
Under review as submission to TMLR

Actor-only and Safe-Actor-only REINFORCE Algorithms
with Deterministic Update Times

Anonymous authors
Paper under double-blind review

Abstract

Regular Monte-Carlo policy gradient reinforcement learning (RL) algorithms require aggre-
gation of data over regeneration epochs constituting an episode (until a termination state
is reached). In real-world applications involving large state and action spaces, the hitting
times for goal states can be very sparse or infrequent resulting in large episodes of unpre-
dictable length. As an alternative, we present an RL algorithm called Actor-only algorithm
(AOA) that performs data aggregation over a certain (deterministic) number of epochs.
This helps remove unpredictability in the data aggregation step and thereby the update
instants. Note also that satisfying safety constraints in RL is extremely crucial in safety-
critical applications. We also extend the aforementioned AOA to the setting of safe RL that
we call Safe-Actor-only algorithm (SAOA). In this work, we provide the asymptotic and
finite-time convergence guarantees of our proposed algorithms to obtain the optimal policy.
The finite-time analysis of our proposed algorithms demonstrates that finding a first-order
stationary point, i.e.,

∥∥∇J̄ (θ)
∥∥2

2 ≤ ϵ and
∥∥∇L̄ (θ, η)

∥∥2
2 ≤ ϵ of performance function J̄(θ) and

L̄(θ, η), respectively, both with O(ϵ−2) sample complexity. Further, our empirical results
on benchmark RL environments demonstrate the advantages of proposed algorithms over
considered algorithms in the literature.

1 Introduction

Reinforcement learning (RL) is a sequential decision-making paradigm that aims at finding the optimal se-
quence of actions in order to minimize or maximize a certain long-term objective when the system model of
the underlying MDP Puterman (2014) is not known Sutton & Barto (2018). RL algorithms learn from data
received from either a simulation device or a real source. RL has found applications in diverse domains in-
cluding power systems, natural language processing, asset management, and roboticsHakobyan et al. (2019).
RL algorithms can broadly be classified as value-based, such as Q-learning, and policy-based methods, such
as policy-gradient (PG) Sutton & Barto (2018). PG methods are often appropriate for high-dimensional
state-action settings Sutton et al. (2000) occur in real-world applications. Among PG methods, actor-critic
(AC) Konda & Tsitsiklis (2000) and soft actor-critic (SAC) Haarnoja et al. (2018) are popular. PG algo-
rithms update policy either at every time step or at the end of the trajectory (using the Monte Carlo PG
(MCPG) Noorani & Baras (2021)), that is, when the goal state is reached. In this paper, we first present an
Actor-only algorithm (AOA) that works with a single update recursion (instead of two recursions commonly
used in the AC method) and works with linear function approximation. Further, our methodology updates
actor parameter after increasing deterministic instants using a Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) based approach. Our proposed method is thus analogous to a trajectory based method
where the trajectories are of deterministic though increasing lengths.
We further extend our framework to incorporate inequality constraints obtained from single-stage costs in
addition to rewards, and present a Safe-Actor-only algorithm (SAOA) that derives the optimal policy within
a safe region. There is a lot of research activity on Safe RL in recent times and Garc´ıa & Fern´andez (2015)
provides an overview of the same. Note again that regular RL aims to optimize the agent’s performance via
its long-term reward and in the process, learn an optimal policy interacting with the dynamic environment.
This often requires significant exploration which can often be unsafe in real-world applications.

1

Under review as submission to TMLR

In recent times, RL algorithms have been applied in several safety-critical applications, such as robotics,
autonomous driving, cyber-security, and financial management, where the agent’s safety is crucial Kiran
et al. (2022); Machado et al. (2017). Thus, the agent’s goal here is not only to maximize long-term reward
or achieve optimal policy but also to ensure that the agent never enters unsafe states, i.e., the agent must
look for optimal solutions under safety constraints.

For our Safe-Actor-only algorithm, we introduce a safe PG method, where the underlying setting is a con-
strained Markov decision process (CMDP) Altman (1999),Bhatnagar & Lakshmanan (2012). Here, the
constraint region can be designed to ensure the agent’s safety. Our Safe-Actor-only method adds constraint
functions to the original objective function, partitioning the state space into safe and unsafe regions. Our
specific contributions are listed below.

• We consider two different MDP settings - with and without constraints and present RL algorithms
for both in the long-run average reward setting with function approximation. Specifically, we propose
(i) AOA for the regular MDP setting and (ii) SAOA for the constrained MDP setting.

• Both of our algorithms (AOA and SAOA) are model-free RL algorithms and are in fact versions of
PG and constrained PG algorithm, respectively.

• We provide asymptotic and non-asymptotic or finite-time analysis of our proposed algorithms. We
show that our algorithms in a non-i.i.d (Markovian) setting are guaranteed to converge to an ϵ-
neighborhood of the first-order stationary point, i.e., ∥∇J̄(θ)∥2

2 ≤ ϵ and ∥∇L̄(θ, η)∥2
2 ≤ ϵ of the

performance function J̄(θ) and L̄(θ, η), respectively, with a sample complexity of O(ϵ−2) for both
algorithms AOA and SAOA, respectively.

• We also provide empirical results, including regular and safe navigation of the RL agent in different
2D grid-world environments, that demonstrate the effectiveness of the theoretical results.

2 Related Work

PG for Regular MDPs: PG algorithms are data-driven approaches and involve either trajectory-based
methods or else are incremental update approaches. The latter fall under the broad category of actor-critic
methods while the former approaches are typically actor-only methods. We now go over some of the works
that employ PG approaches.

PG methods with compatible function approximators are discussed in Sutton et al. (2000). AC algorithms
with PG actors have been studied and analyzed for their asymptotic convergence in Konda & Tsitsiklis
(2000); Bhatnagar et al. (2009). In Bhatnagar & Kumar (2004); Abdulla & Bhatnagar (2007), actor-critic
algorithms for the look up table setting and for the discounted and average (avg.) cost MDPs, respectively,
are presented. These involve TD learning critic and PG actor where the actor update is based on simultaneous
perturbation stochastic approximation (SPSA) Spall (1992) gradient estimates. In Kumar & et al. (2024);
Qiu et al. (2019); Wu et al. (2020) AC algorithms are discussed where finite-time analysis (FTA) is done but
asymptotic analysis is not shown in contrast in Mandal et al. (2024); Bhatnagar et al. (2009) asymptotic
analysis is shown but FTA is not available.

PG for Constrained MDPs: Incorporating safety constraints in RL is crucial for safety critical appli-
cations. The CMDP Altman (1999) is a widely studied framework for RL with constraints. It is assumed
here that in addition to single-stage rewards, each state transition also fetches a set of single-stage costs that
describe the (long-term) constraint functions. Constrained policy optimization procedures are based on this
formulation, see for instance, Achiam et al. (2017), Tessler et al. (2019) and D. Ding et al. (2020).

In Borkar (2004), a multi-timescale constrained AC algorithm in the look-up table case, for the long-run avg.
reward criterion is presented. The Lagrange multiplier approach is adopted resulting in a three timescale
algorithm. In addition to the actor and critic updates on different timescales, the Lagrange parameter
is updated on the slowest timescale. Extending the idea in Borkar (1997), Bhatnagar (2010a) presents a
constrained AC algorithm with function approximation for the discounted reward setting. The actor update
here incorporates SPSA based gradient search.

2

Under review as submission to TMLR

In Bhatnagar & Lakshmanan (2012), an online constrained AC (CAC) algorithm with function approximation
for the avg. reward setting is presented and asymptotic analysis is done. The actor update here incorpo-
rates the PG estimator (Sutton et al. (2000)) for the Lagrangian obtained from relaxing the constraints in
the objective. Model-based RL for constrained MDP is discussed in Singh et al. (2023); A. H. Zonuzy &
Shakkottai (2021) for finite and infinite time horizon settings, respectively. Safe RL based approaches are
also discussed in Ge et al. (2019); Wachi & Sui (2020). In Panda & Bhatnagar (2024) CAC is discussed and
FTA is shown. Table 1 summarizes the comparison of our proposed works with a few related works, AOA
and SAOA, in terms of sample complexity and asymptotic analysis.

Table 1: Finite time complexity of different policy-gradient (PG) algorithms 1.

Algorithm FT Complexity Asymptotic Analysis
discounted reward AC Kumar & et al. (2024) T = O(ϵ−4) #

average (avg.) reward AC Qiu et al. (2019) T = Õ(ϵ−4) #

avg. reward AC Wu et al. (2020) T = Õ(ϵ−2.5) #

avg. reward CAC Panda & Bhatnagar (2024) T = Õ(ϵ−2.5) #

discounted reward AC Mandal et al. (2024) # !

avg. reward AC Bhatnagar et al. (2009) # !

avg. reward CAC Bhatnagar & Lakshmanan (2012) # !

AOA (Proposed) T = O(ϵ−2) !

SAOA (Proposed) T = O(ϵ−2) !

3 Background

Regular RL: Markov Decision Process (MDP) is the backbone of regular RL. By an MDP, we mean a
four-tuple (S,A, r, P), where S,A, r, P denote the state space, the action space, the reward function, and
the probability transition matrix, respectively. We assume here finite state and action spaces. By a policy
π, we mean a mapping π : S → ∆(A) from the state space S to the set of distributions over feasible actions
in state s ∈ S. In this work, we consider the average (avg.) reward setting and the aim is to find a policy
π∗ that maximizes the long-run avg. reward, Jπ, as follows:

π∗ = arg max
π∈Π

Jπ, where Jπ = lim
n→∞

1
n
E[

n−1∑
i=0

ri | π]. (1)

We consider a class of policies πθ, parameterized by θ ∈ Rd, d ≥ 1. Our objective then is to determine the
optimal value of θ to maximize the long-run avg. reward Jπθ .

When the closed form of ∇θJπθ is known, one can find the optimal θ iteratively by following the gradient
ascent scheme:

θn+1 = θn + αn∇θJπθ , n ≥ 0, (2)

starting from an arbitrarily chosen θ0 ∈ Rd and αn, n ≥ 0, is the step-size sequence. Since ∇θJπθ is not
known, we adopt a novel stochastic gradient search based procedure.

Constrained RL: Constrained RL algorithms such as constrained actor-critic (CAC) algorithms Bhatnagar
(2010b); Bhatnagar & Lakshmanan (2012) have found significant applications in the area of safe RL. Let rn

denote the single-stage reward obtained at the nth instant as before. However, we shall assume that each
state transition also fetches N other single-stage costs g1(n), . . . , gN (n) at instant n ≥ 0. Given the current

1#, ! , respectively, denote not available and available.

