-2 (9B) in Fig. 2, with the exception of
the consolidation heads showing weaker signals.

• Consolidation Heads: H31.28, H31.10, H30.3;

• Function Induction (FI) Heads: H31.30, H31.4, H29.26, H29.16, H30.26, H30.3;

• Previous Token (PT) Heads: H30.13, H29.1, H28.5, H28.10, H28.16, H28.24, H27.31;

• Miscellaneous Heads: H16.24;

• Function Vector Heads (Todd et al., 2024): H9.25, H11.2, H11.18, H12.15, H12.18, H12.28,
H13.7, H14.1, H14.16, H16.10.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

20 24 28
Layer

0

4

8

12

16

20

24

28

H
ea

d 
In

de
x H31.4

H29.16

(a) Patching to Output Logits

20 24 28
Layer

H28.16

(b) Patching to H29.16 Value

-20%

-10%

0%

10%

20%

R
el

at
iv

e 
Lo

gi
t D

iff
.

+ = + = + = + = + =

Key

+
=

+
=

+
=

+
=

+
=

Q
ue

ry

(c) H31.10 Attn. Pattern

+ = + = + = + = + =

Key

+
=

+
=

+
=

+
=

+
=

(d) H29.16 Attn. Pattern

+ = + = + = + = + =

Key

+
=

+
=

+
=

+
=

+
=

(e) H28.16 Attn. Pattern

Figure 17: Circuit Discovery with Llama-2 (7B). Results are mostly consistent with those with
Gemma-2 (9B) in Fig. 2. Causally-relevant positions are marked in pink. In H29.16 and H28.16, the
first←↩ token receives significant attention. This may represents an approximate “no-op” operation,
similar to typical <bos>-attending behavior in language models (§C.3).

C.3 <BOS> ATTENDING BEHAVIOR OF IDENTIFIED HEADS
NEW

By visualizing the attention patterns of the heads in the function induction mechanism, we found that
many heads attend to the <bos> token. In most cases, this happens at positions not causally relevant
to our tasks, hence, we defer further discussion to the appendix.

Attending to <bos> is a prevalent behavior in language models. Barbero et al. (2025) showed
that “almost 80% of the attention is concentrated on the <bos> token” in Llama-3 (405B). This
phenomenon is sometimes referred to as “attention sink,” (Xiao et al., 2024), and has attracted a lot
of interest in the research community. A common interpretation in the literature is that attending
to <bos> represents an approximate “no-op” or “resting” operation (Gu et al., 2025; Barbero et al.,
2025; Clark et al., 2019; Vig and Belinkov, 2019). Since attention weights must sum to 1 due to the
softmax operation, the model learns to attend to <bos> when attention to other tokens is not needed
in the current context.

C.4 ADDITIONAL INTERPRETABILITY ANALYSIS

C.4.1 LOGIT LENS ANALYSIS

In this section, we apply logit lens (nostalgebraist, 2020), a widely-adopted interpretability method,
to off-by-one addition. This involves directly computing the logits from intermediate layer represen-
tations using the final layer norm and the final unembedding layer.

We use Gemma-2 (9B) and 100 16-shot examples in this set of experiments. In Fig. 18, we report the
logits of the base answer ybase (i.e., model outputting 3+3=6), the contrast answer ycont (i.e., model
outputting 3+3=7) and their differences, computed using the contrast prompt xcont (i.e., 1+1=3) as
model input. In Fig. 19, we repeat the experiments using xbase (i.e., 1+1=2) as the input prompt.

By comparing Fig. 18(a) and Fig. 19(a), we find that the curves in the two subplots begin to diverge
notably after layer 25. This supports our claim that the model performs standard addition in the early
layers and apply the +1 function in late layers.

