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Abstract

Dataset distillation synthesizes compact datasets that retain
the training utility of much larger ones. While diffusion mod-
els are natural candidates for this task due to their generative
capabilities, there are few methods that adopt them in dataset
distillation compared to the matching-based approaches and
label-relaxation approaches. A key reason is the fundamental
mismatch between diffusion objectives and distillation goals:
diffusion models are trained to reconstruct high-fidelity data,
whereas distillation requires compressed, task-relevant repre-
sentations. We address this gap by proposing a reinforcement
learning (RL)-guided framework that steers diffusion mod-
els from reconstruction toward compression. By formulating
sampling as a decision process, we optimize the generative
trajectory using rewards derived from student model perfor-
mance. This enables the generation of synthetic samples that
maximize learning utility under strict compression budgets.
Unlike prior static modifications of the diffusion process,
our method dynamically adapts generation based on down-
stream outcomes. Experiments on standard benchmarks show
that our RL-guided diffusion approach consistently improves
both performance and efficiency, advancing the frontier of
generative dataset distillation. Our code will be available at
https://github.com/Galleriess/DiT\ GRPO

Introduction
Dataset distillation (Zhao, Mopuri, and Bilen 2021; Wang
et al. 2018; Cazenavette et al. 2022; Chen et al. 2025;
Kim et al. 2022; Cui et al. 2023; Gu et al. 2024) emerges
as a scalable alternative to coreset selection, with a crit-
ical shift in paradigm: instead of selecting a subset from
the original dataset, it aims to synthesize a small number
of synthetic samples that can train models to comparable
performance. This synthesis-oriented nature makes genera-
tive models, particularly diffusion models (Peebles and Xie
2023; Chen et al. 2025), natural candidates for distillation
backbones. Given their ability to model complex data distri-
butions and generate diverse samples, diffusion models ap-
pear well-suited to construct informative, compact datasets.
As visualized in Figure 1, this shift in objective—from faith-
fully reconstructing individual samples to selectively syn-
thesizing task-informative ones—calls for a fundamental re-
thinking of how diffusion models are employed in this con-
text.

However, despite the popularity of dataset distilla-
tion (Sachdeva and McAuley 2023; Lei and Tao 2024) and
the great success of diffusion models (Ho, Jain, and Abbeel
2020; Peebles and Xie 2023), their integration remains rare.
We identify a key reason behind this gap: a fundamental mis-
match in objectives. Diffusion models are trained to recon-
struct individual data samples with high fidelity by reversing
a noise corruption process. In contrast, dataset distillation is
inherently a compression task, aiming to concentrate task-
relevant information into a minimal number of synthetic in-
stances. As a result, the stronger a diffusion model becomes
at reconstructing original data, the less effective it is for gen-
erating compressed data optimized for downstream learning.

Existing dataset distillation methods primarily fall into
two families: (i) matching-based approaches that di-
rectly optimize synthetic samples to approximate gradi-
ents or training trajectories (Nguyen, Chen, and Lee 2021;
Cazenavette et al. 2022; Du et al. 2023; Du, Shi, and
Zhou 2023); and (ii) label-relaxation approaches such as
SRe2L (Yin, Xing, and Shen 2023), which guide learning
through softened targets. While both have achieved consid-
erable progress, they suffer from scalability and generaliza-
tion bottlenecks—either due to reliance on differentiable su-
pervision or overly rigid label semantics. These limitations
further motivate a flexible, model-driven distillation frame-
work, one that can generate rather than optimize, and adapt
based on downstream training outcomes.

To this end, we introduce Compression-Oriented Distil-
lation (COD), a novel framework that reformulates diffu-
sion sampling as a reinforcement learning (RL) (Guo et al.
2025; Ouyang et al. 2022; Fan et al. 2023; Black et al.
2024; Zhou et al. 2024) problem aimed at utility-aware data
compression. Instead of statically following the reverse de-
noising process, we learn a policy that dynamically controls
the generative trajectory to favor samples that are compact
yet highly effective for downstream training. By directly
optimizing this policy with task-driven reward signals, our
method moves beyond heuristic guidance and enables prin-
cipled generation of high-utility synthetic data under strict
budget constraints.

