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Abstract

Gene regulatory network (GRN) inference relies on high-quality prior knowledge,
which are often incomplete or unavailable, particularly for complex organisms and
diverse cell types. We present GLM-Prior, a genomic language model that fine-
tunes the pretrained Nucleotide Transformer to learn transcription factor to target
gene regulatory interactions from nucleotide sequence, yielding a sequence-derived
prior for downstream GRN inference. In yeast, GLM-Prior outperforms motif-
based and curated prior knowledge. When trained on general interaction data in
human or mouse, GLM-Prior recovers cell line-specific regulatory structure and en-
ables zero-shot transfer between species. Across settings, adding expression-based
inference provides only modest improvements, indicating that most recoverable
regulatory structure is capture by sequence features learned by GLM-Prior. These
results support sequence-derived prior knowledge as a strong basis for GRN in-
ference, with expression data used primarily to refine and contextualize a fixed
regulatory scaffold.

1 Introduction

Gene regulatory networks (GRNs) map the transcriptional relationships between transcription factors
(TFs) and their target genes, providing a framework for understanding cellular function and gene
expression control in cells [[I} 2]. Accurate GRN inference depends heavily on prior knowledge,
which describes an initial set of putative TF-gene interactions that guides the inference process [3! 14].
Prior knowledge for well-studied species is typically constructed using databases of experimentally
validated TF-gene interactions [} 6]. For less-characterized organisms, prior knowledge is typically
inferred using motif-based and accessibility-driven approaches, which combine structural genomic
data with sequencing information to identify putative regulatory sites [7]. However, these methods
are limited by incomplete annotations, noisy data, and an inability to capture long-range regulation
[8H10].

Large-scale genomic foundation models offer a powerful alternative to motif-based methods by
learning regulatory logic directly from DNA sequence [[11H14]]. Transformer-based architectures, such
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as the Nucleotide Transformer [[15]], use attention mechanisms to capture long-range dependencies and
encode both species-specific and cross-species regulatory patterns. While these models are pretrained
on massive genomic corpora to learn general-purpose sequence representations, they can be fine-tuned
using TF-target gene interaction data to accurately predict regulatory relationships. Once fine-tuned,
these models can generalize to contexts where curated priors are unavailable, including zero-shot
transfer across species or prediction within specific cell types [11} 116, [15}[17]].

In this work, we present GLM-Prior, a genomic language model obtained by fine-tuning the pre-
trained 250M-parameter Nucleotide Transformer [15]] to predict regulatory interactions from paired
nucleotide sequences of TF binding motifs and gene bodies. Pretrained on the genomes of 850 species,
the model jointly encodes each TF-gene sequence pair and passes the resulting representation through
a classification head to estimate the probability of a regulatory interaction. Unlike motif-based
methods that rely on proximity assumptions, GLM-Prior leverages the transformer’s capacity to
model long-range dependencies and complex regulatory grammar, enabling improved generalization
across cell types and species.

In yeast, GLM-Prior outperforms both motif-based and curated priors, recovering most regulatory
interactions directly from nucleotide sequence. Incorporating expression data during downstream
GRN inference yields only marginal improvements, indicating that the sequence-derived prior already
captures the majority of meaningful structure. In human and mouse, models trained on general
species-level interactions accurately reconstruct cell line—specific regulatory edges and enable zero-
shot transfer from human to mouse without retraining. Together, these results suggest that high-quality,
sequence-derived prior knowledge from genomic language models can form a robust foundation for
GRN inference, with expression data serving primarily to modulate this scaffold in a context-specific
manner rather than define its structure.
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Flgure 1: GLM-Prior processes concatenated TF motif and gene sequences to learn regulatory
interactions from nucleotide sequence. The model is trained on balanced, downsampled batches to
predict interaction probabilities, generating sequence-derived prior knowledge for downstream GRN
inference.

2.1 Model Overview

GLM-Prior is a genomic language model built by fine-tuning the 250M-parameter Nucleotide
Transformer [[15] to predict transcription factor—target gene regulatory interactions directly from
DNA sequence (Figure[T). The model uses a transformer encoder architecture to process two distinct
sequence types: TF motif sequences from the CisBP database [18] and gene body sequences derived
from genome annotations in a GTF file. Each TF-gene input pair is formed by concatenating their
respective sequences, which are then tokenized and passed through the transformer encoder. The
(<cls>) token embedding from the final hidden layer is passed through a classification head to predict
whether each TF-gene pair represents a true regulatory interaction (positive label) or a non-regulatory
interaction (negative label), producing logits z € R? with class probabilities:
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Training labels are derived from experimentally validated TF-gene interaction databases (e.g., YEAS-
TRACT [6], STRING [19-22]] and TRRUST [23, 24]). Due to substantial class imbalance in the
input dataset, we apply downsampling to the negative class:

Nsampled = \_7“ . ija (2)

where r is the downsampling rate. We additionally construct balanced batches:

B:{(xj,x;):xj‘eX+,x; e X_}, 3)

with positive examples sampled with replacement and negative examples cycled without replacement.
The model is trained using a class-weighted binary cross-entropy loss to address label imbalance,
where w4 and w_ are class-specific weights:

exp(z4)
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We fix wy = 1.0 and tune w_ via hyperparameter search. After training, the optimal classification
threshold ¢* is selected to maximize validation F1 score:

L=—-wiylogp —w_(1—y)log(l—p), where p= 4)

t* = arg max Fi (t). )

This threshold is then used to binarize predicted probabilities into a prior knowledge matrix of
regulatory (1) and non-regulatory (0) interactions for downstream GRN inference.