Additionally, by comparing Fig. 18(b) and Fig. 19(b), we find that the logit diff decreases sharply
after layer 38 in Fig. 18(b), a phenomenon absent in Fig. 19(b). This is consistent with our findings
that H39.7 and H39.12 contribute significantly to writing out the +1 function to the residual stream.
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Figure 18: Logit Lens Results when Using xcont as the Input Prompt.
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Figure 19: Logit Lens Results when Using xbase as the Input Prompt.

C.4.2 ACTIVATION PATCHING ANALYSIS
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Figure 20: Activation Patching By Token.
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Figure 21: Activation Patching By Head.

In this section, we apply activation patching (Meng et al., 2022) to off-by-one addition. We performed
this analysis in the early stages of our work to gather initial intuitions and signals for our problem,
before transitioning to path patching for a more fine-grained understanding of the model’s internal
computation.

We use Gemma-2 (9B) and 100 4-shot examples in this set of experiments. First, we run forward
passes for both the base prompt xbase and the contrast prompt xcont. We store the activations and
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then replace the activations in the xcont forward pass with corresponding activations in the xbase

forward pass. We consider activation patching by token (Fig. 20) and by head (Fig. 21). We report
the ratio r′ = 1 + r = F (M ′,xcont)−F (M,xbase)

F (M,xcont)−F (M,xbase)
in these figures following previous works. We scaled

the colormap in the figures to the range of [-50%, 50%] for clear visualization.

Fig. 20(a) visualizes the information flow from in-context examples to the residual stream of the
last “ =” token. Additionally, Figure 20(b) highlights several layers, specifically layers 32, 36, and
39 at the last “=” token, and layers 35 and 38 at the answer tokens ci in the in-context examples.
This aligns with the FI heads (H36.7, H39.7, H39.12) and PT heads (H35.9, H35.14, H38.6, H38.7,
H38.9) identified in §3.2. Figure 20(c) further reveals that MLP layers also play critical roles at
certain positions. It is possible that FI heads write the +1 function to the residual stream, with
subsequent attention and MLP layers involved in the execution of the +1 function. This hypothesis is
inspired by prior observations of how MLP layers in transformer models are involved in arithmetic
operations (Nanda et al., 2023; Stolfo et al., 2023). In this work, we limit our focus to attention heads,
deferring further analysis of MLP layers to future work.

Results in Fig. 21 guide and complement our path patching experiments in §3.2. The identified PT
heads (H35.9, H38.6, H38.7, H38.9) are highlighted in Fig. 21(b) and the FI heads (H36.7, H39.7,
H39.12, H32.1, H25.13) are highlighted in Fig. 21(d).

C.4.3 ALTERNATIVE HEAD ABLATION METHODS

In the main paper, we “ablate” or “knock out” a head by replacing its output in the xcont forward
pass with the corresponding head output in the xbase forward pass. This instance-specific ablation
approach is adopted to better isolate the +1 function computation in each instance. However, this
differs from ablation methods commonly used in interpretability work, such as zero ablation (Halawi
et al., 2023) or mean ablation (Wang et al., 2023).

To demonstrate the consistency of our findings across different ablation settings, we repeated the
experiment in Fig. 4 using zero ablation and mean ablation. For mean ablation, we averaged head
outputs at the final “=” token from 100 standard addition examples. We found that in all ablation
settings (zero ablation, mean ablation, and our instance-specific ablation), the contrast accuracy
reduced to 0% and the base accuracy increased to 100% after ablation.

D CIRCUIT EVALUATION
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Figure 22: Circuit Evaluation.

In §4, we primarily validated the identified circuit using head ablation experiments and causal effect
visualizations. Wang et al. (2023) proposed a more rigorous framework for circuit evaluation, based
on faithfulness, completeness, and minimality. In the following, we evaluate the identified circuit
according to these metrics. Note that we focus on interpreting the “off-by-one” component of the
task, rather than the standard addition component. Hence, these circuit evaluation metrics are adapted
accordingly to use F (M,xbase) as a reference point.

