
MaintainCoder: Maintainable Code Generation
Under Dynamic Requirements

Zhengren Wang†1,3, Rui Ling†1, Chufan Wang†1, Yongan Yu†2

Sizhe Wang1, Zhiyu Li∗3, Feiyu Xiong3, Wentao Zhang∗1
1Center for Data Science, Peking University 2McGill University

3Center for LLM, Institute for Advanced Algorithms Research, Shanghai
wzr@stu.pku.edu.cn, {lizy,xiongfy}@iaar.ac.cn, wentao.zhang@pku.edu.cn

Abstract

Modern code generation has made significant strides in functional correctness
and execution efficiency. However, these systems often overlook a critical dimen-
sion in real-world software development: maintainability. To handle dynamic
requirements with minimal rework, we propose MaintainCoder as a pioneering
solution. It integrates the Waterfall model, design patterns, and multi-agent col-
laboration to systematically enhance cohesion, reduce coupling, achieving clear
responsibility boundaries and better maintainability. We also introduce Maintain-
Bench, a benchmark comprising requirement changes and novel dynamic metrics
on maintenance efforts. Experiments demonstrate that existing code generation
methods struggle to meet maintainability standards when requirements evolve.
In contrast, MaintainCoder improves dynamic maintainability metrics by more
than 60% with even higher correctness of initial codes. Furthermore, while static
metrics fail to accurately reflect maintainability and even contradict each other,
our proposed dynamic metrics exhibit high consistency. Our work not only pro-
vides the foundation for maintainable code generation, but also highlights the
need for more realistic and comprehensive code generation research. Resources:
https://github.com/IAAR-Shanghai/MaintainCoder.

1 Introduction

“The Only Constant in Life is Change.” — Heraclitus

The advent of large language models (LLMs) has revolutionized code generation [20, 44, 11], with
modern tools like GitHub Copilot and ChatGPT demonstrating remarkable capabilities in synthesizing
functionally correct code. Benchmarks like HumanEval [7], MBPP [28], and SWE-Bench [21] have
driven these advancements by measuring correctness through static test cases. However, this narrow
focus overlooks a critical dimension of real-world software engineering: maintainability—the ability
to adapt code to evolving requirements with minimal rework.

Maintainability Crisis Heraclitus’ philosophy, "The only constant in life is change," reflects a truth
painfully evident in software evolution: as user needs evolve, markets shift, and technologies advance,
software undergo perpetual changes. This oversight on maintainability leads to the dangerous
reality—code that works today but becomes prohibitively expensive to adapt tomorrow [6]. For
instance, the collapse of Knight Capital exemplifies this crisis—$440 million lost in minutes due to

† Equal contribution; ∗ Corresponding author.
The first author completed this work during an internship at IAAR.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/IAAR-Shanghai/MaintainCoder

unmaintained legacy code [33]; the $100 billion remediation cost for Year 2000 Problem revealed how
short-sighted design decisions create exponential future costs [31]. Industry studies also quantifies
the severity: 60–80% of software lifecycle costs stem from post-deployment maintenance [29, 4],
due to structural deficiencies like high coupling and low cohesion that amplify rework effort. Another
example is online multi-round code generation. Due to ambiguous specifications and human-AI
communication barriers, the initial codes usually deviate from final requirements, while subsequent
refinements either are prone to errors or inadvertently discard previously satisfied requirements [27].

Motivation Despite taking up the lion’s share of software development resources, maintenance is
the least studied phase of software development [35, 9]. Although recent benchmarks have expanded
evaluations to diverse dimensions like readability and efficiency [43, 18], yet retain static test cases.
The static test cases fails to capture the iterative nature of software evolution, and are ill-suited for
maintainability evaluation. Moreover, traditional software metrics like cyclomatic complexity and
maintainability index, still remain limited to static code analysis, failing to capture the dynamic
scenarios. Meanwhile, code generation systems—from foundation models like CodeLLaMA [32]
to multi-agent frameworks like SWE-agent [41]—just optimize for task completion but neglect
structural qualities critical for maintainability. Therefore, fundamental gaps or challenges persist: (1)
No benchmark quantifies maintainability under requirement evolution cycles; (2) No method system-
atically applies software engineering principles (e.g., design patterns) to enhance maintainability; (3)
No discussion on the interaction between correctness and maintainability.

In contrast to naive implementation, structured approaches like the Waterfall model and design
patterns are proven to be effective to improve maintainability during decades. For example, Dong
et al. [10] confirms the benefits of the waterfall model in initial code generation, with 29.9–47.1%
relative improvement on correctness; Hegedűs et al. [13] reveals a very high Pearson correlation of
0.89 between design patterns and software maintainability, via the analysis of more than 300 revisions
of JHotDraw system. Given these challenges and opportunities, we propose MaintainBench and
MaintainCoder as a paradigm shift toward maintainable code generation, bridging the gap between
static correctness and dynamic maintainability.

Contributions Our main contributions are threefold:

• Dynamic Benchmark: We introduce MaintainBench, the first benchmark assessing code
maintainability through requirement evolution cycles. Constructed through systematic exten-
sion of well-established benchmarks (HumanEval, MBPP, APPS, CodeContest, xCodeEval),
it incorporates diverse requirement changes with expert-curated test cases. Novel metrics
quantify modification efforts and structural adaptability dynamically.

• Systematic Generation: We introduce MaintainCoder as a pioneering solution. It integrates
the waterfall model with multi-agent collaboration and classical design patterns. Specialized
agents conduct requirements analysis, modular decomposition, and pattern application to
enforce high cohesion, low coupling, single responsibility, and maintainability.

• Empirical Insights: Extensive experiments reveal that (1) Previous methods suffer from
significant maintainability degradation under dynamic requirements (low pass rates and
high code changes), even for multi-agent systems such as AgentCoder and MapCoder. (2)
MaintainCoder not only improves maintainability metrics by up to +60%, but also enhances
the correctness of initial codes robustly. (3) Static metrics not only fail to accurately reflect
maintenance efforts, but also exhibit contradictory trends among different metrics. In
contrast, the dynamic metrics proposed by MaintainBench are more effective and consistent.

2 Related Work

Code Generation Benchmarks Existing research on code generation has been propelled by
benchmarks emphasizing functional correctness. Pioneering works span multiple levels of complexity:
function-level tasks, such as HumanEval [8] and MBPP [3]; competition-level problems, as addressed
by APPS [14] and CodeContests [23]; and repository-scale challenges tackled by SWE-Bench [21]
and RepoBench [25]. Despite these advancements, these benchmarks predominantly use static test
cases measuring correctness through execution pass rates. Although recent efforts, such as RACE [43]
and EffiBench [18], have expanded the evaluation to include readability and efficiency, yet remain

2

constrained by static evaluation, failing to capture the dynamic nature of software development.
Even SWE-Bench, which evaluates dynamic problem-solving via GitHub issue resolution, focuses
on challenging task completion capabilities rather than assessing code maintainability itself—i.e.,
generating inherently maintainable code from the outset. MaintainBench bridges this critical gap with
metricization of code maintainability through requirement evolution cycles, where 80% of software
costs occur in real-world applications [29, 4, 5].

Code Generation Systems Modern code generation systems have evolved from three key aspects:
foundation models, instruction-tuned variants, and multi-agent frameworks. Foundation models
such as AlphaCode [23] and CodeLLaMA [32], established fundamental code synthesis capabilities
through large-scale pretraining on code corpora. Building on these foundations, instruction-tuned
variants like WizardCoder [26] and Magicoder [38] improved context understanding through data
distillation and complex instruction augmentation. The frontier now shifts to multi-agent frameworks:
MetaGPT [15] and ChatDev [30] employ standardized outputs to coordinate multiple agents, while
SWE-agent [41] and OpenDevin [37] focus on repository-level task decomposition. AgentCoder [17]
and MapCoder [19] introduce specialized testing agents and retrieval process respectively. EvoMAC
[16] proposes self-evolving multi-agent collaboration networks to optimize code through multiple
iterations. However, all of them overlook maintainability, and are prone to generate brittle code that
is difficult to maintain. MaintainCoder bridges this gap by integrating principles like the waterfall
model and classical design patterns.

3 Method

3.1 Problem Formulation

Task Definition Previous code generators optimize for immediate correctness but neglect software
engineering’s long-term challenge: evolving problem series {P0,P1, ...,Pn} drive iterative code
adaptations {C0,C1, ...,Cn}, which incurs maintenance cost M(Ci → Ci+1). Current approaches
treat each Pi independently, and ignore structural deficiencies that accrue technical debt. We
investigate code generator G producing C0 = G(P0) with both high correctness and maintainability.

Maintainability Measurement Previous works measure maintainability through static analysis
indexes, such as Halstead volume [12], cyclomatic complexity or maintainability index. However,
the ultimate goal of maintainability is to reduce maintenance efforts. We thus formalize dynamic
maintainability through cumulative maintenance efforts with discount factor γ.

M(C0) = E

[
n−1∑
i=0

γiM(Ci → Ci+1)

]
Given maintainability’s intrinsic nature, we posit that limited probing can substitute unlimited
requirement evolution simulations. We employ Monte Carlo estimation and first-order truncation as
the proxy to address infinite expectation horizons and persistent requirement changes, which reduces
both computational cost and estimation variance, yielding M̂(C0) ≈ 1

N

∑N
j=1 M(C0 → C1).

3.2 MaintainBench: A Dynamic Benchmark for Code Maintainability

In this section, we introduce MaintainBench, a novel benchmark designed to evaluate code maintain-
ability in response to evolving software requirements. Unlike traditional code generation benchmarks
that focus solely on correctness, MaintainBench evaluates how effectively models can adapt existing
code to meet changing requirements. MaintainBench consists of five carefully curated datasets:
HumanEval-Dyn, MBPP-Dyn, APPS-Dyn, CodeContests-Dyn, and xCodeEval-Dyn, comprising
over 500 Python programming data of diverse difficulty levels. Each extends established benchmarks
with systematic requirement changes. The overview of construction process is shown in Fig. 1.

3.2.1 Data Selection and Preprocessing

MaintainBench comprises code samples of varying difficulty levels, roughly entry-level, mixture-
level, and competition-level. Specifically, it extends five widely-used code generation benchmarks:
HumanEval [7], MBPP [28], APPS [14], xCodeEval [22], and CodeContests [23].