3 Experimental Results

3.1 GLM-Prior Constructs Generalizable and High-Quality Priors Across Species

We first benchmark GLM-Prior in S. cerevisiae, comparing it to the curated YEASTRACT prior [6]
and two motif-based methods, Inferelator-Prior [25] and CellOracle’s base GRN [26] (Figure ).
For motif-based methods, priors are constructed by scanning for TF motifs within fixed windows
around gene promoters. Each prior is compared to a[] gold standard of literature curated interactions
[27]. GLM-Prior achieves an AUPRC of 0.40, outperforming YEASTRACT (0.33) by 21.2%, and
far exceeding Inferelator-Prior (0.03 — 0.02) and CellOracle’s base GRN (0.05 — 0.04), depending on
window size. In addition to higher accuracy, GLM-Prior introduces 2,070 novel edges and reclassifies
989 existing edges from the YEASTRACT database, demonstrating its ability to refine and expand
curated priors using sequence alone.

To assess generalization to complex systems, we train separate models in human and mouse using
training labels from the STRING [19-22]] and TRRUST [23| [24] databases. To demonstrate that
GLM-Prior can predict cell-line specific priors when trained on general species-level interactions, we
task the model with inferring TF-target gene edges specific to human and mouse embryonic stem
cells (hESCs and mESCs), respectively (Figure E]B), using BEELINE [28]] ChIP-seq interactions
for evaluation. Despite training on general data, GLM-Prior accurately recovers cell line-specific
regulatory structure, achieving AUPRCs of 0.24 in human and 0.22 in mouse. Further, a human-
trained model transfers successfully to mouse (AUPRC = 0.23), outperforming a mouse-trained
model (0.22), while mouse-to-human transfer achieves a lower AUPRC of 0.17, likely due to the
smaller mouse training dataset (Figure 2|C).

These findings demonstrate that GLM-Prior produces high-quality, sequence-derived priors that gen-
eralize across cell lines and closely related species, and can be robustly evaluated against independent
gold standards even in the absence of cell-line-specific training data.

3.2 Prior Quality Determines GRN Inference Performance

We evaluate the effect of prior quality on GRN inference in S. cerevisiae by performing a cross-
method evaluation that pairs three GRN inference models, PMF-GRN [29]], the Inferelator 3.0 [23],
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Flgure 2: (A) AUPRC comparison of GLM-Prior, YEASTRACT, and motif-based prlors in yeast.
Grey dots represent shuffled controls. (B) GLM-Prior performance in hESC and mESC using species-
specific models. (C) Cross-species transfer learning of GLM-Prior from human to mouse and vice
versa.

and CellOracle [26]], with each of their corresponding prior construction approaches, GLM-Prior,
Inferelator-Prior, and CellOracle’s base GRN. Although each method is typically designed with its
own prior construction strategy, we systematically evaluate all combinations to disentangle the effects
of prior construction and inference algorithm. All inferred GRNs are compared to a common gold
standard described in Section[3.1]

A GLM-Prior B Inferelator-Prior C CellOracle
0.454r r — " BaseGRN - — =
0.407039 o
° 35_| | | | | |
0.30 || | 027, | | | |
(.25
2] | ! ! | !
<
0.154) | I I | |
0.101 005 006 0.06 [0.06 o50.06
0.05-I I 0.030.03 0.03 1995004 0.04] 0.030.03 0.03 ®0.04 I 0.04 I I . II
0.00-|_ e L ! ._I e B L = ™1

Yiv2 C YIY2C YIY2C Y1Y2C YIY2C YIY2C Y1Y2C YIY2C Y1Y2 C
PMF INF cO PMF INF CO PMF INF cO

Figure 3: (A) GRN inference using GLM-Prior across three GRN models (PMF-GRN, Inferelator,
CellOracle). (B) Performance using prior knowledge constructed by Inferelator-Prior. (C) Perfor-
mance using prior knowledge constructed by CellOracle’s base GRN.

Across yeast expression datasets Y1 (GSE125162 [30]), Y2 (GSE144820 [31])), and C (combined Y1
and Y2), GLM-Prior consistently enables the highest performance regardless of inference algorithm,
with PMF-GRN and GLM-Prior achieving up to 0.40 AUPRC (Figure[3)A). In contrast, motif-based
priors (Inferelator-Prior (Figure[3B) and CellOracle’s base GRN (Figure B[C)) performing poorly in
all cases, with AUPRCs < 0.06.

Importantly, adding expression-driven inference on top of GLM-Prior does not consistently improve
performance and sometimes reduces it. This finding suggests that genomic language models pre-
trained on nucleotide sequences, finetuned to predict TF-target gene interactions, capture a high
quality scaffold of regulatory interactions. GRN inference with expression data then serves to modu-
late this scaffold to reflect the cell-type and condition-specific context captured by the experimental
assay.



