
Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

CONTINUOUS CONTROL WITH ENSEMBLE DEEP DE-
TERMINISTIC POLICY GRADIENTS

Piotr Januszewski
Gdansk University of Technology
& University of Warsaw
piotr.januszewski@pg.edu.pl

Mateusz Olko
University of Warsaw
mk.olko@student.uw.edu.pl

Michał Królikowski
University of Warsaw
m.krolikowski2@student.uw.edu.pl

Jakub Świątkowski
University of Warsaw
jakub.swiatkowski@mimuw.edu.pl

Marcin Andrychowicz
Google Research
marcina@google.com

Łukasz Kuciński
Polish Academy of Sciences
lkucinski@impan.pl

Piotr Miłoś
Polish Academy of Sciences
pmilos@impan.pl

ABSTRACT

The growth of deep reinforcement learning (RL) has brought multiple exciting tools
and methods to the field. This rapid expansion makes it important to understand
the interplay between individual elements of the RL toolbox. We approach this
task from an empirical perspective by conducting a study in the continuous control
setting. We present multiple insights of fundamental nature, including: an average
of multiple actors trained from the same data boosts performance; the existing
methods are unstable across training runs, epochs of training, and evaluation runs; a
commonly used additive action noise is not required for effective training; a strategy
based on posterior sampling explores better than the approximated UCB combined
with the weighted Bellman backup; the weighted Bellman backup alone cannot
replace the clipped double Q-Learning; the critics’ initialization plays the major
role in ensemble-based actor-critic exploration. As a conclusion, we show how
existing tools can be brought together in a novel way, giving rise to the Ensemble
Deep Deterministic Policy Gradients (ED2) method, to yield state-of-the-art results
on continuous control tasks from OpenAI Gym MuJoCo. From the practical side,
ED2 is conceptually straightforward, easy to code, and does not require knowledge
outside of the existing RL toolbox.

1 INTRODUCTION

Recently, deep reinforcement learning (RL) has achieved multiple breakthroughs in a range of
challenging domains (e.g. Silver et al. (2016); Berner et al. (2019); Andrychowicz et al. (2020b);
Vinyals et al. (2019)). A part of this success is related to an ever-growing toolbox of tricks and
methods that were observed to boost the RL algorithms’ performance (e.g. Hessel et al. (2018);
Haarnoja et al. (2018b); Fujimoto et al. (2018); Wang et al. (2020); Osband et al. (2019)). This state
of affairs benefits the field but also brings challenges related to often unclear interactions between
the individual improvements and the credit assignment related to the overall performance of the
algorithm (Andrychowicz et al., 2020a; Ilyas et al., 2020).

In this paper, we present a comprehensive empirical study of multiple tools from the RL toolbox
applied to the continuous control in the OpenAI Gym MuJoCo setting. These are presented in Section
4 and Appendix B. Our insights include:

• The ensemble of actors boost the agent performance.

• The current state-of-the-art methods are unstable under several stability criteria.

• The normally distributed action noise, commonly used for exploration, can hinder training.

1

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

• The approximated posterior sampling exploration (Osband et al., 2013) outperforms approx-
imated UCB exploration combined with weighted Bellman backup (Lee et al., 2020).

• The weighted Bellman backup (Lee et al., 2020) can not replace the clipped double Q-
Learning (Fujimoto et al., 2018).

• The critics’ initialization plays a major role in ensemble-based actor-critic exploration, while
the training is mostly invariant to the actors’ initialization.

To address some of the issues listed above, we introduce the Ensemble Deep Deterministic Policy
Gradient (ED2) algorithm1, see Section 3. ED2 brings together existing RL tools in a novel way: it is
an off-policy algorithm for continuous control, which constructs an ensemble of streamlined versions
of TD3 agents and achieves the state-of-the-art performance in OpenAI Gym MuJoCo, substantially
improving the results on the two hardest tasks – Ant and Humanoid. Consequently, ED2 does not
require knowledge outside of the existing RL toolbox, is conceptually straightforward, and easy to
code.

2 BACKGROUND

We model the environment as a Markov Decision Process (MDP). It is defined by the tuple
(S,A, R, P, γ, p0), where S is a continuous multi-dimensional state space, A denotes a contin-
uous multi-dimensional action space, P is a transition kernel, γ ∈ [0, 1) stands for a discount
factor, p0 refers to an initial state distribution, and R is a reward function. The agent learns a policy
from sequences of transitions τ = [(st, at, rt, st+1, d)]

T
t=0, called episodes or trajectories, where

at ∼ π(·|st), st+1 ∼ P (·|st, at), rt = R(st, at, st+1), d is a terminal signal, and T is the terminal
time-step. A stochastic policy π(a|s) maps each state to a distribution over actions. A deterministic
policy µ : S −→ A assigns each state an action.

All algorithms that we consider in this paper use a different policy for collecting data (exploration)
and a different policy for evaluation (exploitation). In order to keep track of the progress, the
evaluation runs are performed every ten thousand environment interactions. Because of the en-
vironments’ stochasticity, we run the evaluation policy multiple times. Let {Ri}Ni=1 be a set of
(undiscounted) returns from N evaluation episodes {τi}Ni=1, i.e. Ri =

∑
rt∈τi

rt. We evaluate the
policy using the average test return R̄ = 1

N

∑N
i=1 Ri and the standard deviation of the test returns

σ =
√

1
N−1

∑N
i=1(Ri − R̄)2.

We run experiments on four continuous control tasks and their variants, introduced in the appropriate
sections, from the OpenAI Gym MuJoCo suite (Brockman et al., 2016). The agent observes vectors
that describe the kinematic properties of the robot and its actions specify torques to be applied on the
robot joints. See Appendix D for the details on the experimental setup.