3

Requirement Change Generation Solution-Test Co-evolution Final Output

LLMs

You are given an array of n
positive integers a_1, a_2, …, a_n.
Your task is to calculate the num
-ber of arrays of n integers b_1,
b_2, …, b_n, such that:
 * 1 ≤ b_i ≤ a_i (1 ≤ i ≤ n)
 * b_i ≠ b_{i+1} (1 ≤ i ≤ n - 1).
The number of such arrays can
be very large, so print it modulo
998 244 353.

Original Problem

Original
Solution

Original
Test Cases

A store has m product categories.
The Kth category contains n_k
products and the maximum inven-
tory of each product is a_{k, i}
Compute the total number of valid
inventory arrangements b_{k,i}
across all categories, such that:
* 1 ≤ b_{k, i} ≤ a_k (1 ≤ i ≤ n_k)
* b_{k, i} ≠ b_{k,i+1} (1 ≤ i ≤ n_k-1)
 ... modulo 998 244 353.

 New Problem- �풆��

New
Solution

New
 Test Cases

�풆�� �풊��
�풅�� �풆��

 Requirement change patterns

�풊�� �풅�� �풆��

Failed
Manually

Check

New
 Test Cases

New
Solution

Executor

<\>

New
Problem

Passed

 MaintainBench

Refined New
Problem, Solution,

Test Cases

...

Data preprocessing

Data collection

Standardize format

Problem Check
Optimal

Final Check

Entry Mixtured Competition

Figure 1: The systematic construction of MaintainBench. 1) Data preprocessing selects and curates
problems from existing benchmarks into entry-level, mixture-level, and competition-level difficulties.
2) Requirement change generation applies four systematic patterns (functional extensions, interface
modifications, data structure transformations, and error handling enhancements) to create evolved
problem variants. 3) Solution-test co-evolution refines solutions and test cases together through
iterative execution and refinement. 4) Quality check employs both automated test and multi-stage
expert review to ensure reliability, correctness, and alignment with intended requirement changes.

Entry Level For entry-level difficulty, we select problems from the HumanEval and MBPP datasets,
which are designed to be solvable by newbie programmers. These datasets are widely used to
evaluate the code generation capabilities of LLMs, covering topics such as language comprehension,
algorithms, basic mathematics, programming fundamentals, and standard library functionality. Each
problem includes a task description, a reference solution, and a set of automated test cases. We sample
30 problems from each dataset randomly, and extend them to 120 new problems by systematically
modifying their requirements.

Mixture Level For mixture-level difficulty, we extend the APPS dataset, which contains problems
from introductory to collegiate competition levels. For example, problems from Kattis1 with difficulty
<3 are introductory, 3–5 are interview-level, and >5 are competition-level. We start with a random
subset of 50 problems and expand them to over 200 new problems. We standardize the dataset by
converting original solutions to functional form and test cases to Python assertions. E.g., to avoid the
keyboard input, we utilize GPT-4o to generate functional implementations with manual review.

Competition Level The competition-level dataset includes problems from CodeContests and
xCodeEval. CodeContests focuses on competitive programming tasks, while xCodeEval provides
a large-scale executable dataset with varying levels of difficulty. To distinguish this level from
entry-level and mixture-level tasks, we select 30 high-difficulty problems from each dataset and
extend them to over 120 new problems. As with the mixture-level dataset, we standardize the data
format using LLM-generated solutions, followed by manual verification to ensure correctness.

3.2.2 Extended Data Generation

Building on our preprocessed datasets, the core innovation of MaintainBench is the systematic
application of four requirement change patterns, formalized as:

P1,S
′
1,T

′
1 = Modify(P0,S0,T0,πi), ∀πi ∈ ΠB

P1,S1,T1 = Refine(P1,S
′
1,T

′
1)

where P0, S0, and T0, represent the original problem, reference solution, and test cases, respectively.
The Modify(P0,S0,T0,πi) applies one of four requirements change patterns πi from our pattern set:

ΠB = {πext,πint,πdst,πerr}

, and generates an initial extended versions. This transformation process is designed to simulate
realistic software evolution scenarios where developers must modify existing code to accommodate

https://open.kattis.com/

4

changing requirements rather than implementing solutions from scratch. The refinement process
co-evolves both new solution S1 and test cases T1 with automatic evaluation and manual curation
loops, ultimately yielding the final reference solution and test cases for the modified requirement πi.

Requirement Change Generation According to the ISO/IEC/IEEE 14764:2022 specification [34],
software maintenance can be roughly classified into four types: corrective maintenance, preventive
maintenance, adaptive maintenance, perfective maintenance, where the latter two categories comprise
about 80 percent of software maintenance [36]. Hence, we craft four distinct requirement change
patterns to capture different software evolution scenarios:

• Functional Extensions[πext]: Functional extensions increase complexity by introducing
realistic additional requirements while preserving the relevance with the original problem.
Effective solutions must both comprehend the original code and appropriately extend
its problem-solving capabilities. For example, the extended problem should involve self-
invoking [42], i.e. calls to the existing functions, modeling the interactions between functions
or classes. Functional extensions cover both adaptive and perfective maintenance.

• Interface Modifications[πint]: Interface modifications further enhance the diversity of gen-
erated problems, and examine the adaptability of original solutions in protocol dimension.
E.g., the API changes caused by the update of the external dependency library. The modified
problem remains closely related to the original, but introduces changes to input parame-
ters, return types, or other interface components to assess the robustness and flexibility of
solutions. Interface modifications correspond to adaptive maintenance.

• Data Structure Transformations[πdst]: Data structure transformations require the generated
problem to adopt different data structures where the description explicitly specifies the
modifications of the data representation. This transformation mimics real-world scenarios
in which software systems evolve to accommodate efficiency, scalability, or compatibility
constraints. Data structure transformations primarily align with perfective maintenance.

• Error Handling Enhancements[πerr]: Error handling enhancements explicitly intro-
duce required error-handling mechanisms, which capture specific error types such as
ZeroDivisionError, IndexError, and other problem-specific exceptions. The en-
hanced new problem better reflects the fundamental aspect of reliability and maintainability.
Error handling enhancements encompass corrective, preventive, and perfective maintenance.

Solution-Test Co-evolution We utilize GPT-4o to generate initial versions of each transformation,
including preliminary solution S′

1 and test cases T ′
1, followed by an iterative refinement process as

validation. That is, we execute S′
1 against T ′

1 using a Python interpreter to assess correctness. For
any failing tests, we conduct manual expert reviews to diagnose and resolve issues in both the solution
and test cases, refining S′

1 into S1 and T ′
1 into T1. If discrepancies persist, the execution-review cycle

is repeated until all test cases pass successfully.

More details on solution-test co-evolution and quality check are left in Appendix B for space reason.

3.3 MaintainCoder: A Multi-Agent System for Maintainable Code Generation

As shown in Fig. 2, MaintainCoder delivers highly maintainable codes via a novel multi-agent system
that mirrors the human software development lifecycle. It designs an orchestrated pipeline of LLM
agents, each specializing in distinct phases of software development while maintaining contextual
awareness through inter-agent communication empowered by AutoGen framework [39].

3.3.1 Code Framework Module

This module transforms user requirements into maintainable architectural blueprints.

Requirements Analysis Agent The requirements analysis agent is tasked with in-depth analysis of
software requirements. It decomposes the problem step by step through chain-of-thoughts, prioritizing
user goals and rethinking practical constraints. The agent receives user requirements, extracts pivotal
goals, identifies core functions, highlights key challenges, and proposes high-level solutions. The
output analysis report provides concise guidance for follow-up agents. This analysis process avoids
unnecessary complexity and focuses on high-priority tasks and high-level computational logic.

5

User
Requirment

I want to solve a
problem that...

Requirement
Analysis

Design
Pattern

l Design Pattern Selection
Based on the breakdown of the problem and
the identified key challenges, here’s a
design patterns for the functional modules:
• Module Name 1: ...

- Design Pattern: ...
- Justification: ...
- Alternatives: ...

• Module Name 2: ...
l Summary

Design Pattern report

Framework
Design

l Framework Outline
Based on design patterns, the proposed class
structure ensures modular, and maintainable.
l Class Structure
• ModelName 1 (xxx Pattern)

 - Attributes & Methods : ...
l Relationships Between Classes
l Design Choices and Assumptions

 Framework Design Report

Framework
evaluation

The framework is well-
designed but could be
improved. Here are some
evaluations and suggestions:
...

Feedback Info

Passed

l Breakdown of the Problem
1. Extract Key Requirements
2. Core Functionalities
3. Key Challenges
l Proposed High-Level Solutions
1. Preprocessing
2. Modular Arithmetic
3. Efficient Query Execution

 Requirement Analysis Report

Code
Generation

from typing import List, Tuple
class ClassName1:
 def __init__(self, ...):
 self.parameter1 = xxx
 self.parameter2 = xxx

 def FunctionName1 ->List[int]:
 return xxx
class ClassName2: ...

Code Solution

Code
Optimization

Code
Execution

Code output:
Traceback (most recent call last):
 File "xxx.python", line 76, in
<module>
 a+b
 ~^~
TypeError: unsupported operand
type(s) for +: 'int' and 'str'

Feedback Info

Failed

To address the issue with the
previous implementation, I will
revise the logic in the `xxx`
method to ensure it correctly slove
the problem.
The key points to consider are: ...

 Modification Info

l Test case:
assert FuncName(xxx1) == Resluts1
assert FuncName(xxx2) == Resluts2
assert FuncName(xxx3) == Resluts3
...

Test Cases

Final Code
 Solution

Failed

Optimized framework improves the
requirement with efficient,
maintainable design.
l Test case:
assert FuncName(Params) == Results

 Final Code Framework

Passed

Code Framework Module Code Generation Module

The optimized code is as
follows:

```python
class ClassName1:
    def FuncName(xxx1):
        pass
```

 Optimized Code Solutioin

Figure 2: Overview of MaintainCoder. MaintainCoder features best practices like the Waterfall
model, classical design patterns, and iterative refinement mechanisms for critical stages. 1) The Code
Framework Module systematically transforms user requirements into an optimized, maintainable
architectural blueprint; 2) The Code Generation Module implements the blueprint into production-
ready code, rigorously adhering to both the framework specifications and initial user requirements.