We instantiate this framework COD using Group Rel-
ative Policy Optimization (GRPO) (Guo et al. 2025), a
lightweight yet stable policy optimization method that
avoids explicit value estimation. To guide sample genera-
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Figure 1: Illustration of reconstruction-oriented vs.
compression-oriented distillation. Top: Existing diffusion-
based distillation reconstructs high-fidelity samples by
directly mapping a latent code z to individual data
points, optimizing for pixel-level realism. Bottom: Our
proposed Compression-Oriented Distillation introduces
reward-guided sampling, enabling z to dynamically steer
generation toward task-informative and compact representa-
tions, thereby capturing dense supervision with fewer sam-
ples.

tion, we design a reward function that combines two com-
plementary components: (1) an entropy-based signal (REnt)
that promotes informative samples by maximizing predic-
tive uncertainty (Paul, Ganguli, and Dziugaite 2021), and
(2) a diversity-aware penalty (RDiv) that discourages redun-
dancy by comparing with a memory bank of previously gen-
erated outputs. This reward-driven feedback loop steers the
diffusion model beyond pixel-level fidelity, enabling it to ex-
plore and exploit regions of the data space that are optimized
for learning efficiency (Black et al. 2024). Compared to
prior methods like Minimax Diffusion that statically reshape
sampling behavior, our approach offers dynamic, goal-aware
control over generative processes.

In summary, this paper presents the first comprehensive
study of reinforcement learning for controlling diffusion-
based dataset distillation. By reinterpreting generative mod-
eling as a compression-driven decision process, we bridge

the gap between reconstruction-centric generation and
training-centric distillation, setting the stage for a new class
of adaptive, goal-aware synthetic data pipelines. Our contri-
butions are summarized as follows:
• We identify a fundamental mismatch between diffusion

models and dataset distillation: diffusion prioritizes re-
construction, while distillation demands compression.
This insight explains the limited integration of the two
paradigms.

• We propose Compression-Oriented Distillation (COD),
a novel framework that formulates diffusion sampling as
a reinforcement learning process guided by downstream
utility.

• We instantiate COD using Group Relative Policy Op-
timization (GRPO) with a reward function combining
entropy-based informativeness and diversity-aware regu-
larization, enabling principled and adaptive sample gen-
eration.

Preliminaries
Problem Formulation: Dataset Distillation
Given a large-scale dataset T = {(xi, yi)}Ni=1, where xi ∈
Rd are data samples drawn i.i.d. from a natural distribution
D. We denote yi ∈ Y = {1, ..., C} to represent class labels.
Dataset distillation aims to construct a compact synthetic
dataset S = {(sj , ỹj)}Mj=1 with M ≪ N such that a model
trained solely on S performs comparably to one trained on
T (Wang et al. 2018; Cazenavette et al. 2022):

S∗ = arg min
S⊂Rd×Y

E(x,y)∼D [ℓ(fθS(x), y)] , (1)

where θS denotes the model parameters obtained by training
on S, and ℓ(·) is a task-specific loss function (e.g., cross-
entropy). Most existing dataset distillation methods fall into
two broad categories: matching-based approaches and label-
relaxation approaches.

Matching-based approaches optimize synthetic data by
aligning gradients or training trajectories between real and
synthetic datasets (Cazenavette et al. 2022; Du et al. 2023;
Cui et al. 2023; Zhao, Mopuri, and Bilen 2021). A common
objective is gradient matching (Zhao, Mopuri, and Bilen
2021):

min
S

∑
(sj ,ỹj)∈S

∥∇θℓ(fθ(sj), ỹj)−∇θℓ(fθ(xi), yi)∥2 , (2)

where the gradient computed on synthetic samples is forced
to approximate that from real data. Trajectory-based vari-
ants extend this idea across multiple steps of optimization.
While effective, such methods often require differentiability,
second-order gradients, and suffer from limited scalability
on larger datasets.

Label-relaxation approaches assign soft labels to syn-
thetic samples to improve generalization (Yin, Xing, and
Shen 2023; Shao et al. 2024; Sun et al. 2024). Instead of
using hard one-hot labels yj , each synthetic sample is paired
with a learnable probability vector ỹj ∈ ∆C−1:

min
S

∑
(sj ,ỹj)∈S

ℓ(fθ(sj), ỹj), (3)



where ỹj encodes label uncertainty or class similarity. While
this approach improves performances significantly, it re-
quires a pretained model to serve as the teacher model to
generate soft labels. Xiao and He (2024) reveals that remov-
ing the soft labels will cause dramatic performance drop in
Label-relaxation approaches.