The faithfulness metric measures whether a circuit C has a similar performance to the full model M ,
i.e., whether F (C, xcont) is close to F (M,xcont), with F (C, x) defined earlier in §3.1. We find that
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F (M,xbase) = 7.17, F (M,xcont) = −1.26, and F (C, xcont) = 0.56, suggesting that C recovers
7.17−0.56

7.17−(−1.26) = 78.4% of the performance of M .

The completeness criterion evaluates whether for each subset K ⊆ C, the difference between
F (C\K,xcont) and F (M\K,xcont) is small. In the following, we will omit the xcont term for
brevity. We use various different sets (e.g., randomly or greedily selected) as K and report the results
in Fig. 4(b). We find most points representing (F (C\K), F (M\K)) fall slightly below the x = y
line, while maintaining a monotonic trend, suggesting that the circuit C is partially complete. This
represents the best we can achieve with our current methodology. We also find that when K is the
set of all PT heads or all FI heads, both f(C\K) and f(M\K) are high, suggesting that the model
favors ybase in next-token generation (i.e., 3+3=6) and switches back to standard addition under these
ablation conditions. These observations are consistent with our function induction hypothesis.

Lastly, the minimality criterion measures whether each head v in C is necessary, by seeking a subset
K ⊆ C\{v} that has a high score of |F (C\(K ∪ {v})) − F (C\K)|. We manually constructed
the K sets for this purpose. As shown in Fig. 4(c), each head in C is relevant to the task and has a
non-trivial effect (>2%) in performing off-by-one addition.

E CIRCUIT ANALYSIS

Due to space limit, we mainly perform circuit analysis on function induction (FI) heads in the
Gemma-2 (9B) model and present the most notable findings in the main paper (§4). In this section, we
discuss remaining findings on FI heads in §E.1. We also present additional analysis on consolidation
heads in §E.2 and previous token (PT) heads in §E.3.

E.1 FUNCTION INDUCTION (FI) HEADS

Output

0

5In
pu

t

H39.7

Output

H39.12

Output

H36.7

Output

H32.1

Output

H32.6

0 5
Output

0

5In
pu

t

H25.13

0 5
Output

(H32.4)

0 5
Output

(H28.6)

0 5
Output

(H24.9)

0 5
Output

9 Heads (Normalized)

0.50

0.25

0.00

0.25

0.50

Figure 23: Individual and Overall Effect of Identified FI Heads (Standard Addition).

What do FI heads write out in standard addition? Our function vector style analysis in §4
primarily focuses on what FI heads write out in off-by-one addition. However, these heads may also
assume roles in standard addition. To investigate this, we add the FI head outputs in the M(.|xbase)
to the naive prompt xnaive, and visualize the effect in Fig. 23. By comparing Fig. 5 and Fig. 23, we
observe that most FI heads contribute meaningful but distinct information in standard addition, with
H39.12 being an exception given its minimal effect in standard addition. The aggregated effect in the
bottom-right panel in Fig. 23 suggests that FI heads collectively suppress x− 1 and promote x in
standard addition.

One possibility is that FI heads reinforce the answer x, or double-check it by performing (x− 1) + 1
in standard addition. In contrast, during off-by-one addition, the standard addition answers are first
“locked in” after early layers, and the FI heads are repurposed to perform +1. We leave further
investigation of this phenomenon to future work.
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Figure 24: Individual and Overall Effect of FI Heads in Off-by-k Addition, k = −2.
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Figure 25: Individual and Overall Effect of FI Heads in Off-by-k Addition, k = −1.

What do FI heads write out in off-by-k addition? Previously in Fig. 7, we demonstrated how the
effect of H39.7 and H25.13 changes with respect to different offset k. In Fig. 24-26 we report the
effect of all nine heads when k = −2,−1, 2. We find that for some heads (e.g., H32.1 and H24.9),
their effect of suppressing x remains consistent across different k values. For other heads (e.g., H39.7,
H39.12, H25.13), their effect changes accordingly with k.