4 Conclusion and Future Work

GLM-Prior enables accurate and generalizable prior construction for GRN inference by leveraging
large-scale genomic pretraining and finetuning on TF—gene sequence pairs. It outperforms motif-
based and curated priors in yeast, and accurately reconstructs cell line—specific regulatory structure
in human and mouse. GLM-Prior additionally supports zero-shot cross-species transfer, offering a
scalable solution for investigating understudied organisms. Further, when combined with single-cell
expression data for GRN inference in yeast, little to no performance improvement is observed,
highlighting that performance in GRN inference is dominated by the quality of the prior, rather than
the choice of inference algorithm. Future work will expand the application of genomic language
models to incorporate additional regulatory modalities and contexts, enabling broader and more
nuanced modeling of gene regulation.
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Appendix

A Extended Methods

A.0.1 Training procedure

We trained the model on 4 H100 GPUs using PyTorch’s Distributed Data Parallel (DDP) framework
[34] to enable efficient multi-GPU scaling. The training process was distributed across GPUs to
accelerate computation and ensure consistent gradient updates. We used a per-device batch size of 32
and set the gradient accumulation steps to 32, resulting in an effective batch size of 4096. The model
was optimized using Adam with a learning rate of 10~°. Training spanned 10 epochs, using optimal
hyperparameters selected through a sweep over the negative class weight (w_) and downsampling
rate (see Appendix [ for more details). We selected the configuration that achieved the highest F1
score on the validation set for final training.

After training, the model was used to infer a prior-knowledge matrix of TF-gene regulatory inter-
actions from a list of gene-TF sequence pairs without labels. This matrix then served as input for
downstream GRN inference, where GRN inference can further tailor these language model derived
interactions using cell-type, cell-line, or condition-specific expression data.

A.0.2 Performance and Evaluation

We evaluated model performance using standard binary classification metrics, with a focus on metrics
that remain robust under class imbalance. Specifically, we report precision, recall, F1 score, area
under the receiver operating characteristic curve (AUC-ROC), area under the precision-recall curve
(AUPRC), and Matthews correlation coefficient (MCC).

Precision and recall were computed separately for the positive and negative classes to assess the
model’s ability to minimize false positives and false negatives, respectively. Let T'P, F'P, F'N and
TN denote the true positives, false positives, false negatives and true negatives. Then,

Precision rr Recall rr (6)
on = ———— =
TP+ FP’ TP+ FN

The F1 score, which represents the harmonic mean of precision and recall, was used as the primary
metric for model selection and hyperparameter optimization. It can be computed as,

Precision - Recall
=2 . 7
! Precision + Recall 7

To account for class imbalance and provide a threshold-independent measure of performance, we
also computed AUC-ROC and AUPRC. the ROC curve plots true positive rate (TPR) against false
positive rate (FPR), defined as:

TP FP

True Positive Rate (TPR) = TP LN False Positive Rate (FPR) = FPTTN

®)

While AUC-ROC captures the model’s general discrimintative ability, AUPRC is more informative in
imbalanced settings, as it directly reflects the trade-off between precision and recall. We used AUPRC
to benchmark model predictions against curated gold standard datasets of TF-gene interactions.

To determine the optimal classification threshold, we performed a grid search over the predicted
positive class probabilities. The threshold ¢* that maximized the F1 score on the validation set was
selected for final inference,

t* = Fy(t). 9)



Finally, we report the Matthews correlation coefficient (MCC), a balanced measure of classification
quality that incorporates all four confusion matrix components,

TP-TN - FP-FN
MCC = . (10)
V(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC ranges from —1 to +1, where +1 indicates perfect predictions, 0 indicates random predictions,
and —1 indicates incorrect predictions. MCC remains informative even when classes are highly
imbalanced, making it a useful complement to F1 and AUPRC.

A.1 GRN inference with PMF-GRN

We performed GRN inference using our previously published method, PMF-GRN (Probabilistic
Matrix Factorization for Gene Regulatory Network inference) [29] to infer the regulatory interactions
between TFs and their target genes. The goal of PMF-GRN is to decompose an observed gene
expression matrix into latent factors that represent TF activity and regulatory interactions between
TFs and their target genes. These latent factors capture the underlying GRN structure, which cannot
be measured directly from gene expression data alone. Further details regarding the PMF-GRN
model and the inference strategy used to obtain GRNs can be found in [25]].

Using PMF-GRN, we perform inference independently on each single-cell dataset to obtain dataset-
specific GRNs. These inferred networks are then combined post-inference using a simple averaging
strategy to produce a consensus GRN,

N
1
GRNConsensus = N ; GRNi7 (1 1)

where N is the number of datasets and GRN; is the inferred network for dataset 7. This consensus
GRN captures regulatory interactions that are consistently inferred across datasets, while preserving
dataset-specific networks for context-specific analyses.

B Extended Results

B.1 Prior quality determines the additive value of expression data in GRN inference for
human and mouse embryonic stem cells

Having established that GLM-Prior effectively captures species and cell-type specific regulatory
structure directly from sequence, we next test whether the limited additive value of expression-
based inference observed in yeast extends to more complex systems, focusing on human and mouse
embryonic stem cells (hESCs and mESCS). Specifically, we explore hESCs and mESCs, using
GLM-Prior to construct a prior knowledge matrix from nucleotide sequences, followed by GRN
inference with PMF-GRN on paired single-cell expression data.

In the human setting, GLM-Prior is trained on TF—gene interaction pairs using non-cell line specific
regulatory edges from the STRING and TRRUST databases. To evaluate its ability to generalize to an
unseen cell type, we task the model with predicting regulatory interactions in hESCs using nucleotide
sequence pairs derived from genes and TFs in a held-out hESC ChIP-seq dataset. GLM-Prior achieves
an AUPRC of 0.24 (Figure[dJA), indicating that it successfully generalizes beyond curated databases
and recovers context-specific regulatory structure from sequence alone.