Both paradigms rely on direct supervision over synthetic
instances. In contrast, our framework shifts the problem
toward a reward-driven generative formulation, using re-
inforcement learning to synthesize utility-optimized train-
ing data. Unlike coreset selection (Bachem, Lucic, and
Krause 2017; Chen, Welling, and Smola 2012; Har-Peled
and Kushal 2005; Sener and Savarese 2017; Tsang et al.
2005), dataset distillation synthesizes new data instances
rather than selecting from T . This makes generative mod-
els, in particular the diffusion models, a promising approach
for dataset distillation.

Diffusion Models for Generative Synthesis
Diffusion models (Ho, Jain, and Abbeel 2020; Peebles and
Xie 2023; Sun et al. 2025) generate data via a two-stage
process: a forward noising process and a reverse denoising
process. Let x0 ∼ D denote a real data sample; fθ denote
the denoising network f parameterized with θ. The forward
process gradually corrupts x0 with Gaussian noise, yielding
a sequence {xt}Tt=0. The reverse process then aims to iter-
atively reconstruct x0 from pure noise xT ∼ N (0, I), by
learning a parameterized denoising network fθ.

Given a discretized time schedule {ti}Ni=0, the sampling
trajectory starts from x0 ∼ N (0, b(tmax)

2I) and proceeds
via the following iterative update:

xi+1 := κixi + ηifθ(xi | ti) + ζiϵ̃i, (4)

where ϵ̃i ∼ N (0, I) is an optional sampling noise term
(present only in SDE-based solvers), and κi, ηi, and ζi are
time-dependent coefficients derived from the training-time
noise schedule.

This reverse process is fundamentally designed to re-
construct a high-fidelity individual instance from Gaussian
noise. The denoising network fθ is explicitly trained to re-
verse the corruption applied in the forward process, which
encourages the generation of samples that closely match the
data distribution in pixel space or feature space. As a result,
the learned generative trajectory is inherently biased toward
reproducing realistic and data-faithful samples—making it
highly suitable for reconstruction tasks, but potentially sub-
optimal for generating compressed or task-optimized repre-
sentations such as those needed in dataset distillation.

Method
The Reverse Process Performs Denoising, Not
Compression
The reverse diffusion process is inherently designed as a de-
noising mechanism (Ho, Jain, and Abbeel 2020), not a com-
pression pipeline. At each time step, the denoising network
fθ estimates either the original clean sample x0 or the noise
ϵ added during the forward process, conditioned on a noisy
input xt. This iterative reconstruction from Gaussian noise
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Figure 2: Impact of Diffusion Steps on Distillation Accu-
racy and FID. We vary the number of sampling steps in the
reverse diffusion process and observe a trade-off between
image fidelity and distillation performance. As the number
of steps increases, the Fréchet Inception Distance (FID) con-
sistently improves, indicating better reconstruction quality.
However, the distillation accuracy declines, confirming that
high-fidelity samples are not necessarily more informative
for downstream learning. This highlights a fundamental mis-
match between reconstruction and compression objectives in
diffusion-based distillation.

is shown in Equation 4, where the objective is to minimize
reconstruction error between predicted and true clean sam-
ples.

This training formulation encourages the model to re-
produce high-fidelity instances that resemble the original
dataset distribution. However, in dataset distillation, the ob-
jective shifts: instead of reproducing all modes of the data,
we seek to selectively generate samples that are maximally
informative for training under tight data budgets. As shown
in Figure 2, while the Fréchet Inception Distance (FID) im-
proves with more steps the classification performance of dis-
tilled datasets degrades. This confirms that better reconstruc-
tion does not equate to better compression, and high-fidelity
images are not necessarily information-dense for learning.

To address this mismatch, we aim to systematically bias
the reverse process away from denoising and toward com-
pression. The most direct solution appears to be modifying
the reverse process itself, which replaces the reconstruction-
oriented dynamics with a utility-driven sampling process
that prioritizes the generation of high-information-content
samples.

However, this direction faces several fundamental limita-
tions. First, shifting the diffusion objective toward compres-
sion would require defining or learning a new target distri-
bution S that represents the ideal distilled dataset distribu-
tion. We denote by S the empirical distribution formed by
all synthetic datasets produced by existing dataset distilla-
tion methods. Each method Ai generates a synthetic dataset



Si = Ai(T ), where T is the original training set. The distri-
bution S can thus be conceptualized as:

S = PA∼M [A(T )] , (5)

whereM is the space of known distillation algorithms (e.g.,
DM, MTT, SRe2L, IGD).

