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Abstract

We study generalizable policy learning from
demonstrations for complex low-level control
tasks (e.g., contact-rich object manipulations).
We propose an imitation learning method that
incorporates the idea of temporal abstraction and
the planning capabilities from Hierarchical RL
(HRL) in a novel and effective manner. As a
step towards decision foundation models, our de-
sign can utilize scalable, albeit highly sub-optimal,
demonstrations. Specifically, we find certain short
subsequences of the demos, i.e. the chain-of-
thought (CoT), reflect their hierarchical structures
by marking the completion of subgoals in the
tasks. Our model learns to dynamically predict the
entire CoT as coherent and structured long-term
action guidance and consistently outperforms typ-
ical two-stage subgoal-conditioned policies. On
the other hand, such CoT facilitates generaliz-
able policy learning as they exemplify the deci-
sion patterns shared among demos (even those
with heavy noises and randomness). Our method,
Chain-of-Thought Predictive Control (CoTPC),
significantly outperforms existing ones on chal-
lenging low-level manipulation tasks from scal-
able yet highly sub-optimal demos.

1. Introduction

Hierarchical RL (HRL) (Hutsebaut-Buysse et al., 2022) has
attracted much attention in the Al community as a promis-
ing direction for sample-efficient and generalizable policy
learning. HRL tackles complex sequential decision-making
problems by decomposing them into simpler and smaller
sub-problems via temporal abstractions. In addition, many
adopt a two-stage policy and possess the planning capa-
bilities for high-level actions (i.e., subgoals or options) to
achieve generalizable decision making. On the other hand,
imitation learning (IL) remains one of the most powerful
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approaches to training autonomous agents that interact with
the environment digitally or physically. Without densely la-
belled rewards or on-policy / online interactions, IL usually
casts policy learning as (self-)supervised learning with the
potential to leverage large-scale pre-collected demonstra-
tions. Given the recent success of large language models
(LLMs), the promise of foundation models for decision
making (Yang et al., 2023) seems to be significant, once
internet-scale demonstration data become available and their
sub-optimality is handled well. In this paper, we study how
to perform generalizable IL with scalable yet sub-optimal
demos by embracing the spirit of HRL in a novel way.

Despite the recent progress (Chen et al., 2021; Florence
et al., 2022; Shafiullah et al., 2022; Liu et al., 2022; Ajay
et al., 2022), it remains extremely challenging to solve low-
level control tasks such as contact-rich object manipulations
by IL in a scalable manner. Machine-generated demonstra-
tions (Shridhar et al., 2020; Fishman et al., 2023; Gu et al.,
2023) recently gain a lot of attention as they are scalably
collected by either RL agents or heuristics / sampling-based
planners. However, for (continuous) low-level control tasks,
these demos are inherently highly sub-optimal for IL be-
cause of the underlying contact dynamics (Pfrommer et al.,
2021) and the way they are generated. Their undesirable
properties, namely being non-Markovian, highly noisy, dis-
continuous, and random, pose great challenges in both the
optimization and the generalization of the IL policies. In
particular, the noise & the discontinuity make the agent
vulnerable to compounding errors (Ross & Bagnell, 2010),
and the randomness suggests the common patterns among
different trajectories can be unclear, hard to model and not
generalizable. See detailed discussion in Sec. 4.1.

We find that, by adopting temporal abstraction and high-
level planning in a novel way for IL, we can essentially
enjoy the large-scale (albeit sub-optimal) demonstrations
to achieve a significant performance boost on challenging
tasks. On one hand, we leverage the hierarchical struc-
tures inherently presented in many low-level control tasks,
especially object manipulations. We observe that certain
subsequences of the demo trajectories (i.e., some key frames
or key states) naturally mark the completion of their sub-
goals. For example, to accomplish a peg insertion task, in
each trajectory, an agent has to first reach a state when it
just grasps the peg, then another state when the angle of the
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Figure 1. During training, CoTPC learns to jointly predict key states (the CoT) in the latent space and the current action with an MSE loss
and a BC loss (omitted here). During inference, it predicts the entire CoT and the current action at each step, resembling closed-loop
control. The prompt tokens for key states are all-to-all (can see any tokens up to the current step). The state and action tokens are causal
(can only see previous tokens and the key state tokens). Only 2 attention layers and 3 timesteps in the history are shown for better display.

peg is just aligned with the hole, and finally a state when
the peg is firmly pushed into the hole. These key states can
be extracted by simple rules shared among different demo
trajectories, which can be easily implemented in simulation
or potentially automated with pre-trained vision-language
models (zero-shot image retrieval). On the other hand, we
apply high-level planning by learning joint predictions of
key states and actions in a customized Transformer where
both are further conditioned on the trajectory history. We
call the key state sequences the chain-of-thought (CoT)
(Wei et al., 2022) as they capture the multi-step nature of
the tasks. At each inference step, our model updates the
CoT predicted in the latent space and generates reliable ac-
tions accordingly. Note that common subgoal-conditioned
policies in HRL only predict the immediate next subgoal
once in a while, whereas ours is tailored for the IL setup
and dynamically predicts the entire CoT. We demonstrate
the advantages of dynamic, coherent and long-term subgoal
planning and that the CoT predictions can be easily learned
from demonstrations.

We call our method Chain-of-Thought Predictive Control
(CoTPC). From an optimization perspective, it better lever-
ages scalable yet sub-optimal demonstrations by utilizing
hierarchical patterns shared even among demos with heavy
noise and randomness. From a generalization perspec-
tive, CoTPC uses the impressive reasoning capabilities of
Transformers (Brown et al., 2020) to achieve generalizable
decision-making with predicted long-term high-level plans.
We evaluate CoTPC on several challenging low-level ob-
ject manipulation tasks, justify its design with extensive
ablation studies, and further demonstrate its performance
in a real-world robot setup. CoTPC outperforms several

strong baselines by a significant margin, especially for the
peg insertion task where existing methods struggle.