Design Pattern Selection Agent The design pattern selection agent serves as the software architect,
focusing on selecting appropriate design patterns for each functional module. It receives functional
modules and key challenges from the requirements analysis agent, evaluates the overall architecture
and module interactions, and selects the most suitable design pattern. This selection prioritizes
patterns that promote modularity, reduce coupling, and enhance scalability and reusability. The agent
also suggests alternative patterns with corresponding applicable scenarios. The output is a structured
list of modules, each including the module name, main design pattern, reasons for selection, and
alternative patterns with applicable scenarios.

Framework Design Agent The framework design agent agent constructs a modular and robust
code framework based on functional modules and selected design patterns. This agent not only
designs a preliminary class structure adhering to single-responsibility principles, but also clarifies
dependencies to enhances modularity, reusability, and maintainability. It will revise the framework in
response to feedback from the framework evaluation agent.

Framework Evaluation Agent Given user requirements, analysis reports, and class structures/re-
lationships as inputs, it reviews design clarity, scalability, performance, and conformance to best
practices. This agent identifies issues related to coupling, cohesion, and reusability, avoids overly
fine-grained modules, i.e. over-fragmentation. Finally, it delivers actionable suggestions focused on
major improvements that impact performance and scalability, which will be returned to the framework
design agent for improvement loop.

3.3.2 Code Generation Module

This module implements blueprints into executable codes, also guided by requirement analysis.

Code Generation Agent The code generation agent converts detailed framework designs into
complete, functional Python code. It ensures readability and maintainability with clear comments
and documentation. By carefully analyzing the original requirements, requirements analysis and
final framework design, it creates code structures conforming to PEP 8 and PEP 257 specifications.
Comments will focus on code purpose, design choice, and especially non-obvious logic, rather than
redundantly describing the obvious content. The generated code then includes appropriate class
structures, methods, and uniformly named interface functions for testing. After the initial generation,
a test sample selected from the test set is inserted as assertion for iterative debugging. The overall
goal is to produce fully functional, understandable, and expandable code.

Code Optimization Agent The code optimization agent refines the generated code to meet expected
functional and performance requirements. By analyzing the problem requirements, framework design,

6

original code and test cases, this agent can identify potential problems or room for improvement. First,
the agent is forced to thoroughly understand the user requirements and framework design to ensure
modifications align with the overall intent. Next, it reviews the original code for logic correctness
and interface functions, creating any missing ones. Then, the code is executed to gather feedback on
syntax errors, test failures, unexpected behaviors, etc. Through analysis in chain-of-thoughts, the
agent diagnoses the root causes, makes necessary modifications (fixing syntax errors, adjusting logic,
handling boundaries, optimizing performance), and retests. This iterative process continues until the
code meets requirements and passes tests, ensuring functional, efficient, and reliable solutions.

4 Experiments

Experimental Setup For a holistic assessment of maintainable code generation capabilities, we
primarily utilized the MaintainBench benchmark introduced in this work, as well as the original
datasets with various metrics. Experiments were conducted in two phases. In phase I, we generate
initial code C0 for the original problem P0 using MaintainCoder or baseline methods. During this
phase, static maintainability metrics were recorded; In phase II, we keep the fixed generator, e.g.
GPT-4o-mini, to dynamically probe the maintainability of C0. Specifically, we generate modified
codes reflecting different types of changes: C0 → {Cext,Cint,Cdst,Cerr}. These variants were
then evaluated to compute the dynamic maintainability metrics. For more reliability and statistical
significance, we report Pass@k up to k=5. Please refer to the Appendix D for more details.

Baselines & Metrics For a comprehensive evaluation, we conduct experiments across diverse
baselines including GPT-4o-mini, DeepSeek-V3, Claude-3.5-Sonnet, Claude-3.7-Sonnet, Gemini-
2.5-Flash-Preview, GPT-4o, and Qwen-Plus [24, 2, 1, 40], as well as multi-agent frameworks such as
AgentCoder [17] and MapCoder [19]. We consider GPT-4o-mini and DeepSeek-V3 as the backbones,
to highlight the benefit of MaintainCoder and explore the performance boundaries respectively. We
also investigate Chain-of-Thought (CoT) and Self-Planning (Plan), which incentivize reasoning or
planning capabilities through explicit prompting engineering. We measure static maintainability with
the Maintainability Index (MI) and Cyclomatic Complexity (CC). We proposed several dynamic
metrics, including post-modification functional correctness (Pass@k), the likelihood of generating
a correct solution after modifications; code change volume (Codediff), the percentage or absolute
value of modified lines; and syntax tree similarity (ASTsim), the structural similarity between the
original and modified abstract syntax trees.

4.1 Main Experiments

Generally, MaintainCoder exhibits superior performance across different difficulty levels, with its
advantage becoming more pronounced as the complexity increases. Due to page limit, the results on
entry-level datasets and case studies are left in the Appendix E for interested readers.

Performance on Mixture-Level Dataset Table 1 reports both static and dynamics metrics on the
mixture-level APPS-Dyn benchmark. For static structure, MaintainCoder achieves higher MI scores
than all baselines, while cyclomatic complexities are around 3—3x lower than competing models. For
dynamic metrics, it also shows significant advantages: MaintainCoder(GPT-4o-mini) attains 50.5%
Pass@5 accuracy (15-30 points higher than other variants), 0.797 AST similarity (outperforming the
second-best by +28%), and minimizes the relative code differences (29.4%). These results highlight
MaintainCoder’s unique strength, surpassing advanced models like GPT-4o and Claude-3.7-Sonnet.

Performance on Competition-Level Dataset As shown in Tab. 2, the conclusions on mixture-level
or competition-level datasets are largely consistent. For example, MaintainCoder(DeepSeek-V3)
attains 36.7% Pass@5 accuracy (outperforming the second-best by +60%), 0.785 AST similarity,
and the lowest relative code changes 33.0%. Notably, MaintainCoder retains low code complexity
even on challenging problems, i.e. it keep CC scores around 3 while baselines inflate code com-
plexity significantly. Surprisingly, multi-agent systems like AgentCoder and MapCoder, despite
optimizing single-round correctness, could impair long-term maintainability and degrade second-turn
Pass@k. Moreover, the impact of prompt engineering methods, such as CoT and Plan, appears to be
inconsistent or even random, which highlights the robustness and superiority of our MaintainCoder.
Finally, we advocate that absolute code changes are less indicative of maintenance costs than relative

7

Table 1: Maintainability evaluation on mixture-level APPS-Dyn problem set. The best performance
is indicated in bold, while the second-best performance is in underline.

Model
Static metrics Dynamic metrics

MI↑ CC↓ Pass@5 (%) ↑ ASTsim ↑ Codeperdiff (%) ↓ Codeabsdiff ↓

APPS-Dyn
GPT-4o-mini 63.3 5.10 35.5 0.589 140 17.0
GPT-4o-miniCoT 63.2 5.10 32.5 0.593 140 17.1
GPT-4o-miniPlan 59.2 5.01 34.0 0.618 93.3 17.3
AgentCoder (GPT-4o-mini) 63.3 5.81 21.0 0.510 66.3 20.1
MapCoder (GPT-4o-mini) 67.8 5.98 30.5 0.583 73.8 19.2
MaintainCoder (GPT-4o-mini) 69.5 2.75 50.5 0.797 29.4 19.0

DeepSeek-V3 61.8 7.59 59.5 0.598 131 22.6
DeepSeek-V3CoT 61.3 7.28 52.0 0.634 119 17.9
DeepSeek-V3Plan 59.2 6.06 54.5 0.577 130 20.6
AgentCoder (DeepSeek-V3) 60.5 6.68 48.5 0.601 104 20.5
MapCoder (DeepSeek-V3) 59.3 8.76 48.0 0.659 83.0 19.1
MaintainCoder (DeepSeek-V3) 62.4 3.21 62.5 0.828 29.2 18.6

GPT-4o 63.0 4.58 39.5 0.556 140 17.6
Qwen-Plus 61.2 5.61 43.5 0.638 137 17.3
Gemini-2.5-Flash-Preview 59.7 9.00 51.0 0.631 108 17.0
Claude-3.5-Sonnet 60.8 4.63 47.0 0.650 103 17.3
Claude-3.7-Sonnet 59.3 6.65 48.5 0.620 85.2 18.6

Table 2: Maintainability evaluation on competition-level CodeContests-Dyn and xCodeEval-Dyn
problem sets. The best performance is in bold, while the second-best one is in underline.