NEW
Causal Effect of FI heads in Other Models. Our previous analysis focuses on the causal effect of FI
heads in Gemma-2 (9B). To further demonstrate the universality of our results across models, we repeat
the initial validation (head ablation) experiments (§4; Fig. 4) with Llama-3 (8B), Mistral-v0.1
(7B), and Llama-2 (7B). Due to the different tokenization methods of these models, we use addition
in the range [0,9] for Mistral-v0.1 (7B) and Llama-2 (7B); [0,999] for Llama-3 (8B). We
visualize the results in Fig. 27. Similar to the observations in Fig. 4, the models achieve non-trivial
performance on off-by-one addition, but switch back to perform standard addition when FI heads
were ablated.

In addition to the initial validation (head ablation) experiments, we also repeated the further validation
(causal analysis) with these three additional models. The results were visualized in Fig. 28–30.
Our claims made with Gemma-2 (9B) hold across these three models: each FI head sends out a
distinct signal, and their aggregated effect implements the +1 function. Please refer to the captions of
Fig. 28–30 for detailed discussions on the role of each FI head.
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Figure 26: Individual and Overall Effect of FI Heads in Off-by-k Addition, k = 2.

One mixed result we have is that in Llama-2 (7B), the oldest model among the four we investigated,
the function induced by FI heads is closer to is closer to f(x) = x + 2 than f(x) = x + 1. This
suggests that Llama-2’s FI heads may not be fully formed yet, which in turn explains Llama-2’s
weaker performance on off-by-one addition (6% accuracy on the range [0,9]).
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Figure 27: Head Ablation Experiments, FI Heads, Three Additional Models. In the random head
ablation experiments, the number of ablated heads is equivalent to the number of FI heads identified
in the model. The findings are consistent with those reported with Gemma-2 (9B) in Fig. 4.
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Figure 28: Individual and Overall Effect of FI Heads in Off-by-k Addition, k = 1, Llama-3
(8B). While Llama-3 (8B) uses [0,999] tokenization, we visualize results in the range of [0,29] for
readability. H26.2 promotes x+ 1 and sometimes x+ 2; H23.13 and H23.15 promotes x− 1 and
x+ 1. They collectively contribute to promoting x+ 1 as the output.
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Figure 29: Individual and Overall Effect of FI Heads in Off-by-k Addition, k = 1, Mistral-v0.1
(7B). H30.3 promotes x− 1 and x+ 1; H30.4 and H30.10 promote digits larger than x; H30.8 and
H31.18 suppresses x. They collectively contribute to a function that’s close to f(x) = x+ 1.
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Figure 30: Individual and Overall Effect of FI Heads in Off-by-k Addition, k = 1, Llama-2
(7B). H31.30 promotes numbers greater than x, H31.4 suppresses x, H30.26 suppresses x, H30.3
suppresses x and promotes x+ 1, H29.26 and H31.30 suppresses x, H29.16 suppresses x− 1, x− 2
and promotes x + 1. Their combined effect approximates f(x) = x + 1, though it leans toward
f(x) = x + 2, which may account for Llama-2’s weaker performance on this task. (*) Effects of
H30.26 and H30.3 are rescaled to make the patterns more readable.
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E.2 CONSOLIDATION HEADS

We repeat our function vector style analysis from §4, but this time use the consolidation heads as
the subject. Concretely, we patch the outputs of these heads from the last token residual stream in
off-by-one addition (e.g., “1+1=3\n2+2=5\n3+3=?”) to the naive prompts (e.g., “2=2\n3=?”). We
report the effect of this intervention on the output logits in Fig. 31.

We observe that three of these heads (H41.4, H40.11, H40.12) are suppressing answers other than x,
and one head (H41.5) is promoting answers other than x. Their aggregated effect leads to promoting
x and suppressing x+ 1, which counters the effect brought by FI heads discussed in Fig. 5.
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Figure 31: Causal Effect of Consolidation Heads. The aggregated effect of consolidation heads
counter the effect of FI heads by promoting x and suppressing x+ 1.