3 ENSEMBLE DEEP DETERMINISTIC POLICY GRADIENTS

For completeness of exposition, we present ED2 before the experimental section. The ED2 ar-
chitecture is based on an ensemble of Streamlined Off-Policy (SOP) agents (Wang et al., 2020),
meaning that our agent is an ensemble of TD3-like agents (Fujimoto et al., 2018) with the action
normalization and the ERE replay buffer. The pseudo-code listing can be found in Algorithm 1,
while the implementation details, including a more verbose version of pseudo-code (Algorithm 3),
can be found in Appendix E. In the data collection phase (Lines 1-9), ED2 selects one actor from
the ensemble uniformly at random (Lines 1 and 9) and run its deterministic policy for the course
of one episode (Line 4). In the evaluation phase (not shown in Algorithm 1), the evaluation policy
averages all the actors’ output actions. We train the ensemble every 50 environment steps with 50
stochastic gradient descent updates (Lines 10-13). ED2 concurrently learns K · 2 Q-functions, Qϕk,1

and Qϕk,2
where k ∈ K, by mean square Bellman error minimization, in almost the same way that

SOP learns its two Q-functions. The only difference is that we have K critic pairs that are initialized
with different random weights and then trained independently with the same batches of data. Because
of the different initial weights, each Q-function has a different bias in its Q-values. The K actors,
πθk , train maximizing their corresponding first critic, Qϕk,1

, just like SOP.

1Our code is based on SpinningUp (Achiam, 2018). We open-source it at: https://github.com/
ed2-paper/ED2.

2

https://github.com/ed2-paper/ED2
https://github.com/ed2-paper/ED2

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

Utilizing the ensembles requires several design choices, which we summarize below. The ablation
study of ED2 elements is provided in Appendix C.

Algorithm 1 ED2 - Ensemble Deep Deterministic Policy Gradients
Input: init. params for policy θk and Q-functions ϕk,1, ϕk,2, k ∈ [1...K]; replay buffer D;

1: Sample the current policy index c ∼ U([1...K]).
2: Reset the environment and observe the state s.
3: repeat
4: Execute action a = µθc(s) ▷ µ uses the action normalization
5: Observe and store (s, a, r, s′, d) in the replay buffer D.
6: Set s← s′

7: if episode is finished then
8: Reset the environment and observe initial state s.
9: Sample the current policy index c ∼ U([1...K]).

10: if time to update then
11: for as many as steps done in the environment do
12: Sample a batch of transitions B = {(s, a, r, s′, d)} ⊂ D ▷ uses ERE
13: Update the parameters θk, ϕk,1 and ϕk,2 by one gradient step.
14: until convergence

Ensemble

Used: We train the ensemble of 5 actors and 5 critics; each actor learns from its own critic and the
whole ensemble is trained on the same data.

Not used: We considered different actor-critic configurations, initialization schemes and relations, as
well as the use of random prior networks (Osband et al., 2018), data bootstrap (Osband et al., 2016),
and different ensemble sizes. We also change the SOP network sizes and training intensity instead of
using the ensemble. Besides the prior networks in some special cases, these turn out to be inferior as
shown in Section 4 and Appendix B.1.

Exploration

Used: We pick one actor uniformly at random to collect the data for the course of one episode. The
actor is deterministic (no additive action noise is applied). These two choices ensure coherent and
temporally-extended exploration similarly to Osband et al. (2016).

Not used: We tested several approaches to exploration: using the ensemble of actors, UCB (Lee
et al., 2020), and adding the action noise in different proportions. These experiments are presented in
Appendix B.2.

Exploitation

Used: The evaluation policy averages all the actors’ output actions to provide stable performance.

Not used: We tried picking an action with the biggest value estimate (average of the critics’ Q-
functions) in evaluation (Huang et al., 2017).

Interestingly, both policies had similar results, see Appendix B.3.

Action normalization

Used: We use the action normalization introduced by Wang et al. (2020).

Not used: We experimented with the observations and rewards normalization, which turned out to be
unnecessary. The experiments are presented in Appendix B.4.

Q-function updates

Used: We do 50 SGD updates (ADAM optimizer (Kingma and Ba, 2015), MSE loss) to the actors
and the critics every 50 environment interactions, use Clipped Double Q-Learning (Fujimoto et al.,
2018).

3

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

Not used: We also examined doing the updates at the end of each episode (with the proportional
number of updates), using the Hubert loss, and doing weighted Bellman backups (Lee et al., 2020).
However, we found them to bring no improvement to our method, as presented in Appendix B.5.

4 EXPERIMENTS

In this section, we present our comprehensive study and the resulting insights. The rest of the
experiments verifying that our design choices perform better than alternatives are in Appendix B.
Unless stated otherwise, a solid line in the figures represents an average, while a shaded region shows
a 95% bootstrap confidence interval. We used 30 seeds for ED2 and the baselines, and 7 seeds for the
ED2 variants.

4.1 ENSEMBLE OF ACTORS BOOST THE AGENT PERFORMANCE

ED2 achieves state-of-the-art performance on the OpenAI Gym MuJoCo suite. Figure 1 shows the
results of ED2 contrasted with three strong baselines: SUNRISE (Lee et al., 2020) – which is also the
ensemble-based method – SOP (Wang et al., 2020), and SAC (Haarnoja et al., 2018b).

Figure 1: The average test returns across the training of ED2 and the three baselines.

Figure 2 shows ED2 with different ensemble sizes. As can be seen, the ensemble of size 5 (which
we use in ED2) achieves good results, striking a balance between performance and computational
overhead.

Figure 2: The average test returns across the training of ED2 with a different number of actor-critics.

4.2 THE CURRENT STATE-OF-THE-ART METHODS ARE UNSTABLE UNDER SEVERAL STABILITY
CRITERIA

We consider three notions of stability: inference stability, asymptotic performance stability, and
training stability. ED2 outperforms baselines in each of these notions, as discussed below. Similar
metrics were also studied in Chan et al. (2020).

Inference stability We say that an agent is inference stable if, when run multiple times, it achieves
similar test performance every time. We measure inference stability using the standard deviation of
test returns explained in Section 2. We found that that the existing methods train policies that are

4

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

surprisingly sensitive to the randomness in the environment initial conditions2. Figure 1 and Figure 3
show that ED2 successfully mitigates this problem. By the end of the training, ED2 produces results
within 1% of the average performance on Humanoid, while the performance of SUNRISE, SOP, and
SAC may vary as much as 11%.