Model
Static metrics Dynamic metrics

MI↑ CC↓ Pass@5 (%) ↑ ASTsim ↑ Codeperdiff (%) ↓ Codeabsdiff ↓

CodeContests-Dyn
GPT-4o-mini 57.8 6.06 24.2 0.661 90.1 16.6
GPT-4o-miniCoT 58.4 5.85 23.5 0.639 96.2 17.0
GPT-4o-miniPlan 54.6 6.62 28.8 0.716 65.6 16.7
AgentCoder (GPT-4o-mini) 62.5 7.28 18.2 0.629 44.9 18.5
MapCoder (GPT-4o-mini) 66.1 7.32 25.0 0.689 47.5 19.0
MaintainCoder (GPT-4o-mini) 65.8 2.68 32.6 0.833 23.2 17.4

DeepSeek-V3 55.7 6.80 26.5 0.718 87.2 17.5
DeepSeek-V3CoT 53.1 11.7 20.5 0.690 52.3 21.7
DeepSeek-V3Plan 51.4 12.2 17.4 0.614 67.6 26.3
AgentCoder (DeepSeek-V3) 43.8 19.6 16.7 0.670 48.4 28.0
MapCoder (DeepSeek-V3) 49.0 14.6 11.4 0.655 53.0 24.8
MaintainCoder (DeepSeek-V3) 63.1 3.64 37.9 0.788 43.2 18.5

GPT-4o 57.2 5.28 25.0 0.622 94.2 18.1
Qwen-Plus 52.1 6.85 28.8 0.738 72.9 18.3
Gemini-2.5-Flash-Preview 51.4 8.48 18.9 0.714 61.0 19.3
Claude-3.5-Sonnet 55.3 6.74 23.5 0.739 51.3 17.5
Claude-3.7-Sonnet 53.9 8.74 24.2 0.620 85.2 18.6

xCodeEval-Dyn
GPT-4o-mini 56.1 6.44 23.4 0.651 81.5 18.6
GPT-4o-miniCoT 55.9 6.44 18.8 0.644 82.4 18.4
GPT-4o-miniPlan 51.1 6.25 22.7 0.705 53.0 18.0
AgentCoder (GPT-4o-mini) 60.9 8.34 18.0 0.624 42.3 22.3
MapCoder (GPT-4o-mini) 63.6 8.15 15.6 0.702 43.2 21.2
MaintainCoder (GPT-4o-mini) 60.5 2.72 27.3 0.837 21.6 19.8

DeepSeek-V3 54.4 7.03 21.9 0.636 92.2 21.2
DeepSeek-V3CoT 56.7 11.6 22.7 0.613 52.0 24.6
DeepSeek-V3Plan 56.9 11.8 21.1 0.626 69.3 27.6
AgentCoder (DeepSeek-V3) 42.2 15.2 11.7 0.690 60.0 32.8
MapCoder (DeepSeek-V3) 47.9 15.1 11.7 0.655 52.8 29.0
MaintainCoder (DeepSeek-V3) 57.9 3.47 36.7 0.785 33.0 21.8

GPT-4o 53.7 4.33 32.8 0.680 67.2 17.8
Qwen-Plus 50.7 7.24 23.4 0.684 70.3 20.4
Gemini-2.5-Flash-Preview 48.6 7.64 22.7 0.750 49.2 20.7
Claude-3.5-Sonnet 50.4 6.43 17.2 0.779 41.7 18.4
Claude-3.7-Sonnet 54.0 8.64 21.9 0.734 50.1 21.4

8

code changes. For example, the software refactoring often inflate code lines but improves long-term
maintainability. Previous methods compress lines but led to tangled and unmaintainable code.

4.2 Analysis and Discussion

Table 3: Pass@5 on the original datasets. Maintain-
Coder improves the correctness of initial codes.

Model APPS CodeContests xCodeEval
GPT-4o-mini 44% 18% 46%
MaintainCoder (GPT-4o-mini) 48% 23% 57%
DeepSeek-V3 66% 48% 75%
MaintainCoder (DeepSeek-V3) 69% 51% 77%
GPT-4o 48% 30% 68%
Qwen-Plus 56% 30% 63%
Gemini-2.5-Flash-Preview 65% 53% 74%
Claude-3.7-Sonnet 55% 35% 58%

Correctness versus Maintainability Ideally,
effective code design paradigms can enhance
not only maintainability but also the correctness
of initial code. We evaluate MaintainCoder’s
Pass@5 on the original problems. The results
presented in Table 3 validate our hypothesis:
MaintainCoder demonstrates improvements in
functional correctness, with this benefit becom-
ing more pronounced as problem complexity
increases. For example, MaintainCoder (GPT-4o-mini) achieves an 11% increase on xCodeEval
(from 46% to 57%), which is over double the improvement seen on APPS (44% to 48%). Notably,
these gains occur even on already high-performing models like DeepSeek-V3.

Figure 3: Scatter plot of Pass@5 and ASTsim.

Static Metrics versus Dynamic Metrics For
static metrics, CC score measures program con-
trol flow, Halstead Volume measures arithmetic
logic operations, and MI score integrates them.
However, these metrics fail to reflect high-level
maintainability. For example, AgentCoder and
MapCoder achieve high MI metrics, while the
second-round correctness was reduced. More
confusingly, the changes in MI and CC met-
rics are contradictory. For instance, the MI and
CC metrics of MapCoder(GPT-4o-mini) are 66.1
and 7.32 respectively, both increasing GPT-4o-
mini’s 57.8 and 6.06. This inconsistency is also
evident on AgentCoder. In contrast, dynamic
metrics such as Pass@k, Codediff , and ASTsim

demonstrate significant consistency. This mu-
tual corroboration advocates that dynamic metrics reflect the maintainability more accurately. Thanks
to the construction of MaintainBench, the calculation of dynamic metrics has become possible.

Ablation Studies We conduct ablation studies to investigate the impact of framework evaluation
and code optimization. As shown in Table 4, both modules significantly enhance the second-turn
correctness, with the code optimization contributing more substantially. For instance, omitting
framework evaluation reduces Pass@5 by 25.71% relative points while code optimization incurs more
pronounced 37.13% performance degradation. Notably, framework evaluation typically involves only
one iteration, which serves as a lightweight yet impactful component.

Table 4: Ablations on Framework Evaluation and Code Optimization. Both agentic modules con-
tribute to final performance. “Perf. Drop” denotes relative performance degradation of Pass@k.

Base
Model

Framework
Evaluation

Code
Optimization

APPS-Dyn CodeContests-Dyn xCodeEval-Dyn
Pass@5 (%) Perf. Drop (%) Pass@5 (%) Perf. Drop (%) Pass@5 (%) Perf. Drop (%)

GPT-4o-mini
% ! 49.00 2.97 31.82 2.33 20.31 25.71
! % 40.00 20.79 28.03 13.97 17.19 37.13
! ! 50.50 - 32.58 - 27.34 -

DeepSeek-V3
% ! 61.00 2.40 33.33 11.99 33.59 8.52
! % 48.50 22.40 25.76 31.98 28.13 23.39
! ! 62.50 - 37.87 - 36.72 -

Human Baseline, Reasoning Models and Multi-Agent Systems We benchmarked MaintainCoder
against skilled human programmers, the o3-mini reasoning model, and other multi-agent systems
such as MetaGPT and EvoMAC. For human baseline, we have recruited participants with competitive

9

programming experience (Codeforces ratings 1700-2300) to complete tasks from the CodeContests-
Dyn benchmark in 30 minutes per problem. As shown in Table 5, the code produced by human
programmers demonstrated poorer maintainability metrics compared to AI-generated code. Even
skilled developers, particularly under the pressure of problem-solving common in real-world scenarios,
can produce less maintainable code. This underscores the value of MaintainCoder in systematically
enhancing this vital software quality attribute. Furthermore, MaintainCoder provides significant
maintainability enhancements even when applied to a strong reasoning model. It consistently
outperforms other multi-agent systems. While frameworks like AgentCoder and EvoMAC focus on
solving the immediate problem, MaintainCoder’s proactive architectural design, which explicitly
embeds software engineering principles, leads to superior long-term maintainability.

Table 5: Comparison with human programmers, reasoning models and more multi-agent systems
on CodeContest-Dyn. MaintainCoder demonstrates superior maintainability. MetaGPT requires a
stronger base model like GPT-4.1-mini for its tool-calling capabilities

Model
Static metrics Dynamic metrics

MI↑ CC↓ Pass@5 (%) ↑ ASTsim ↑ Codeperdiff (%) ↓ Codeabsdiff ↓

Human Programmers 53.2 8.17 23.5 0.541 112.3 23.3

GPT-4o-mini 57.8 6.06 24.2 0.661 90.1 16.6
AgentCoder (GPT-4o-mini) 62.5 7.28 18.2 0.629 44.9 18.5
MapCoder (GPT-4o-mini) 66.1 7.32 25.0 0.689 47.5 19.0
EvoMAC (GPT-4o-mini) 62.6 5.18 26.5 0.685 60.1 20.0
MetaGPT (GPT-4.1-mini) 55.2 7.63 30.3 0.760 44.3 18.6
MaintainCoder (GPT-4o-mini) 65.8 2.68 32.6 0.833 23.2 17.4

o3-mini 52.1 11.3 30.3 0.661 101.6 32.9
MaintainCoder (o3-mini) 62.3 3.85 36.4 0.794 27.8 21.3

Computational Cost Analysis We acknowledge that a multi-agent pipeline incurs a higher initial
computational cost. However, we argue this is a justified trade-off for substantially improved long-
term maintainability and higher initial correctness. As shown in Table 6, MaintainCoder’s token
consumption is comparable to other multi-agent frameworks like MapCoder and even the reasoning
model o3-mini, while being significantly lower than systems like MetaGPT and ChatDev. This
initial investment leads to a drastic reduction in subsequent human effort required for debugging and
refactoring. We provide a breakdown of token usage in Appendix E for interested readers.

Table 6: Total token usage. The cost of MaintainCoder is comparable to other multi-agent systems.

Dataset MaintainCoder MapCoder o3-mini MetaGPT/ChatDev GPT-4o-mini
CodeContests 33.1k 38.7k 20.8k 50k+ 2.5k
xCodeEval 29.6k 23.5k 21.2k 50k+ 2.3k

Robustness w.r.t. Pass@k & Phase II generator For a more reliable evaluation, we examine
MaintainCoder’s robustness with respect to varying k values of Pass@k and different Phase II
generators that conduct modifications on initial codes. We leave the experiments in the Appendix E.

5 Conclusion

In this paper, we introduced MaintainCoder and MaintainBench for maintainable code generation.
MaintainBench, the first benchmark dedicated to dynamic maintainability evaluation, covers diverse
and systematic modification scenarios and provides a standardized testing platform for future research.
MaintainCoder pioneers this research line, utilizing multi-agent collaboration with classical design
patterns. Extensive experiments demonstrate that MaintainCoder significantly outperforms previous
methods on both maintainability and correctness. E.g. more than 60% post-modification Pass@5
improvements with even higher initial correctness. The discussed flaws of static metrics also provide
insights for the unique value of MaintainBench. Future work should not only expand MaintainBench
into larger scale and more diverse modification types, but also include evaluation on more complex
and repository-level tasks like SWE-Bench.

10

Acknowledgements

This work is supported by the National Key R&D Program of China (2024YFA1014003), National
Natural Science Foundation of China (92470121, 62402016), CAAI-Ant Group Research Fund, and
High-performance Computing Platform of Peking University.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Anthropic. The claude 3 model family: Opus, sonnet, haiku. 2024. URL https://api.
semanticscholar.org/CorpusID:268232499.