3

Under review as submission to TMLR

state-action pair (sn, an), rn, gq(n), q = 1, . . . , N are assumed conditionally independent of the previous states
and actions (sm, am, m < n). Further, r(s, a) and gq(s, a) are defined as r(s, a) := E[rn | sn = s, an = a] and
gq(s, a) := E[gq(n) | sn = s, an = a], q = 1, . . . , N , respectively. Let, dπ = (dπ(s), s ∈ S) be the stationary
probability distribution of the ergodic Markov process {Xn, n ≥ 0} (see Assumption 1). The objective is to
maximize the long-run avg. reward, given by

Jπ = lim
n→∞

1
n
E

[
n−1∑
k=0

rk | π

]
=
∑
s∈S

dπ(s)
∑

a∈A(s)

π(s, a)r(s, a). (3)

This is, however done subject to the constraints

Gq(π) := lim
n→∞

1
n
E

[
n−1∑
q=0

gq(k) | π
]

=
∑
s∈S

dπ(s)
∑

a∈A(s)

π(s, a)gq(s, a) ≤ νq, (4)

q = 1, . . . , N , where ν1, . . . , νN are prescribed positive thresholds. The above problem that is defined in (3)
and (4) is redefined using Lagrange relaxation as follows:

L(π, η) := Jπ −
N∑

q=1
ηq (Gq(π)− νq) =

∑
s∈S

dπ(s)
∑

a∈A(s)

π(s, a)
(

r(s, a)−
N∑

q=1
ηq (gq(s, a)− νq)

)
, (5)

where, η = (η1, . . . , ηN)⊤ is a vector of Lagrange multipliers ηq ∈ R+ ∪ {0}, q = 1, . . . , N , with L(π, η)
being the Lagrangian. We now consider at instant n, the single-stage reward for the relaxed problem as
rn −

∑N
q=1 ηq (gq(n)− νq). In our work, we use Lagrangian and adopt a novel stochastic gradient search-

based approach to get the optimal policy.

4 Proposed Algorithm

This section describes our proposed methodology, Actor-only (i.e., Algorithm 1) and Safe-Actor-only (i.e.,
Algorithm 2) REINFORCE algorithms with deterministic update times.

4.1 Actor-only Algorithm (AOA) for Regular RL

Algorithm 1 Actor-only Algorithm for Regular RL
Input: Scalar δ > 0 and ∆, a zero-mean, ±1-valued, Bernoulli distributed sample.
Output: Optimal policy

1: Initialisation : θ(0) = θ0, n0 = 0, m = 0, 0 < σ′′ < σ′ ≤ 1, J = 0.
2: for n = 0 to ∞ do
3: αn = 1

{1+n}σ′ , βn = 1
{1+n}σ′′

4: nm+1 = min{j ≥ nm |
∑j

i=nm+1 αi ≥ βnm}
5: Get next state s′, reward r(n) using current state s and action a ∼ πθ.
6: Get next state s+, reward r+(n) using current state s and action a ∼ πθ+δ∆.
7: if n == nm+1 then
8: for i = 1, . . . , d do
9: θi(m + 1) = Λi[θi(m) + (

∑nm+1
j=nm+1 αj

(r+(j)−r(j))
δ∆m,i

)]
10: end for
11: end if
12: J(n + 1)← J(n) + βn(r(n)− J(n))
13: end for
14: return Optimal policy parameter θ∗.

Our proposed AOA obtains the optimal policy in the long-run average reward setting. To facilitate a better
understanding, we first explain the framework and later the algorithm (see Algorithm 1) to compute the
optimal policy parameter θ that maximizes the long-run average reward. We make the following assumptions:

4

Under review as submission to TMLR

Assumption 1. The Markov chain {Xn, n ≥ 0} under any policy π is ergodic.
Assumption 2. For any a ∈ A(s), s ∈ S, π(s, a) is twice continuously differentiable in the policy parameter.

We estimate the gradient of the objective function using the SPSA-based gradient estimates Spall (1992) as
these are easy to compute and are found to be efficient. One may use, for instance, the soft-max policies in
Algorithm 1, see (6).

πθ(s, a) = eθ⊤ϕ(s,a)∑
a′∈A eθ⊤ϕ(s,a′) ,∀s ∈ S, a ∈ A, (6)

where ϕ(s, a) is the state-action feature vector. Let, the set of parameterized policies be denoted Π̃, i.e.,
Π̃ = {πθ|θ ∈ Rd}. Now, the optimization of policy parameter θ is only for policies in Π̃.

The proposed algorithm has a single update recursion but where the update epochs are obtained from
two sets of step-sizes αn, n ≥ 0, and βn, n ≥ 0, respectively. These step-size sequences satisfy (28)–(30)
shown in the Appendix A. We take δ > 0 as a small constant and assume that policy parameter θ takes
values in the compact set C :=

∏d
i=1[θi,min, θi,max]. From Assumption 1, for every fixed θ, the Markov

process {Xn, n ≥ 0} is ergodic. The projection operator Λ(·) = (Λ1(·), . . . , Λd(·))⊤ : Rd → C. Here,
Λi(z) := min(max(θi,min, z), θi,max), for i = 1, 2, . . . , d, projects and z ∈ R to its closest point in the
interval [θi,min, θi,max] ⊂ R. Define now a sequence of points {nm, m ≥ 0}, parameter update instants of
Algorithm 1, as n0 = 0, nm+1 := min{j ≥ nm |

∑j
i=nm+1 αi ≥ βnm

}. It is easy to see that {nm, m ≥ 0} is a
deterministically increasing sequence of points.

Our proposed algorithm makes use of two simulations governed by {θ̂k
j , j ≥ 0}, where k = 1, 2, and

nm < j ≤ nm+1, m ≥ 0. Here, we define θ̂1
j = θ(m) + δ∆(m), and θ̂2

j = θ(m), m ≥ 0. Further,
parameter θ is defined as θ(m) = (θ1(m), θ2(m), . . . , θd(m))⊤. The perturbation vector ∆ is defined as
∆(m) = (∆1(m), ∆2(m), . . . , ∆d(m))⊤, where ∆i(m), for i = 1, . . . d, are mutually independent, ±1-
valued, symmetric Bernoulli random variables with zero-mean. Moreover, ∆(k), k ≥ 0 is independent of
σ(θ(l), l ≤ k), the filtration generated by the sequence of parameter updates.

In the Algorithm 1, we take δ and ∆ (explained previously) as input and initialize policy parameter θ as
θ0. At each time instant n, we get value of step-sizes αn, βn and from these values we compute nm. We get
rewards r(n) and r+(n) using two parallel simulations governed by policy parameter θ and perturbed policy
parameter θ + δ∆, respectively, at time n. Next, we update parameter θ at each instant nm as follows:

θi(m + 1) = Λi

θi(m) +

 nm+1∑
j=nm+1

αj
r+(j)− r(j)

δ∆m,i

 , (7)

for i = 1, 2, . . . , d.

We obtain the optimal value of θ, that is θ∗ and the total accumulated reward J after the convergence of
Algorithm 1. The proposed algorithm is a purely data-driven algorithm that employs two parallel simulations
for the gradient estimation.

4.2 Safe-Actor-only Algorithm (SAOA) for Constrained RL

Similar to Algorithm 1, in Algorithm 2, Assumptions 1 and 2 continue to hold. Further, the parameterized
policy is as in (6), and the framework to use SPSA is as in section 4.1. The proposed SAOA (Algorithm 2)
involves two separate recursions but requires three sets of step-sizes {ζn, n ≥ 0}, {αn, n ≥ 0}, and {βn, n ≥ 0},
respectively, satisfy (31)–(33) shown in the Appendix A.

In Algorithm 2, the recursion for Lagrange multiplier η-update is run on the slowest timescale obtained
from ζn, n ≥ 0, while the recursion for the actor parameter θ-update is using the timescale αn, n ≥ 0. In
Algorithm 2, the goal of the agent is to maximize the long-run average reward while maintaining the safety
cost constraint. In this algorithm, we take a small positive number δ, ∆ (as in Algorithm 1), cost constraints
νq, q = 0, . . . , N as input.

5

Under review as submission to TMLR

Algorithm 2 Safe-Actor-only Algorithm for Constrained RL
Input: scalar δ > 0, sample ∆ obtained from zero-mean, ±1-valued, Bernoulli distribution.
Input: νq > 0, for q = 1, · · · , N .
Output: Optimal policy

1: Initialisation: θ(0) = θ0, n0 = 0, m = 0, 0 < σ4 < σ5 < σ6 ≤ 1.
2: Initialisation: J(0) = Gq(0) = 0, ηq(0) = η0.
3: for n = 0 to ∞ do
4: ζn = 1

{1+n}σ6 , αn = 1
{1+n}σ5 , βn = 1

{1+n}σ4

5: nm+1 = min{j ≥ nm |
∑j

i=nm+1 αi ≥ β(nm)}
6: Get next state s′, reward r(n), cost gq(n) using current state s and action a ∼ πθ.
7: h(n) = r(n)−

∑N
q=1 ηq(gq(n)− νq)

8: Get next state s+, reward r+(n), cost g+(n) using current state s and action a ∼ πθ+δ∆.
9: h+(n) = r+(n)−

∑N
q=1 ηq(g+

q (n)− νq)
10: if n == nm+1 then
11: for i = 1, . . . , d do
12: θi(m + 1) = Λi[θi(m) + (

∑nm+1
j=nm+1 αj

h+(j)−h(j)
δ∆m,i

)]
13: end for
14: end if
15: J(n + 1)← J(n) + βn(r(n)− J(n))
16: L(n + 1)← L(n) + βn(h(n)− L(n))
17: Gq(n + 1)← Gq(n) + βn(gq(n)− Gq(n))
18: ηq(n + 1)← Λ̂(ηq(n)− ζn(Gq(n)− νq(n)))
19: end for
20: return Optimal policy parameter θ∗.

We initialize the policy parameter θ, average reward J , average cost Gq, Lagrange parameter ηq (see Lines 1-2
in Algorithm 2). For each time instant n, we get values of step-size sequences and instants nm as described
in the algorithm. Now, using two parallel simulations guided by θ and θ + δ∆, respectively, we obtain the
corresponding reward and cost at each time instant n. We define h(n) = r(n) −

∑N
q=1 ηq(gq(n) − νq) and

h+(n) = r+(n)−
∑N

q=1 ηq(g+
q (n)− νq) corresponding to two parallel simulations. We use the values of h(n)

and h+(n) in the policy parameter update at instant nm+1 (see Line no. 12). Further, Line no. 15 calculates
the average reward J . The update rules for the Lagrangian L, policy parameter θ, estimated cost G, and
Lagrange parameters η are as follows:

L(n + 1) = L(n) + βn(h(n)− L(n)), (8)

θi(m + 1) = Λi

θi(m) + (
nm+1∑

j=nm+1
αj

h+(j)− h(j)
δ∆m,i

)

 , for i = 1, 2, . . . , d. (9)

Gq(n + 1) = Gq(n) + βn(gq(n)− Gq(n)), (10)
ηq(n + 1) = Λ̂(ηq(n)− ζn(Gq(n)− νq(n))), for q = 1, 2, . . . , N. (11)

Upon convergence of Algorithm 2, we obtain the optimal parameter θ∗ that provides the optimal safe policy
πθ∗ . Further, Algorithm 2 provides the average total reward J , average safety cost Gq, and the optimal value
of Lagrange parameters ηq upon convergence.