2. Related Work

Learning from Demonstrations (LfD) Learning inter-
active agents from pre-collected demonstrations has been
popular for policy learning due to its effectiveness and scal-
ability. Roughly speaking, there are three categories: offline
RL, online RL with auxiliary demos, and behavior cloning
(BC). While offline RL approaches (Kumar et al., 2019;
Fu et al., 2020; Levine et al., 2020; Kumar et al., 2020;
Kostrikov et al., 2021; Chen et al., 2021; Wang et al., 2022)
usually require demonstration with densely labelled rewards
and methods that augment online RL with demos (Hester
et al., 2018; Kang et al., 2018; Ross et al., 2011; Nair et al.,
2020; Rajeswaran et al., 2017; Ho & Ermon, 2016; Pertsch
et al., 2021; Singh et al., 2020) rely on on-policy interac-
tions, BC (Pomerleau, 1988) formulates fully supervised
or self-supervised learning problems. With its simplicity,
zero sample complexity, and better practicality, BC has been
extensively used in real-world environments, especially in
robotics (Zeng et al., 2021; Florence et al., 2022; Qin et al.,
2022; Zhang et al., 2018; Brohan et al., 2022; Rahmatizadeh
et al., 2018; Florence et al., 2019; Zeng et al., 2020).

Challenges in BC Despite the wide applications of BC,
a well-known shortcoming is the compounding error (Ross
et al., 2011). One source of this is the distribution shift
(i.e., covariate shift) between the demo data and the ones
unrolled at test time. Various methods were proposed to
tackle it under different BC setups (Ross & Bagnell, 2010;
Ross et al., 2011; Sun et al., 2017; Laskey et al., 2017; Ten-
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nenholtz et al., 2021; Brantley et al., 2019; Chang et al.,
2021). Other issues for learning from demonstrations in-
clude non-Markovity (Mandlekar et al., 2021), discontinuity
(Florence et al., 2022), randomness and noisiness (Sasaki &
Yamashina, 2020; Wu et al., 2019) of the demos that lead
to difficulties in neural network based policy representation
and optimization and result in great compounding errors
during inference. See Sec. 4.1 for detailed discussions.

LfD as Sequence Modeling A recent research trend in
BC and offline RL is to relax the Markovian assumption of
policies in the Markovian Decision Process (Howard, 1960)
setup. With the widespread success of various sequence
modeling models (Graves & Graves, 2012; Chung et al.,
2014; Vaswani et al., 2017), model expressiveness and ca-
pacity are preferred over algorithmic sophistication. Among
these, (Dasari & Gupta, 2021; Mandi et al., 2021) study
one-shot imitation learning, (Lynch et al., 2020; Singh et al.,
2020) explore behavior priors from demos, (Chen et al.,
2021; Liu et al., 2022; Janner et al., 2021; Shafiullah et al.,
2022; Ajay et al., 2022; Janner et al., 2022) examine dif-
ferent sequence modeling strategies for policy learning. In
particular, methods based on Transformers (Vaswani et al.,
2017; Brown et al., 2020) are extremely popular due to their
simplicity and effectiveness. Through extensive comparison,
we show the major advantages of our method compared to
existing approaches.

Hierarchical Approaches in Sequence Modeling and RL
Chain-of-Thought (Wei et al., 2022) refers to the general
strategy of solving multi-step problems by decomposing
them into a sequence of intermediate steps. It has recently
been applied extensively in a variety of problems such as
mathematical reasoning (Ling et al., 2017; Cobbe et al.,
2021), program execution (Reed & De Freitas, 2015; Nye
et al., 2021), commonsense or general reasoning (Rajani
et al., 2019; Clark et al., 2020; Liang et al., 2021; Wei et al.,
2022), and robotics (Xu et al., 2018; Zhang & Chai, 2021;
Jia et al., 2022b; Gu et al., 2022; Yang et al., 2022). Similar
ideas in the context of HRL can date back to Feudal RL
(Dayan & Hinton, 1992) and the option framework (Sutton
et al., 1999). Inspired by these approaches, ours focuses on
the imitation learning setup (without reward labels or online
interactions) for low-level control tasks.

Demonstrations for Robotics Tasks In practice, the op-
timality assumption of the demos is usually violated espe-
cially for robotics tasks. Demos for tasks involving low-
level actuator actions primarily come in three forms: hu-
man demo captured via teleoperation (Kumar & Todorov,
2015; Vuong et al., 2021), expert demo generated by RL
agents (Mu et al., 2021; Chen et al., 2022; Jia et al., 2022a),
or trajectories found by planning-based methods involving
heuristics, sampling and search (Gu et al., 2023; Qureshi

et al., 2019; Fishman et al., 2022). These demos are in
general sub-optimal due to either human bias, imperfect RL
agents, or the nature of the planners. In our experiments, we
utilize planned demonstrations provided by ManiSkill2 (Gu
et al., 2023). This benchmark is not saturated for IL (be-
ing adequately challenging) and has scalable sub-optimal
demonstrations to bootstrap from. However, leveraging
these demos to solve complex low-level control tasks in an
IL setup is very challenging, as discussed in Sec. 4.1.

3. Preliminaries

MDP Formulation One of the most common ways to
formulate a sequential decision-making problem is via a
Markov Decision Process, or MDP (Howard, 1960), defined
as a 6-tuple (S, A, T, R, po,7y), with a state space .S, an
action space A, a Markovian transition probability T : S x
A — A(S), areward function R : S x A — R, an initial
state distribution pg, and a discount factor v € [0,1]. An
agent interacts with the environment characterized by T
and R according to a policy 7 : S — A(A). We denote
a trajectory as 7, as a sequence of (s, ag, 1, ag, ..., St, at)
by taking actions according to a policy 7. At each time
step, the agent receives a reward signal r; ~ R(s¢, at). The
distribution of trajectories induced by 7 is denoted as P (7).
The goal is to find the optimal policy 7* that maximizes
the expected return E, [, 7'r,]. Notice that, in robotics
tasks and many real-world applications, the reward is at the
best only sparsely given (e.g., a binary success signal) or
given only after the trajectory ends (non-Markovian).

Behavior Cloning The most straightforward approach in
IL is BC, which assumes access to pre-collected demos
D = {(s4,a;)}Y, generated by expert policies and learns
the optimal policy with direct supervision by minimizing
the BC loss E(, o)~ p[—log (al|s)] w.r.t. a mapping 7. It
requires the learned policy to generalize to states unseen
in the demos since the distribution P(7,) will be different
from the demo one P(7p) at test time, a challenge known
as distribution shift (Ross & Bagnell, 2010). Recently, sev-
eral methods, particularly those based on Transformers, are
proposed to relax the Markovian assumption. Instead of
m(a¢|st), the policy represents 7 (a¢|si—1, S¢—2, ..., S¢—71) OF
m(a¢|s¢—1, @11, ..., St—T, Gt—T), 1.€., considers the history
up to a context size 7. This change was empirically shown
to be advantageous (also justified in Sec. 4.1).