[3] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

[4] Rajiv D Banker, Srikant M Datar, Chris F Kemerer, and Dani Zweig. Software complexity and
maintenance costs. Communications of the ACM, 36(11):81–94, 1993.

[5] Keith H Bennett and Václav T Rajlich. Software maintenance and evolution: a roadmap. In
Proceedings of the Conference on the Future of Software Engineering, pages 73–87, 2000.

[6] Wallace R Blischke, DN Prabhakar Murthy, et al. Case studies in reliability and maintenance,
volume 480. Wiley Online Library, 2003.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[8] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[9] Sharon Christa, V Madhusudhan, V Suma, and Jawahar J Rao. Software maintenance: From the
perspective of effort and cost requirement. In Proceedings of the International Conference on
Data Engineering and Communication Technology: ICDECT 2016, Volume 2, pages 759–768.
Springer, 2017.

[10] Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via chatgpt.
ACM Transactions on Software Engineering and Methodology, 33(7):1–38, 2024.

[11] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo,
and Jie M Zhang. Large language models for software engineering: Survey and open problems.
arXiv preprint arXiv:2310.03533, 2023.

[12] T Hariprasad, G Vidhyagaran, K Seenu, and Chandrasegar Thirumalai. Software complexity
analysis using halstead metrics. In 2017 international conference on trends in electronics and
informatics (ICEI), pages 1109–1113. IEEE, 2017.

[13] Péter Hegedűs, Dénes Bán, Rudolf Ferenc, and Tibor Gyimóthy. Myth or reality? analyzing the
effect of design patterns on software maintainability. In Computer Applications for Software
Engineering, Disaster Recovery, and Business Continuity: International Conferences, ASEA and
DRBC 2012, Held in Conjunction with GST 2012, Jeju Island, Korea, November 28-December
2, 2012. Proceedings, pages 138–145. Springer, 2012.

[14] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

11

https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499

[15] Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for
multi-agent collaborative framework. arXiv preprint arXiv:2308.00352, 3(4):6, 2023.

[16] Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu, Zijie Yu, Yuchen Hou, Shuo Tang,
and Siheng Chen. Self-evolving multi-agent collaboration networks for software development.
arXiv preprint arXiv:2410.16946, 2024.

[17] Dong Huang, Jie M Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui.
Agentcoder: Multi-agent-based code generation with iterative testing and optimisation. arXiv
preprint arXiv:2312.13010, 2023.

[18] Dong Huang, Jie M Zhang, Yuhao Qing, and Heming Cui. Effibench: Benchmarking the
efficiency of automatically generated code. arXiv preprint arXiv:2402.02037, 2024.

[19] Md Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. Mapcoder: Multi-agent
code generation for competitive problem solving. arXiv preprint arXiv:2405.11403, 2024.

[20] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large
language models for code generation. arXiv preprint arXiv:2406.00515, 2024.

[21] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

[22] Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan
Parvez, and Shafiq Joty. xcodeeval: A large scale multilingual multitask benchmark for code
understanding, generation, translation and retrieval. arXiv preprint arXiv:2303.03004, 2023.

[23] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, 2022.

[24] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[25] Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level
code auto-completion systems. arXiv preprint arXiv:2306.03091, 2023.

[26] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models
with evol-instruct, 2023.

[27] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, 2022.

[28] Augustus Odena, Charles Sutton, David Martin Dohan, Ellen Jiang, Henryk Michalewski, Jacob
Austin, Maarten Paul Bosma, Maxwell Nye, Michael Terry, and Quoc V. Le. Program synthesis
with large language models. In n/a, page n/a, n/a, 2021. n/a.

[29] Edward E Ogheneovo et al. On the relationship between software complexity and maintenance
costs. Journal of Computer and Communications, 2(14):1, 2014.

[30] Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development.
arXiv preprint arXiv:2307.07924, 2023.

[31] Thomas Reps, Thomas Ball, Manuvir Das, and James Larus. The use of program profiling for
software maintenance with applications to the year 2000 problem. In Proceedings of the 6th
European SOFTWARE ENGINEERING conference held jointly with the 5th ACM SIGSOFT
international symposium on Foundations of software engineering, pages 432–449, 1997.

12

[32] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950, 2023.

[33] Christos Saltapidas and Ramin Maghsood. Financial risk the fall of knight capital group.
University of Gothenburg, pages 1–8, 2018.

[34] I Standard. Software engineering–software life cycle processes–maintenance. ISO Standard,
14764:2006, 2006.

[35] Bayarbuyan Ulziit, Zeeshan Akhtar Warraich, Cigdem Gencel, and Kai Petersen. A conceptual
framework of challenges and solutions for managing global software maintenance. Journal of
Software: Evolution and Process, 27(10):763–792, 2015.

[36] Ervin Varga. Unraveling Software Maintenance and Evolution. Springer, 2018.

[37] Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi
Pan, Yueqi Song, Bowen Li, Jaskirat Singh, et al. Opendevin: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024.

[38] Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empow-
ering code generation with oss-instruct. In Forty-first International Conference on Machine
Learning, 2024.

[39] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via
multi-agent conversation. arXiv preprint arXiv:2308.08155, 2023.

[40] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[41] John Yang, Carlos Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

[42] Zhaojian Yu, Yilun Zhao, Arman Cohan, and Xiao-Ping Zhang. Humaneval pro and mbpp
pro: Evaluating large language models on self-invoking code generation. arXiv preprint
arXiv:2412.21199, 2024.

[43] Jiasheng Zheng, Boxi Cao, Zhengzhao Ma, Ruotong Pan, Hongyu Lin, Yaojie Lu, Xianpei Han,
and Le Sun. Beyond correctness: Benchmarking multi-dimensional code generation for large
language models. arXiv preprint arXiv:2407.11470, 2024.

[44] Zibin Zheng, Kaiwen Ning, Yanlin Wang, Jingwen Zhang, Dewu Zheng, Mingxi Ye, and Jiachi
Chen. A survey of large language models for code: Evolution, benchmarking, and future trends.
arXiv preprint arXiv:2311.10372, 2023.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims are clearly presented in the abstract and introduction, and are
further elaborated and substantiated throughout the subsequent sections of the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to the Section 5 in the paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to the Section 3 and Appendix D in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide well-documented code repositories in the supplementary materials.
Additionally, we commit to making the code publicly available by the time of the camera-
ready submission.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to the Section 4 and Appendix D in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please refer to the Section 4 and Appendix D in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to the Section 4 and Appendix D in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to the Appendix H in the paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators and original owners of all assets used in the paper are properly
credited, and the licenses and terms of use are explicitly mentioned and fully respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: The paper involves human subjects in the form of interns who were recruited
for data annotation. Please refer to the Appendix B.3 and Appendix C in the paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The paper involves research with human subjects in the form of interns for
data annotation. However, there are no evident risks in our annotation process.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Please refer to the Section 4 and Appendix D in the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

Appendix

A Instruction Templates 22

A.1 Instructions for MaintainBench . 22

A.2 Instructions for MaintainCoder . 24

A.3 Instructions for Phase II Generator . 25

B Benchmark Construction 26

B.1 Details of Original Datasets . 26

B.2 Solution-Test Co-evolution . 26

B.3 Mannually Quality Check . 26

C Annotation Process 28

C.1 Annotation Qualification . 28

C.2 Annotation Requirements . 28

D Implementation Details 30

E Extra Experiments 31

F Case Study: Proactive Architectural Design for a 2048 Game 33

F.1 Architectural Foresight: The MVC Pattern . 33

F.2 Maintainability Under Dynamic Requirements . 33

F.3 Conclusion of the Case Study . 34

G Case Study: A Toy Example 35

H Impact Statements 38

21

A Instruction Templates

A.1 Instructions for MaintainBench

Instruction for Functional Extensions [πext]

Given the raw problem and its solution, generate a new problem that requires using the original function as a
component of a larger system in a real-world scenario.
To solve new_problem, new_solution should include the multiple function calls of raw question. So the new
problem will be not only a related problem but also a more complex problem than raw problem.
raw problem:
{raw_problem}
raw solution:
{raw_solution}
The new problem should be:
1. Must utilize the original function as a helper/core component
2. Must extend functionality to handle more complex cases
3. Must include clear input/output specifications
4. Should demonstrate practical application in a specific domain (e.g., finance, healthcare, e-commerce)
5. Must maintain original function’s core purpose
Please return with json format as follows:
{{
"prompt_type": "PROMPT_SELF_INVOKING",
"input_format": "<input format>",
"output_format": "<output format>",
"new_problem": "<problem description>",
"new_solution": "<complete solution code including original function>",
"test_input": "<at least five test assertions in Python’s assert format and presented in a list>"
}}
Note: Only output the solution functions in new_solution, no other code should be included. Also the test input
should be in Python’s assert format. Ensure that all code in the JSON is properly escaped and the entire response
is a valid JSON object. I’ll use json.loads() to transform it to dict type.

Instruction for Interface Modifications [πint]

Given the raw problem and its solution, generate a new problem that requires enhancing the interface while
maintaining backward compatibility in a more real-world scenario.
To solve new_problem, new_solution should require the use of the raw question’s solution but with adjusted
interfaces. So the new problem will be a related problem but including modifications to the raw problem
parameters, return types, or other interfaces.
raw problem:
{raw_problem}
raw solution:
{raw_solution}
The new problem should be:
1. Must maintains backward compatibility with existing implementations
2. Must support original function parameters
3. Must include type hints
4. Must add new optional parameters
Please return with json format as follows:
{{
"prompt_type": "PROMPT_INTERFACE",
"input_format": "<input format>",
"output_format": "<output format>",
"new_problem": "<problem description>",
"new_solution": "<complete solution code including original function>",
"test_input": "<at least five test assertions in Python’s assert format and presented in a list>"
}}
Note: Only output the solution functions in new_solution, no other code should be included. Also the test input
should be in Python’s assert format. Ensure that all code in the JSON is properly escaped and the entire response
is a valid JSON object. I’ll use json.loads() to transform it to dict type.