Figure 3: The standard deviation of test returns across training (lower is better), see Section 2.

Asymptotic performance stability We say that an agent achieves asymptotic performance stability
if it achieves similar test performance across multiple training runs starting from different initial
networks weights. Figure 4 shows that ED2 has a significantly smaller variance than the other
methods while maintaining high performance.

Figure 4: The dots are the average test returns after training (3M samples) of each seed. The distance between
each box’s top and bottom edges is the interquartile range (IQR). The whiskers spread across all values.

Training stability We will consider training stable if performance does not severely deteriorate
from one evaluation to the next. We define the root mean squared deterioration metric (RMSD) as
follows:

RMSD =

√√√√ 1

M

M∑
i=1

(
max(R̄i−20 − R̄i, 0)

)2

,

where M is the number of the evaluation phases during training and R̄i is the average test return at
the i-th evaluation phase (described in Section 2). We compare returns 20 evaluation phases apart to
ensure that the deterioration in performance doesn’t stem from the evaluation variance. ED2 has the
lowest RMSD across all tasks, see Figure 5.

2The MuJoCo suite is overall deterministic, nevertheless, little stochasticity is injected at the beginning of
each trajectory, see Appendix D for details.

5

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

Figure 5: RMSD, the average and the 95% bootstrap confidence interval over 30 seeds.

4.3 THE NORMALLY DISTRIBUTED ACTION NOISE, COMMONLY USED FOR EXPLORATION, CAN
HINDER TRAINING

In this experiment, we deprive SOP of its exploration mechanism, namely additive normal action
noise with the standard deviation of 0.29, and call this variant deterministic SOP (det. SOP). The
lack of the action noise, while simplifying the algorithm, causes relatively minor deterioration in
the Humanoid performance, has no significant influence on the Hopper or Walker performance,
and substantially improves the Ant performance, see Figure 6. This result shows that no additional
exploration mechanism, often in a form of an exploration noise (Lillicrap et al., 2016; Fujimoto et al.,
2018; Wang et al., 2020), is required for the diverse data collection and, in case of Ant, it even hinders
training.

Figure 6: The average test returns across the training of SOP without and with the exploration noise. All metrics
were computed over 30 seeds.

ED2 leverages this insight and constructs an ensemble of deterministic SOP agents presented in
Section 3. Figure 7 shows that ED2 exhibit the same effects coming from the exploration without the
action noise. In Figure 8 we present the more refined experiment where we vary the noise level. With
more noise the Humanoid results get better, whereas the Ant results get much worse.

Figure 7: The average test returns across the training of ED2 with and without the exploration noise. We used
Gaussian noise with the standard deviation of 0.29, the default from Wang et al. (2020).

6

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

Figure 8: The average test returns across the training of ED2 with and without the exploration noise. Different
noise standard deviations.

4.4 THE APPROXIMATED POSTERIOR SAMPLING EXPLORATION OUTPERFORMS
APPROXIMATED UCB EXPLORATION COMBINED WITH WEIGHTED BELLMAN BACKUP

The posterior sampling is proved to be theoretically superior to the OFU strategy (Osband and
Van Roy, 2017). We prove this empirically for the approximate methods. ED2 uses posterior
sampling exploration approximated with the bootstrap (Osband et al., 2016). SUNRISE, on the other
hand, approximates the Upper Confidence Bound (UCB) exploration technique and does weighted
Bellman backups (Lee et al., 2020). For the fair comparison between ED2 and SUNRISE, we
substitute the SUNRISE base algorithm SAC for the SOP algorithm used by ED2. We call this variant
SUNRISE-SOP.

We test both methods on the standard MuJoCo benchmarks as well as delayed (Zheng et al., 2018a)
and sparse (Plappert et al., 2018) rewards variants. Both variations make the environments harder
from the exploration standpoint. In the delayed version, the rewards are accumulated and returned
to the agent only every 10 time-steps. In the sparse version, the reward for the forward motion
is returned to the agent only after it crosses the threshold of one unit on the x-axis. For a better
perspective, a fully trained Humanoid is able to move to around five units until the end of the episode.
All the other reward components (living reward, control cost, and contact cost) remain unchanged.
The results are presented in Table 1.

E
nv

ir
on

m
en

t

SO
P

SU
N

R
IS

E
-S

O
P

E
D

2

Im
pr

ov
em

en
to

ve
r

SO
P

Im
pr

ov
em

en
to

ve
r

SU
N

R
IS

E
-S

O
P

Hopper-v2 3350 3083 3512 +5% +14%
Walker-v2 5458 5730 6222 +14% +9%

Ant-v2 5507 771 6862 +25% +790%
Humanoid-v2 6456 5738 7307 +13% +27%

DelayedHopper-v2 2990 2708 3315 +11% +22%
DelayedWalker-v2 4907 4505 5940 +21% +32%

DelayedAnt-v2 4216 1486 3611 −14% +43%
DelayedHumanoid-v2 770 1129 3823 +397% +239%

SparseHopper-v2 2798 2644 3397 +21% +29%
SparseWalker-v2 4830 4664 5936 +23% +27%

SparseAnt-v2 5573 3625 5466 −2% +51%
SparseHumanoid-v2 5433 5225 7438 +37% +42%

Table 1: The test returns after training (3M samples) median across 30 seeds for the standard MuJoCo
and 7 seeds for the delayed/sparse variants.

The performance in MuJoCo environments benefits from the ED2 approximate Bayesian posterior
sampling exploration (Osband et al., 2013) in contrast to the approximated UCB in SUNRISE, which
follows the OFU principle. Moreover, ED2 outperforms the non-ensemble method SOP, supporting
the argument of coherent and temporally-extended exploration of ED2.

7

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

The experiment where the ED2’s exploration mechanism is replaced for UCB is in Appendix B.2.
This variant also achieves worse results than ED2. The additional exploration efficiency experiment
in the custom Humanoid environment, where an agent has to find and reach a goal position, is in
Appendix A.