4. Method

In this section, we first illustrate the optimization and gen-
eralization challenges in learning from scalable yet sub-
optimal machine-generated demonstrations through an ex-
ample. We then introduce Chain-of-Thought Predictive Con-
trol (CoTPC), which features hierarchical planning ideas
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Figure 2. A moving maze where each demo trajectory is generated
by a planning algorithm (with hindsight knowledge) shown as a
sequence of arrows. The starting region is in the top left corner
and the goal region is in the bottom right corner. Such demos are
extremely scalable but at the cost of issues discussed in Sec. 4.1

to handle these challenges. Finally, we discuss several key
design choices of CoTPC.

4.1. Moving Maze - An Illustrative Example

We present a 2D maze with a continuous action space of
displacement (dz, dy). As shown in Fig. 2, in this s-shaped
maze, the agent starts from a location randomly initialized
inside the top square region (marked in cyan) and the goal is
to reach the bottom one (marked in green). Upon each envi-
ronment reset, the two regions as well as the two rectangular
bridges (marked in green) have their positions randomized.
During the game, each of them except for the top square
moves (independently) back and forth with a randomized
constant speed. Once the agent lands on a moving block,
the block will immediately become static. The agent cannot
cross the borders of the maze (but it will not die from doing
so). For simplicity, we adopt a 10-dim state observation
consisting of the current location of the agent and the four
marked regions.

To enable policy learning from demonstrations, we curate
demo trajectories (each with a different environment random
seed) by adopting a mixture of heuristics and an RRT-style
planner with hindsight knowledge not available at test time
(see details in the Appendix). This setup follows recent work
(Gu et al., 2023) that leverages machine-generated demon-
strations which are extremely scalable yet highly noisy and
sub-optimal. In fact, as demonstrated in Tab. 1 & 2, a vanilla
BC agent (with a multi-layer perceptron) struggles to scale
well on these demonstrations. We summarize some common
optimization and generalization challenges in learning from
sub-optimal demos (especially machine-generated ones).

Table 1. Results for the illustrative moving maze environment.
Training success rates, SRs, (%) are reported over the 200 training
env. seeds. Test SRs are reported over 100 or 400 unseen seeds.

VANILLA BC  D.T.  COTPC (OURS)

MOVING MAZE 14.5 76.5 82.0
MOVING MAZE (UNSEEN) 9.0 23.0 37.0

Table 2. With the highly noisy and sub-optimal demos, more train-
ing trajectories per vanilla BC agent can lead to a significant drop
in average performance over all agents for a total of 128 trajectories.
Here we show the average success rate (%).

# TRAJECTORIES PER BC AGENT 4 16 64 128
MOVING MAZE 54.7 38.3 21.1 16.4
P&P CUBE 33.6 19.5 7.8 6.3

Non-Markovity While each trajectory in the demos can
be represented by a Markovian policy, the Markovian policy
linearly combined from them by perfectly imitating the
combined demos can suffer from a negative synergic effect
if there are conflicts across demos. This is because the
demos might be generated by different agents or different
runs of the same algorithm. It becomes even worse when the
demonstrations themselves are generated by non-Markovian
agents (e.g., in Fig. 2). Instead, a non-Markovian policy is
more universal and can resolve conflicts by including history
as an additional context to distinguish between demos.

Noisiness Sometimes the demo trajectories are intrinsi-
cally noisy with divergent actions produced given the same
states, e.g., with planning-based methods as in Fig. 2. This
leads to increased uncertainty and variance of the cloned
policies and so higher compounding errors. Note that multi-
modality is a related but orthogonal issue (Shafiullah et al.,
2022), i.e., when a unimodal estimate of the (continuous)
action distribution leads to a significantly worse return.

Discontinuity For low-level control tasks, demo policies
often consist of sharp value changes or topology changes
(e.g., due to contact changes). Such discontinuity in the
underlying state-to-action mapping leads to difficulties in
learning a robust and accurate model, thus harming general-
izability. A recent method (Florence et al., 2022) deals with
this by an energy-based implicit model in place of an ex-
plicit one. While theoretically sound, it is shown (Shafiullah
et al., 2022) to be less practical for non-Markovian implicit
models, and later explicit models outperform it.

Randomness The actual or apparent unpredictability usu-
ally exists in sub-optimal demonstrations either because the
intermediate computations of the demonstrators are not re-
vealed in the demos (e.g., the shortest paths generated by
BFS do not reveal the intermediate search process), or the
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demonstrators are inherently non-deterministic (e.g., relying
on rejection sampling). Such a trait makes IL less robust as
the decision-making patterns from demos might be unclear,
hard to learn and not generalizable (Paster et al., 2022). Pro-
cedure Cloning (Yang et al., 2022) handles a similar issue
by imitating the intermediate computations. However, it
assumes full knowledge of the demonstrators and it can be
hard to imitate these computations (e.g., a sampling process)
by neural networks.

4.2. Chain-of-Thought Predictive Control

To develop a scalable imitation learning algorithm for di-
verse and large-scale yet sub-optimal demonstrations to-
wards the eventual advent of decision foundation models,
we propose to incorporate the essence of HRL into a novel
behavior cloning algorithm with a customized Transformer
design. We leverage the hierarchical guidance provided
by certain subsequences of states (or in general, frames)
extracted from the demonstrations. Our model learns to
dynamically predict such hierarchical structures as coherent
long-term action guidance, which enables high-level plan-
ning capabilities and substantially eases complex low-level
control tasks.

Key States as Chain-of-Thought (CoT) We observe that
many low-level control tasks (e.g., object manipulations)
naturally consist of sequences of subgoals. And there exist
key states, each of which marks the completion of a subgoal.
We name them the chain-of-thought (CoT), as they repre-
sent the global structure of a decision-making process and
can provide coherent, succinct yet long-term behavior guid-
ance. For instance, in the moving maze in Fig. 2, the two
bridges naturally divide the task into three subgoals. Given
a demo trajectory, we extract three key states - when the
agent first reaches the bridges and the goal region. Formally,
for each trajectory 7 € D, we define CoT as an ordered set
of states Fio(7) = {s¢|s: € 7} = {s§°"}. We describe the
underlying principles to determine them shortly in Sec. 4.3.