22

Instruction for Data Structure Transformations [πdst]

Given the raw problem and its solution, generate a new problem that requires optimizing or changing the
underlying data structures in a real-world scenario.
To solve new_problem, new_solution should require the use of the raw question’s solution but with different data
structures. So the new problem will be a related problem but including changing from arrays to dictionaries, or
from lists to trees, etc.
raw problem:
{raw_problem}
raw solution:
{raw_solution}
The new problem should be:
1. Must use different data structure than original
2. Must handle more complex data relationships
3. Must include type hints
4. Must add more additional Constraints
Please return with json format as follows:
{{
"prompt_type": "PROMPT_DATA_STRUCTURE",
"input_format": "<input format>",
"output_format": "<output format>",
"new_problem": "<problem description>",
"new_solution": "<complete solution code including original function>",
"test_input": "<at least five test assertions in Python’s assert format and presented in a list>"
}}
Note: Only output the solution functions in new_solution, no other code should be included. Also the test input
should be in Python’s assert format.
Ensure that all code in the JSON is properly escaped and the entire response is a valid JSON object. I’ll use
json.loads() to transform it to dict type.

Instruction for Error Handling Enhancements [πerr]

Given the raw problem and its solution, generate a new problem that requires error handling in a real-world
scenario.
To solve new_problem, new_solution should require the use of the raw question’s solution but with error handling.
So the new problem will be a related problem but including adding error handling to the solution.
raw problem:
{raw_problem}
raw_solution:
{raw_solution}
The new problem should be:
1. Must define specific error types (e.g., Custom exceptions for domain, specific errors, Hierarchical error
structure, Meaningful error messages)
2. Must include a more real-world error scenarios
3. Must handle error propagation
4. Must maintain type hints
5. MUST clearly state what errors need to be handled
The test input should trigger errors that need to be addressed in the ’new problem’ as much as possible.
Please return with json format as follows:
{{
"prompt_type": "PROMPT_ERROR_HANDLING",
"input_format": "<input format>",
"output_format": "<output format>",
"new_problem": "<problem description>",
"new_solution": "<complete solution code including original function>",
"test_input": "<at least five test assertions in Python’s assert format and presented in a list>"
}}
Note: Only output the solution functions in new_solution, no other code should be included. Also the test input
should be in Python’s assert format.
Ensure that all code in the JSON is properly escaped and the entire response is a valid JSON object. I’ll use
json.loads() to transform it to dict type.

23

A.2 Instructions for MaintainCoder

Requirement Analysis Agent
System Message:

Role: Requirement Analysis Agent.
Input: Plain text software requirements.
Task:
- Break down the problem, focusing on user goals and constraints.
- Step-by-step analysis:
 1. Extract key requirements.
 2. Identify core functionalities.
 3. Highlight key challenges and propose high-level solutions.
- Avoid granular modules; focus on high-priority tasks.
Output:
- Structured breakdown:
 1. Core Functionalities: Key operations or features.
 2. Key Challenges: Specific hurdles and potential impact.
- Actionable, clear, and concise. No code.

Design Pattern Selection Agent
System Message:

Role: Design Pattern Selection Agent.
Input: Modules and challenges from Requirement Analysis Agent.
Task:
- Choose appropriate design patterns for each module.
- Address key challenges effectively.
- Prioritize modularity, low coupling, scalability, and reusability.
- Suggest alternatives where relevant, with explanations.
Output:
For each module:
- Module Name: Functional module name.
- Design Pattern: Primary pattern selected.
- Justification: Problem solved and suitability.
- Alternatives: Other patterns and their use cases (optional).

Figure 4: Prompts for Requirements Analysis Agent and Design Pattern Selection Agent.

Framework Design Agent
System Message:

Role: Framework Design Agent.
Input: Modules and selected design patterns with reasoning.
Task:
- Develop a preliminary class structure (class names, attributes,

methods).
- Define class relationships (inheritance, composition,

dependencies).
- Justify design choices and assumptions.
Output:
A detailed framework outline:
- Class Structures
- Relationships of Classes, with clear explanations.
- No code output.

System Message:

Role: Framework Evaluation Agent.
Input: Class structure and relations from Framework Design Agent.
Task:
- Evaluate design for clarity, scalability, performance, and best

practices.
- Identify issues in coupling, cohesion, reusability.
- Focus on key logic and high-level tasks.
- Optimize significant modules, ignore minor changes.
- Propose actionable optimizations.
- Return reviewed design for refinement.
Output:
- Reviewed and optimized design
- If no changes needed, output "TERMINATE"

Framework Evaluation Agent

Figure 5: Prompts for Framework Design Agent and Framework Evaluation Agent.

Code Generation Agent
System Message:

Role: Code Generation Agent.
Input:
- Primitive Problem description.
- Requirement analysis.
- Framework design with module structures, classes, interfaces,
design patterns, and justifications.
Task:
- Write Python code with concise comments.
- Use PEP 8 and PEP 257 guidelines.
- Include a testing interface function named `apps_run1`.
Output:
- Functional Python code with clear, purposeful comments.
- Focus on design intent and non-trivial logic.
- Only return valid Python code.

Code Optimization Agent
System Message:

Role: Code Optimization Agent.
Input:
- Problem Requirement & Framework design
- Original code & Test case in assertion format.
Task:
- Understand the problem and framework design.
- Review the original code for issues or improvement areas.
- Ensure “apps_run1” interface function exists; create if missing.
- Provide code to Code Execution Agent for execution and feedback.
- Modify code based on feedback.
- Repeat until code is correct.
- Rule1: One code block only
- Rule2: Do not modify test case.
Output: Modified code in Python block.

Figure 6: Prompts for Code Generation Agent and Code Optimization Agent.

24

A.3 Instructions for Phase II Generator

Instructions for Phase II Generator

Role:
You are a Python development assistant specializing in efficiently integrating new features into existing
codebases while balancing the retention of original functionality and implementing new requirements.

Input:
- Original Requirements: A description of the existing code’s purpose and functionality.
- Original Code: The current implementation of the code.
- New Requirements: A description of the additional features or changes that need to be implemented.
- Test case: A test case written in assertion format.

Task:
- Understand the original code, original requirements and new requirements.
- Modify the original code to correctly realize the new requirements.
- The complete code must contain an interface function named {test_interface_name}.
- Output the complete code that integrates the new requirements on the basis of the original code.

Notice:
- Do not modify the reusable code block.
- Make as few changes as possible.
- Only generate functional codes, and do not include test cases.

Output:
- The full updated Python code that fulfills the new requirements in format:
‘‘‘python
<your code here>
‘‘‘.

25

B Benchmark Construction

B.1 Details of Original Datasets

To provide further context on the foundation of MaintainBench, we include additional details on the
five original datasets that it extends. These datasets are widely adopted in code generation research
and serve as standard benchmarks for evaluating the performance and generalization ability of LLMs.

• HumanEval [7]: HumanEval is a benchmark proposed by OpenAI, consisting of 164
hand-written programming problems designed to evaluate the functional correctness of code
generated by language models. Each problem includes a natural language prompt, a canoni-
cal reference solution, and unit tests. The tasks are concise and focus on general-purpose
programming topics such as list manipulation, string processing, and simple algorithmic
challenges.

• MBPP (Mostly Basic Programming Problems) [28]: The MBPP dataset contains 974
Python problems that were manually filtered from introductory programming tasks across
educational and online coding resources. Each problem includes a concise description, a
reference solution, and at least three test cases. MBPP targets beginner-level problem-solving
skills, such as basic data types, arithmetic, loops, conditionals, and string manipulation.

• APPS (Automated Programming Progress Standard) [14]: APPS is a large-scale dataset
containing over 10,000 problems gathered from competitive programming websites, online
judges, and coding tutorials. The problems span a wide range of difficulty, categorized as
introductory, interview, and competition level. Each instance includes a problem statement,
input/output formats, and sample test cases.

• xCodeEval [22]: xCodeEval is a multilingual and executable benchmark with over 12,000
problems spanning 20 programming languages. It is designed to assess large language
models in diverse and realistic programming environments, with an emphasis on execution-
based correctness. Each problem contains a natural language description, optional starter
code, and structured test cases.

• CodeContests [23]: CodeContests is a benchmark created from real-world competitive
programming tasks, collected from platforms such as Codeforces, AtCoder, and Google
Code Jam. The dataset emphasizes algorithmic problem-solving, with problems often
requiring advanced logic, data structure manipulation, and mathematical insight. Each
problem is accompanied by multiple human-written solutions and test cases, enabling
evaluation via code execution.

B.2 Solution-Test Co-evolution

Our refinement method maintains coherence between solutions and test cases through an orches-
trated co-generation process. Instead of generating these components independently, which risks
misalignment, we first derive extended solutions by adapting original code according to specific
requirement change patterns. Then, we generate corresponding test cases to verify both preserved and
newly introduced functionality. This integrated generation process ensures a traceable evolutionary
path, where changes are minimal, intentional, and directly responsive to dynamic requirements.
Furthermore, we wisely focus on test case representativeness and coverage where we further look
at consistency between problem descriptions, solution implementations, and test assertions, i.e.,
standardize all test cases using the Python assertion format; incorporate holistic edge cases to verify
robustness; and error handling variants, add specific tests that trigger exception handling mechanisms.
For each problem variant, our test suites verify both the preservation of original functionality and the
correct implementation of new requirements, achieving high code coverage and thoroughly exercising
the modified components.

B.3 Mannually Quality Check

Our approach combines automated validation with expert human review across multiple stages:

• In the first stage, we verify that LLM-generated descriptions accurately correspond to
our specified extension criteria. Once validated, we derive extended solutions by adapting

26

original code according to specific requirement change patterns, then generate corresponding
test cases to verify both preserved and new functionality.

• In the second stage, programming experts review and correct identified issues after generat-
ing the whole benchmark, focusing on aligning problem descriptions, test cases, and the
intended requirement changes. Particularly, they verify that test cases effectively exercise all
implementation aspects (e.g., exception handlers in error handling cases) and that solutions
properly reuse original code rather than introducing unnecessary rewrites, which aims to
maintain the semantic integrity of functional extensions for modified components.

• In the third stage, a separate team of reviewers performs cross-validation between original
and modified implementations to verify that: (1) core functionality is preserved across
all variants, (2) new requirements are correctly implemented, (3) code modifications are
appropriately scoped and minimal, and (4) test cases provide comprehensive coverage of
both original and new functionality.