To evaluate whether expression data offers additive value beyond this sequence-derived prior, we
apply PMF-GRN to a single-cell RNA-seq time course of hESC differentiation [32]], spanning six
time points from pluripotency through early lineage commitment. Using the GLM-Prior as input,
GRNs inferred across these timepoints yield only marginal performance gains, with AUPRCs ranging
from 0.22 to 0.24 for individual time points (Appendix Table[) and 0.27 when inferred on the pooled
dataset (Figure [4A). This modest 12.5% improvement suggests that most of the regulatory signal
recoverable from expression data was already captured by the prior.
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To determine whether these predictions are nonetheless meaningful, we assess the calibration of
PMF-GRN’s uncertainty estimates. Specifically, we ask whether lower posterior variance, used by
PMF-GRN to quantify uncertainty over each edge, correspond to more accurate predictions. We find
that variance estimates are well-calibrated, with edges with lower posterior variance demonstrating
higher precision (Figure @B). This suggests that even when expression data adds little in terms of
overall edge recovery, model uncertainty offers interpretability by flagging high-confidence, cell-type
specific predictions.

A hESC Performance B Uncertainty Calibration ‘ E mESC Performance F Uncertainty Calibration
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Figure 4: Performance analysis of GLM-Prior and PMF-GRN in human and mouse ESCs. (A)
AUPRC scores in hESCs show modest gains from GRN inference over the sequence-derived prior.
(B) Uncertainty calibration in hESCs confirms that lower posterior variance predicts higher precision.
(C) GRN inference in hESCs prunes the prior, removing 74,525 edges while adding only 8,072. (D)
Human training data includes 43,963 positive interactions, supporting strong prior construction. (E)
AUPRC scores in mESCs show larger gains from GRN inference, suggesting greater value from
expression. (F) Uncertainty calibration in mESCs remains well-aligned with predictive confidence.
(G) GRN inference in mESCs expands the prior, adding 40,121 edges and removing 16,672. (H)
Mouse training data includes only 20,144 positive interactions, explaining the weaker prior and
increased reliance on expression.

To better understand the role of expression data in shaping the GRN, we compare the inferred network
to the GLM-Prior and quantify structural changes. PMF-GRN removes 74, 525 edges (28.09% of all
possible edges), while adding only 8, 072 new edges (3.04%) (Figure ). This gain-loss asymmetry
confirms that expression data does not drive novel edge discovery, but instead acts as a selective filter
by pruning edges not active in hESCs and preserving those supported by context-specific expression.
Rather than constructing the GRN de novo, expression reweights a scaffold learned from sequence,
tailoring it to the relevant regulatory state.

This filtering behavior reflects the strength of the prior knowledge, whereby GLM-Prior was trained on
a large, well-annotated human regulatory dataset containing 43, 963 positive and 3.3 million negative
TF-gene pairs from STRING and TRRUST (Figure @D). This abundance of positive examples enables
the model to learn generalizable regulatory principles directly from sequence. As a result, GRN
inference does not need to discover new structure, but instead refine the scaffold to reflect the hESC
context. These results support our broader conclusion that when a strong sequence-informed prior is
available, expression data serves to modulate the network, not construct it.

We next apply GLM-Prior and PMF-GRN to mouse embryonic stem cells (mESCs) to assess whether
the patterns observed in human generalize to other species. As in the human system, we began
by evaluating GLM-Prior trained on TF-gene interaction pairs from the STRING and TRRUST
databases. When tested against the held-out ChIP-seq reference labels, GLM-Prior achieves an
AUPRC of 0.22 in mESCs (Figure E). GRN inference with PMF-GRN and paired single-cell
expression data improves AUPRC to 0.27, a 22.7% performance increase over the prior. This exceeds
the smaller gains observed in hESC and suggests that expression data plays a more substantial
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role in recovering regulatory structure in the mouse setting. To determine whether this additive
performance reflected meaningful model confidence, we assess the PMF-GRNs uncertainty estimate
calibration. As in the human setting, posterior variance is well-calibrated, with edges with lower
posterior variance demonstrating higher precision (Figure dF). This confirms that PMF-GRN not only
improves predictive accuracy in mESCs but also provides reliable confidence estimates, providing a
layer of interpretability to the inferred GRN.

We then examine how expression data reshaped the GRN relative to the prior. In contrast to human,
where expression primarily filters the prior, GRN inference in mouse introduces substantially more
edges than it removes, 40, 121 new edges (32.75% of all possible edges) are added, while only 16, 672
(13.61%) are pruned (Figure diG). This gain-loss asymmetry indicates that in mESCs, expression
expands the network, recovering interactions not predicted from sequence alone. This expansion
is consistent with the more limited training data used to construct the mouse GLM-Prior, which
included 20, 144 positive TF-gene pairs compared to 43,963 in human (Figure fH). With less
annotated regulatory information available, the sequence-derived prior in mouse left more room for
expression to contribute additively.

Together, these results reinforce our central claim that the role of expression data in GRN inference
depends on the quality and completeness of the prior. When the prior is strong, as in yeast and human,
expression primarily tailors the scaffold to cell-type context, often by pruning unsupported edges.
When the prior is weaker, as in mouse, expression plays a more constructive role by expanding the
network to capture structure absent from sequence alone. Rather than serving as a general source of
regulatory structure, expression is best understood as a context-aware modifier of a sequence-derived
regulatory scaffold.