Coupled CoT and Behavior Modeling We find that com-
pared to the demos’ overall high variance and noises, the
CoT admits much fewer variations and shares a general-
izable pattern among demos (also explained in Sec. 4.3).
Hence, action predictions conditioned on the CoT (the key
states) ease model optimization with reduced variations of
inputs (the consistent future cues become part of the inputs).
Moreover, the impressive sequential reasoning capability
of Transformers (Brown et al., 2020) enables our model
to acquire (even from demonstrations of heavy noises) the
capability of long-term planning via CoT prediction. As the
action and CoT predictions are complementary, we propose
to couple them in a shared Transformer architecture.

Dynamic CoT Prediction with Transformer We adopt
a customized version of GPT (Brown et al., 2020) to enable
key state predictions alongside action predictions both in a
contextual manner. We insert K different learnable tokens
at the beginning of the state and action context history. We
set K as the number of key states, which is task-specific
(e.g., K = 3 for peg insertion). These serve as prompt
tokens similar to CoOp (Zhou et al., 2022) and are learned
to predict the corresponding key states given the current
trajectory context. Instead of using a causal attention mask,
we design a hybrid masking regime, where normal state or
action tokens can attend to those in the past (standard causal
mask) and so always see the key state tokens for action
predictions (achieved with an action decoder). The key state
prompt tokens, however, are all-to-all and can observe all
action and state tokens in the current context window (i.e.,
until the current time step ¢). Formally, given a context
size of T" with a sampled trajectory subsequence up to some
timestep t, i.e.,

Tr(t) = {St— (1), Qt—(T—1)s s St—1, Gt—1, 5t

we apply the hybridly masked multi-head attention layer,
denoted MHA ;451 ], to features of 77 (t). Namely,

hj (TT(t)) = MHAhmask[Fenc(TT(t))], j=1
hj (TT(t)) = MHAhmask[hjfl(TT(t))], ] > ].

where F,,. encodes each action token and state token by
encoder f,(-) and f(-), respectively (no encoder for the
prompt tokens). Here we omit the position embeddings
and the additional operations between the attention layers
in standard Transformers. We use two decoders g, (-) and
Jeot(+) to predict the current action a; and the current key
state predictions {§z°f}, respectively, i.e.,

ar = ga(hy(7r(t))[-1])
52 = geor(hi(Tr()[K]), k € {0,... K — 1}

where J is the index of the last attention layer and [k] se-
lects the k-th element as in Python (each key state token is
used to predict a different key state for better performance).
Note that I € {1, ..., J}, i.e., the key state decoder takes
the outputs of the /-th attention layer, where I is a hyper-
parameter. We find I = 1 to work well for most tasks. To
summarize, our model jointly generates actions and key
states at each step by conditioning on the trajectory history.
The key states are dynamically updated during interactions,
resembling closed-loop control. This design can be immedi-
ately justified in the case of dynamic environments such as
the moving maze or tasks that require dynamic controls. We
will discuss the key design choices in more detail shortly.

Training Objective The overall training pipeline is illus-
trated in Fig. 1. The model is trained with behavior cloning
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loss as well as the auxiliary key state prediction loss Lo
based on MSE (weighted by a coefficient A), which yields
the overall training objective:

Ctotal = E
(st,ar)€D

Ly (G, ar) +

A K—1 1 |T|—1
T E — Z Lot (537, 557
K Zrerlrl '

See more implementation details in the Appendix.

4.3. Principles of Chain-of-Thought Selection

As discussed previously, the underlying principle for choos-
ing key states is to find a shared common pattern across de-
mos that can improve the optimization and generalization of
BC. Specifically, for each trajectory 7 € D, we aim to find
an ordered set of states Fo1(7) = {s¢|s: € 7} = {s£

that can satisfy the following principles:

» The reaching of key states should indicate the comple-
tion of the subgoals (and eventually of the task).

* The key states should admit fewer variations than the
average of other states in the trajectories.

* Functional correspondence (with a fixed order) exists
between key states of different trajectories.

We find that locating key states with these conditions is easy
for object manipulation tasks, as they are often inherently
hierarchical with multiple sub-stages. Roughly speaking,
if all trajectories for a contact-rich manipulation task share
the same sequence of sub-stages with a fixed order, then the
boundaries of adjacent sub-stages constitute the key states,
and the patterns are shared across trajectories. For example,
in peg insertion, the robotic gripper goes through the grasp
stage to reach the peg (the first key state occurs when it first
grasps the peg), then the align stage that ends up aligning
the peg with the hole (another key state), and eventually,
the insert stage, the end of which (the last key state) marks
the task completion. We can easily derive heuristic rules
to automatically recognize such key states from demos in
simulations with the help of privileged information such as
contact feedback and object poses.

In our experiments and ablation studies (Sec. 5.6), we em-
pirically justify our principles of key states selection and
compare our design with several alternatives. To summa-
rize, our design reflects a trade-off between leveraging the
hierarchy of the tasks and keeping CoT prediction tractable.

4.4. Design Choices in Chain-of-Thought Predictions

At test time, our model predicts key states (CoT) along with
actions. Here we will discuss several relevant design options.
Please also refer to the ablation studies in Sec. 5.6.

Static vs. Dynamic CoT Prediction Static prediction
refers to predicting the key states only once at the very
beginning of each trajectory. Dynamic prediction, on the
other hand, keeps updating its key state predictions along
the way to task completion. The difference between the two
is somewhat similar to open-loop vs closed-loop control
(also see Sec. 4.2). We find that the dynamic version is sig-
nificantly more robust as the model adjusts its prediction of
both key states and actions on-the-fly. In the case of human
disturbance (e.g., pushing an object during task execution)
or dynamic environments (such as the moving maze), the
dynamic version obviously becomes a necessity.