27

C Annotation Process

C.1 Annotation Qualification

1. Application requirements
You must have Python3 installed.

2. Personnel requirements

• You must have obtained an undergraduate degree or above in computer science or
related fields. Having taken software engineering courses is a plus.

• You must master the basic syntax of Python, such as functions, classes, and assertions.
• You must be able to understand the following code:

def count_batik_combinations(n, m, k, r, c, a_x, a_y, b_x,
b_y):
MOD = 10**9 + 7
Calculate the overlap in rows and columns
overlap_rows = max(0, r - abs(a_x - b_x))
overlap_cols = max(0, c - abs(a_y - b_y))
Calculate total number of combinations without overlap
total_combinations = pow(k, r * c, MOD)
Calculate the number of overlapping combinations
overlap_combinations = pow(k, overlap_rows *

overlap_cols, MOD)
Result is total combinations squared divided by

overlap combinations
result = (total_combinations * total_combinations) % MOD
result = (result * pow(overlap_combinations, MOD - 2,

MOD)) % MOD
return result

C.2 Annotation Requirements

1. Annotation Method
Completed online, submitted in jsonl file.

2. Dataset Introduction
Each line in jsonl file represents one piece of data. The data consists of the original
problem (raw_problem), the original solution code (raw_solution), the original code test
data (raw_test_input), the newly generated problem (new_problem), the new problem
solution code (new_solution), and the new problem code test data (test_input). Among
them, raw_problem, raw_solution, and raw_test_input are completely correct. But the
new_problem may not meet the specific requirements of the requirement change. Further-
more, according to the solution code of new_problem, there may be issues with new_solution
and test_input. The annotator needs to modify new_solution and test_input according to the
requirements of new_problem.

3. annotation principles
Our task is to ensure that the new problem meets the requirements and modify the generated
code and test cases based on the given problem. Here are the annotation principles:

(a) Ensure that the new_problem comply with specific change requirements, such as
Functional Extensions, Interface Modifications, Data Structure Transformations, Error
Handling Enhancements

(b) Ensure that the new_solution correctly meets the requirements of the new_problem.
(c) Ensure that the test_input provide comprehensive coverage of both original and new

functionality.
(d) Ensure that the new_solution can pass all test_input.
(e) Make sure that all new test cases are given in the form of Python assertions.

28

4. Annotation Quality Requirements
We will check the annotated data, and unqualified data need to be re-annotated. The final
annotation pass rate cannot be lower than 90%.

29

D Implementation Details

For all experiments, we set the generation temperature to 0.3 and topp to 0.95.

For main experiment, it consists of two phases:

• In Phase I, for MaintainCoder, the maximum number of framework evaluation is set to
3 and the maximum number of code optimization is set to 5. We test the static metrics,
including maintainability index (MI) and cyclomatic complexity (CC), where the formula
for calculating MI is:

MI = max
[
0, 100

(
171−5.2 ln(V)−0.23G−16.2 ln(L)+50 sin(

√
2.4C)

171

)]
where V is Halstead Volume, G is Cyclomatic Complexity, L is Source Lines of Code
(SLOC), and C is the percentage of comment lines. All methods generate five rounds of
code for average static metrics.

• In Phase II, given a predefined Phase II generator (GPT-4o-mini is adopted in the main
experiment), the modification operation is performed as probe to calculate dynamic metrics,
including Pass@5, abstract syntax tree structure similarity (ASTsim), and code similarity
Codediff . The dynamic metrics like ASTsim and Codediff are averaged over five rounds.
Both ASTsim and Codediff are directly calculated by calling the Python library difflib.

For ablation studies, MaintainCoder adopts the same settings as in the main experiment, but only
the framework evaluation and the code optimization components are respectively canceled. It is still
divided into phase I and phase II, and the Pass@5 of the code in phase II is reported.

30

E Extra Experiments

Table 7: Maintainability evaluation on entry-level HumanEval-Dyn and MBPP-Dyn problem sets.

Model
Static metrics Dynamic metrics

MI↑ CC↓ Pass@5 (%) ↑ ASTsim ↑ Codeperdiff (%) ↓ Codeabsdiff ↓

HumanEval-Dyn
GPT-4o-mini 76.7 2.69 89.4 0.556 140 9.64
GPT-4o-miniCoT 77.8 2.61 88.6 0.561 141 9.58
GPT-4o-miniPlan 67.2 3.66 86.4 0.580 97.2 11.0
AgentCoder (GPT-4o-mini) 87.1 3.33 90.9 0.561 90.5 19.7
MapCoder (GPT-4o-mini) 80.7 3.42 89.4 0.567 102 15.2
MaintainCoder (GPT-4o-mini) 79.0 2.39 92.4 0.850 43.2 13.9

DeepSeek-V3 80.1 2.95 90.2 0.580 178 9.85
DeepSeek-V3CoT 78.8 3.10 90.9 0.517 320 17.2
DeepSeek-V3Plan 75.4 3.41 91.7 0.567 210 16.1
AgentCoder (DeepSeek-V3) 86.2 3.18 90.2 0.589 132 15.6
MapCoder (DeepSeek-V3) 77.8 3.48 89.4 0.566 145 14.6
MaintainCoder (DeepSeek-V3) 64.5 1.92 95.5 0.686 106 16.7

GPT-4o 74.3 2.55 89.4 0.460 236 17.0
Qwen-Plus 79.2 3.07 87.9 0.588 172 10.0
Gemini-2.5-Flash-Preview 86.9 3.17 91.7 0.575 168 15.7
Claude-3.5-Sonnet 79.6 3.07 91.7 0.510 330 17.8
Claude-3.7-Sonnet 77.2 3.44 90.2 0.598 137 9.91

MBPP-Dyn
GPT-4o-mini 79.6 1.97 76.7 0.465 233 11.4
GPT-4o-miniCoT 79.9 1.99 83.3 0.459 239 11.2
GPT-4o-miniPlan 69.4 3.03 89.2 0.555 134 11.8
AgentCoder (GPT-4o-mini) 92.2 2.55 83.3 0.462 124 16.0
MapCoder (GPT-4o-mini) 88.3 2.77 76.0 0.528 84.3 12.4
MaintainCoder (GPT-4o-mini) 72.0 2.71 85.0 0.793 39.8 17.5

DeepSeek-V3 81.7 2.11 87.5 0.512 246 11.0
DeepSeek-V3CoT 79.9 2.29 87.5 0.500 234 11.1
DeepSeek-V3Plan 77.5 2.70 89.2 0.542 204 11.4
AgentCoder (DeepSeek-V3) 84.3 2.53 86.7 0.511 194 12.9
MapCoder (DeepSeek-V3) 78.3 3.00 89.2 0.549 124 10.2
MaintainCoder (DeepSeek-V3) 64.3 1.93 89.2 0.868 23.0 15.7

GPT-4o 76.7 2.05 88.3 0.468 210 11.8
Qwen-Plus 81.3 2.32 85.8 0.513 253 11.0
Gemini-2.5-Flash-Preview 78.6 2.78 87.5 0.575 168 15.7
Claude-3.7-Sonnet 79.5 2.58 84.2 0.514 195 10.2
Claude-3.5-Sonnet 82.4 2.13 85.8 0.491 269 10.7

Figure 7: Pass@k on APPS-Dyn, CodeContests-Dyn and xCodeEval-Dyn. MaintainCoder consis-
tently outperforms with varying k values (1-5), demonstrating the robustness w.r.t. Pass@k

31

Table 8: Performance on mixture-level dataset with Gemini-2.5-Flash-Preview as Phase II generator.
Conclusions are consistent with GPT-4o-mini, demonstrating robustness w.r.t. Phase II generator.

Model
Static metrics Dynamic metrics

MI↑ CC↓ Pass@5 (%) ↑ ASTsim ↑ Codeperdiff (%) ↓ Codeabsdiff ↓

APPS-Dyn
GPT-4o-mini 63.3 5.10 62.5 0.456 194 26.8
GPT-4o-miniCoT 63.2 5.10 60.5 0.464 184 25.4
GPT-4o-miniPlan 59.2 5.01 61.0 0.496 124 26.5
AgentCoder (GPT-4o-mini) 63.3 5.81 53.5 0.350 97.6 32.0
MapCoder (GPT-4o-mini) 67.8 5.98 62.0 0.471 91.0 27.7
MaintainCoder (GPT-4o-mini) 69.5 2.75 63.5 0.724 55.3 37.0

DeepSeek-V3 61.8 7.59 66.5 0.569 144 26.8
DeepSeek-V3CoT 61.3 7.28 72.0 0.560 148 26.5
DeepSeek-V3Plan 59.2 6.06 70.0 0.537 169 28.3
AgentCoder (DeepSeek-V3) 60.5 6.68 68.5 0.498 141 30.0
MapCoder (DeepSeek-V3) 59.3 8.76 62.0 0.560 110 30.3
MaintainCoder (DeepSeek-V3) 62.4 3.21 75.0 0.650 87.1 34.7

GPT-4o 63.0 4.58 66.5 0.452 173 24.5
Qwen-Plus 61.2 5.61 68.0 0.517 185 24.9
Gemini-2.5-Flash-Preview 59.7 9.00 70.5 0.591 126 23.1
Claude-3.5-Sonnet 60.8 4.63 69.0 0.502 141 29.0
Claude-3.7-Sonnet 59.3 6.65 67.5 0.504 120 31.6

Table 9: Fine-grained token usage for MaintainCoder on the CodeContests dataset.

Stage Requirement
Analysis

Pattern
Selection

Framework
Design Supervisor Code

Implementation
Code

Modification
Code

Extraction Total

Tokens (k) 1.7 2.3 6.7 6.7 3.1 9.0 3.6 33.1

32

F Case Study: Proactive Architectural Design for a 2048 Game

To provide a concrete, end-to-end illustration of MaintainCoder’s capabilities, we present a case
study on generating a complete, functional, and maintainable 2048 game. This example serves to
fulfill the request from Reviewer 9Ho3 for a more verbose demonstration of our agentic pipeline. It
highlights MaintainCoder’s core philosophy: shifting from reactive problem-solving to proactive
architectural design for long-term software resilience.