C Single-Species Experiment Details

C.1 Yeast data processing and experiments

To train our GLM-Prior model in yeast, we first obtained all 5,999 gene body nucleotide sequences
from the ENSEMBL S. cerevisiae (R64-1-1.UTR.gtf) genome. We obtained 212 TF sequences from
the CisBP database [[18]] under S. cerevisiae.

Validation Metrics for Yeast Single-Species GLM-Prior

Metric Score
Best F1 Score 0.64
ROC AUC 0.97
Best Classification Threshold 0.94
Positive Class Precision 0.88
Positive Class Recall 0.47
Negative Class Precision 0.99
Negative Class Recall 1.00
AUPRC (vs. gold standard [27]]) 0.40
Table 1: Validation performance of the GLM-Prior model trained on yeast. Evaluation was conducted

on a held-out validation set that assess positive and negative class contributions during training (top)
and AUPRC against an independent gold standard for the final inferred prior-knowledge matrix
(bottom).

Next, to pair these gene and TF nucleotide sequences with interaction labels, we used the YEAS-
TRACT database of interactions [6] (6, 885 genes by 220 TFs). From these 220 YEASTRACT TFs,
46 did not have sequences associated with them from CisBP. Due to this large portion of data loss
(20%), we used the promoter regions of the target genes for each missing TF as a proxy for it’s
binding sequence. We defined the promoter sequence following YEASTRACTs definition of 1000bp
upstream or downstream of the gene TSS (depending on the strand orientation). This resulted in an
input dataset containing 5, 999 genes by 254 TFs.

A hyperparameter sweep over 1 epoch of training using different class-weights and downsampling
rates for the negative class revealed [0.7, 1.0] to be the optimal class-weights and 0.4 to be the optimal
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A Hyperparameter Sweep
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Figure 5: (A) A hyperparameter sweep performed on a 99% train and 1% validation split across class
weights and downsampling rates reveals substantial variability in model performance across different

configurations.

negative class downsampling rate (Figure[5JA). These hyperparameters were used during final training
over 10 epochs obtaining the validation metrics on the held-out 1% of training data found in Table

Following training of the single-species yeast GLM-Prior model, we ran inference on all genes and
TF sequences from the YEASTRACT database and evaluated our inferred prior-knowledge matrix
using AUPRC on an independent gold standard [27].

Prior-knowledge datasets for CellOracle and Inferelator-Prior were obtained from [25] without further
modification. These priors were constructed using motifs from CisBP, the same motifs used in GLM-
Prior to ensure compatibility and fairness during evaluation. YEASTRACT derived prior-knowledge
was downloaded from the database without further modification [6]]. The reference gold standard was

taken from [27]] without further modification.
Single cell gene expression datasets were obtained from GSE125162 (38, 225 cells by 6, 763 genes)

[30] and GSE144820 (6, 118 cells by 6, 763 genes) [31] without modification. The combined dataset
was created by concatenating GSE125162 and GSE144820 on the cells axis (44, 343 cells by 6, 763
genes). We performed GRN inference using PMF-GRN [29] and comparable methods such as the
Inferelator 3.0 [23]] and CellOracle [26]] across datasets Y1, Y2, and the combined data (Table |Z[)

C.2 Human data processing and experiments

To train our GLM-Prior model in human, we first obtained hg38 gene body nucleotide sequences
from ENSEMBL (RCh38.113.gtf). Due to the lengthy nature of human genes, and the inherent
limitations of context length in large language models, we filtered our gene sequences to retain all
sequences for a gene body < 12,000 nucleotides in length. This provided us with a list of 23, 533
genes. We obtained TF binding motif sequences from the CisBP database [18]], under H. sapiens.

Next, to pair these gene and TF nucleotide sequences with interaction labels, we followed the
BEELINE benchmarking protocol [28]], obtaining labels from their human reference datasets from
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Expression Input Input Prior-Knowledge PMF-GRN | Inferelator 3.0 | CellOracle
GLM-Prior 0.39 0.27 0.36
YEASTRACT 0.35 0.30 0.40
GSE125162 (Y1) Inferelator-Prior 0.03 0.05 0.03
CellOracle Base GRN 0.06 0.06 0.06
GLM-Prior + YEASTRACT 0.41 0.31 NA
GLM-Prior 0.36 0.25 0.28
YEASTRACT 0.34 0.31 0.31
GSE144820 (Y2) Inferelator-Prior 0.03 0.04 0.03
CellOracle Base GRN 0.04 0.04 0.05
GLM-Prior + YEASTRACT 0.38 0.31 NA
GLM-Prior 0.40 0.34 0.35
YEASTRACT 0.36 0.39 0.41
Y1 + Y2 Combined Inferelator-Prior 0.03 0.04 0.03
CellOracle Base GRN 0.06 0.06 0.06
GLM-Prior + YEASTRACT 0.42 0.40 NA

Table 2: Yeast GRN inference performance (AUPRC) across different prior-knowledge sources and
methods (PMF-GRN, Inferelator 3.0, CellOracle), in these three yeast gene expression datasets:
GSE125162 (Y1), GSE144820 (Y2), and their combined expression input, evaluated against an
independent gold standard [27]].

the STRING [19-22] and TRRUST [23} [24] databases. This provided us with 43,963 positive
interactions and 3, 314, 817 negative interactions.