Contextual vs. Markovian CoT Prediction A Marko-
vian CoT prediction strategy predicts the key states at
each step by conditioning only the current state. A non-
Markovian one considers the context history of states and
actions (up to a maximum number of steps) for both key
state and action prediction. We empirically find that this
strategy outperforms the Markovian one by a large margin.
When combined with Transformer-based policies, contex-
tual and dynamic CoT prediction can be achieved gracefully,
as described in Sec. 4.2.

CoT Predictions in the Latent Space We further ob-
serve that predicting key states in the latent space (i.e., the
actual key states are further predicted via a non-linear two-
layer MLP decoder) outperforms the alternative (predicting
them more explicitly such that we only use a linear decoder).
This potentially leads to a better representation of the pre-
dicted CoT than the manually designed state observation, as
the action prediction loss (the BC loss) also encourages the
CoT prediction process to provide better behavior guidance.

CoT Prediction vs. Subgoal Prediction While inspired
by HRL, CoTPC differs from typical two-stage subgoal-
conditioned policies. Instead of only the immediate next
subgoal, we predict an entire chain of them all at once and at
each inference step. This has several major advantages. Ex-
isting subgoal-conditioned policies mostly predict the imme-
diate subgoals either sporadically or fully dynamically. For
sporadic ones, CoTPC can better handle dynamic environ-
ments (or those requiring dynamic control) with its dynami-
cally adjusted subgoal-level plans. For fully dynamic ones,
these policies have to approximate a very discontinuous
function (sharp change of predicted subgoal near the sub-
task boundaries), which leads to robustness issues. Alterna-
tively, CoTPC predicts subgoals altogether in multiple slots
so that conditioning action predictions on a different subgoal
is simply attending to different key state tokens. Moreover,
only predicting the immediate next subgoal means predict-
ing subgoals sequentially (i.e., auto-regressively), which
is more vulnerable to compounding errors than our joint
prediction strategy (Qi et al., 2020).
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Figure 3. We use four challenging contact-rich object manipulation tasks from ManiSkill2 (Gu et al., 2023) to evaluate our method.
Namely, P&P Cube (pick and place cube), Turn Faucet, Stack Cube and Peg Insertion Side. We use state-space observations in our
experiments while the images are rendered for illustration (the goal location varies across seeds but is not visualized for P&P Cube).

Figure 4. Sampled geometric variations for turn faucet and peg
insertion. The sizes of peg / box and the relative locations of the
hole vary across different environment seeds.

5. Experiments

In this section, we first introduce the tasks and the metrics
used to evaluate our method, discuss the baselines we com-
pare with, and then present the main results. Finally, we
show ablation studies that justify our design choices.

5.1. Tasks and Environments

We focus on low-level object manipulation tasks in an imita-
tion learning setup. We choose ManiSkill2 (Gu et al., 2023),
an extension of ManiSkill (Mu et al., 2021) as the testbed,
which features a variety of object manipulation tasks in
environments with realistic physical simulation (including
fully dynamic grasping motions). We choose four tasks as
illustrated in Fig. 3. Namely, P&P Cube which asks the
agent to pick up a cube, move it at a specified goal location,
and keep skill for a short while; Stack Cube for picking up
a cube, placing it on top of another, and the gripper leav-
ing the stack; Turn Faucet for turning on different faucets;
and lastly, Peg Insertion Side for inserting a cuboid-shaped
peg sideways into a hole in a box of different geometries
and sizes. We notice that existing benchmarks are either
saturated for imitation learning methods, e.g., DMControl

(Tassa et al., 2018) and D4RL (Fu et al., 2020), or lack
demo data, such as MineDojo (Fan et al., 2022). The tasks
we choose lie in between, which is challenging and has
sub-optimal demo data to bootstrap from.

The challenges of low-level manipulation tasks we selected
come from several aspects. Besides noises injected into the
initial robot pose, all tasks have all object poses random-
ized (displacement around 0.3m and 360° rotation) upon
environment reset. Moreover, both turn faucet and peg in-
sertion have large variations on the geometries and sizes of
the target objects (see Fig. 4). They are particularly chal-
lenging also because the faucets are mostly pushed rather
than grasped during manipulation (under-actuated control),
the holes have 3mm clearance, and it requires at least half
of the peg to be pushed sideway into the holes (harder than
similar tasks in other benchmarks).

As an early exploration of applying chain-of-thought to-
wards low-level control, we mainly study state-based policy
learning to avoid the confounding challenges of visual per-
ception learning (see details of observation space in the
Appendix and the ManiSkill2 paper). We use an 8 DoF con-
tinuous action space for delta joint position control, which
is native to the demonstrations generated by many planning-
based methods.

5.2. Demonstrations Data

The complexity of our imitation learning tasks also lies in
the highly noisy and sub-optimal demonstrations. The de-
mos provided by ManiSkill2 are generated by a mixture
of multi-stage motion-planing and heuristics-based policies
(with the help of privileged information in simulations) in
the form of state-action sequences without reward labels.
For wide applicability, we do not assume detailed knowl-
edge of the demonstrators (which is not available from Man-
iSkill2). We randomly sample 500 training trajectories for
each task (50 trajectories per faucet model over 10 faucets
in turn facet). We also double the demo data for peg inser-
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Table 3. Results for tasks in ManiSkill2 on seen environment seeds. We compare ours with several recent baselines (adapted to the BC
setup) to show how it tackles the optimization challenges. Task SR denotes the task success rate. For the challenging peg insertion task,
we also report intermediate success rates other than Insert SR. All metrics are reported in percentage (%) with the best ones bolded.

P&P STACK TURN PEG MEAN
CUBE CUBE  FAUCET INSERTION (%)

TASK SR TASK SR TASK SR GRASP SR ALIGN SR INSERT SR TASK SR
VANILLA BC 3.8 0.0 15.6 58.8 1.2 0.0 4.9
BEHAVIOR TRANSFORMER 23.6 1.6 16.0 90.0 17.0 0.8 10.5
DECISION DIFFUSER 11.8 0.6 53.6 86.8 9.2 0.6 16.7
MASKDP + GT KEY STATES 54.7 7.8 28.8 62.6 5.8 0.0 22.8
DECISION TRANSFORMER 65.4 13.0 394 97.8 41.8 5.6 30.9
COTPC (OURS) 75.2 58.8 56.4 99.6 98.2 52.8 60.8

Table 4. Results (%) on unseen environment seeds to evaluate generalizable policy learning. We only show DT here as we find it to have
the best generalization performance among the baselines. Metrics involving 0-shot generalization (over unseen geometries) are italicized.
Results obtained from models trained with demo trajectories of doubled sizes are marked with x. Best results are bolded.