4.5 THE WEIGHTED BELLMAN BACKUP CAN NOT REPLACE THE CLIPPED DOUBLE
Q-LEARNING

We applied the weighted Bellman backups proposed by Lee et al. (2020) to our method. It is
suggested that the method mitigates error propagation in Q-learning by re-weighting the Bellman
backup based on uncertainty estimates from an ensemble of target Q-functions (i.e. variance of
predictions). Interestingly, Figure 9 does not show this positive effect on ED2.

Figure 9: The average test returns across the training of our method and ED2 with the weighted Bellman
backup.

Our method uses clipped double Q-Learning to mitigate overestimation in Q-functions (Fujimoto
et al., 2018). We wanted to check if it is required and if it can be exchanged for the weighted Bellman
backups used by Lee et al. (2020). Figure 10 shows that clipped double Q-Learning is required and
that the weighted Bellman backups can not replace it.

Figure 10: The average test returns across the training of our method and ED2 without clipped double Q-
Learning in two variants without and with the weighted Bellman backups.

4.6 THE CRITICS’ INITIALIZATION PLAYS A MAJOR ROLE IN ENSEMBLE-BASED
ACTOR-CRITIC EXPLORATION, WHILE THE TRAINING IS MOSTLY INVARIANT TO THE
ACTORS’ INITIALIZATION

In this experiment, actors’ weights are initialized with the same random values (contrary to the
standard case of different initialization). Moreover, we test a corresponding case with critics’ weights
initialized with the same random values or simply training only a single critic.

Figure 11 indicates that the choice of actors initialization does not matter in all tasks but Humanoid.
Although the average performance on Humanoid seems to be better, it is also less stable. This is quite
interesting because the actors are deterministic. Therefore, the exploration must come from the fact
that each actor is trained to optimize his own critic.

On the other hand, Figure 11 shows that the setup with the single critic severely impedes the agent
performance. We suspect that using the single critic impairs the agent exploration capabilities as its
actors’ policies, trained to maximize the same critic’s Q-function, become very similar.

8

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

Figure 11: The average test returns across the training of ED2, ED2 with actors initialized to the same random
values, and ED2 with the single critic.

5 RELATED WORK

Off-policy RL Recently, multiple deep RL algorithms for continuous control have been proposed,
e.g. DDPG (Lillicrap et al., 2016), TD3 (Fujimoto et al., 2018), SAC (Haarnoja et al., 2018b), SOP
(Wang et al., 2020), SUNRISE (Lee et al., 2020). They provide a variety of methods for improving
training quality, including double-Q bias reduction (van Hasselt et al., 2016), target policy smoothing
or different update frequencies for actor and critic (Fujimoto et al., 2018), entropy regularization
(Haarnoja et al., 2018b), action normalization (Wang et al., 2020), prioritized experience replay
(Wang et al., 2020), weighted Bellman backups (Kumar et al., 2020; Lee et al., 2020), and use of
ensembles (Osband et al., 2019; Lee et al., 2020; Kurutach et al., 2018; Chua et al., 2018).

Ensembles Deep ensembles are a practical approximation of a Bayesian posterior, offering im-
proved accuracy and uncertainty estimation (Lakshminarayanan et al., 2017; Fort et al., 2019). They
inspired a variety of methods in deep RL. They are often used for temporally-extended exploration;
see the next paragraph. Other than that, ensembles of different TD-learning algorithms were used to
calculate better Q-learning targets (Chen et al., 2018). Others proposed to combine the actions and
value functions of different RL algorithms (Wiering and van Hasselt, 2008) or the same algorithm
with different hyper-parameters (Huang et al., 2017). For mixing the ensemble components, complex
self-adaptive confidence mechanisms were proposed in Zheng et al. (2018b). Our method is simpler:
it uses the same algorithm with the same hyper-parameters without any complex or learnt mixing
mechanism. Lee et al. (2020) proposed a unified framework for ensemble learning in deep RL
(SUNRISE) which uses bootstrap with random initialization (Osband et al., 2016) similarly to our
work. We achieve better results than SUNRISE and show in Appendix B that their UCB exploration
and weighted Bellman backups do not aid our algorithm performance.

Exploration Various frameworks have been developed to balance exploration and exploitation in
RL. The optimism in the face of uncertainty principle (Lai and Robbins, 1985; Bellemare et al., 2016)
assigns an overly optimistic value to each state-action pair, usually in the form of an exploration
bonus reward, to promote visiting unseen areas of the environment. The maximum entropy method
(Haarnoja et al., 2018a) encourages the policy to be stochastic, hence boosting exploration. In the
parameter space approach (Plappert et al., 2018; Fortunato et al., 2018), noise is added to the network
weights, which can lead to temporally-extended exploration and a richer set of behaviours. Posterior
sampling (Strens, 2000; Osband et al., 2016; 2018) methods have similar motivations. They stem
from the Bayesian perspective and rely on selecting the maximizing action among sampled and
statistically plausible set of action values. The ensemble approach (Lowrey et al., 2018; Miłoś et al.,
2019; Lee et al., 2020) trains multiple versions of the agent, which yields a diverse set of behaviours
and can be viewed as an instance of posterior sampling RL.

6 CONCLUSIONS

We conduct a comprehensive empirical analysis of multiple tools from the RL toolbox applied to the
continuous control in the OpenAI Gym MuJoCo setting. We believe that the findings can be useful to
RL researchers. Additionally, we propose Ensemble Deep Deterministic Policy Gradients (ED2), an
ensemble-based off-policy RL algorithm, which achieves state-of-the-art performance and addresses
several issues found during the aforementioned study.

9

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

REPRODUCIBILITY STATEMENT

We have made a significant effort to make our results reproducible. We use 30 random seeds, which
is above the currently popular choice in the field (up to 5 seeds). Furthermore, we systematically
explain our design choices in Section 3 and we provide a detailed pseudo-code of our method in
Algorithm 3 in the Appendix B. Additionally, we open-sourced the code for the project3 together
with examples of how to reproduce the main experiments. The implementation details are explained
in Appendix E and extensive information about the experimental setup is given in Appendix D.

REFERENCES

Joshua Achiam. Spinning Up in Deep Reinforcement Learning. GitHub repository, 2018.