Due to the large number of negative interactions and the length of gene sequences, it was necessary to
implement a 1 : 1 downsampling strategy to prevent memory issues during training. For this reason,
we trained GLM-Prior using all positive examples as well as a paired number of random samples of
negative class examples. A hyperparameter sweep over the class weights for negative and positive
classes revealed [0.3,1.0] to be the optimal class weights. These weights were used during final
training and achieved the validation metrics found in Table[3]

Following training of the human single-species GLM-Prior model on STRING and TRRUST database
labels, we ran inference using the genes and TFs associated with the BEELINE hESC reference
ChIP-seq network. This provided us with 4, 773 genes and 79 TFs. After inference, the model
predictions were evaluated using AUPRC with the corresponding labels from the hESC reference
ChIP-seq network.

Validation Metrics for Human Single-Species GLM-Prior

Metric Score
Best F1 Score 0.77
ROC AUC 0.84
Best Classification Threshold 0.67
Positive Class Precision 0.68
Positive Class Recall 0.90
Negative Class Precision 0.85
Negative Class Recall 0.59
AUPRC (vs. hESC reference network) 0.24
Table 3: Validation performance of the GLM-Prior model trained on human. Evaluation was

conducted on a held-out set using validation metrics that consider the contribution of the positive
and negative classes on performance (top) and AUPRC against an hESC ChIP-seq-derived reference
network (bottom) after inference of the prior-knowledge matrix.

After prior-knowledge generation, GRN inference was run on six timepoint hESC single-cell ex-
pression datasets (GSE75748) [32], as similarly done in the BEELINE benchmarking framework.
Single-cell expression datasets were separated by their respective timepoints for each timepoint GRN,
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and combined post inference using our post-inference averaging strategy for our "Consensus" GRN.
Additionally, we learned one GRN without any tasks, "No Tasks", to compare performance (Table ).

AUPRC Results for hESC GRNs Compared to ChIP-seq Reference

GRN Number of Cells AUPRC
00h 92 0.22
12h 102 0.24
24h 66 0.24
36h 172 0.22
72h 138 0.23
96h 188 0.23
Consensus 758 0.24
No Tasks 758 0.27

Table 4: AUPRC performance for GRNs inferred at each developmental timepoint in hESCs, as well
as a consensus model and a model trained without timepoint supervision ("No Tasks"). Evaluation is
based on overlap with an hESC ChIP-seq-derived reference network.

C.3 Analysis of timepoint GRNs and transcription factor activity in hESCs

To complement the main evaluation of the dual-stage training pipeline in hESCs (Section [B.T)), we
present supplementary analyses that examine the dynamic regulatory structure inferred by PMF-GRN.
These include both timepoint-specific GRNs and transcription factor activity (TFA) trajectories, and
compact GRN visualizations centered on stage-specific marker genes. While not central to our core
methodological evaluation, these analyses illustrate the biological interpretability enabled by the
posterior distributions produced during GRN inference.

We begin by evaluating the sequence-informed prior generated by GLM-Prior. The model was trained
on human TF-gene nucleotide sequence pairs using curated interaction labels from the STRING
and TRRUST databases. As shown in Appendix Figure[6]A, GLM-Prior achieves strong validation
metrics, including a positive-class recall of 0.90, negative-class precision of 0.85, ROC-AUC of 0.84,
and an F1 score of 0.77 using an optimal classification threshold of 0.67. These results demonstrate
that GLM-Prior effectively captures regulatory sequence logic from external reference datasets.

In addition to the pooled (no-task) GRN analysis (described in Section |Prior quality determines the|
[additive value of expression data in GRN inference for human and mouse embryonic stem cells|), we
evaluated the performance of PMF-GRN when inferring separate, timepoint-specific GRNs across
the hESC differentiation time course. This task-specific decomposition allowed us to assess whether
modeling regulatory programs at finer temporal resolution provides any performance advantage
over pooled modeling. Across six timepoints (00h, 12h, 24h, 36h, 72h, 96h), PMF-GRN achieved
consistent AUPRCs ranging from 0.22 to 0.24 when evaluated against the hESC ChIP-seq reference
network (Appendix Table [d)). The highest performance was observed at 12h and 24h (AUPRC =
0.24), which may correspond to early differentiation events as cell begin to exit the pluripotent state.
However, these timepoint-specific models did not outperform the pooled no-task GRN (AUPRC =
0.27), suggesting that the increased statistical power of pooled inference outweighs the potential
benefits of task-specific decomposition when cell observations are limited.

In parallel with recovering regulatory edges, PMF-GRN infers latent TFA for each cell, offering
a powerful lens to explore the dynamic regulatory landscape underlying cell state transitions. To
investigate how TFA evolves over time, we visualized the inferred TFA matrix using UMAP, project-
ing cells into a low-dimension space based on their TF activity profiles (Appendix Figure [6B). The
resulting UMAP embeddings recapitulate the developmental progression of the hESC time course,
where 00h cells form a distinct cluster from which two trajectories emerge: one leading through 12h
and 24h, and the other progressing through 36h, 72h and 96h. This bifurcation suggests early lineage
commitment events by 24h, consistent with exit from pluripotency and the onset of differentiation
[35].