P&P CUBE STACK CUBE TURN FAUCET PEG INSERTION
(UNSEEN) (UNSEEN) (UNSEEN & 0-SHOT) (0-SHOT)
TASK SR TASK SR TASK SR Task SR Grasp SR Align SR Insert SR Insert SR*
DECISION TRANSFORMER 50.0 7.0 32.0 9.0 92.3 21.8 2.0 3.5
COTPC (OURS) 70.0 46.0 57.0 31.0 95.3 72.3 16.8 38.0

tion since it requires generalization over unseen geometries
similar to a zero-shot transfer setup. Even for the relatively
simple pick cube task, we find vanilla BC agents struggle to
scale well regarding sub-optimal demonstrations. Over a to-
tal of 128 demo trajectories evenly assigned to .S agents, we
find that the smaller S is (meaning each agent learns from
more demos), the lower the average training performance
becomes, as reported in Tab. 2.

5.3. Training and Evaluation Protocols

For each task, we train all methods in the behavior cloning
setup on the same set of demo trajectories, where each
trajectory is generated with a different environment seed
(variation). At test time, we evaluate in the simulated envi-
ronment using both the seen and unseen seeds to investigate
how well our model tackles the optimization and the gen-
eralization challenges. For p&p cube, stack cube and turn
faucet, we use 100 unseen seeds. For turn faucet, we further
use 400 seeds over a held-out set of 4 unseen faucet models
(a zero-shot transfer setup). For peg insertion, we use 400
unseen seeds which yield unseen geometries of both the
peg and the hole (also a zero-shot transfer setup). We use
success rate (SR) as the major metric. Our tasks and the LfD
setup are so challenging that most existing state-of-the-art
methods struggle at the optimization phase. We further pro-
vide some intermediate success rates as additional metrics
for a more informative comparison. See the Appendix for
detailed descriptions of these metrics.

5.4. Baselines

We first train a vanilla BC policy with a three-layer MLP and
find that it performs extremely poorly on all tasks. We then
compare our method with several popular non-Markovian
baselines that achieve state-of-the-art performance. Namely,
Decision Transformer (DT) (Chen et al., 2021), Behavior
Transformer (BeT) (Shafiullah et al., 2022), MaskDP (Liu
et al., 2022) and Decision Diffuser (DD) (Ajay et al., 2022).

DT is originally proposed for offline RL that applies se-
quence modeling to demonstrations with densely labeled
rewards. We adapt DT for the BC setup by ignoring the re-
ward tokens. We implement our proposed CoTPC on top of
DT by sharing the same configurations for the Transformer
backbone. BeT is proposed to handle multi-modalities is-
sues in BC and is claimed to be able to model arbitrary
multi-modal state-action distributions via an action space
discretization strategy. As multi-modalities is a relevant yet
orthogonal issue, we do not find it to work well in our tasks
(which are more challenging than the ones used in their
original paper), potentially because of the lack of high preci-
sion due to its discretization process. MaskDP, on the other
hand, leverages masked auto-encoding (He et al., 2022), a
bi-directional sequence modeling technique to improve the
generalization of BC. It features action predictions condi-
tioned on goal states (similar to key states), with a limitation
that it requires ground truth key states with their precise
time steps provided to the model at test time. Ours, instead,
predict actions and key states jointly. DD explores the dif-
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Table 5. Results (%) on seen environment seeds for various abla-
tion studies over the key state selection and the key state prediction
strategies. See Sec. 5.6 for details.

STACK CUBE PEG INSERTION
TASK SR GRASP ALIGN INSERT
PRED LAST STATE ONLY 12.0 96.8 65.6 9.6
PRED ALL STATES 30.0 92.4 70.2 18.0
PRED ALT KEY STATES 17.0 80.0 44.8 5.4
PRED MARKOVIAN 22.2 78.8 41.4 6.4
PRED LINEAR DEC 21.6 97.4 51.6 11.2
PRED W/ ALT DECODER 33.0 96.0 65.8 12.8
CoTPC 58.8 99.6 98.2 52.8

Table 6. Ablation studies that justify why CoTPC predict the entire
CoT instead of only the immediate next subgoal (as in common
HRL methods). All results reported as the average task success
rate (%). * means zero-shot.

STACK CUBE PEG INSERTION

SEEN UNSEEN SEEN UNSEEN*
COTPC (NEXT SG) 47.6 22.0 29.6 9.0
COTPC (CoT) 58.8 46.0 52.8 16.8

fusion model (Ho et al., 2020) for policy learning by first
acquiring a trajectory prediction model and then predicting
actions with an inverse dynamics model.

5.5. Main Results

QOutstanding Performance by CoTPC We find all the
strong baselines (even the MaskDP with GT key states) are
significantly outperformed by ours. Results are reported in
Tab. 3 & 4, which shows the clear advantages of CoTPC
from both the optimization and the generalization perspec-
tive. Most existing methods struggle with optimization, let
alone generalization.

CoTPC is Scalable To further examine whether our pro-
posed model can scale well regarding the sub-optimal
demonstrations, we perform an evaluation with a doubled
size of training trajectories. We report the results in Tab. 4,
which suggests that CoTPC is able to substantially benefit
from large-scale yet noisy demonstrations. We believe it is
a promising step towards decision foundation models.

5.6. Ablation Studies

We perform two sets of ablation studies to justify our design
choices, with results summarized in Tab. 5 & 6.

Different Rules for Key States We perform ablation stud-
ies on the key state selection strategy. In the first variant,
we only include the last key state (i.e., the very last state of
each demo trajectory) in the auxiliary training loss, denoted

Figure 5. The setup in our real-world experiments for stack cube
and peg insertion. As an early examination, we increase the clear-
ance for peg insertion from 3mm (sim) to 10mm (real).

as “Pred last state only”. This variant performs worse than
using all the key states since it does not fully leverage the
hierarchical structure of the low-level control tasks. In the
second variant, we include states other than our selected key
states. In fact, we ask the model to predict all states given
the previous state-action pairs and the current state, similar
to learning the dynamic model (see implementation details
in the Appendix). The extra states in this variant lead to
noises during training as most states admit large variances;
the resulting model generalizes worse since the guidance
from key states is weakened. We denote this variant as
“Pred all states”. The last variant uses an alternative set of
rules to select the key states, which produce states not at the
boundaries between stages but rather in the middle of each
stage, which are usually of high variations. We denote this
as “Pred alt key states”.