Marcin Andrychowicz, Anton Raichuk, Piotr Stanczyk, Manu Orsini, Sertan Girgin, Raphael Marinier,
Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, and Olivier
Bachem. What Matters in On-Policy Reinforcement Learning? A Large-Scale Empirical Study,
2020a. ISSN 23318422.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020b.

Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and
Rémi Munos. Unifying count-based exploration and intrinsic motivation. In Daniel D.
Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, edi-
tors, Advances in Neural Information Processing Systems 29: Annual Conference on Neu-
ral Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages
1471–1479, 2016. URL https://proceedings.neurips.cc/paper/2016/hash/
afda332245e2af431fb7b672a68b659d-Abstract.html.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Stephanie C. Y. Chan, Samuel Fishman, Anoop Korattikara, John Canny, and Sergio Guadarrama.
Measuring the Reliability of Reinforcement Learning Algorithms. In 8th International Con-
ference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

Xi Liang Chen, Lei Cao, Chen Xi Li, Zhi Xiong Xu, and Jun Lai. Ensemble Network Architecture
for Deep Reinforcement Learning. Mathematical Problems in Engineering, 2018. ISSN 15635147.
doi: 10.1155/2018/2129393.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In NeurIPS 2018, pages
4759–4770, 2018.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape perspec-
tive. CoRR, abs/1912.02757, 2019. URL http://arxiv.org/abs/1912.02757.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Osband,
Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell,
and Shane Legg. Noisy networks for exploration. In 6th International Conference on Learning
Representations, ICLR 2018 - Conference Track Proceedings, 2018.

3https://github.com/ed2-paper/ED2

10

https://proceedings.neurips.cc/paper/2016/hash/afda332245e2af431fb7b672a68b659d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/afda332245e2af431fb7b672a68b659d-Abstract.html
http://arxiv.org/abs/1912.02757
https://github.com/ed2-paper/ED2

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 1582–1591.
PMLR, 2018. URL http://proceedings.mlr.press/v80/fujimoto18a.html.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In 35th International
Conference on Machine Learning, ICML 2018, 2018a. ISBN 9781510867963.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algorithms
and applications. CoRR, abs/1812.05905, 2018b. URL http://arxiv.org/abs/1812.
05905.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements
in deep reinforcement learning. In 32nd AAAI Conference on Artificial Intelligence, AAAI 2018,
pages 3215–3222, oct 2018. ISBN 9781577358008. URL http://arxiv.org/abs/1710.
02298.

Zhewei Huang, Shuchang Zhou, Bo Er Zhuang, and Xinyu Zhou. Learning to run with actor-critic
ensemble, 2017. ISSN 23318422.

Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph,
and Aleksander Madry. A closer look at deep policy gradients. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020. URL https://openreview.net/forum?id=ryxdEkHtPS.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

Aviral Kumar, Abhishek Gupta, and Sergey Levine. Discor: Corrective feedback in reinforcement
learning via distribution correction. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/d7f426ccbc6db7e235c57958c21c5dfa-Abstract.html.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=SJJinbWRZ.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in
applied mathematics, 6(1):4–22, 1985.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In NIPS 2017, 2017.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. SUNRISE: A Simple Unified
Framework for Ensemble Learning in Deep Reinforcement Learning, 2020. ISSN 23318422.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua
Bengio and Yann LeCun, editors, 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1509.02971.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch.
Plan online, learn offline: Efficient learning and exploration via model-based control. CoRR,
abs/1811.01848, 2018.

11

http://proceedings.mlr.press/v80/fujimoto18a.html
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1710.02298
https://openreview.net/forum?id=ryxdEkHtPS
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2020/hash/d7f426ccbc6db7e235c57958c21c5dfa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d7f426ccbc6db7e235c57958c21c5dfa-Abstract.html
https://openreview.net/forum?id=SJJinbWRZ
http://arxiv.org/abs/1509.02971

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

Piotr Miłoś, Łukasz Kuciński, Konrad Czechowski, Piotr Kozakowski, and Maciek Klimek.
Uncertainty-sensitive learning and planning with ensembles. arXiv preprint arXiv:1912.09996,
2019.

Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for reinforcement
learning? In 34th International Conference on Machine Learning, ICML 2017, 2017. ISBN
9781510855144.

Ian Osband, Benjamin Van Roy, and Daniel Russo. (More) efficient reinforcement learning via
posterior sampling. In Advances in Neural Information Processing Systems, 2013.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped DQN. In Advances in Neural Information Processing Systems, 2016.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. In NeurIPS, 2018.

Ian Osband, Benjamin Van Roy, Daniel J. Russo, and Zheng Wen. Deep exploration via randomized
value functions. J. Mach. Learn. Res., 20:124:1–124:62, 2019. URL http://jmlr.org/
papers/v20/18-339.html.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
In 6th International Conference on Learning Representations, ICLR 2018 - Conference Track
Proceedings, 2018.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Malcolm J. A. Strens. A bayesian framework for reinforcement learning. In Proceedings of the
Seventeenth International Conference on Machine Learning (ICML 2000), Stanford University,
Stanford, CA, USA, June 29 - July 2, 2000, pages 943–950, 2000.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Dale Schuurmans and Michael P. Wellman, editors, Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pages
2094–2100. AAAI Press, 2016. URL http://www.aaai.org/ocs/index.php/AAAI/
AAAI16/paper/view/12389.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Che Wang, Yanqiu Wu, Quan Vuong, and Keith Ross. Striving for simplicity and performance
in off-policy DRL: Output normalization and non-uniform sampling. Proceedings of the 37th
International Conference on Machine Learning, 119:10070–10080, 13–18 Jul 2020. URL http:
//proceedings.mlr.press/v119/wang20x.html.

Marco A. Wiering and Hado van Hasselt. Ensemble algorithms in reinforcement learning. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008. ISSN 10834419. doi:
10.1109/TSMCB.2008.920231.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On Learning Intrinsic Rewards for Policy Gradient
Methods. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-
Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, pages 4649–4659, 2018a.