Attempting to train a diffusion model to approximate S
poses three major challenges. First, S is implicitly defined
and lacks a closed-form representation—sampling from
it requires exhaustively running and storing outputs from
many distillation pipelines. Second, synthetic datasets from
different methods are structurally inconsistent, often varying
in label granularity, resolution, or supervision format, mak-
ing them hard to unify under a coherent distribution. Third,
even if S were learnable, any generative model trained to
replicate it would be fundamentally limited by the diversity
and quality of the existing methods. That is, the best it can
do is imitate prior solutions, but never surpass them.

This motivates us to abandon the idea of statically fitting
a proxy to S and instead adopt a reward-driven sampling
mechanism that actively explores beyond it.

Reinforcement Learning for
Compression-Oriented Diffusion Sampling
To explore beyond the empirical limits of S, we propose
to steer the generative trajectory using reinforcement learn-
ing (RL). Rather than statically mimicking prior synthetic
datasets, our goal is to actively discover high-utility sam-
ples by assigning rewards to diffusion outcomes based on
their downstream training performance. This framing natu-
rally casts the sampling procedure as a sequential decision
process, where the reverse steps of the diffusion model form
a Markov chain governed by a policy πϕ.

The idea of prioritizing high-information-content samples
is inspired by the success of dataset pruning, which shows
that even within natural datasets, only a subset of examples
contributes meaningfully to generalization. This observation
implies that data samples are inherently unequal in the per-
spective of information.

Concretely, at each reverse timestep t, the policy πϕ(at |
xt) selects an action at—such as modifying the noise pre-
diction or controlling the denoising step size—based on the
current sample state xt. The final output x0 is evaluated via a
reward function R(x0) that reflects its utility for distillation.
This reward can be instantiated using downstream classifi-
cation accuracy, teacher-student agreement, or information-
theoretic proxies such as entropy or mutual information. The
policy is then optimized to maximize expected reward:

max
ϕ

,Ex0∼πϕ [R(x0)] . (6)

This formulation transforms the role of the diffusion
model from a passive denoiser into an active sampler that
learns to navigate toward information-rich regions of the
data space. Unlike traditional guidance strategies, which rely
on heuristics or task-agnostic priors (e.g., classifier gradients
or class embeddings), our RL-based controller can be trained
end-to-end to align sample generation directly with dataset
distillation objectives.

In doing so, we depart from the conventional recon-
struction pipeline and reframe dataset distillation as a
compression-driven search problem over the generative tra-
jectory space. This dynamic mechanism allows us not only
to circumvent the ill-posed nature of S but also to transcend
the limitations of existing synthetic datasets by continuously
refining the sampling policy in response to feedback from
training performance.

Instantiating RL-Based Sampling with GRPO and
Entropy Rewards
To realize the RL formulation described above, we adopt
Group Relative Policy Optimization (GRPO) as our policy
learning algorithm. While standard reinforcement learning
methods such as PPO (Schulman et al. 2017) offer stable
policy improvement, they rely heavily on value function es-
timation and surrogate clipping objectives, which are costly
and unstable in our context. Diffusion-based sampling is in-
herently high-dimensional and slow, and accurate value esti-
mation across diverse generative trajectories is impractical.

GRPO circumvents these issues by discarding value es-
timation altogether. Instead of modeling long-term returns,
GRPO computes relative advantages within a group of sam-
pled actions. Specifically, for each reverse step state xt,
we sample a group of candidate actions {a(i)t }Gi=1, generate
corresponding samples {x(i)

0 }, and compute their rewards
{ri = R(x

(i)
0 )}. We then normalize the rewards using z-

score normalization to obtain relative advantages:

r̄i =
ri −mean(r)

std(r)
, (7)

where r = {r1, . . . , rG} is the reward vector within the
group. The policy πϕ is updated to increase the probability
of actions with higher r̄i, encouraging exploration of trajec-
tories that outperform their peers without needing explicit
value estimation.