5 Asymptotic Convergence Analysis

We first present the asymptotic convergence results of our proposed algorithm AOA i.e., Algorithm 1.
Subsequently, we briefly sketch the changes in analysis needed for the (constrained algorithm) SAOA, i.e.,
Algorithm 2. The detailed proof of all Lemmas and Theorems are in Appendix A.1.

6

Under review as submission to TMLR

5.1 Asymptotic Analysis of Algorithm 1

Lemma 1. Jπθ is continuously differentiable in θ ∈ C, where C is a compact set.

For purposes of the remaining analysis, we alternatively consider a cost minimization problem (instead of a
reward maximization) wherein we set c(j) = −r(j), ∀j. While Algorithm 1 maximizes the long-term reward
Jπθ (see (12)), an algorithm with the aforementioned cost structure would minimize J̄πθ = −Jπθ . Thus, (34)
and (7) can be rewritten in terms of long-term average cost J̄πθ and single-stage cost as follows:

J̄πθ = lim
n→∞

1
n
E[

n−1∑
k=0

ck+1 | πθ] (12)

θi(m + 1) = Λi

θi(m)−

 nm+1∑
j=nm+1

αj
c+(j)− c(j)

δ∆m,i

 , (13)

for i = 1, 2, . . . , d. We use here J̄πθ and J̄(θ) interchangeably to mean the same quantity. We analyze the
convergence of (13) to prove the convergence of Algorithm 1.

Let K denote the set of all stationary points of the function J̄ , i.e.,

K = {θ ∈ C | Λ̄
(
−∇J̄(θ)

)
= 0}, (14)

where for any bounded, continuous, real-valued function v(·), y ∈ C, i = 1, . . . , d,

Λ̄i(v(y)) = lim
η↓0

(
Λi(y + ηv(y))− y

η

)
. (15)

Also, Λ̄(x) = (Λ̄i(xi), i = 1, . . . , d)T , where x = (xi, i = 1, . . . , d)T . The operator Λ̄(·) ensures that the
evolution of the ODE happens within the set C. Further, given γ > 0, let Kγ denote the γ-neighborhood of
the set K, i.e.,

Kγ = {θ ∈ C | ∥θ − θ0∥ < γ, θ0 ∈ K}.

Theorem 1. Given γ > 0, ∃δ0 > 0 such that for any δ ∈ (0, δ0], the iterates θ(n), n ≥ 0 governed by
Algorithm 1 converge to Kγ almost surely.

5.2 Asymptotic Analysis of Algorithm 2

Lemma 2. Lπθ,η is continuously differentiable in θ ∈ C, where C is a compact set.

Algorithm 2 maximizes Lπθ,η, i.e., is equivalent to minimizing L̄πθ,η. Let, at time instance j single-stage
cost h̄(j) = −h(j) (here if h(j) is uniformly bounded, then h̄(j) is also uniformly bounded) and

L̄πθ,η = lim
n→∞

1
n
E[

n−1∑
k=0

h̄k+1 | πθ]. (16)

Further, rewriting (9) we get, θi(m + 1) = Λi

θi(m)−

 nm+1∑
j=nm+1

αj
h̄+(j)− h̄(j)

δ∆m,i

 , (17)

for i = 1, 2, . . . , d. In this section, we use L̄πθ,η and L̄(θ, η) interchangeably to mean the same quantity. We
receive the following convergence of Algorithm 2 analyzing (17).

The definition of Kγ is similar as Kγ and can get by replacing function J̄ with Lagrange function L̄.
Theorem 2. Given lagrange multiplier η, γ > 0, ∃δ0 > 0 such that for any δ ∈ (0, δ0] the Algorithm 2
converges to Kγ almost surely.

The convergence of η = (η1, . . . , ηN)⊤ is shown in the Proposition 1 in the Appendix A.1.2.

7

Under review as submission to TMLR

6 Finite Time Analysis

We here present the finite-time sample complexity of our Algorithm 1 and Algorithm 2. The detailed proof
is in Appendix A.2.

6.1 Finite Time Analysis of Algorithm 1

In this section, we discuss the finite time analysis as in Wu et al. (2020) but for our proposed Algorithm 1.
First, we make the required assumptions as follows:
Assumption 3. (Uniform ergodicity). For a fixed θ, as before, let dθ(·) be the stationary distribution induced
by the policy πθ(s, ·) and the transition probabilities P (· | s, a). Consider a Markov chain generated by the
rule at ∼ πθ(st, ·), st+1 ∼ P (· | st, at). Then there exists ϑ > 0 and ρ ∈ (0, 1) such that:

dT V (P (sι ∈ · | s0 = s), dθ(·)) ≤ ϑρι,∀ι ≥ 0,∀s ∈ S (18)

In the above, dT V (O, Q) is defined as dT V (O, Q) = 0.5 ∗
∫

Y | O(dy)−Q(dy) | and called total variation
distance of two probability measures O and Q. Further, we define an integer that depends on the learning
rates in Algorithm 1, as follows:

ιm ≜ min{m ≥ 0 | ϑρm−1 ≤ min{
nm∑

i=nm−1+1
αi, β(m)}}, (19)

where ϑ, ρ are defined in Assumption 3. By definition, in (19), ιm is the mixing time of an ergodic Markov
chain and is used to control the Markovian noise encountered during the training process. Now, we rewrite
and analyze the recursion (13).

θi(m + 1) =Λi(θi(m)− β(m) J̄(θ(m) + δ∆(m))− J̄(θ(m))
δ∆m,i

−

β(m)[

∑nm+1
j=nm+1 αj

(
c+(j)−c(j)

δ∆m,i

)
β(m) − J̄(θ(m) + δ∆(m))− J̄(θ(m))

δ∆m,i
])

=Λi(θi(m)− β(m) J̄(θ(m) + δ∆(m))− J̄(θ(m))
δ∆m,i

)−

β(m)
δ∆m,i

[∑nm+1
j=nm+1 αj (c+(j)− c(j))

β(m) − (J̄(θ(m) + δ∆(m))− J̄(θ(m)))
]

(20)

∴ θi(m + 1) = Λi[θi(m)− β(m) J̄(θ(m) + δ∆(m))− J̄(θ(m))
δ∆m,i

− β(m)N (θi(m))] (21)

= Λi

[
θi(m)− β(m)

(
∇̂J̄(θ(m)) +N (θi(m))

)]
, (22)

where N (θi(m)) = 1
δ∆m,i

[
∑nm+1

j=nm+1
αj(c+(j)−c(j))
β(m) − (J̄(θ(m) + δ∆(m))− J̄(θ(m)))].

We now analyze the recursion (22) considering J̄(·) is a non-convex function. First, we introduce the required
Lemmas and then discuss the main theorem. Now, let, Em is shorthand for E (· | Fm), where Fm be the
sigma-field σ (θi, i < m) , m ≥ 0.
Lemma 3. The faster and slower step sizes βn = 1

{1+n}σ′′ , αn = 1
{1+n}σ′ , where 0 < σ′′ < σ′, follows

0 ≤
∑nm+1

j=nm+1
αj

βmn
≤ c′′, assuming 0 ≤ nm+1 − nm ≤ c′′{nm}σ′′′ , c′′ > 0 where 0 < σ′′ + σ′′′ < σ′. Thus,

max
m

∑nm+1
j=nm+1

αj

β(m) is bounded.

Lemma 4. Em[∥N (θ(m)∥] ≤ B1βm

δ and Em[∥N (θ(m)∥2] ≤ B4β2
m

δ2 for some constant B1, B4 > 0.
Lemma 5. There exists a constant B > 0 such that ∥∇J̄(θ)∥1 ≤ B, ∀θ ∈ Rd.
Lemma 6. The gradient estimate ∇̂J̄ (θk) satisfies the following inequalities for all k ≥ 1 :

8

Under review as submission to TMLR

∥∥∥Ek

[
∇̂J̄ (θk)

]
−∇J̄ (θk)

∥∥∥
∞
≤ c1δ (23) Ek

[∥∥∥∇̂J̄ (θk)
∥∥∥2
]
≤
∥∥∥Ek

[
∇̂J̄ (θk)

]∥∥∥2
+ c2

δ2 (24)

In the above, Ek is shorthand for E (· | Fk), with sigma-field Fk and c1, c2 are some positive constants.
Definition 1. Iteration complexity: For a given ϵ > 0, the iteration complexity of an algorithm is the
number of iterations of the algorithm before finding an ϵ-stationary point for a non-convex objective function.
Theorem 3. Suppose the objective function J̄ is L-smooth (as in A. & Bhatnagar (2024)), and Lemma
5 - 6 hold. Suppose that the recursion (22) is run with the stepsize βk for each k = ιm, . . . , m, where
βk = min

{
1
L , 1

{1+k}σ′′

}
Then an order O(ϵ−2) iterations of the Algorithm 1 are enough to find a point θk

that satisfies min
0≤k≤m

E
∥∥∇J̄ (θk)

∥∥2 ≤ ϵ when σ′ = 1, σ′′ = 1/2.

Proof sketch of Theorem 3: Since J̄ is L-smooth, and using Lemma 4-6 and expanding terms we get

J̄ (θk+1) ≤ J̄ (θk) +
〈
∇J̄ (θk) , θk+1 − θk

〉
+ L

2 ∥θk+1 − θk∥2

...

≤J̄ (θk)−
(

βk −
L

2 β2
k

)∥∥∇J̄ (θk)
∥∥2 + c1δB

(
βk + Lβ2

k

)
− BB1β2

k

δ
+ L

2 β2
k

[
dc2

1δ2 + c2

δ2

]
+ L

2δ2 B4β4
k

Now, we rearrange terms, sum up the inequality for k = ιm to m, take expectations, divide by (1 + m− ιm)
both sides, and get,

1
1 + m− ιm

m∑
k=ιm

Ek

∥∥∇J̄ (θk)
∥∥2

≤ 2
1 + m− ιm

m∑
k=ιm

(
EkJ̄ (θk)− EkJ̄ (θk+1)

)
βk(2− Lβk) + 2

1 + m− ιm

m∑
k=ιm

c1δB

(
1 + Lβk

2− Lβk

)

+ L

1 + m− ιm

m∑
k=ιm

βk

(2− Lβk)

[
dc2

1δ2 + c2

δ2

]
+ 2

1 + m− ιm

m∑
k=ιm

βk

(2− Lβk)

[
LB4

2δ2 β2
k −

BB1

δ

]

Now, upon bounding and simplifying the above right-hand side terms, we get the desired results (check
Appendix A.2.1).
Remark 1. The finite-time complexity T = O(ϵ−2) of AOA (i.e., Algorithm 1) is better than Kumar & et al.
(2024),Qiu et al. (2019), and Wu et al. (2020) (see Table 1). In Wu et al. (2020), Õ hides logarithm terms.
In our case, no logarithm term is multiplied on the right side of the equation mentioned in the Theorem 3.