Zhuobin Zheng, Chun Yuan, Zhihui Lin, Yangyang Cheng, and Hanghao Wu. Self-adaptive double
bootstrapped DDPG. In IJCAI International Joint Conference on Artificial Intelligence, 2018b.
ISBN 9780999241127. doi: 10.24963/ijcai.2018/444.

12

http://jmlr.org/papers/v20/18-339.html
http://jmlr.org/papers/v20/18-339.html
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://proceedings.mlr.press/v119/wang20x.html
http://proceedings.mlr.press/v119/wang20x.html

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

A EXPLORATION EFFICIENCY IN THE CUSTOM HUMANOID ENVIRONMENT

To check the exploration capabilities of our method, we constructed two environments based on
Humanoid where the goal is not only to move forward as fast as possible but to find and get to the
specific region. The environments are described in Figure 12.

Figure 12: This is a top-down view. Hu-
manoid starts at the origin (marked ’x’).
The reward in each time-step is equal to
the number of circles for which the agent
is inside. Being in the most nested circle
(or either of two) solves the task.

Figure 13: The fraction of episodes in which the task is finished
for ED2 and two baselines. The average and the 95% bootstrap
confidence interval over 20 seeds.

Because the Humanoid initial state is slightly perturbed every run, we compare solved rates over
multiple runs, see details in Appendix D. Figure 13 compares the solved rates of our method and the
three baselines. Our method outperforms the baselines. For this experiment, our method uses the
prior networks (Osband et al., 2018).

B DESIGN CHOICES

In this section, we summarize the empirical evaluation of various design choices grouped by topics
related to an ensemble of agents (B.1), exploration (B.2), exploitation (B.3), normalization (B.4),
and Q-function updates (B.5). In the plots, a solid line and a shaded region represent an average
and a 95% bootstrap confidence interval over 30 seeds in case of ED2 (ours) and 7 seeds otherwise.
All of these experiments test ED2 presented in Section 3 with Algorithm 2 used for evaluation (the
ensemble critic variant). We call Algorithm 2 a ’vote policy’.

Algorithm 2 Vote policy
1: Input: ensemble size K; policy θk and Q-function ϕk,1 parameters where k ∈ [1, . . . ,K]; max

action scale M ;
2: function VOTE_POLICY(s, c)

ak = M tanh (µθk(s)) for k ∈ [1, . . . ,K] (1)

3: if use arbitrary critic then

qk = Qϕc,1(s, ak) for k ∈ [1, . . . ,K] (2)

4: else use ensemble critic

qk =
1

K

∑
i∈[1...K]

Qϕi,1
(s, ak) for k ∈ [1, . . . ,K] (3)

5: return ak for k = argmaxk qk

13

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

B.1 ENSEMBLE

Prior networks We tested if our algorithm can benefit from prior networks (Osband et al., 2018).
It turned out that the results are very similar on OpenAI Gym MuJoCo tasks, see Figure 14. However,
the prior networks are useful on our crafted hard-exploration Humanoid environments, see Figure 15.

Figure 14: The average test returns across the training of ED2 without (ours) and with prior networks.

Figure 15: The average test returns across the training of ED2 without (ours) and with prior networks.

Moreover, we tested if the deterministic SOP variant can benefit from prior networks. It turned out
that the results are very similar or worse, see Figure 16.

Figure 16: The average test returns across the training of SOP and SOP without the exploration noise in two
variants: without and with the prior network. All metrics were computed over 30 seeds.

Ensemble size Figure 17 shows ED2 with different ensemble sizes. As can be seen, the ensemble
of size 5 (which we use in ED2) achieves good results, striking a balance between performance and
computational overhead.

14

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

Figure 17: The average test returns across the training of ED2 with a different number of actor-critics.

Data bootstrap Osband et al. (2016) and Lee et al. (2020) remark that training an ensemble of
agents using the same training data but with different initialization achieves, in most cases, better
performance than applying different training samples to each agent. We confirm this observation in
Figure 18. Data bootstrap assigned each transition to each agent in the ensemble with 50% probability.

Figure 18: The average test returns across the training of ED2 without (ours) and with data bootstrap.

SOP bigger networks and training intensity We checked if simply training SOP with bigger
networks or with higher training intensity (a number of updates made for each collected transition)
can get it close to the ED2 results. Figure 19 compares ED2 to SOP with different network sizes,
while Figure 20 compares ED2 to SOP with one or five updates per environment step. It turns out
that bigger networks or higher training intensity does not improve SOP performance.

Figure 19: The average test returns across the training of ED2 and SOP with different network sizes.

15

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

Figure 20: The average test returns across the training of ED2 and SOP with one or five updates for every step
in an environment.

B.2 EXPLORATION

Vote policy In this experiment, we used the so-called "vote policy" described in Algorithm 2. We
use it for action selection in step 5 of Algorithm 3 in two variations: (1) where the random critic,
chosen for the duration of one episode, evaluates each actor’s action or (2) with the full ensemble of
critics for actors actions evaluation. Figure 21 shows that the arbitrary critic is not much different
from our method. However, in the case of the ensemble critic, we observe a significant performance
drop suggesting deficient exploration.

Figure 21: The average test returns across the training of ED2 with and without the vote policy for exploration.

UCB We tested the UCB exploration method from Lee et al. (2020). This method defines an
upper-confidence bound (UCB) based on the mean and variance of Q-functions in an ensemble
and selects actions with the highest UCB for efficient exploration. Figure 22 shows that the UCB
exploration method makes the results of our algorithm worse.

Figure 22: The average test returns across the training of our method and ED2 with the UCB exploration.

Gaussian noise While our method uses ensemble-based temporally coherent exploration, the most
popular choice of exploration is injecting i.i.d. noise (Fujimoto et al., 2018; Wang et al., 2020). We
evaluate if these two approaches can be used together. We used Gaussian noise with the standard
deviation of 0.29, it is the default value in Wang et al. (2020). We found that the effects are task-
specific, barely visible for Hopper and Walker, positive in the case of Humanoid, and negative for
Ant – see Figure 23. In a more refined experiment, we varied the noise level. With more noise the
Humanoid results are better, whereas the And results are worse – see Figure 24.