REnt(x0) = H(fθ(x0)) = −
C∑

c=1

pc log pc, (8)

where pc denotes the softmax probability assigned to class
c by the model pretrained on original dataset. High entropy
indicates model uncertainty and implies that the sample x0

lies near the decision boundary—thus being more informa-
tive for training. Unlike label-matching losses, entropy re-
wards are task-agnostic, differentiable, and directly aligned
with the goal of generating useful training signals.

While entropy-based rewards encourage the generation of
uncertain and potentially informative samples, optimizing
solely for entropy may lead to mode collapse—the repeated
synthesis of ambiguous yet similar examples. To mitigate
this, we introduce a diversity reward that explicitly penal-
izes redundancy among generated samples.

We maintain a memory bank B that stores the embeddings
or output logits of previously generated synthetic samples.
The details to implement the memory bank is clearly stated
in the experiment section. For each new candidate x0, we
compute its similarity to the most similar entry in the bank



Algorithm 1: Compression-Oriented Diffusion for Dataset
Distillation
Require: Pretrained diffusion model fθ, pretrained evalua-

tion network hpt, policy πφ, memory bank B, group size
G, reward weight λ

1: for each RL iteration do
2: Sample G initial noise vectors {x(i)

T }Gi=1 ∼ N (0, I)

3: for each x
(i)
T do

4: Sample actions {a(i)t } from πφ(at | x(i)
t ) at each

timestep
5: Generate sample x

(i)
0 via controlled reverse diffu-

sion trajectory
6: Compute entropy reward:

REnt(x
(i)
0 ) = −

C∑
c=1

pc log pc where p = hpt(x
(i)
0 )

7: Compute diversity penalty:

RDiv(x
(i)
0 ) = −λ ·max

x′∈B
sim(x

(i)
0 , x′)

8: Total reward: R(i) = REnt(x
(i)
0 ) +RDiv(x

(i)
0 )

9: end for
10: Normalize rewards: R̄(i) = R(i)−mean(R)

std(R)

11: Update policy πφ using GRPO with R̄(i)

12: Update memory bank: B ← B ∪ {x(i)
0 }Gi=1

13: end for

and apply a penalty accordingly. The final reward function
becomes:

R(x0) = REnt(x0) +RDiv(x0), where (9)

RDiv(x0) = −λ ·max
x′∈B

sim(x0, x
′). (10)

where sim(x0, x
′) measures the similarity between x0 and a

stored sample x′ using cosine similarity. REnt(x0) is defined
in Equation 8.The hyperparameter λ > 0 controls the trade-
off between uncertainty and novelty.

This diversity-aware reward encourages the sampling pol-
icy to explore broader, less redundant regions of the gen-
erative space—promoting sample diversity without sacrific-
ing informativeness. Empirically, we find that combining en-
tropy and diversity signals leads to synthetic datasets that are
both challenging and complementary, resulting in stronger
downstream performance.

Altogether, our instantiation combines (1) a policy op-
timization algorithm (GRPO), (2) an information-theoretic
reward signal (entropy), and (3) a diversity-aware constraint
(memory bank filtering). These design choices strike a bal-
ance between sample informativeness and diversity—two
pillars of effective dataset distillation.

Experiments
Experimental Setup
Datasets and baselines. We evaluate our method on three
benchmark datasets with increasing resolution and complex-

ity: ImageNet-1K (224×224) and two wellknown subsets
of ImageNet (Russakovsky et al. 2015): ImageNette, Im-
ageWoof. For large-scale evaluation, we follow common
practice and report top-1 classification accuracy under vary-
ing image-per-class (IPC) settings (e.g., 10, 50, 100). We
compare with representative baselines including pixel-level
methods (DM (Zhao and Bilen 2023), IDC-1 (Kim et al.
2022)), generative methods (DiT (Peebles and Xie 2023)),
and fine-tuned diffusion (Minimax (Gu et al. 2024)). Ran-
dom and Full serve as lower and upper bounds respectively.
We also compare with label-relaxation methods including
Sre2L (Yin, Xing, and Shen 2023) and G-VBSM (Shao et al.
2024).

Evaluation protocol. Following prior work, we train stan-
dard ConvNet or ResNet architectures on the synthetic
datasets for 50 to 200 epochs, depending on resolution, us-
ing SGD or Adam optimizers. We adopt consistent training
schedules across baselines for fair comparison. Unless oth-
erwise stated, evaluation is performed on the same test sets
as the original datasets. For ImageNet-1K, pretrained clas-
sifiers are also used for reward calculation but not for fi-
nal evaluation. While SRe2L (Yin, Xing, and Shen 2023)
adopts an evaluation protocol using soft labels to have better
performance, we only adopt this protocol for ImageNet-1K
experiments; all subset results are reported under standard
hard-label evaluation for comparability.