6.2 Finite Time Analysis of Algorithm 2

In this section, we discuss the finite time analysis as in Panda & Bhatnagar (2024) but for our proposed
Algorithm 2. Here, we consider the step sizes βn = 1

{1+n}σ4 , αn = 1
{1+n}σ5 , and ζn = 1

{1+n}σ6 where
0 < σ4 < σ5 < σ6 ≤ 1. Further, let 0 ≤ r ≤ Br, 0 ≤ gq ≤ Bg, 0 ≤ νq ≤ Bν , 0 ≤ ηq ≤ Bη,∀q = 1, . . . , N .
Thus, 0 ≤ h ≤ Bh, where Bh = Br + NBη(Bg + Bν) and h̄ also upper bounded by Bh.

As in the Algorithm 1, here also we consider the Assumption 3 i.e., Uniform ergodicity. Now, we define
mixing time for Algorithm 2 as follows:

ιm ≜ min{m ≥ 0 | ϑρm−1 ≤ min{ζ(m),
nm∑

i=nm−1+1
αi, β(m)}}, (25)

9

Under review as submission to TMLR

where ϑ, ρ are defined in Assumption 3. By definition, in (25), ιm is the mixing time of an ergodic Markov
chain and is used to control the Markovian noise encountered during the training process. We now rewrite
and analyze the recursion (17) by following the simar steps as in (20) and get

θi(m + 1) = Λi[θi(m)− β(m) L̄(θ(m) + δ∆(m), η(m))− L̄(θ(m), η(m))
δ∆m,i

− β(m)N1(θi(m), η(m))] (26)

= Λi

[
θi(m)− β(m)

(
∇̂L̄(θ(m), η(m)) +N1(θi(m), η(m))

)]
, (27)

where N1(θi(m), η(m)) = 1
δ∆m,i

[
∑nm+1

j=nm+1
αj(h̄+(j)−h̄(j))
β(m) − (L̄(θ(m) + δ∆(m), η(m))− L̄(θ(m), η(m)))].

We now analyze the recursion (27) considering L̄(·) is a non-convex function. First, we introduce the required
Lemmas and then discuss the main theorem. Now, let, Em is shorthand for E (· | Fm), where Fm be the
sigma-field σ (θi, i < m) , m ≥ 0.
Theorem 4. Suppose the objective function L̄ is L-smooth (as in A. & Bhatnagar (2024)), and Lemma 9 -
Lemma 10 hold. Suppose that the recursion (27) is run with the stepsize βk for each k = ιm, . . . , m, where
βk = min

{
1
L , 1

{1+k}σ4

}
Then an order O(ϵ−2) iterations of the Algorithm 2 are enough to find a point θk

that satisfies min
0≤k≤m

E
∥∥∇L̄ (θk, η(k))

∥∥2 ≤ ϵ when σ6 = 1, σ5 = 0.99, σ4 = 0.49.

Remark 2. The finite-time complexity T = O(ϵ−2) of our SAOA (i.e., Algorithm 2) as demonstrated in the
Theorem 4, is better than all considered existing algorithms (see Table 1).

7 Experiments and Results

In this section, we demonstrate the performance of the proposed algorithms AOA (i.e., Algorithm 1) and
SAOA (i.e., Algorithm 2) on standard RL environments for the continuing tasks. Here, we consider different
Grid-world (GW) environments such as having size 10 × 10, 50 × 50, and 100 × 100. We perform 1,00,000
training iterations (i.e., the value of n in the algorithms, alternatively, the number of function measurements)
to ensure the convergence and stability of algorithms.

(a) (b) (c)
Figure 1: Comp. with AOA: Avg. reward on (a) 10×10 (b) 50×50 (c) 100×100 GW w.r.t. train. iterations.

Performance of AOA: To analyze the performance and convergence (conv.) of our AOA, we study the
evolution of average (avg.) reward with respect to (w.r.t.) training iterations. We generate ten different
random seeds to observe the training results of ten different independent runs. The avg. reward and standard
deviation (std.) of rewards obtained at each time instance in ten different runs are calculated and plotted,
where the x-axis presents the number (no.) of training iterations, and the y-axis presents the avg. total
reward obtained so far. ‘RR’ in each plot represents the reward range, i.e., std. of rewards. The performance
of the algorithm during training is presented in Figure 1(a), Figure 1(b), Figure 1(c), respectively, for three
different environments with the cardinality of state and action space, i.e., (| S |, | A |) are (100, 5), (2500, 5)
and (10, 000, 5), respectively. In each environment, some states contain positive rewards, and all other states
contain reward zero, the agent’s goal is to maximize the long-term reward, i.e., to maximize the visit of the
maximum reward-containing state.

10

Under review as submission to TMLR

(a) (b) (c)
Figure 2: Comp. with SAOA: Avg. reward on (a) 10× 10 (b) 50× 50 (c) 100× 100 GW w.r.t. iterations.

(a) (b) (c)
Figure 3: Comp. with SAOA: Avg. safety cost in (a) 10× 10 (b) 50× 50 (c) 100× 100 GW w.r.t. iterations.

Empirical comparative analysis: We consider state-of-the-art (SOTA) algorithms such as standard
Actor-Critic (AC) Bhatnagar et al. (2009) and Soft Actor-Critic (SAC) Haarnoja et al. (2018), Parallelized
Evolution Strategies (PES) Salimans et al. (2017), and Augmented Random Search (ARS) Mania et al.
(2018) and perform additional experiments on the same environmental settings as in proposed AOA. From
our experiments, we observe the following result:
1. We observe that the avg. total reward converges for all three considered environments.
2. Figure 1(a), Figure 1(b), Figure 1(c) demonstrate that our proposed AOA outperforms the SOTA algo-
rithms AC Bhatnagar et al. (2009), SAC Haarnoja et al. (2018), PES Salimans et al. (2017), ARS Mania
et al. (2018) by achieving a highest avg. total reward while training in all considered environments.
3. The converged results of PES and ARS algorithms are very lower than (i.e., not comparable to) our
proposed algorithm, and hence in columns 2− 4 of Table 2, we present converged mean and std. of rewards
of AC, SAC with our proposed AOA (see column 3). The numerical values show the highest reward of our
proposed algorithm while achieving lower std. (majority of the cases).
4. Columns 2 − 6 of Table 3 shows that our AOA achieved 15.23% − 99.31% performance improvement
(alternatively computational cost reduction) in terms of computational time compared to SOTA algorithms.

(a) (b) (c)
Figure 4: Conv. result: (a) Avg. reward (b) Avg. Safety Cost (c) No. of visit in Safe and Unsafe states.

11

Under review as submission to TMLR

Performance of SAOA: We now study the evolution of avg. reward and safety cost w.r.t. training
iterations to analyze the empirical performance and convergence of the proposed SAOA. For the SAOA, we
also consider the state and action spaces with the same cardinality as discussed above for the AOA in three
different GWs. However, here we have unsafe states having unwanted costs with the reward-giving states, in
the state space and need to avoid those unsafe states while maximizing the avg. reward.

Table 2: Performance (mean ± std. of rewards) across 10 independent runs (using 10 random seeds).

Environment AC SAC Proposed AOA CAC CSAC Proposed SAOA

10 × 10 GW 18.37± 7.67 19.50± 4.03 21.31 ± 6.38 21.02± 6.75 22.55± 8.09 24.22 ± 9.47

50 × 50 GW 86.08 ±26.85 91.08 ± 27.71 99.84 ±15.77 97.06 ±28.28 101.67 ± 39.66 113.40 ±12.42

100 × 100 GW 82.21± 26.32 91.31± 16.35 100.71 ± 13.19 82.81± 34.09 96.38± 26.90 102.55 ± 14.76

Table 3: Computation time (in seconds) for n = 1,00,000 iterations.

No. of Itr. AC SAC PES ARS Proposed AOA CAC CSAC Proposed SAOA

1,00,000 49.52 53.73 776.91 6126.43 41.98 62.29 67.54 61.65

Empirical comparative analysis: We consider SOTA algorithms constrained Actor-Critic (CAC) Bhat-
nagar & Lakshmanan (2012) and constrained Soft Actor-Critic (CSAC) Haarnoja et al. (2018) for the
comparative analysis. The avg. reward and std. of rewards obtained at each time instance of ten different
independent runs of the algorithm are calculated and plotted in Figure 2(a), Figure 2(b), Figure 2(c), re-
spectively, for considered three different GW settings where the x and y axis are as in Figure 1. Further, in a
similar manner, the avg. cost is calculated and plotted in Figure 3(a), Figure 3(b), Figure 3(c), respectively.
In each figure, the x-axis presents as in Figure 3, and the y-axis presents the obtained avg. total cost. ‘CR’ in
each plot represents the cost range, i.e., std. of costs. From the training of SAOA, we observe the following:
1. Each part of Figure 2 and Figure 3 show that the avg. total reward and avg. total safety cost, respectively,
converge for all considered experimental setups.
2. For all three environments, cost constraint satisfied for different values of ν. Here we show that for
ν = 0.01 safety cost satisfies the constraint as the converged avg. cost is 0.
3. The columns 5 − 7 of Table 2 and columns 7 − 9 of Table 3 demonstrate that our proposed SAOA
outperforms the SOTA algorithms CAC Bhatnagar & Lakshmanan (2012) and CSAC Haarnoja et al. (2018)
by achieving a highest avg. total reward and least computation time in the constrained set up in all three
experimental environments.

Further, we train our SAOA in | S |= 100, | A |= 4 setup and present the avg. total rewards, avg. total
cost, and after convergence, the no. of visits of “safe” and “unsafe” states. We can observe from Figure 4(a),
Figure 4(b), respectively, that avg. total rewards converge, avg. total costs converge and satisfy the cost
constraint ν = 1. Figure 4(c) shows that the no. of visit to “unsafe” sate in last 2000 iterations i.e., after
convergence is zero.

8 Conclusions

We propose Actor-only and Safe-Actor-only reinforcement learning algorithms, where we introduced a pro-
cedure to determine the policy update instances. Our proposed algorithm eliminates the uncertainty of
policy update that exists in the regular Monte-Carlo PG methods. We provide asymptotic convergence as
well as finite-time analysis of our proposed algorithms and empirically demonstrate the convergence of the
proposed algorithms. The finite-time analysis and the experimental results show a better performance of our
algorithms than a few different state-of-the-art algorithms in the literature. We observe that our algorithms
outperform the aforementioned other algorithms both in terms of the sample complexity and the average
total reward in performance.