Different Key State Prediction Strategies We first jus-
tify the use of contextual and dynamic key state predictions.
As discussed in Sec. 4.2, we find that with a Transformer
architecture, the contextual (predicting conditioned on the
history) and dynamic (predicting on-the-fly when carrying
out the predicted actions) prediction strategies can be grace-
fully combined. Alternatively, we use an MLP to predict the
key states given only the current state s; as the inputs. This
variant is denoted “Pred Markovian” since it does not use
the whole context history for key state predictions. In the
next variant, we empirically show the advantage of key state
prediction in the latent space (discussed in Sec. 4.4). We
use a linear layer as the key state decoder and denote it as
“Pred Linear Dec” In another variant, we use a three-layer
MLP in place of a two-layer one for the key state decoder.
We denote it as “Pred w/ alt decoder”. In the last variant,
we make CoTPC only predict the next key state at each time
with only one key state prompt token. This is reminiscent
of common HRL methods that perform subgoal generation
and adopt a two-stage subgoal-condition policy. The results
for this variant are reported in Tab. 6 instead.

See further implementation details for these ablation studies
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in the Appendix.

5.7. Sim-to-real Transfer

Although we mainly study CoTPC with state observations,
we examine the plausibilities of the sim-to-real transfer on
stack cube and peg insertion. Our real-world experiment
setup is illustrated in Fig. 5. With an off-the-shelf pose
estimation framework such as PVNet (Peng et al., 2019),
we can achieve reasonable performance using the policy
learned purely in simulations. We provide visualization of
task executions in our project page and defer the details to
the Appendix.

6. Discussions, Limitations and Future Work

Comparison with Procedure Cloning Procedure
cloning (PC) (Yang et al, 2022) is an extension of
BC by imitating the intermediate computations of the
demonstrators. It requires full knowledge of how the demo
trajectories are generated including the usually hidden
computations (such as the status of each node at each
step in BFS, one of their examples). CoTPC does not
require such knowledge, as the key states are part of the
results, not intermediate computations. To apply PC for
demonstrations provided by, e.g., a sampling-based planner,
it needs to imitate the sampling process (which is hard)
by accessing the potentially large amounts of intermediate
sampled paths not ended up in the demos. In general,
machine-generated demonstrations can be crowd-sourced
and the demonstrators are viewed as black boxes, making
this a limitation of PC. As a side note, ManiSkill2 provides
demonstrations with high-level descriptions but not the
actual demo policies.

Comparison with Subgoal-conditioned Policies Unlike
many existing work dealing with “long-horizon” tasks, e.g.,
SayCan (Ahn et al., 2022) and methods tackling ALFRED
(Shridhar et al., 2020), which assume that low-level control
is solved, we instead focus on solving low-level control with
hierarchical information such as key states. Many methods
from HRL or hierarchical IL adopt a two-stage subgoal-
condition policy. CoTPC differs from them in a non-trivial
aspect. Instead of only the immediate next subgoal, CoTPC
predicts an entire chain of them all at once and at each
inference step, which has several advantages as explained
and empirically verified in Sec. 4.4.

Comparison with RT-1 Robotic Transformer-1 (RT-1)
(Brohan et al., 2022) is a concurrent work that also directly
models low-level control actions with a Transformer. It
benefits from the sheer scale of real-world robot demonstra-
tion data pre-collected over 17 months and the tokenization
of both visual inputs (RGB images) and low-level actions.

While RT-1 shows great promise in developing decision
foundation models for robotics, it adopts the conventional
auto-regressive Transformer without explicitly leveraging
the structural knowledge presented in low-level control tasks.
Our work, CoTPC, is an early exploration in this direction
and we believe it will inspire the future designs of generally
applicable models for robotics tasks. Another difference
is that since RT-1 discretizes the action space, it might suf-
fer from degraded performance for tasks that require high
precision (such as peg insertion).

Limitations and Future Work CoTPC requires prior
knowledge of key states that admit reduced variance and
learnable patterns shared across different trajectories. While
such information is generally available for low-level manipu-
lation tasks, we plan to further leverage the compositionality
of human languages and the pre-trained LLMs to improve
the key state selection process. We also plan to extend our
work to high-dimensional visual inputs that can be more eas-
ily transferred to real-world robots. An integrated modeling
approach involving both visual inputs, human language and
low-level actions in the style of PALM-E (Driess et al., 2023)
is also a potential extension. We also believe that CoTPC
can be extended in a multi-task learning setup with pol-
icy learning from diverse demos across different low-level
control tasks.

7. Conclusions and Future Work

In this work, we propose CoTPC for learning generaliz-
able policies from scalable but sub-optimal demonstrations.
CoTPC leverages hierarchical structures in low-level control
tasks (e.g., object manipulations) and, at each step, predicts
actions jointly with the key states (the Chain-of-Thought)
that provide structured long-term action plans. With the
guidance of patterns presented in the CoT that are shared
across different demos, CoTPC produces generalizable poli-
cies that significantly outperform existing methods on chal-
lenging low-level contact-rich tasks.
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A. Various Details for the Four Tasks Used In Our Experiments
A.1. State space

In our experiments, we use state space observation to avoid adding the additional challenges of visual-based policy learning
that might be confounding to our studies of BC. The state observations for the four tasks have dimensions ranging from 43-d
(TurnFaucet) to 55-d (PegInserstionSide). The original state observation dimension for TurnFaucet is 40.
However, as there are different faucet models (with largely varied geometries) used across different environment variations,
the original state space misses key information that can be used to distinguish between different faucet models. The visual
observation space does not have this issue, though. We, therefore, append an extra 3-d vector for the pose of the faucet link
by replaying the demos. As a result, the agent can learn to turn different faucet models jointly.