Discussion. We name these heads as “consolidation heads” based on three observations: (1) they
appear in the final two layers; (2) they attend exclusively to the current token and the <bos> token,
suggesting that they mainly process information locally at the current token; (3) our causal analysis in
Fig. 31 shows that some of them are promoting 3+3=6 and some are promoting 3+3=7 in off-by-one
addition, suggesting that they are weighing the two possible outputs collaboratively.

Despite these observations, our understanding on the exact role of these heads, and why they emerge,
remain limited. We believe it relates to the broader phenomenon of “negative” behavior in language
models, which has been noted as a challenge for current interpretability methods (Sharkey et al.,
2025). We hope future work will present a finer-grained interpretation of these heads.

E.3 PREVIOUS TOKEN (PT) HEADS

Head Ablation Experiments. To validate the role of previous token heads, we first repeat the
head ablation experiments in Fig. 4, but we ablated previous token heads instead. We consider both
off-by-one addition and off-by-two addition, and use 16-shots in the prompt. We report the results in
Fig. 32. Ablating the previous tokens heads almost completely restores the model’s default behavior.
This supports our hypothesis that these heads are critical for inducing the +1 function.
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Figure 32: Head Ablation Experiments, Previous Token Heads, Gemma-2 (9B).

Causal Effect. To further investigate the causal effect of previous token (PT) heads, we adapt our
causal analysis method previously used for FI heads and consolidation heads. For example, consider
the off-by-one addition prompt, “1+1=3\n2+2=5\n3+3=?”, we extract the PT head outputs at the
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Figure 33: Causal Effect of Previous Token Heads. (*) Effects of H38.9, H35.14 and H29.5 are
rescaled to [-0.02, 0.02] to make the patterns more readable.

tokens marked in brown, average the outputs over the two tokens (3 and 5), and add them to the
forward pass of the naive prompt “2=2\n3=?", at the token 2 marked in brown. In our experiments,
we scaled this explanatory example to 100 4-shot examples of off-by-one addition to extract the PT
head outputs.

We report the causal effect of these PT head outputs in Fig. 33. Similar to the findings with FI heads,
we find that each PT head conveys distinct information. For example, H38.7 promotes x ± 1 and
x±2, H35.14 promotes x+1 and suppresses x−1. Collectively, these heads suppress x and promote
x+1, which aligns with the hypothesized role of PT heads. Unexpectedly, these heads also promotes
x − 1. We attribute this to the task shift from off-by-one addition and the naive prompt, and the
token-level averaging operation we employ which may cause loss of information.

Pairs of Heads with Countering Effect. We notice that two pairs of PT head (H38.6/7 and H31.4/5)
demonstrate opposing patterns, and they happen to be in the same group in group query attention.
Similarly, two consolidation heads (H41.4/5; Fig. 31) have a similar countering effect. Hence we
hypothesize that group query attention may help these heads develop countering or hedging behaviors.

F TASK GENERALIZATION

F.1 TASKS AND DATA PREPARATION

In this section we describe the task pairs we used in §5 with more details.

Off-by-k Addition. For experiments in the range of [0,9], we consider k ∈ {−2,−1, 1, 2}. For
experiments in the range of [0,99] and [0,999], we consider k ∈ {−10,−9, ...,−1, 1, 2, ..., 10}. We
have reported the results in Fig. 13-14, incorporating the range and offset information. We use 16
shots in the experiments in Fig. 6(a).