To further explore the biological relevance of these TFA profiles, we examined the activity dynamics
of individual TFs. We identified MAX as the most highly active TF across the full dataset and plotted
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Figure 6: Performance and interpretability of the dual-stage GLM-Prior and PMF-GRN pipeline
applied to human ESCs. (A) Validation metrics for GLM-Prior trained on human TF-gene interactions
from STRING and TRRUST. (B) UMAP projection of TFA reveals temporal structure and bifurcating
developmental trajectories. (C) Violin plot of MAX TFA across time points, showing increased
activity from 00h to 36h followed by a sharp drop at 36h. (D) Mean TFA of MAX across the time
course highlights a transition point between 24h and 36h, suggesting a role for MAX in pluripotency
and an activity decline associated with differentiation onset. (E Number of edge flips between
time-resolved GRNS.)

its activity distribution over time (Appendix Figure [[C). MAX demonstrated a rise in activity from
00h to 24h, followed by a sharp drop at 36h, and more moderate changes at 72h and 96h. To visualize
this temporal trend, we plotted the mean TFA of MAX across time points, revealing a clear inflection
point between 24h and 36h that aligns with the transition from the pluripotent state to early lineage
specification (Appendix Figure [6D).

This pattern is particularly intriguing given that MAX is known to partner with other transcriptional
regulators such as MYC and plays a key role in controlling proliferation, chromatin accessibility,
and pluripotency [36]]. The observed role in MAX activity during the early stages of the time course
likely reflects its involvement in maintaining or priming the pluripotent state, while the drop post-24h
may signify the onset of lineage-specific roles as cells diverge in fate. This regulatory transition is
evident solely from TFA profiles, further underscoring the interpretability and resolution provided by
the dual-stage training pipeline.

To further investigate the temporal dynamics captured by these timepoint-specific GRNs, we analyzed
edge turnover between consecutive GRNs (Figure[6E). This revealed a punctuated pattern of regulatory
modeling across the differentiation trajectory. From 00h to 12h, the network expanded sharply
with 63 new edges and no losses, indicating broad activation of regulatory programs as cells exit
pluripotency. Subsequent transitions showed increased pruning, with 12h to 24h involving moderate
edge refinement (8 edge gains and 10 losses), while 24h to 36h featured substantial contraction
(1 gain and 54 losses), consistent with a shift toward lineage commitment. From 36h onward, the
network stablized, showing more balanced turnover (8 gains and 7 losses from 36h to 72h, and only
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2 gains and 4 losses from 72h to 96h). These patterns reflect dynamic GRN reprogramming over
time, with an early wave of activation followed by selective refinement and eventual stabilization,
consistent with expected transcriptional transitions during stem cell differentiation.

To further contextualize the inferred GRNs, we turned to the original study from which the hESC
single-cell dataset was derived [32]]. In this work, the authors defined a curated set of marker genes
representative of distinct stages of pluripotency and lineage commitment. These markers were
shown to exhibit temporally appropriate expression patterns, making them ideal anchor points for
investigating stage-specific regulatory dynamics. Inspired by this, we constructed compact GRN
visualizations centered on these individual marker genes. For each selected marker, we extracted
the top five predicted regulators (TFs) and/or top five predicted targets from the timepoints that
aligned with the marker. For each predicted edge, we highlighted whether this edge had support from
the STRING or TRRUST database, or the corresponding hESC ChIP-seq reference network from
BEELINE. This allowed us to create interpretable sub-networks aligned with known developmental
transitions (Appendix Figure 7).

This marker-centered GRN analysis provides a framework to trace the dynamic regulatory roles of
key genes throughout hESCs progression. The selected marker genes highlight transitions from the
pluripotent state through bifurcating trajectories into trophoblast (TBs), mesendoderm, or ectoderm
lineages, and further into specialized fates such as definitive endoderm (ED), mesoderm, endothelial
cells (ECs), or neural progenitor cells (NPCs). By anchoring our GRNSs to these well-established
marker genes, we were able to map not only the timing of regulatory transitions but also the identities
of candidate TFs driving them.

Together, these analyses highlight the power of GLM-Prior and PMF-GRN to recover biologically
meaningful, temporally resolved GRNs and TF activity dynamics from single-cell data. In the context
of human ESCs, this enables a systems-level view of how regulatory programs are rewired over
developmental time, offering mechanistic insight into critical transitions such as pluripotency exit
and early lineage commitment.

C.4 Mouse data processing and experiments

To train our GLM-Prior model in mouse, we first obtained the mm10 gene body nucleotide sequences
from ENSEMBL (GRCm39.113.gtf). Similarly to the single-species human experiments, we again
filtered the length of our mouse genes to retain all sequences for a gene body < 12, 000 nucleotides
in length. This provided us with a list of 37, 755 genes. We obtained TF binding motif sequences
from the CisBP database [18]], under M. musculus.

To pair gene and TF nucleotide sequences with interaction labels, we followed the BEELINE
benchmarking protocol [28]], using mouse reference datasets from STRING [19-H22]] and TRRUST
[23| 24]] databases. This resulted in a training set comprising 5, 326 genes, 491 TFs, 27,909 positive
examples, and 2, 587, 157 negative examples.