12

Under review as submission to TMLR

References
Prashanth L. A. and Shalabh Bhatnagar. Gradientbased algorithms for zeroth-order optimization. 2024.

URL https://www.cse.iitm.ac.in/~prashla/bookstuff/GBSO%5Fbook.pdf.

D. Kalathil A. H. Zonuzy and S. Shakkottai. Model-based reinforcement learning for infinite-horizon dis-
counted constrained markov decision processes. IJCAI, 2021.

M.S. Abdulla and S. Bhatnagar. Reinforcement learning based algorithms for average cost markov decision
processes. Discrete Event Dynamic Systems, 17(1):23–52, 2007.

J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy optimization. ICML, 2017.

Eitan Altman. Constrained markov decision processes. CRC Press, 7, 1999.

S. Bhatnagar and S. Kumar. A simultaneous perturbation stochastic approximation-based actor-critic algo-
rithm for markov decision processes. IEEE Transactions on Automatic Control, 49(4):592–598, 2004.

S. Bhatnagar, M. C. Fu, S. I. Marcus, and Shashank Bhatnagar. Randomized difference two-timescale simul-
taneous perturbation stochastic approximation algorithms for simulation optimization of hidden markov
models. Technical Report, Institute for Systems Research, University of Maryland, 2000.

S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee. Natural actor-critic algorithms. Automatica, 45:
2471–2482, 2009.

Shalabh Bhatnagar. An actor–critic algorithm with function approximation for discounted cost constrained
markov decision processes. Systems and Control Letters, 59:260–266, 2010a.

Shalabh Bhatnagar. An actor–critic algorithm with function approximation for discounted cost constrained
markov decision processes. Syst. & Cont. Letters, 59(12):760–766, 2010b.

Shalabh Bhatnagar and K Lakshmanan. An online actor–critic algorithm with function approximation for
constrained markov decision processes. J. Opt. Theo. and Appli., 153(3):688–708, 2012.

V. S. Borkar. Stochastic approximation with two timescales. Systems and Control Letters, pp. 291–294,
1997.

V.S. Borkar. An actor-critic algorithm for constrained markov decision processes. Systems and Control
Letters, 54:207–213, 2004.

K. Zhang D. Ding, T. Başar, and M. R. Jovanović. Natural policy gradient primal-dual method for con-
strained markov decision processes. NeurIPS, 2020.

Javier Garc´ıa and Fernando. Fern´andez. A comprehensive survey on safe reinforcement learning. Journal
of Machine Learning Research, 16:1437–1480, 2015.

Yangyang Ge, Fei Zhu, Xinghong Ling, and Quan Liu. Safe q-learning method based on constrained markov
decision processes. IEEE Access, 7:165007–165017, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. Proc. Int. Conf. Mach. Lear., 2018.

Astghik Hakobyan, Gyeong Chan Kim, and Insoon Yang. Risk-aware motion planning and control using
cvar-constrained optimization. IEEE Robotics and Automation Letters, 4(4):3924–3931, 2019.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil Yogamani, and
Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE Trans. Intelligent
Transportation Systems, 23(6):4909–4926, 2022.

V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. Proc. Advances in Neural Information Processing
Systems (NIPS), pp. 1008–1014, 2000.

13

https://www.cse.iitm.ac.in/~prashla/bookstuff/GBSO%5Fbook.pdf

Under review as submission to TMLR

Harshat Kumar and et al. On the sample complexity of actor-critic method for reinforcement learning with
function approximation. Machine Language, 112(7):2433–2467, 2024.

M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. Hausknecht, , and M. Bowling. Revisiting the
arcade learning environment: evaluation protocols and open problems for general agents. J. Artif. Intell.
Res., 21:5573–5577, 2017.

Lakshmi Mandal, Raghuram Bharadwaj Diddigi, and Shalabh Bhatnagar. Variance-reduced deep actor-critic
with an optimally sub-sampled actor recursion. IEEE Trans. Arti. Intelli., pp. 1–15, 2024.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive approach to
reinforcement learning, 2018.

Erfaun Noorani and John S. Baras. Risk-sensitive reinforce: A monte carlo policy gradient algorithm for
exponential performance criteria. In 2021 60th IEEE Conference on Decision and Control (CDC), pp.
1522–1527, 2021.

Prashansa Panda and Shalabh Bhatnagar. Finite time analysis of constrained actor critic and constrained
natural actor critic algorithms. arXiv:2310.16363, 2024.

Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli. Stochastic
variance-reduced policy gradient. Proc. Int. Conf. Mach. Lear., pp. 4023–4032, 2018.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons, 2014.

Shuang Qiu, Zhuoran Yang, Jieping Ye, and Zhaoran Wang. On the finite-time convergence of actor-critic
algorithm. NeurIPS 2019 Optimization Foundations of Reinforcement Learning Workshop, 2019.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a scalable
alternative to reinforcement learning, 2017.

P.J. Schweitzer. Perturbation theory and finite markov chains. Journal of Applied Probability, 5(2):401–413,
1968.

Rahul Singh, Abhishek Gupta, and Ness B. Shroff. Learning in constrained markov decision processes. IEEE
Trans. Control of Network Systems, 10(1):441–453, 2023.

J.C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation.
IEEE Trans. Automatic Control, 37:332–341, 1992. doi: 10.1109/9.119632.

R. Sutton, D.A. McAllester, S.P. Singh, and Y. Mansour. Policy gradient methods for reinforcement learning
with function approximation. Advances in Neural Information Processing Systems, pp. 1057–1063, 2000.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning : An introduction, 2’nd ed. Cambridge,
MA: MIT Press, 2:526, 2018.

C. Tessler, D. J. Mankowitz, and S. Mannor. Reward constrained policy optimization. ICLR, 2019.

A. Wachi and Y. Sui. Safe reinforcement learning in constrained markov decision processes. ICML, 2020.

Yue Wu, Los Angeles, Los Angeles, Pan Xu, Los Angeles, Los Angeles, Weitong Zhang, Los Angeles, Los
Angeles, Quanquan Gu, Los Angeles, and Los Angeles. A Finite-Time Analysis of Two Time-Scale Actor-
Critic Methods. In Proceedings of the 34th International Conference on Neural Information Processing
Systems, number NeurIPS, pp. 17617–17628, 2020.

14

Under review as submission to TMLR

A Appendix

In this appendix, we discuss and prove the lemma and theorem from Section 5 and 6.
Step-size sequences criterion:
Step-size sequences in the Algorithm 1 satisfy the following criterion.∑

n

αn =
∑

n

βn =∞; αn, βn > 0,∀n ≥ 0, (28)

∑
n

(αn
2 + βn

2) <∞; lim
n→∞

αn

βn
= 0. (29)

lim
n→∞

αn+1

αn
= 1; lim

n→∞

βn+1

βn
= 1. (30)

Step-size sequences in the Algorithm 2 satisfy the following.∑
n

ζn =
∑

n

αn =
∑

n

βn =∞; ζn, αn, βn > 0,∀n ≥ 0, (31)

∑
n

(ζn
2 + αn

2 + βn
2) <∞; lim

n→∞

ζn

αn
= 0. lim

n→∞

αn

βn
= 0. (32)

lim
n→∞

αn+1

αn
= 1; lim

n→∞

βn+1

βn
= 1. (33)

A.1 Asymptotic Convergence Analysis

A.1.1 Asymptotic Analysis of Algorithm 1

Proof of Lemma 1:

Proof. Recall that

Jπθ = lim
n→∞

1
n
E[

n−1∑
k=0

rk+1 | πθ] =
∑
s∈S

dπθ (s)
∑
a∈A

πθ(s, a)r(s, a), (34)

where dπθ = (dπθ (s), s ∈ S) is the stationary probability distribution of the ergodic Markov process {Xn, n ≥
0} (see Assumption 1). Note that the expected value of single-stage reward r(s, a) is uniformly bounded.
Also, from Assumption 2, πθ(s, a) is continuously differentiable with respect to θ. In particular, as noted
previously, from the form of πθ(s, a) that we use, see (6), πθ(s, a) is continuously differentiable with respect
to θ. We now have to verify that the steady state distribution dπθ = (dπθ (s), s ∈ S) is continuously
differentiable.

For simplicity, let P (θ) denote the transition probability matrix of the Markov chain under policy πθ. In other
words, P (θ) = [[pi,j(θ)]]i,j∈S where pi,j(θ) =

∑
a∈A πθ(i, a)P (j|i, a). Also, let Z(θ) = [I −P (θ) + P ∞(θ)]−1,

where I is the identity matrix, P ∞(θ) = lim
m→∞

1
m

m∑
k=1

P k(θ) is the time averaged transition probability matrix,

with P k(θ) being the k-step transition probability matrix. Since the state-valued process is ergodic Markov
for any θ (cf. Assumption 1), it follows that P ∞

ij (θ) = dπθ (j), ∀i, j ∈ S. From Assumption 2, ∇πθ exists
and is in fact uniformly bounded over all θ ∈ C ⊂ Rd, a compact set. Thus, ∇P (θ) exists as well and is also
uniformly bounded. Now, recall from Section 3, that our MDP has a finite state and action space. Thus,
for any policy πθ, the resulting Markov chain {Xn} has a finite state space. It then follows from Theorem 2
of Schweitzer (1968) that dπθ is continuously differentiable and in fact,

∇dπθ = dπθ∇P (θ)Z(θ).

It now follows from (34) that Jπθ is continuously differentiable in θ ∈ C.

15

Under review as submission to TMLR

Proof of Theorem 1:

Proof. Note that the recursion (13) can be rewritten as:

θi(m + 1) = Λi

θi(m)− β(m)

∑nm+1
j=nm+1 αj

(
c+(j)−c(j)

δ∆m,i

)
β(m)

 (35)

Now from the fact that
∑nm+1

j=nm+1 αj/βm → 1 as m→∞ and conclusion of Theorem 4.1 of Bhatnagar et al.
(2000), we can show that (35) exhibits the same behavior asymptotically as follows.

θi(m + 1) =

Λi

(
θi(m)− β(m)

(
J̄(θ(m) + δ∆(m))− J̄(θ(m))

δ∆m,i

))
. (36)

Here ∆(t) = ∆(n), for t ∈ [t(n), t(n + 1)), where t(n) =
n−1∑
k=0

β(k), n ≥ 1. Now, the ODE associated with the

θ-update recursion (36) is as follows:

θ̇(t) = Λ̄
(
−E

[
J̄(θ(t) + δ∆(t))− J̄(θ(t))

δ∆i(t)

])
, (37)

where E[·] is with respect to the common distribution of ∆i(t). We also consider another associated ODE

θ̇(t) = Λ̄
[
−∇J̄(θ(t))

]
, (38)

but with the same initial condition as (37).