Diffusion backbone. We adopt latent DiT (Peebles and
Xie 2023) as our diffusion backbone, using a pretrained VAE
encoder-decoder to map between image and latent space.
All experiments use DDIM (Song, Meng, and Ermon 2022)
sampling with 50 steps. The policy network πφ operates over
the noise prediction module of the reverse process and is
trained using GRPO. For reward computation, we use a pre-
trained ImageNet-1K classifier fpt to evaluate entropy.

Memory Bank Implementation. To support the
diversity-aware reward Rdiv, we maintain a dynamic
memory bank that stores previously generated synthetic
samples. At the beginning of policy training, the memory
bank is cold-started by populating it with a fixed number
of synthetic samples generated unconditionally from the
pretrained diffusion model. The total number of stored
samples is set equal to the target dataset size to avoid
memory growth.

During training, each newly generated sample is com-
pared against existing entries in the memory bank. If a sam-
ple is found to be highly similar to any stored instance (based
on cosine similarity in a pretrained feature space), it is dis-
carded from reward calculation and excluded from mem-
ory bank updates. Otherwise, the sample is appended to the
memory bank, and the most similar existing item is removed
to maintain a fixed memory size. This design ensures contin-
ual refresh of diverse representations without allowing the
memory bank to grow, enabling efficient and scalable diver-
sity estimation.

Training details. All experiments are conducted on a sin-
gle NVIDIA RTX 4090 GPU. Each GRPO update uses
group size G = 4, and the memory bank retains up to 512



embeddings per class. We adopt cosine annealing for the
policy learning rate and freeze the pretrained diffusion and
classifier networks throughout the process. Further details
(e.g., entropy temperature, policy depth) are detailed in Ap-
pendix A.

Experimental Results
Main Results on ImageNet. We report the top-1 classifi-
cation accuracy on Nette and Woof subsets under varying
architectures (ConvNet-6, ResNetAP-10, ResNet-18) (He
et al. 2016) and image-per-class (IPC) budgets (10, 50, 100).
The results are demonstrated in Table 1. COD achieves con-
sistent improvements over prior diffusion-based methods
(DM (Zhao and Bilen 2023), DiT (Peebles and Xie 2023))
and optimization-based methods (IDC-1 (Kim et al. 2022)),
especially under low-data regimes such as IPC=10. Com-
pared to the strongest baseline, Minimax, our method ex-
hibits competitive performance across nearly all settings.
However, the performance gap between COD and Minimax
remains small. This is expected, as both approaches share a
similar underlying philosophy: Minimax explicitly modifies
the denoising network during training to favor discrimina-
tive gradients, while COD fine-tunes the sampling trajectory
via reinforcement learning. Despite differing in implementa-
tion (training vs. inference), both methods achieve compara-
ble expressivity in guiding generation away from pixel-level
fidelity and toward task-relevant content.

We report top-1 accuracy on ImageNet-1K with IPC
= 10 and 50 in Table 2. COD achieves the highest ac-
curacy at IPC = 50, surpassing both optimization-based
(SRe²L (Yin, Xing, and Shen 2023), G-VBSM (Shao et al.
2024), RDED (Sun et al. 2024)) and generative (DiT (Pee-
bles and Xie 2023), Minimax (Gu et al. 2024)) methods.
The consistent improvement demonstrates the effectiveness
of our reward-driven policy in scaling to large-scale distilla-
tion.

Trade-off Between Accuracy and Fidelity. We investi-
gate how the number of reverse diffusion steps affects the
trade-off between sample fidelity and distillation perfor-
mance. As shown in Figure 2, increasing steps leads to lower
Fréchet Inception Distance (FID), indicating improved vi-
sual quality. However, distillation accuracy peaks at 75 steps
and declines thereafter. This confirms a key insight: higher-
fidelity samples are not necessarily more informative for
training, and optimizing for visual realism can hurt task-
specific compression.