F.1 Architectural Foresight: The MVC Pattern

Given the high-level requirement "create a 2048 game," MaintainCoder functions not merely
as a code generator but as a software architect. The Design Pattern Selection Agent
identifies that the game’s logic (Model), user interface (View), and input handling (Controller) are
distinct concerns that are likely to evolve independently. Consequently, it selects the Model-View-
Controller (MVC) design pattern to enforce a clear separation of concerns, enhance modularity, and
reduce coupling.

This architectural decision, made proactively during the initial design phase, results in a well-
organized and intuitive repository structure, as shown below:

2048-python-game/
|-- main.py
|-- README.md
‘-- src/

‘-- game_2048/
|-- __init__.py
|-- common/
| |-- __init__.py
| ‘-- enums.py
|-- controller/
| |-- __init__.py
| ‘-- game_controller.py
|-- model/
| |-- __init__.py
| ‘-- game_state.py
|-- view/
| |-- __init__.py
| |-- game_view.py
| ‘-- ui_constants.py
‘-- utils/

|-- __init__.py
‘-- matrix_utils.py

F.2 Maintainability Under Dynamic Requirements

The true value of this proactive design is revealed when the requirements evolve. We simulate two
common types of maintenance tasks that mirror real-world software evolution:

1. Scenario 1 (View Modification): A new requirement is introduced to “change the color
scheme of the game tiles to a high-contrast mode for better accessibility.”

2. Scenario 2 (Model Modification): A feature request asks to “add a new ’512’ tile to the
game, appearing after the ’256’ tile.”

In a monolithic, poorly structured codebase, these seemingly simple changes could necessitate
complex, widespread modifications, risking the introduction of new bugs. However, with the MVC
architecture generated by MaintainCoder, the maintenance effort is minimized and localized:

• For Scenario 1, the required changes are confined entirely to the view/ directory,
specifically within ui_constants.py where colors are defined, and potentially

33

game_view.py to adjust rendering logic. The core game logic in the model/ and
controller/ directories remains untouched, ensuring that this cosmetic update does not
affect the game’s functionality.

• For Scenario 2, the logic for the new tile is encapsulated within the model/ directory,
primarily affecting the game_state.py file where the game board and tile values are
managed. The view/ directory might require a minor, corresponding change to add a color
for the new ’512’ tile, but the core responsibility for the feature enhancement is correctly
isolated within the model layer.

F.3 Conclusion of the Case Study

This case study demonstrates that MaintainCoder’s architectural foresight provides persistent
benefits over multiple maintenance cycles. By embedding proven software engineering principles
like design patterns directly into the generation process, it produces code that is not only functionally
correct for the initial requirement but is also inherently structured for future evolution. The resulting
changes are localized and simple, drastically reducing the long-term cost of maintenance and aligning
with the core goals of our work.

34

G Case Study: A Toy Example

Question
Denote a cyclic sequence of size n as an array s such that sn is adjacent to s1. The segment s[r, l]
where l < r is the concatenation of s[r,n] and s[1, l].

You are given an array a consisting of n integers. Define b as the cyclic sequence obtained from
concatenating m copies of a. Note that b has size n×m.

You are given an integer k where k = 1 or k is a prime number. Find the number of different segments
in b where the sum of elements in the segment is divisible by k.

Two segments are considered different if the set of indices of the segments are different. For example,
when n = 3 and m = 2, the set of indices for segment s[2, 5] is {2, 3, 4, 5}, and for segment s[5, 2] is
{5, 6, 1, 2}. In particular, the segments s[1, 6], s[2, 1], . . . , s[6, 5] are considered as the same segment.
Output the answer modulo 109 + 7.

Input

The first line contains three integers n, m, and k(1 ≤ n,m, k ≤ 2 × 105, k = 1 or k is a prime
number).

The second line contains n integers a1, a2, . . . , an(0 ≤ ai ≤ 2× 105).

Output

Output an integer denoting the number of different segments in b where the sum of elements in the
segment is divisible by k, modulo 109 + 7.

MaintainCoder’s response:

from typing import List

class CyclicArray:
"""
A class to represent a cyclic array derived from a given original

array.
It allows access to elements in a cyclic manner and provides a prefix

sum array.
"""

def __init__(self, original_array: List[int], copies: int):
"""
Initializes the CyclicArray with the original array and number of

copies.

:param original_array: List[int] - The original array.
:param copies: int - Number of copies to create the cyclic array.
"""
self.original_array = original_array
self.size = len(original_array)
self.copies = copies
self.prefix_sum = self.get_prefix_sum()

def get_element(self, index: int) -> int:
"""
Returns the element at the given index considering cyclic behavior.

:param index: int - The index to access.
:return: int - The element at the cyclic index.
"""
return self.original_array[index % self.size]

def get_prefix_sum(self) -> List[int]:
"""
Generates and returns a prefix sum array for the cyclic array.

35

:return: List[int] - The prefix sum array.
"""
total_length = self.size * self.copies
prefix_sum = [0] * (total_length + 1)

for i in range(1, total_length + 1):
prefix_sum[i] = prefix_sum[i - 1] + self.get_element(i - 1)

return prefix_sum

class SegmentSumCalculator:
"""
A class to calculate the number of valid segments in a cyclic array
whose sums are divisible by a given integer k.
"""

def __init__(self, cyclic_array: CyclicArray, modulus: int):
"""
Initializes the SegmentSumCalculator with a cyclic array and

modulus.

:param cyclic_array: CyclicArray - An instance of the CyclicArray
class.

:param modulus: int - The modulus value for output.
"""
self.cyclic_array = cyclic_array
self.modulus = modulus

def count_valid_segments(self, k: int) -> int:
"""
Counts the number of segments whose sums are divisible by k.

:param k: int - The divisor for checking segment sums.
:return: int - The count of valid segments modulo ‘modulus‘.
"""
count = 0
prefix_count = [0] * k # To count occurrences of each remainder
prefix_count[0] = 1 # There’s one way to have a sum of 0 (empty

segment)

total_length = self.cyclic_array.size * self.cyclic_array.copies

for i in range(1, total_length + 1):
current_sum = self.cyclic_array.prefix_sum[i]
remainder = current_sum % k

Count how many times this remainder has occurred
count += prefix_count[remainder]
count %= self.modulus

Update the count of this remainder
prefix_count[remainder] += 1

return count

class MainProcessor:
"""
A class to orchestrate the process of counting valid segments in a

cyclic array.
"""

def __init__(self, original_array: List[int], copies: int, k: int):

36

"""
Initializes the MainProcessor with the necessary components.

:param original_array: List[int] - The original array.
:param copies: int - Number of copies to create the cyclic array.
:param k: int - The divisor for checking segment sums.
"""
self.cyclic_array = CyclicArray(original_array, copies)
self.segment_calculator = SegmentSumCalculator(self.cyclic_array,

10**9 + 7)
self.k = k

def process(self) -> int:
"""
Orchestrates the overall process to calculate the number of valid

segments.

:return: int - The result of valid segments count.
"""
return self.segment_calculator.count_valid_segments(self.k)

def codeContest_run1(n: int, m: int, k: int, a: List[int]) -> int:
"""
Interface function to execute the segment counting process.

:param n: int - Size of the original array.
:param m: int - Number of copies to create the cyclic array.
:param k: int - The divisor for checking segment sums.
:param a: List[int] - The original array.
:return: int - The count of valid segments modulo 10^9 + 7.
"""
processor = MainProcessor(a, m, k)
return processor.process()

GPT-4o-mini’s response:

def codeContest_run1(n, m, k, a):
MOD = 10**9 + 7
total_sum = sum(a) * m
prefix_sum = [0] * (n * m + 1)

for i in range(1, n * m + 1):
prefix_sum[i] = (prefix_sum[i - 1] + a[(i - 1) % n]) % k

count = {}
for i in range(n * m + 1):

mod_value = prefix_sum[i]
if mod_value in count:

count[mod_value] += 1
else:

count[mod_value] = 1

result = 0
for mod_value in count:

c = count[mod_value]
result += c * (c - 1) // 2
result %= MOD

return result

37

H Impact Statements

This paper introduces MaintainCoder and MaintainBench, which have significant potential impacts on
both research and industry. For research, MaintainBench provides a novel benchmark for evaluating
the maintainability of code generation models under evolving requirements. This will enable more
comprehensive and realistic assessments of code generation systems, driving the development
of new methods that not only focus on initial correctness but also on long-term maintainability.
MaintainCoder, as a pioneering solution integrating the Waterfall model, design patterns, and multi-
agent collaboration, offers a new approach for maintainable codes. Its success in experiments
demonstrates the feasibility and effectiveness of this approach, inspiring future research on combining
traditional software engineering principles with modern AI techniques. In industry, the ability
to generate code that is easier to maintain and adapt to changing requirements can significantly
reduce software lifecycle costs. This is particularly important for large-scale software projects where
maintenance often accounts for a substantial portion of the total cost. By improving maintainability,
MaintainCoder can help companies reduce technical debt, enhance software quality, and accelerate
development cycles. Additionally, the insights gained from this research can inform best practices
for human developers, promoting more sustainable and efficient software engineering processes.
There are also other potential societal consequences of our work, yet none of which we think must be
specifically highlighted here.

38

	Introduction
	Related Work
	Method
	Problem Formulation
	MaintainBench: A Dynamic Benchmark for Code Maintainability
	Data Selection and Preprocessing
	Extended Data Generation

	MaintainCoder: A Multi-Agent System for Maintainable Code Generation
	Code Framework Module
	Code Generation Module

	Experiments
	Main Experiments
	Analysis and Discussion

	Conclusion
	Instruction Templates
	Instructions for MaintainBench
	Instructions for MaintainCoder
	Instructions for Phase II Generator

	Benchmark Construction
	Details of Original Datasets
	Solution-Test Co-evolution
	Mannually Quality Check

	Annotation Process
	Annotation Qualification
	Annotation Requirements

	Implementation Details
	Extra Experiments
	Case Study: Proactive Architectural Design for a 2048 Game
	Architectural Foresight: The MVC Pattern
	Maintainability Under Dynamic Requirements
	Conclusion of the Case Study

	Case Study: A Toy Example
	Impact Statements