We recall here that the set K is invariant for the ODE (38) if it is closed and any trajectory θ(·) of the ODE
(38) for which θ(0) ∈ K satisfies θ(t) ∈ K, ∀t ∈ R. Note that, the function J̄ serves as a Lyapunov function
for the ODE (38) since

˙̄J(θ) = ⟨∇J̄(θ), θ̇⟩ = ⟨∇J̄(θ), Λ̄(−∇J̄(θ)) ≤ 0, θ ∈ C.

Now, using a Taylor series expansion around the point θ(m), we get

J̄(θ(m) + δ∆(m)) = J̄(θ(m)) + δ∆(m)T∇J̄(θ(m)) + O(δ2).

Hence,
J̄(θ(m) + δ∆(m))

δ∆i(m) = J̄(θ(m))
δ∆i(m) +∇iJ̄(θ(m))

+
∑
j ̸=i

∆j(m)
∆i(m)∇j J̄(θ(m)) + O(δ).

From our assumptions on the perturbation sequence, ∆(m), m ≥ 0 is zero-mean, ±1-valued Bernouli se-
quence. Thus, in the gradient estimation, we get the following.

E
[

J̄(θ(m) + δ∆(m))− J̄(θ(m))
δ∆i(m)

]
= ∇iJ̄(θ(m)) + O(δ). (39)

Now, as δ → 0, right-hand side (RHS) of (37) converges to the RHS of (38).

Therefore, it can be seen that the trajectories of the ODE (37) converge asymptotically to those of (38)
uniformly over compacts for the same initial conditions. Now, K is the set of asymptotically stable attractors
of (38) with J̄(·) as its associated strict Liapunov function. From the Hirsch lemma, ||θM −K|| → 0 a.s. as
M →∞ and δ → 0. Hence, given γ > 0,∃δ0 > 0, s.t. ∀δ ∈ (0, δ0], θM → θ∗ ∈ Kγ a.s. as M →∞.

16

Under review as submission to TMLR

A.1.2 Asymptotic Analysis of Algorithm 2

Proof of Lemma 2:

Proof. Recall that

Lπθ,η = lim
n→∞

1
n
E[

n−1∑
k=0

hk+1 | πθ] =
∑
s∈S

dπθ (s)
∑
a∈A

πθ(s, a)h(s, a)

=
∑
s∈S

dπθ (s)
∑

a∈A(s)

πθ(s, a)[r(s, a)−
N∑

q=1
ηq (gq(s, a)− νq)],

where dπθ = (dπθ (s), s ∈ S) is the stationary probability distribution of the ergodic Markov process {Xn, n ≥
0}. As the expected value of single-stage reward r(s, a) and costs gq, q = 1, . . . , N are uniformly bounded
and from the definition of πθ(s, a), see (6), we can check that πθ(s, a) is continuously differentiable with
respect to θ. Further, as in proof of Lemma 1, dπθ is continuously differentiable. Thus, Lπθ is continuously
differentiable in θ ∈ C.

We define set K ′′ as follows:
K ′′ = {θ ∈ C | Λ̄

[
−∇L̄(θ)

]
= 0}, (40)

where Λ̄ is as in (15). Further, given γ > 0, let Kγ denote the γ-neighborhood of the set K ′′, i.e.,

Kγ = {θ ∈ C | ∥θ − θ0∥ < γ, θ0 ∈ K ′′}.

Proof of Theorem 2:

Proof. Note that the (17) can be rewritten as:

θi(m + 1) = Λi

θi(m)− β(m)

∑nm+1
j=nm+1 αj

(
h̄+(j)−h̄(j)

δ∆m,i

)
β(m)

 (41)

Now from the fact that
∑nm+1

j=nm+1 αj/β(m) → 1 as m → ∞ and conclusion of Theorem 4.1 of Bhatnagar
et al. (2000), we can show that (41) exhibit the same behavior asymptotically as follows.

θi(m + 1) = Λi

(
θi(m)− β(m)

(
L̄(θ(m) + δ∆(m), η)− L̄(θ(m), η)

δ∆m,i

))
. (42)

Here ∆(t) = ∆(n), for t ∈ [t(n), t(n + 1)), where t(n) =
n−1∑
k=0

β(k), n ≥ 1. Now, the ODE associated with the

θ-update recursion, i.e., (42) is as follows:

θ̇(t) = Λ̄
(
−E

[
L̄(θ(t) + δ∆(t), η)− L̄(θ(t), η)

δ∆i(t)

])
, (43)

where E[·] is with respect to the common distribution of ∆i(t). We also consider another associated ODE

θ̇(t) = Λ
[
−∇L̄(θ(t), η)

]
, (44)

having the same initial condition as (43).

Now denote by Kη the largest invariant set contained within the set K ′′. We recall here that the set Kη

is invariant for the ODE (44) if it is closed and any trajectory θ(·) of the ODE (44) for which θ(0) ∈ Kη

satisfies θ(t) ∈ Kη, ∀t ∈ R. Note that, the function L̄ serves as a Lyapunov function for the ODE (44) since
˙̄L(θ, η) = ⟨∇L̄(θ, η), θ̇⟩ = −∥∇L̄(θ, η)∥2

17

Under review as submission to TMLR

Thus,
˙̄L(θ, η) < 0 ∀θ ̸∈ K ′′

= 0 otherwise.

Given γ > 0, let Kη
γ be the set of points within a distance γ from the points in the set Kη, i.e.,

Kη
γ = {θ ∈ C | ||θ − θ0|| < γ, θ0 ∈ Kη}. (45)

Now, using the Taylor series expansion around the point θ(m) we get

L̄(θ(m) + δ∆(m), η) = L̄(θ(m), η) + δ∆(m)T∇L̄(θ(m), η) + O(δ2).

Hence,

L̄(θ(m) + δ∆(m), η)
δ∆i(m) = L̄(θ(m), η)

δ∆i(m) +∇iL̄(θ(m), η) +
∑
j ̸=i

∆j(m)
∆i(m)∇jL̄(θ(m), η) + O(δ).

From our assumptions on the perturbation sequence, ∆(m), m ≥ 0 is zero-mean, ±1-valued Bernouli se-
quence. Thus, in the gradient estimation, we get the following.

E
[
L̄(θ(m) + δ∆(m), η)− L̄(θ(m), η)

δ∆i(m)

]
= ∇iL̄(θ(m), η) + O(δ). (46)

Now, as δ → 0, right-hand side (RHS) of (43) converges to the RHS of (44). Therefore, it can be seen
that the trajectories of the ODE (43) converge asymptotically to those of (44) uniformly over compacts for
the same initial conditions. Now, Kη is the set of asymptotically stable attractors of (44) with L̄(·) as its
associated strict Liapunov function. From the Hirsch lemma, ||θM −Kη|| → 0 a.s. as M → ∞ and δ → 0.
Hence, given γ > 0,∃δ0 > 0, s.t. ∀δ ∈ (0, δ0], θM → θ∗ ∈ Kη

γ a.s. as M →∞.

Now, define E := {η = (η1, . . . , ηN)⊤ | ηq ∈ [0, M], ¯̂Λ(Gq(θη)− νq) = 0,∀q = 1, . . . , N, θη ∈ Kη}.
Proposition 1. limn→∞ η(n) = η∗ with probability one, for some η∗ = [η∗

1 , · · · , η∗
N]⊤ ∈ E.

Proof. Under the Assumptions 1,2 and already proven θ(n) ≡ θ,∀n, we get limn→∞ Gq(n) = Gq(θ), q =
1, . . . , N with probability one as in Proposition 4.2 of Bhatnagar & Lakshmanan (2012). Further, the proof
sketch is similar to the proof of Theorem 4.3 of Bhatnagar & Lakshmanan (2012).

A.2 Finite Time Analysis

A.2.1 Finite Time Analysis of Algorithm 1

Proof of Lemma 3:

Proof.

nm+1∑
j=nm+1

αj =
nm+1∑

j=nm+1

1
(1 + j)σ′ ≤

nm+1∑
j=nm+1

1
jσ′ = 1

{nm + 1}σ′ + 1
{nm + 2}σ′ + · · ·+ 1

{nm+1}σ′

18

Under review as submission to TMLR

Therefore, ∑nm+1
j=nm+1 αj

βmn

≤
1

{nm+1}σ′ + 1
{nm+2}σ′ + · · ·+ 1

{nm+1}σ′

1
{nm+1}σ′′

= {nm + 1}σ′′
[

1
{nm + 1}σ′ + 1

{nm + 2}σ′ + · · ·+ 1
{nm+1}σ′

]
≤ {nm + 1}σ′′

[
1

{nm + 1}σ′ + 1
{nm + 1}σ′ + · · ·+ 1

{nm + 1}σ′

]
≤ {nm + 1}σ′′ c′′{nm}σ′′′

{nm + 1}σ′ as per the assumption

≤ c′′{nm + 1}σ′′+σ′′′

{nm + 1}σ′ as {nm}σ′′′
≤ {nm + 1}σ′′′

= c′′

{nm + 1}σ′−σ′′−σ′′′

i.e.,
∑nm+1

j=nm+1 αj

βmn

≤ c′′

{nm + 1}σ′−σ′′−σ′′′ (47)

From 0 < σ′′ + σ′′′ < σ′, we get σ′ − σ′′ − σ′′′ > 0. Now if nm = 0 then
∑nm+1

j=nm+1
αj

βmn
≤ c′′ and if nm is large

number then
∑nm+1

j=nm+1
αj

βmn
tends to 0. Hence, the above claim is satisfied and max

m

∑nm+1
j=nm+1

αj

β(m) is bounded.

Proof of Lemma 4:

Proof.

Em [N (θi(m)] =Em

[
1

δ∆m,i
[
∑nm+1

j=nm+1 αj (c+(j)− c(j))
β(m) − (J̄(θ(m) + δ∆(m))− J̄(θ(m)))]

]

≤ 1
δ
Em

[∑nm+1
j=nm+1 αj (c+(j)− c(j))

β(m) − (J̄(θ(m) + δ∆(m))− J̄(θ(m)))
]

Now,

Em

[∑nm+1
j=nm+1 αj (c+(j)− c(j))

β(m) − (J̄(θ(m) + δ∆(m))− J̄(θ(m)))
]

≤ Em

[
{max

m

∑nm+1
j=nm+1 αj

β(m) }
∑nm+1

j=nm+1 αj (c+(j)− c(j))∑nm+1
j=nm+1 αj

− (J̄(θ(m) + δ∆(m))− J̄(θ(m)))
]

≤ Em

 c′′

{1 + nm}σ′−σ′′−σ′′′

1∑nm+1
j=nm+1 αj

nm+1∑
j=nm+1

αj [(c+(j)− J̄(θ(m) + δ∆(m)))− (c(j)− J̄(θ(m)))]


(from Lemma 3, see(47))

≤ c′′

{1 + nm}σ′−σ′′−σ′′′

1∑nm+1
j=nm+1 αj

nm+1∑
j=nm+1

4αjϑρm−1B8(using Assumption 3, 0 < ρ < 1, B8 > 0)

≤ c′′

{1 + nm}σ′−σ′′−σ′′′ 4B8
1∑nm+1

j=nm+1 αj

nm+1∑
j=nm+1

αjβnm = B1

{1 + nm}σ′−σ′′−σ′′′ βnm

= B1

{1 + nm}σ′−σ′′−σ′′′

1
{1 + nm}σ′′ = B1

{1 + nm}σ′−σ′′′ ≤
B1

{1 + nm}σ′′ ≤ B1βmn

19

Under review as submission to TMLR

In the above, B1 = 4B8c′′ and from Assumption 3, m ≥ ιm where ιm is mixing time, ϑρm−1 ≤ β(m).