16

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

Figure 23: The average test returns across the training of ED2 with and without the additive Gaussian noise for
exploration.

Figure 24: The average test returns across the training of ED2 with and without the additive Gaussian noise for
exploration. Different noise standard deviations.

B.3 EXPLOITATION

We used the vote policy, see Algorithm 2, as the evaluation policy in step 21 of Algorithm 3. Figure
25 shows that the vote policy does worse on the OpenAI Gym MuJoCo tasks. However, on our
custom Humanoid tasks introduced in Section 4, it improves our agent performance – see Figure 26.

Figure 25: The average test returns across the training of our method and ED2 with the vote policy for
evaluation.

Figure 26: The average test returns across the training of our method and ED2 with the vote policy for
evaluation.

17

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

B.4 NORMALIZATION

We validated if rewards or observations normalization (Andrychowicz et al., 2020a) help our method.
In both cases, we keep the empirical mean and standard deviation of each reward/observation
coordinate, based on all rewards/observations seen so far, and normalize rewards/observations by
subtracting the empirical mean and dividing by the standard deviation. It turned out that only the
observations normalization significantly helps the agent on Humanoid, see Figures 27 and 28. The
action normalization influence is tested in Appendix C.

Figure 27: The average test returns across the training of our method and ED2 with the rewards normalization.

Figure 28: The average test returns across the training of our method and ED2 with the observations normaliza-
tion.

B.5 Q-FUNCTION UPDATES

Huber loss We tried using the Huber loss for the Q-function training. It makes the results on all
tasks worse, see Figure 29.

Figure 29: The average test returns across the training of our method and ED2 with the Huber loss.

C ABLATION STUDY

In this section, we ablate the ED2 components to see their impact on performance and stability. We
start with the ensemble exploration and exploitation and then move on to the action normalization
and the ERE replay buffer. In all plots, a solid line and a shaded region represent an average and
a 95% bootstrap confidence interval over 30 seeds in all but action normalization and ERE replay
buffer experiments, where we run 7 seeds.

18

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

Exploration & Exploitation In the first experiment we wanted to isolate the effect of ensemble-
based temporally coherent exploration on the performance and stability of ED2. Figures 30-33
compare the performance and stability of ED2 and one baseline, SOP, to ED2 with the single actor
(the first one) used for evaluation in step 21 of Algorithm 3. It is worth noting that the action selection
during the data collection, step 5 in Algorithm 3, is left unchanged – the ensemble of actors is used for
exploration and each actor is trained on all the data. This should isolate the effect of exploration on
the test performance of every actor. The results show that the performance improvement and stability
of ED2 does not come solely from the efficient exploration. ED2 ablation performs comparably to
the baseline and is even less stable.

Figure 30: The average test returns across the training of ED2, ED2 with the single actor for exploitation, and
the baseline.

Figure 31: The standard deviation of test returns across the training of ED2, ED2 with the single actor for
exploitation, and the baseline.

Figure 32: The dots are the average test returns after training (3M samples) of each seed of ED2, ED2 with the
single actor for exploitation, and the baseline. The distance between each box’s top and bottom edges is the
interquartile range (IQR). The whiskers spread across all values.

19

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

Figure 33: RMSD of ED2, ED2 with the single actor for exploitation, and the baseline – the average and the
95% bootstrap confidence interval over 30 seeds.

In the next experiment, we wanted to check if the ensemble evaluation is all we need in that event.
Figure 34 compares the performance of ED2 and one baseline, SOP, to ED2 with the single actor
(the first one) used for the data collection in step 5 of Algorithm 3. The action selection during the
evaluation, step 21 in Algorithm 3, is left unchanged – the ensemble of actors is trained on the data
collected only by one of the actors. We add Gaussian noise to the single actor’s actions for exploration
as described in Appendix B.2. The results show that the ensemble actor test performance collapses,
possibly because of training on the out of distribution data. This implies that the ensemble of actors,
used for evaluation, improves the test performance and stability. However, it is required that the same
ensemble of actors is also used for exploration, during the data collection.

Figure 34: The average test returns across the training of ED2, ED2 with the single actor for exploration, and
the baseline.

Action normalization The implementation details of the action normalization are described in
Appendix E. Figure 35 shows that the action normalization is especially required on the Ant and
Humanoid environments, while not disrupting the training on the other tasks.

Figure 35: The average test returns across the training of ED2 with and without the action normalization.

ERE replay buffer The implementation details of the ERE replay buffer are described in Appendix
E. In Figure 36 we observe that it improves the final performance of ED2 on all tasks, especially on
Walker2d and Humanoid.

20

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

Figure 36: The average test returns across the training of ED2 with and without the ERE replay buffer.

D EXPERIMENTAL SETUP

Plots In all evaluations, we used 30 evaluation episodes to better access the average performance of
each policy, as described in Section 2. For a more pleasant look and easier visual assessment, we
smoothed the lines using an exponential moving average with a smoothing factor equal 0.4.

OpenAI Gym MuJoCo In MuJoCo environments, presented in Figure 37, a state is defined by
(x, y, z) position and velocity of the robot’s root, and angular position and velocity of each of its
joints. The observation holds almost all information from the state except the x and y position of the
robot’s root. The action is a torque that should be applied to each joint of the robot. Sizes of those
spaces for each environment are summarised in Table 2.

MuJoCo is a deterministic physics engine thus all simulations conducted inside it are deterministic.
This includes simulations of our environments. However, to simplify the process of data gathering
and to counteract over-fitting the authors of OpenAI Gym decided to introduce some stochasticity.
Each episode starts from a slightly different state - initial positions and velocities are perturbed with
random noise (uniform or normal depending on the particular environment).

Figure 37: The OpenAI Gym MuJoCo tasks we benchmark out method on.

Environment name Action space size Observation space size

Hopper-v2 3 11
Walker2d-v2 6 17
Ant-v2 8 111
Humanoid-v2 17 376

Table 2: Action and observation space sizes for used environments.