Reward Dynamics Analysis. To understand how our re-
ward function evolves during training, we track the total re-
ward and its two components (Rent, Rdiv) across policy up-
dates. As shown in Figure 3, the total reward increases con-
sistently, indicating effective policy learning. The informa-
tiveness term Rent rises rapidly in early stages and then satu-
rates, reflecting that informative sample selection is quickly
optimized. In contrast, the diversity term Rdiv grows more
gradually, highlighting a shift in focus from informativeness
to diversity as training progresses. This dynamic illustrates
the complementary nature of the reward design, encouraging
both discriminative and varied sample generation over time.
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Figure 3: Reward components over training steps. The
total reward (blue) increases steadily throughout training,
driven by the entropy-based component Rent (red) and the
diversity-based penalty Rdiv (yellow). Notably, Rent satu-
rates early, while Rdiv continues to rise, indicating a shift
in policy focus from informativeness to sample diversity as
training progresses.

Additional Results in Supplementary. Due to space con-
straints, we include several extended experiments in the sup-
plementary material. These include (1) cross-architecture
evaluation on ImageNet-1K, which demonstrates the robust-
ness of our method across different backbone networks; (2)
an ablation study isolating the effects of the entropy-based
reward (Rent) and the diversity-based reward (Rdiv), showing
that both components contribute positively to performance,
though their combination yields diminishing returns due to
partial redundancy; and (3) visualizations of generated sam-
ples that qualitatively reflect the trade-off between fidelity
and informativeness. All code and implementation details
are also provided in the supplement for reproducibility.

Discussion
This work takes a first step toward bridging generative mod-
eling and dataset distillation by introducing a reward-driven
formulation over the diffusion sampling process. While prior
approaches often rely on handcrafted objectives or direct
optimization of synthetic data, our method shows that re-
inforcement learning can provide a principled and flexible
mechanism for exploring informative regions of the sample
space.

Limitations. However, our framework also presents sev-
eral limitations. First, incorporating reinforcement learn-
ing—though conceptually appealing—introduces training
instability. Although GRPO offers a lightweight and
gradient-regularized alternative to value-based methods, it
still requires careful tuning of sampling frequency, reward
scaling, and update schedules to achieve consistent conver-
gence. Second, while our policy successfully shifts the gen-
erative behavior from reconstruction toward compression, it
does so by modifying the sampling trajectory rather than the
underlying diffusion model itself. The denoising backbone



Table 1: Comparison of distillation performance across multiple methods, architectures, and datasets. We report top-1
classification accuracy (%) on Nette and Woof subsets of the ImageNet-1K dataset under varying architectures (ConvNet-6,
ResNetAP-10, ResNet-18) and image-per-class (IPC) budgets (10, 50, 100). COD (Ours) consistently achieves competitive or
superior performance across settings, particularly under low IPC (e.g., 10), demonstrating its advantage in generating informa-
tive and compressed synthetic datasets. Full denotes training on the complete original dataset and serves as an upper bound.

Subset Nette Woof
Architecture ConvNet-6 ResNetAP-10 ResNet-18 ConvNet-6 ResNetAP-10 ResNet-18