As in the human setup, we applied a 1 : 1 downsampling strategy to balance positive and negative
classes and manage memory constraints. A hyperparameter sweep over class weights yielded an
optimal configuration of [0.8, 1.0] for negative and positive classes, respectively. These weights were
used during final training, achieving the validation metrics shown in Table [5]

Following training, we used GLM-Prior to generate predictions for the 5, 711 genes and 59 TFs
present in the BEELINE mESC ChIP-seq reference network. These predictions were evaluated using
AUPRC against the same ChIP-seq derived labels, providing a performance estimate of the learned
prior-knowledge matrix.

Using the predicted prior matrix, we performed GRN inference on five timepoint-specific mESC
single-cell expression datasets from GSE98664 [33]], following the BEELINE framework. Each GRN
was inferred using cells from a single timepoint and subsequently aggregated using our post-inference
averaging strategy to form a "Consensus" GRN. Additionally, a pooled "No Tasks" GRN was learned
from all cells without timepoint supervision. AUPRC results for each inferred GRN are shown in
Table
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Validation Metrics for Mouse Single-Species GLM-Prior

Metric Score
Best F1 Score 0.73
ROC AUC 0.76
Best Classification Threshold 0.47
Positive Class Precision 0.61
Positive Class Recall 0.89
Negative Class Precision 0.78
Negative Class Recall 0.41
AUPRC (vs. mESC reference network) 0.22

Table 5: Validation performance of the GLM-Prior model trained on mouse. Metrics are computed
on a held-out validation set, as well as against an mESC ChIP-seq-derived reference network (bottom
row) to compute AUPRC of the final predicted prior-knowledge matrix.

AUPRC Results for mESC GRNs Compared to ChIP-seq Reference

GRN Number of Cells AUPRC
00h 90 0.27
12h 68 0.27
24h 90 0.27
48h 82 0.27
72h 91 0.27
Consensus 421 0.27
No Tasks 421 0.27

Table 6: Area under the precision-recall curve (AUPRC) for GRNs inferred at each developmental
timepoint in mESCs, as well as a consensus model and a model trained without timepoint supervision
("No Tasks"). Evaluation is based on overlap with a mESC ChIP-seq-derived reference network.

C.5 Single-species training runtime and batch statistics

Training batch composition statistics for each species-specific GLM-Prior model are summarized in
Appendix Figure[8JA. All models were trained for 10 epochs using distributed data parallel (DDP)
across 4 GPUs. Training time varied substantially across species, with yeast requiring approximately
80 hours, human approximately 16 hours, and mouse approximately 3 hours. These difference reflect
both dataset size and batching constrained imposed by sequence length and class balance.

Unlike the human and mouse datasets, which used a 1 : 1 ratio of positive to negative examples to
avoid out-of-memory (OOM) issues caused by long gene context lengths, the yeast dataset used a 0.4
downsampling rate for negative examples. This was feasible due to the shorter averaage length of
yeast gene sequences, allowing for deeper batching and more efficient memory use. As a result, yeast
training involved significantly more batches per epoch, contributing to longer overall runtime.

A Yeast Human Mouse
Positives 68685 416222 67369
Negatives 166489 416222 67369
Batches/Epoch 2602 6504 1053
Total Batches 26020 65040 10530
Total Pos Seen 1664890 4162220 673690
Total Neg Seen 1664890 4162220 673690
Pos Reuse Ratio 24.2x 10x 10x

Single-Species Training Over 10 Epochs

Figure 8: Training batch statistics across datasets. (A) Summary table of training batch statistics,
including the number of positive and negative examples, batches per epoch, and total batches.
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Appendix Figure[8JA details per-epoch batch statistics, including the number of positive and negative
examples, batches per epoch, and total batches across 10 epochs. These illustrate the impact of
sequence length and sampling strategy on data reuse and training efficiency across species.

D Transfer Learning Experiment Details

D.1 Transferring knowledge from human to mouse

To transfer knowledge from human to mouse, we took the single-species trained human model
described in Section [C.2]and used it to run inference on the 5, 711 genes and 59 TFs in mESC. We
evaluate the predictions using AUPRC on the reference labels from the mESC ChIP-seq experiment
from BEELINE.

D.2 Transferring knowledge from mouse to human

To transfer knowledge from human to mouse, we took the single-species trained mouse model
described in Section[C.4]and used it to run inference on the 4, 773 genes and 79 TFs in hESC. We
evaluate the predictions using AUPRC on the reference labels from the hESC ChIP-seq experiment
from BEELINE.

D.3 Transferring knowledge from human and mouse to yeast

To transfer knowledge from human to mouse, we took the single-species trained human model
described in Section[C.2] and further finetuned this model using the mouse gene (n=>5, 326) and TF
(n=491) nucleotide sequences associated with the STRING and TRRUST databases, and the optimal
class weights obtained during hyperparameter search in the mouse single-species model (Section
[C4). After consecutively training our model on human and then mouse, we run inference on the
5,999 genes and 254 TFs from YEASTRACT. We evaluate the predictions using AUPRC on the
independent gold standard [27], as done in the yeast single-species model.

Results for the transfer learning experiments can be found in Table[7}

AUPRC Results from Cross-Species Transfer Learning

Training Dataset Inference Dataset AUPRC
Human Mouse 0.23
Mouse Human 0.17
Human and Mouse | Yeast 0.02

Table 7: AUPRC scores for cross-species transfer learning. Each row indicates the species used to
train the GLM-Prior model and the target species on which GRN inference was performed. Evaluation
was conducted against species-specific ChIP-seq or curated reference datasets.
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