Shifted Multiple-choice QA. We focus on 6 subjects in the MMLU dataset (Hendrycks et al.,
2021): high school government and politics, high school US history, US foreign policy, marketing,
high school psychology, sociology. We downloaded the MMLU dataset from § hendrycks/test.
We chose these subjects because Gemma-2 (9B) achieves 90% accuracy with 5 shots on them.
For subjects where Gemma-2 (9B) achieves lower accuracies, tracking and analyzing performance
on Shift-by-One MMLU becomes challenging, because the model could score points by random
guessing. We use 16 shots in the experiments in Fig. 6(b), where the 16 shots combine “validation”
and “dev” examples from the MMLU dataset.
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Caesar Cipher. We adopted a cyclic approach where “a” is considered the next character after “z”.
We also included both lower-case or upper-case examples, e.g., “c -> d” and “C -> D” are both valid
examples in ROT-1. We use 16 shots in the experiments in Fig. 6(c).

In the early stages of this work, we experimented with multi-character Caesar cipher. To prevent
multiple characters from being tokenized as a single unit (e.g., “ew” as one token in Gemma-2’s
tokenizer), we used a preceding whitespace ( ) before each character, formatting it as “ e w” so that
“ e” and “ w” became separate tokens. However, we ultimately focused on one-character Caesar
cipher in the experiments because Gemma-2 (9B) has insufficient performance on the multi-character
version. The tokenization-aware formatting was retained. The actual model input will be “ c -> d”
for the example “c -> d”.

Base-k Addition. We sampled two-digit addition problems using a procedure similar to off-by-k
addition, with one additional constraint that the sum number c has two digits in both base-10 and
base-k. We use 32 shots in the experiments in Fig. 6(d). For the base-8 addition analysis in §5.2 and
Table 3, examples for Case 1-3 were resampled.

F.2 RESULTS

Full Results using Different Offsets and Bases. Previously in Fig. 6, we report results on repre-
sentative cases, e.g., k = 2 in off-by-k addition, the subject of “high school government and politics”
in shifted MMLU. In Fig. 34-36, we report results of the full list of offsets and subjects.

We observe that some of these task variants exceed Gemma-2 (9B)’s capabilities. For instance,
Gemma-2 (9B) has notable performance on cipher when k ∈ {−2,−1, 1, 2, 3, 13} but shows insuf-
ficient performance in other settings. Similarly, it only exhibits non-trivial performance on certain
subjects of Shifted MMLU. However, when models do have non-trivial performance, we consistently
see the involvement of the FI heads, evidenced by the decreased contrast accuracy after ablating them.
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Figure 34: Task Generalization with FI Heads, Off-by-k Addition. We consider addition in the
range of [0,9] and k ∈ {−2,−1, 1, 2}.
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Figure 35: Task Generalization with FI Heads, Shifted MMLU.
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Figure 36: Task Generalization with FI Heads, Base-k Addition. We consider k ∈ {6, 7, 8, 9}.
The dashed lines represent the base prompt’s contrast accuracy, emphasizing the delta in contrast
accuracies between rows.
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Figure 37: Task Generalization with FI Heads, Caesar Cipher. We consider k ∈
{−12,−11, ...,−1} and {1, 2, ..., 13}. In this figure, we ablate 6 FI heads plus 3 additional FI
heads (discussed in §4 and Fig. 5), yielding a clearer pattern than ablating 6 heads alone.
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Figure 38: Task Generalization with FI Heads, Ablating 9 FI Heads. We repeat the experiment in
Fig. 6, this time ablating three additional FI heads (H32.4, H28.6, H24.9) which showed a weaker
effect (1% < |r| < 2%) during circuit discovery on off-by-one addition.

Ablating three additional FI Heads. Previously in Fig. 6, we ablate the 6 FI heads we identified
in §3.2 by setting a threshold of |r| > 2%. In §4 and Fig. 5 we showed that 3 additional FI heads
with weaker effect (1% < |r| < 2%) also contribute meaningfully to off-by-one addition. Here we
consider repeating the experiments on task generalization in Fig. 6 and ablating the 9 heads together.
We report the results in Fig. 38.