IPC 10 50 100 10 50 100 10 50 100 10 50 100 10 50 100 10 50 100

Random 46.0
±0.5

71.8
±1.2

79.9
±0.8

54.2
±1.2

77.3
±1.0

81.1
±0.6

55.8
±1.0

75.8
±1.1

82.0
±0.4

24.3
±1.1

41.3
±0.6

52.2
±0.4

29.4
±0.8

47.2
±1.3

59.2
±0.9

27.7
±0.9

47.9
±1.8

61.5
±1.3

DM 49.8
±1.1

70.3
±0.8

78.5
±0.8

60.2
±0.7

76.7
±1.0

80.9
±0.7

60.9
±0.7

75.0
±1.0

81.5
±0.4

26.9
±1.2

43.8
±1.1

50.1
±0.9

29.8
±1.0

47.1
±1.1

56.4
±0.8

30.2
±0.6

46.2
±0.6

60.2
±1.0

IDC-1 48.2
±1.2

72.4
±0.7

80.6
±1.1

60.4
±0.6

77.4
±0.7

81.5
±1.2

61.0
±0.8

77.8
±0.7

81.7
±0.8

33.3
±1.1

42.6
±0.9

51.0
±1.1

38.5
±0.7

48.3
±1.0

56.1
±0.9

36.7
±0.8

48.3
±0.8

57.7
±0.8

DiT 56.2
±1.3

73.3
±0.9

78.2
±0.3

62.8
±0.8

76.9
±0.5

80.1
±1.1

62.5
±0.9

75.2
±0.9

77.8
±0.6

32.3
±0.8

46.5
±0.8

53.4
±0.3

34.7
±0.5

49.3
±0.2

58.3
±0.8

34.7
±0.4

50.1
±0.5

58.9
±1.3

Minimax 58.2
±0.9

76.6
±0.2

81.1
±0.3

63.2
±1.0

78.2
±0.7

81.3
±0.9

64.9
±0.6

78.1
±0.6

81.3
±0.7

33.5
±1.4

50.7
±1.8

57.1
±1.9

39.2
±1.3

56.3
±1.0

64.5
±0.2

37.6
±0.9

57.1
±0.6

65.7
±0.4

COD (Ours) 59.2
±0.9

74.8
±0.5

78.8
±1.6

62.6
±0.3

78.2
±0.8

81.0
±1.0

63.8
±1.2

78.0
±0.9

81.6
±1.3

36.0
±0.9

47.8
±0.8

55.2
±1.5

41.6
±1.3

58.2
±0.8

65.6
±0.6

44.0
±1.8

59.2
±1.0

65.4
±0.9

Full 94.3
±0.5

94.3
±0.5

94.3
±0.5

94.6
±0.5

94.6
±0.5

94.6
±0.5

95.3
±0.6

95.3
±0.6

95.3
±0.6

85.9
±0.4

85.9
±0.4

85.9
±0.4

87.2
±0.6

87.2
±0.6

87.2
±0.6

89.0
±0.6

89.0
±0.6

89.0
±0.6

Table 2: Top-1 accuracy (%) on ImageNet-1K under different distillation methods with IPC = 10 and 50. COD achieves the
highest accuracy when IPC=50, outperforming optimization-based (SRe2L, G-VBSM, RDED) and generative (DiT, Minimax)
baselines. This demonstrates the effectiveness of reward-driven sampling in scaling dataset distillation to challenging large-
scale benchmarks.

Dataset IPC SRe2L G-VBSM RDED DiT Minimax COD

ImageNet-1K 10 21.3
±0.6

31.4
±0.5

42.0
±0.1

39.6
±0.4

44.3
±0.5

44.0
±0.6

50 46.8
±0.2

51.8
±0.4

56.5
±0.1

52.9
±0.6

58.6
±0.3

59.4
±0.4

remains trained to match the natural data distribution, and
therefore retains an inherent bias toward data fidelity. As a
result, the full potential of compression-oriented generation
is still constrained by the original training objective of the
generative model.

These limitations point to promising future directions,
such as integrating downstream utility signals into the train-
ing of the generative model itself, or developing more sta-
ble and expressive learning frameworks beyond policy opti-
mization to further improve the quality and utility of distilled
samples.

Future Work. More broadly, we view Compression-
Oriented Distillation as a paradigm shift for the dataset dis-
tillation community. Rather than treating generative mod-
els as static decoders of the original dataset, we advocate
for a dynamic, policy-guided generation process in which
synthetic data is optimized for task-spewcific utility. Our
framework—based on reinforcement learning and built upon
a transformer-based diffusion backbone—demonstrates that
modern generative architectures can be harnessed not just
for realism, but for strategic, goal-aware data construction.

We believe this direction opens up a rich avenue for fu-

ture research: leveraging increasingly powerful generative
models, especially diffusion and transformer-based architec-
tures, not merely as sample generators, but as active agents
in data compression, selection, and synthesis. As foundation
models continue to scale in capacity and generality, cou-
pling them with task-aware decision-making mechanisms
may fundamentally redefine how we construct and optimize
training datasets across domains.

Conclusion
We introduced Compression-Oriented Distillation (COD),
a reinforcement learning framework that guides diffusion
models to generate informative and compact synthetic data
for dataset distillation. By shifting the objective from recon-
struction to compression, our method departs from static de-
noising and instead learns a dynamic sampling policy opti-
mized for downstream utility. Through entropy-driven and
diversity-driven rewards, our approach enables principled
control over generative trajectories without modifying the
diffusion training objective. This work bridges generative
modeling and data distillation, paving the way for future re-
search that further integrates task-aware objectives with ad-
vanced generative architectures.
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