Thus, Em[∥N (θ(m)∥] ≤ B1βm

δ .

In the similar way we can show that Em[∥N (θ(m)∥2] ≤ B4β2
m

δ2 .

Proof of Lemma 5:

Proof. Let, assume that gradient of J̄(·), i.e., ∇J̄(·) is estimated by ∇̂J̄(·), and from (21), (22) we know that
∇̂iJ̄(θ(m)) = J̄(θ(m)+δ∆(m))−J̄(θ(m))

δ∆i(m) . Thus,

E
[

J̄(θ(m) + δ∆(m))− J̄(θ(m))
δ∆i(m) | θ(m)

]
= ∇iJ̄(θ(m)) + c1δ, (48)

for some constant term c1 > 0. Now,

∥∇J̄(θ)∥1 =
d∑

i=1
| ∇iJ̄(θ) |=

d∑
i=1
| E
[

J̄(θ + δ∆)− J̄(θ)
δ∆i

| θ
]
− c1δ |

≤
d∑

i=1
| E
[

J̄(θ + δ∆)− J̄(θ)
δ∆i

| θ
]
| + | c1δ |≤ B.

The last inequality holds as single-stage rewards are bounded and hence, J̄(·) is bounded.

Proof of Lemma 6:

Proof. From (48), as in A. & Bhatnagar (2024), it is easy to see that the proof holds.

Definition 2. L-smooth function: A function f : C ⊂ Rd → R be L-smooth if ∀ θ′, θ′′ ∈ C, f(·) satisfies
∥ ∇f(θ′)−∇f(θ′′) ∥≤ L ∥ θ′ − θ′′ ∥.

Proof of Theorem 3:

Proof. Since J̄ is L-smooth, (see Definition 2), as in A. & Bhatnagar (2024); Papini et al. (2018), we have

J̄ (θk+1) ≤ J̄ (θk) +
〈
∇J̄ (θk) , θk+1 − θk

〉
+ L

2 ∥θk+1 − θk∥2

≤ J̄ (θk)− βk

〈
∇J̄ (θk) , ∇̂J̄ (θk) +N (θk)

〉
+ L

2 β2
k

∥∥∥∇̂J̄ (θk) +N (θk)
∥∥∥2

≤ J̄ (θk)− βk

〈
∇J̄ (θk) , ∇̂J̄ (θk)

〉
− βk

〈
∇J̄ (θk) ,N (θk)

〉
+ L

2 β2
k

[∥∥∥∇̂J̄ (θk)
∥∥∥2

+ ∥N (θk)∥2
]

(49)

Taking expectations with respect to the sigma field Fk on both sides of (49), we obtain

20

Under review as submission to TMLR

Ek

[
J̄ (θk+1)

]
≤ Ek

[
J̄ (θk)

]
− βk

〈
∇J̄ (θk) ,∇J̄ (θk) + c1δ1d×1

〉
− βkBEk ∥N (θk)∥

+ L

2 β2
k

[∥∥∥Ek

[
∇̂J̄ (θk)

]∥∥∥2
+ c2

δ2

]
+ L

2 β2
k ∥N (θk)∥2

≤J̄ (θk)− βk

∥∥∇J̄ (θk)
∥∥2 + c1δβkEk

∥∥∇J̄ (θk)
∥∥

1 −Bβk
B1βk

δ

+ L

2 β2
k

[∥∥∇J̄ (θk) + c1δ1d×1
∥∥2 + c2

δ2

]
+ L

2 β2
k

B4β2
k

δ2 (50)

≤J̄ (θk)− βk

∥∥∇J̄ (θk)
∥∥2 + c1δβkEk

∥∥∇J̄ (θk)
∥∥

1 −
BB1β2

k

δ

+ L

2 β2
k

[∥∥∇J̄ (θk)
∥∥2 + 2c1δEk

∥∥∇J̄ (θk)
∥∥

1 + dc2
1δ2 + c2

δ2

]
+ L

2δ2 B4β4
k

≤J̄ (θk)−
(

βk −
L

2 β2
k

)∥∥∇J̄ (θk)
∥∥2 + c1δB

(
βk + Lβ2

k

)
− BB1β2

k

δ
+ L

2 β2
k

[
dc2

1δ2 + c2

δ2

]
+ L

2δ2 B4β4
k, (51)

The 1st inequality follows from (23), (24) in Lemma 6, and from Lemma 4 . In the above, −∥y∥1 ≤
∑d

i=1 yi

for any d-vector y, is used to get the inequality in (50). The last inequality follows from the fact that∥∥∇J̄ (θk)
∥∥

1 ≤ B by Lemma 5. Now, re-arranging the terms,

∥∥∇J̄ (θk)
∥∥2 ≤ 2

βk(2− Lβk)
[
J̄ (θk)− EkJ̄ (θk+1) +c1δ

(
βk + Lβ2

k

)
B
]

+ Lβ2
k

βk(2− Lβk)

[
dc2

1δ2 + c2

δ2

]
+ 2β2

k

βk(2− Lβk)

[
LB4

2δ2 β2
k −

BB1

δ

]

Now, as in Wu et al. (2020), we sum up the inequality above for k = ιm to m, take expectations, divide by
(1 + m− ιm) both sides and assume m > 2ιm − 1. We now obtain

1
1 + m− ιm

m∑
k=ιm

Ek

∥∥∇J̄ (θk)
∥∥2

≤ 2
1 + m− ιm

m∑
k=ιm

(
EkJ̄ (θk)− EkJ̄ (θk+1)

)
βk(2− Lβk) + 2

1 + m− ιm

m∑
k=ιm

c1δB

(
1 + Lβk

2− Lβk

)

+ L

1 + m− ιm

m∑
k=ιm

βk

(2− Lβk)

[
dc2

1δ2 + c2

δ2

]
+ 2

1 + m− ιm

m∑
k=ιm

βk

(2− Lβk)

[
LB4

2δ2 β2
k −

BB1

δ

]
(52)

Now, we denote 1st, 2nd, 3rd and 4th terms of right-hand-side of (52) as I1, I2, I3, and I4 respectively.

In I1,

m∑
k=ιm

1
βk
∗
(
EkJ̄ (θk)− EkJ̄ (θk+1)

)
(2− Lβk) ≤

m∑
k=ιm

1
βk
∗
(
EkJ̄ (θk)− EkJ̄ (θk+1)

)
=

m∑
k=ιm

(
1
βk
− 1

βk−1

)
Ek

[
J̄ (θk)

]
+ 1

βιm−1
Ek

[
J̄ (θιm

)
]
− 1

βm
Ek

[
J̄ (θm+1)

]
≤

m∑
k=ιm

(
1
βk
− 1

βk−1

)
Br + 1

βιm−1
Br −

1
βm

Br ≤ Br

[
m∑

k=ιm

(
1
βk
− 1

βk−1

)
+ 1

βιm−1

]
= 2Brβ−1

m ,

21

Under review as submission to TMLR

In the above, the 1st inequality is due to βk ≤ 1
L . The 2nd inequality holds due to |Ek[J̄(θk)]| ≤ Br as single

stage rewards r are bounded.

From I2,

2
1 + m− ιm

m∑
k=ιm

c1δB

(
1 + Lβk

2− Lβk

)
≤ 2

1 + m− ιm

m∑
k=ιm

c1δB(1 + Lβk)

≤ 2
1 + m− ιm

m∑
k=ιm

2c1δBβk ≤ B5βm = O(1
m1/2)

In the above the 1st and 2nd inequality is due to βk ≤ 1
L and B5 > 0 some constant term.

From I3 we get,

L

1 + m− ιm

m∑
k=ιm

βk

(2− Lβk)

[
dc2

1δ2 + c2

δ2

]
≤ L

1 + m− ιm

m∑
k=ιm

βk

[
dc2

1δ2 + c2

δ2

]
≤ B6βm = O(1

m1/2)

In the above, first inequality is due to βk ≤ 1
L , and a constant B6 > 0.

Further, From I4

2
1 + m− ιm

m∑
k=ιm

βk

(2− Lβk)

[
LB4

2δ2 β2
k −

BB1

δ

]

≤ 2
1 + m− ιm

m∑
k=ιm

βk

[
LB4

2δ2 β2
k −

BB1

δ

]
≤ B7β3

m = O(1
m3/2)

In the above, first inequality is due to βk ≤ 1
L , and a constant B7 > 0.

Now from (52)

min
0≤k≤m

E
∥∥∇J̄ (θk)

∥∥2 = 1
1 + m− ιm

m∑
k=ιm

Ek

∥∥∇J̄ (θk)
∥∥2

≤ 4Brβ−1
m

1 + m− ιm
+O(1

m1/2) +O(1
m3/2)

= O(1
m1/2) +O(1

m1/2) = O(ϵ−2)

A.2.2 Finite Time Analysis of Algorithm 2

Lemma 7. The faster and slower than faster step sizes βn = 1
{1+n}σ4 , αn = 1

{1+n}σ5 , where 0 < σ4 < σ5,
follow

0 ≤
∑nm+1

j=nm+1 αj

βmn

≤ c′′′, (53)

assuming 0 ≤ nm+1 − nm ≤ c′′′{nm}σ3 , c′′′ > 0 where 0 < σ4 + σ3 < σ5. Thus,
∑nm+1

j=nm+1
αj

βmn
is bounded.

Proof. The proof follows by replacing σ′, σ′′, σ′′′ with σ5, σ4 and σ3, respectively, in the proof of Lemma
3.

22

Under review as submission to TMLR

Lemma 8. Em[∥N1(θ(m), η(m)∥] ≤ B10βm

δ and Em[∥N1(θ(m), η(m)∥2] ≤ B14β2
m

δ2 for some constant
B10, B14 > 0.

Proof.