E IMPLEMENTATION DETAILS

Architecture and hyper-parameters In our experiments, we use deep neural networks with two
hidden layers, each of them with 256 units. All of the networks use ReLU as an activation, except on
the final output layer, where the activation used varies depending on the model: critic networks use
no activation, while actor networks use tanh() multiplied by the max action scale. Table 3 shows the
hyper-parameters used for the tested algorithms.

21

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

Algorithm 3 ED2 - Ensemble Deep Deterministic Policy Gradients
Input: ensemble size K; init. policy θk and Q-functions ϕk,1, ϕk,2 param. where k ∈ [1, . . . ,K];
replay buffer D; max action scale M ; target smoothing std. dev. σ; interpolation factor ρ;

1: Set the target parameters ϕ̄k,1 ← ϕk,1, ϕ̄k,2 ← ϕk,2

2: Sample the current policy index c ∼ U([1, . . . ,K]).
3: Reset the environment and observe the state s.
4: repeat
5: Execute action a = M tanh (µθc(s)) ▷ µ uses the action normalization
6: Observe and store (s, a, r, s′, d) in the replay buffer D.
7: Set s← s′

8: if episode is finished then
9: Reset the environment and observe initial state s.

10: Sample the current policy index c ∼ U([1, . . . ,K]).
11: if time to update then
12: for as many as steps done in the environment do
13: Sample a batch of transitions B = {(s, a, r, s′, d)} ⊂ D ▷ uses ERE
14: Compute targets

yk(r, s
′, d) = r + γ(1− d) min

i=1,2
Qϕ̄k,i

(s′, a′k)

a′k = M tanh (µθk(s
′) + ϵ) , ϵ ∼ N (0, σ)

15: Update the Q-functions by one step of gradient descent using

∇ϕk,i

1

|B| ·K
∑

(s,a,r,s′,d)∈B

(
Qϕk,i

(s, a)− yk(r, s
′, d)

)2
for i ∈ {1, 2}, k ∈ [1, . . . ,K]

16: Update the policies by one step of gradient ascent using

∇θk

1

|B| ·K
∑
s∈B

Qϕk,1
(s, µθk(s)) for k ∈ [1, . . . ,K]

17: Update target parameters with

ϕ̄k,i ← ρϕ̄k,i + (1− ρ)ϕk,i for i ∈ {1, 2}, k ∈ [1, . . . ,K]

18: if time to evaluate then
19: for specified number of evaluation runs do
20: Reset the environment and observe the state s.
21: Execute policy a = 1

K

∑K
i=1 M tanh (µθi(s)) until the terminal state.

22: Record and log the return.
23: until convergence

22

Published as a workshop paper at Deep RL Workshop, NeurIPS 2021

Parameter SAC SOP SUNRISE ED2

discounting γ 0.99 0.99 0.99 0.99
optimizer Adam Adam Adam Adam
learning rate 10−3 10−4 10−3 10−4

replay buffer size 106 106 106 106

batch size 256 256 256 256
ensemble size - - 5 5
entropy coefficient α 0.2 - 0.2 -
update interval 1 50 50 50 50
η0 (ERE) - 0.995 - 0.995
1 Number of environment interactions between updates.

Table 3: Default values of hyper-parameters were used in our experiments.

Action normalization Our algorithm employs action normalization proposed by Wang et al. (2020).
It means that before applying the squashing function (e.g. tanh()), the outputs of each actor network
are normalized in the following way: let µ = (µ1, . . . , µA) be the output of the actor’s network and
let G =

∑A
i=1 |µi|/A be the average magnitude of this output, where A is the action’s dimensionality.

If G > 1 then we normalize the output by setting µi to µi/G for all i = 1, . . . , A. Otherwise, we
leave the output unchanged. Each actor’s outputs are normalized independently from other actors in
the ensemble.

Emphasizing Recent Experience We implement the Emphasizing Recent Experience (ERE)
mechanism from Wang et al. (2020). ERE samples non-uniformly from the most recent experiences
stored in the replay buffer. Let B be the number of mini-batch updates and |D| be the size of the
replay buffer. When performing the gradient updates, we sample from the most recent cb data points
stored in the replay buffer, where cb = |D| · ηb

1000
B for b = 1, . . . , B.

The hyper-parameter η starts off with a set value of η0 and is later adapted based on the improvements
in the agent training performance. Let Irecent be the improvement in terms of training episode returns
made over the last |D|/2 time-steps and Imax be the maximum of such improvements over the course
of the training. We adapt η according to the formula:

η = η0 ·
Irecent
Imax

+ 1− Irecent
Imax

Our implementation uses the exponentially weighted moving average to store the value of Irecent.
More concretely, we define Irecent based on two additional parameters Rrecent and Rprev so that
Irecent = Rrecent −Rprev . Those parameters are then updated whenever we receive a new training
episode return ep_ret:

Rrecent = λrecent · ep_ret+ (1− λrecent) ·Rrecent

Rprev = λprev · ep_ret+ (1− λprev) ·Rprev

where λprev = T/⌊ |D|
2 ⌋, λrecent = 10 · λprev and T is the maximum length of an episode.

Hardware During the training of our models, we employ only CPUs using a cluster where each
node has 28 available cores of 2.6 GHz, alongside at least 64 GB of memory. The running time of a
typical experiment did not exceed 24 hours.

23

	Introduction
	Background
	Ensemble Deep Deterministic Policy Gradients
	Experiments
	Ensemble of actors boost the agent performance
	The current state-of-the-art methods are unstable under several stability criteria
	The normally distributed action noise, commonly used for exploration, can hinder training
	The approximated posterior sampling exploration outperforms approximated UCB exploration combined with weighted Bellman backup
	The weighted Bellman backup can not replace the clipped double Q-Learning
	The critics’ initialization plays a major role in ensemble-based actor-critic exploration, while the training is mostly invariant to the actors’ initialization

	Related work
	Conclusions
	Exploration efficiency in the custom Humanoid environment
	Design choices
	Ensemble
	Exploration
	Exploitation
	Normalization
	Q-function updates

	Ablation study
	Experimental setup
	Implementation details