We find that the 3 weaker heads contribute meaningfully to the Shifted MMLU, causing its contrast
performance to drop to near 0% when all 9 heads are ablated (Fig. 38(b)), contrasting with 12%
when 6 heads are ablated (Fig. 6(b)). We have a similar observation with Caesar Cipher (k = 2),
where contrast accuracy drops to 0% in (Fig. 38(c)), contrasting with 36% when 6 heads are ablated
(Fig. 6(c)). These observations suggest that the 3 heads may specialize in letters more than numbers.
Understanding these detailed specializations will be an interesting direction for future work.

G INSIGHTS FROM TRAINING TOY MODELS

NEW
Our work mainly focuses on interpreting off-the-shelf large language models, which is a common
practice in works like Wang et al. (2023); Hendel et al. (2023); Todd et al. (2024). One alternative and
promising research methodology is to train smaller transformer models from scratch, which allows
precise control of the training data and more likely lets us isolate the circuit. This methodology is
exemplified by works like Olsson et al. (2022); Nanda et al. (2023); Minegishi et al. (2025). We
present a small preliminary study in this direction below.

Specifically, we trained a randomly-initialized, standard transformer model to perform addition (in
the range of [0,99]) with 5-shot input examples. The transformer has nlayer = 3, nhead = 4, dhead =
128, dffn = 512. We use the Adam optimizer, with its weight decay set to 0.0001. We use an initial
learning rate of 0.001, reduce the learning rate by half when the validation accuracy does not improve
after 10 epochs, and stop training when the validation accuracy does not improve after 50 epochs.

We consider three different settings for the training data. We summarize the results in Table 5 and
discuss our findings below.

↓ Trained on /→ Test on k=0 k=1 k=2

k=0 98.3 ± 1.0 0.7 ± 0.4 0.0 ± 0.0
k=0 and k=1 (50%/50%) 53.7 ± 5.4 42.3 ± 5.5 1.7 ± 3.2
k=0 and k=2 (50%/50%) 16.0 ± 1.4 75.7 ± 4.2 10.6 ± 3.8

Table 5: Results of Training Toy Transformer Models on Off-by-k Addition. We report mean and
standard deviation over 5 runs.

• Trained on standard addition (k=0): The model achieved an 98.3 accuracy on k=0, and
near-zero accuracy on off-by-one addition (k=1).

• Trained on k=0 and k=1, 50%/50% Mix: The model achieved around 50% test accuracy on
both k=0 and k=1, suggesting that it still could not infer the task in-context at the end of training.
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We tried several adjustments, such as increasing the number of layers or changing the mixing
ratio of the training data, but none of these yielded improvements.

• Trained on k=0 and k=2, 50%/50% Mix: We explored whether this would enable the model to
generalize to k=1. The model reached 16.0% accuracy on k=0, 10.6% on k=2, but surprisingly
75.7% on k=1. It appears the model averages the two training tasks: when trained on 1+1=2 and
1+1=4, it tends to output 1+1=3.

Overall, these results suggest that training a toy model to perform off-by-one addition is non-trivial.
It likely requires specific changes to the data distribution or training curriculum. The search space is
large and requires a separate study to address fully. We will leave this as future work.

H REPRODUCIBILITY

Frameworks. We primarily use the § transformer-lens (Nanda and Bloom, 2022) library for
model inference and interpretability analysis. This library is built on the § transformers (Wolf
et al., 2020) library. We have also used the § llm-transparency-tool (Ferrando and Voita, 2024;
Tufanov et al., 2024) for early exploration.

Hardware. All experiments were conducted with one NVIDIA RTX A6000 GPU (48GB). Path
patching experiments involving 100 4-shot examples and iterating over all attention heads for a given
target node will typically take 2 hours.

I LARGE LANGUAGE MODEL USAGE

After writing the initial draft, we refined it using language models to correct grammar, enhance clarity,
and improve overall presentation. We also consulted language models for matplotlib questions when
creating the results figures. Language models were not used in other stages of this work.
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https://github.com/TransformerLensOrg/TransformerLens
https://github.com/huggingface/transformers
https://github.com/facebookresearch/llm-transparency-tool
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