A.2. Demonstrations

The demonstrations provided by ManiSkill2 (generated by TAMP solvers, see their original paper for details) contain 1000
trajectories for each of the four tasks except for TurnFaucet, where a varied number of trajectories are provided for
different faucet models. We randomly choose 10 faucet models whose demos are generated by TAMP solvers. We then
perform stratified sampling to choose 500 trajectories from TurnFaucet and 500 trajectories randomly sampled for the
other three tasks. For both training and testing, we use the same set of demos (each trajectory has an average length of
around 200). During testing, we set the maximum steps allowed as 150, 250, 200, 250 for P&P Cube, Turn Faucet, Stack
Cube and Peg Insertion Side, respectively.

A.3. Key state selection

To generate parsing rules to label key states for each demonstration, one can resort to human knowledge by simply asking
ChatGPT “What are the major steps to XXX?”, where XXX is the high-level description of the four tasks. We then write
simple heuristics programs in the SAPIEN simulated environment (Xiang et al., 2020) (where ManiSkill2 is hosted) to
automatically find the key states. Specifically, for P&P Cube, there are two key states: the first state when the cube is
grasped by the robotic gripper and the finishing state (the last state) in a demo trajectory when the cube is placed in the
target location. For Turn Faucet, there are two key states: the first state when the gripper has made a contact with the handle
of the faucet and the finishing state (the last state) in a demo trajectory when the faucet is turned on. For Stack Cube, there
are three key states: the first state the cube is grasped by the robotic gripper, the last state the gripper is still grasping the
cube while the cube is stacked on top of the other, and the finishing state (the last state) in a demo trajectory. Note that to
complete the Stack Cube task, the gripper needs to leave both cubes aligned vertically and static. For Peg Insertion Side,
there are three key states: the first state when the peg is grasped, the first state the peg’s angle is aligned with the hole, and
the finishing state (the last state) in a demo trajectory where the peg is inserted (at least half of it) into the hole.

A.4. Evaluation metrics

While the success conditions are well-defined by the authors of ManiSkill2 for the four tasks, we also derive intermediate
success conditions to better evaluate the performance of different models. Specifically, for Peg Insertion Side, “Grasp SR” is
defined as whether at any time step, the peg has been grasped by the gripper successfully, “Align SR” is defined as whether
at any time step, the peg’s angle has been adjusted to be aligned with the hole.

B. More Details for the Baselines and Our Proposed Method

MLP baseline (vanilla BC): It is a three-layer MLP with a hidden size of 256 and ReLU non-linearity. We train it with a
constant learning rate of 1le — 3 with Adam optimizer with a batch size of 32 for 150K iterations (training longer leads to
over-fitting even with tuned L2 regularization).

Decision Transformer: We use the exact same configurations, for training and for the Transformer architecture (excluding
the parts regarding key state tokens), in DT as our method. In our proposed model, the action decoder and key state decoder
are both 2-layer MLPs of one hidden layer of size 256 and with ReLU non-linearity. We train it with a learning rate of
5e — 4 (with a short warm-up period and cosine decay schedule to 5e — 5) with the Adam optimizer with a batch size of 256
for 1.8M iterations. We use a weight decay of 0.001. We use a context size of 60 for all tasks. We find that our model, as
well as DT that shares the same Transformer architecture and BC loss, can train much longer than others without worrying
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about overfitting.

Behavior Transformer: We started with the configuration used for the Franka Kitchen task in the original paper. We
changed the number of bins in K-Means to 1024 (we find that for our tasks, a smaller number of bins works worse)
and changed the context size to 60 (in line with the other transformer-based models). The Transformer backbone has
approximately the same number of parameters (~1M) as ours and DT. We train the model for around 50k iterations (we
find that training longer leads to over-fitting easily for BeT, potentially because of its discretization strategy and the limited
demos used for BC).

Decision Diffuser: We use the reference implementation provided by the authors and make the following changes in the
diffusion model: 100 diffusion steps, 60 context size, and 4 horizon length (in our experiments we found that longer performs
worse). The diffusion and inverse-dynamics models have ~1.6M parameters in total. Since DD works on fixed sequence
lengths, we pad the start and end states during training and only the start states during inference.

Some existing methods (Florence et al., 2022; Yang et al., 2022) are not included because either they were compared
unfavorably with the baselines or they assume access to information impractical in our tasks. For each baseline (and our
method), we report the evaluation results using the best checkpoint along the training (since we are evaluating the same set
of environment variations used to generate the demo, this is essentially validation performance).

C. Details for the Ablation Studies

For the variant denoted as “Pred all states”, we ask the model to predict all states given the previous state-action pairs and
the current state, similar to learning the dynamic model. Specifically, in the Transformer backbone, we apply a next-state
decoder (two-layer MLP similar to the action decoder) for each state token and train the model to predict the very next state
(via an auxiliary MSE loss). In this variant, there are no query tokens for the key states as the state predictions are performed
alternatively. In the variant denoted as “Pred Markovian”, the key state decoder always takes the last state in the current
context history as the only input and predicts the key states in a coupled manner. We use a three-layer MLP with a hidden
size of 256. As the decoder is unaware of the states and actions occurring before the current one in the context buffer, it is
essentially a Markovian predictor.

D. More Implementation Details for Model Training

We adopt the minGPT implementation and use the same set of hyperparameters for all tasks (a feature embedding size of 128
and 4 masked multi-head attention layers, each with 8 attention heads, totalling around 1M learnable parameters). We use no
positional embeddings for key state tokens and use learnable positional embedding for the state and action tokens similar to
DT (Chen et al., 2021). The action decoder and key state decoder are both 2-layer MLPs. We use a coefficient A = 0.1 for
the auxiliary MSE loss. While any hidden layer can be utilized for key state predictions, we find the resulting performance
varies (some can lead to training instabilities) and only use the first hidden layer for all tasks (making it task-specific does
increase the performance, though). During training, for efficiency, we apply random masking to the action and state tokens
so that the key states tokens attend to a history of varied length (from the first step to some ¢ in the context history). At test
time, while the key state decoder is unused, the action predictor attends to all tokens in the past (including the key states
tokens) and the key state tokens (as is all-to-all) attend to all tokens up to the current time ¢t. We train CoTPC similar to the
DT baseline with a learning rate of 5¢ — 4 (with a short warm-up period and cosine decay schedule to be — 5) with the
Adam optimizer with a batch size of 256 for 1.8M iterations. We use a weight decay of 0.001.
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