Em [N1(θi(m), η(m)]

=Em

[
1

δ∆m,i

[∑nm+1
j=nm+1 αj

(
h̄+(j)− h̄(j)

)
β(m) − (L̄(θ(m) + δ∆(m), η(m))− L̄(θ(m), η(m)))

]]

≤ 1
δ
Em

[∑nm+1
j=nm+1 αj

(
h̄+(j)− h̄(j)

)
β(m) − (L̄(θ(m) + δ∆(m), η(m))− L̄(θ(m), η(m)))

]

Now,

Em

[∑nm+1
j=nm+1 αj

(
h̄+(j)− h̄(j)

)
β(m) − (L̄(θ(m) + δ∆(m), η(m))− L̄(θ(m), η(m)))

]

≤ Em[{max
m

∑nm+1
j=nm+1 αj

β(m) }
∑nm+1

j=nm+1 αj

(
h̄+(j)− h̄(j)

)∑nm+1
j=nm+1 αj

− (L̄(θ(m) + δ∆(m), η(m))−

L̄(θ(m), η(m)))] ≤ Em[c′′′

{1 + nm}σ5−σ4−σ3

1∑nm+1
j=nm+1 αj

nm+1∑
j=nm+1

αj

[(h̄+(j)− L̄(θ(m) + δ∆(m), η(m)))− (h̄(j)− L̄(θ(m), η(m)))]] (from Lemma 7, as in (47))

≤ c′′′

{1 + nm}σ5−σ4−σ3

1∑nm+1
j=nm+1 αj

nm+1∑
j=nm+1

4αjϑρm−1B11 (using Assumption 3, 0 < ρ < 1, B11 > 0 constant)

≤ c′′′

{1 + nm}σ5−σ4−σ3
4B11

1∑nm+1
j=nm+1 αj

nm+1∑
j=nm+1

αjβnm = B10

{1 + nm}σ5−σ4−σ3
βnm

= B10

{1 + nm}σ5−σ4−σ3

1
{1 + nm}σ4

= B10

{1 + nm}σ5−σ3
≤ B10

{1 + nm}σ5−σ3
≤ B10

{1 + nm}σ4
≤ B10βmn

In the above, B10 = 4B11c′′′ and from Assumption 3, m ≥ ιm where ιm is mixing time, ϑρm−1 ≤ β(m).

Thus, Em[∥N1(θ(m), η(m)∥] ≤ B10βm

δ .

In the similar way we can show that Em[∥N1(θ(m), η(m)∥2] ≤ B14β2
m

δ2 .

Lemma 9. There exists a constant B′ > 0 such that ∥∇L̄(θ), η(m)∥1 ≤ B′,∀θ ∈ Rd.

Proof. Let, assume that gradient of L̄(·), i.e., ∇L̄(·) is estimated by ∇̂L̄(·), and from (26), (27) we know
that ∇̂iL̄(θ(m), η(m)) = L̄(θ(m)+δ∆(m),η(m))−L̄(θ(m),η(m))

δ∆i(m) . Thus,

E
[
L̄(θ(m) + δ∆(m), η(m))− L̄(θ(m), η(m))

δ∆i(m) | θ(m)
]

= ∇iL̄(θ(m), η(m)) + c3δ, (54)

for some constant term c3 > 0. Now,

∥∇L̄(θ), η(m)∥1 =
d∑

i=1
| ∇iL̄(θ, η(m)) |=

d∑
i=1
| E
[
L̄(θ + δ∆, η(m))− L̄(θ, η(m))

δ∆i
| θ
]
− c3δ |

≤
d∑

i=1
| E
[
L̄(θ + δ∆, η(m))− L̄(θ, η(m))

δ∆i
| θ
]
| + | c3δ |≤ B′.

23

Under review as submission to TMLR

The last inequality holds as the expected value of single-stage reward r and costs gq, q = 1, . . . , N in Algorithm
2 are uniformly bounded and hence, L̄(·) is bounded.

Lemma 10. The gradient estimate ∇̂L̄ (θk, η(k)) satisfies the following inequalities for all k ≥ 1 :

∥∥∥Ek

[
∇̂L̄ (θk, η(k))

]
−∇L̄ (θk, η(k))

∥∥∥
∞
≤ c3δ (55)

and

Ek

[∥∥∥∇̂L̄ (θk, η(k))
∥∥∥2
]
≤
∥∥∥Ek

[
∇̂L̄ (θk, η(k))

]∥∥∥2
+ c4

δ2 (56)

In the above, Ek is shorthand for E (· | Fk), with sigma-field Fk and c3, c4 are some positive constants.

Proof. From (54), as in A. & Bhatnagar (2024), it is easy to see that the proof holds.

Proof of Theorem 4:

Proof. Since L̄ is L-smooth, (see Definition 2), as in A. & Bhatnagar (2024); Papini et al. (2018), we have

L̄ (θk+1, η(k)) ≤ L̄ (θk, η(k)) +
〈
∇L̄ (θk, η(k)) , θk+1 − θk

〉
+ L

2 ∥θk+1 − θk∥2

≤ L̄ (θk, η(k))− βk

〈
∇L̄ (θk, η(k)) , ∇̂L̄ (θk, η(k)) +N1(θk)

〉
+ L

2 β2
k

∥∥∥∇̂L̄ (θk, η(k)) +N1(θk)
∥∥∥2

≤ L̄ (θk, η(k))− βk

〈
∇L̄ (θk, η(k)) , ∇̂L̄ (θk, η(k))

〉
− βk

〈
∇L̄ (θk, η(k)) ,N1(θk)

〉
+ L

2 β2
k

[∥∥∥∇̂L̄ (θk, η(k))
∥∥∥2

+ ∥N1(θk)∥2
]

(57)

Taking expectations with respect to the sigma field Fk on both sides of (57), we obtain

Ek

[
L̄ (θk+1)

]
≤ Ek

[
L̄ (θk, η(k))

]
− βk

〈
∇L̄ (θk, η(k)) ,∇L̄ (θk, η(k)) + c3δ1d×1

〉
− βkB′Ek ∥N1(θk)∥+ L

2 β2
k

[∥∥∥Ek

[
∇̂L̄ (θk, η(k))

]∥∥∥2
+ c4

δ2

]
+ L

2 β2
k ∥N1(θk)∥2

≤L̄ (θk, η(k))− βk

∥∥∇L̄ (θk, η(k))
∥∥2 + c3δβkEk

∥∥∇L̄ (θk, η(k))
∥∥

1 −B′βk
B10βk

δ

+ L

2 β2
k

[∥∥∇L̄ (θk, η(k)) + c3δ1d×1
∥∥2 + c4

δ2

]
+ L

2 β2
k

B14β2
k

δ2 (58)

≤L̄ (θk, η(k))− βk

∥∥∇L̄ (θk, η(k))
∥∥2 + c3δβkEk

∥∥∇L̄ (θk, η(k))
∥∥

1 −
B′B10β2

k

δ

+ L

2 β2
k

[∥∥∇L̄ (θk, η(k))
∥∥2 + 2c3δEk

∥∥∇L̄ (θk, η(k))
∥∥

1

]
+ L

2 β2
k

[
dc2

3δ2 + c4

δ2

]
+ L

2δ2 B14β4
k

≤L̄ (θk, η(k))−
(

βk −
L

2 β2
k

)∥∥∇L̄ (θk, η(k))
∥∥2 + c3δB′ (βk + Lβ2

k

)
− B′B10β2

k

δ
+

L

2 β2
k

[
dc2

3δ2 + c4

δ2

]
+ L

2δ2 B14β4
k, (59)

The 1st inequality follows from (55), (56) in Lemma 10, and from Lemma 8 . In the above, −∥y∥1 ≤
∑d

i=1 yi

for any d-vector y, is used to get the inequality in (58). The last inequality follows from the fact that∥∥∇L̄ (θk, η(k))
∥∥

1 ≤ B′ by Lemma 9. Now, re-arranging the terms,

24

Under review as submission to TMLR

∥∥∇L̄ (θk, η(k))
∥∥2 ≤ 2

βk(2− Lβk)
[
L̄ (θk, η(k))− EkL̄ (θk+1) +c3δ

(
βk + Lβ2

k

)
B′]

+ Lβ2
k

βk(2− Lβk)

[
dc2

3δ2 + c4

δ2

]
+ 2β2

k

βk(2− Lβk)

[
LB14

2δ2 β2
k −

B′B10

δ

]

Now, as in Wu et al. (2020), we sum up the inequality above for k = ιm to m, take expectations, divide by
(1 + m− ιm) both sides and assume m > 2ιm − 1. We now obtain

1
1 + m− ιm

m∑
k=ιm

Ek

∥∥∇L̄ (θk, η(k))
∥∥2

≤ 2
1 + m− ιm

m∑
k=ιm

(
EkL̄ (θk, η(k))− EkL̄ (θk+1, η(k))

)
βk(2− Lβk) + 2

1 + m− ιm

m∑
k=ιm

c3δB′
(

1 + Lβk

2− Lβk

)

+ L

1 + m− ιm

m∑
k=ιm

βk

(2− Lβk)

[
dc2

3δ2 + c4

δ2

]
+ 2

1 + m− ιm

m∑
k=ιm

βk

(2− Lβk)

[
LB14

2δ2 β2
k −

B′B10

δ

]
(60)

Now, we denote 1st, 2nd, 3rd and 4th terms of right-hand-side of (60) as I1, I2, I3, and I4 respectively.

In I1,
m∑

k=ιm

1
βk
∗
(
EkL̄ (θk, η(k))− EkL̄ (θk+1, η(k))

)
(2− Lβk) ≤

m∑
k=ιm

1
βk
∗
(
EkL̄ (θk, η(k))− EkL̄ (θk+1, η(k))

)
=

m∑
k=ιm

1
βk
∗
(
EkL̄ (θk, η(k))− EkL̄ (θk+1, η(k + 1))

)
+

m∑
k=ιm

1
βk
∗
(
EkL̄ (θk+1, η(k + 1))− EkL̄ (θk+1, η(k))

)
=

m∑
k=ιm

(
1
βk
− 1

βk−1

)
Ek

[
L̄ (θk, η(k))

] 1
βιm−1

Ek

[
L̄ (θιm , η(ιm))

]
− 1

βm
Ek

[
L̄ (θm+1, η(m + 1))

]
+

m∑
k=ιm

1
βk
∗

[
(Bg + Bν)

N∑
q=1
| ηq(k + 1)− ηq(k) |

]

≤
m∑

k=ιm

(
1
βk
− 1

βk−1

)
Bh + 1

βιm−1
Bh −

1
βm

Bh + N(Bg + Bν)2
m∑

k=ιm

ζk

βk

≤ Bh

[
m∑

k=ιm

(
1
βk
− 1

βk−1

)
+ 1

βιm−1

]
+ B12

m∑
k=ιm

(1 + k)σ6−σ4

≤ 2Bhβ−1
m + B12

{m− ιm + 1}1−σ6+σ4

1− σ6 + σ4

= 2Bhβ−1
m + B13{m− ιm + 1}1−σ6+σ4 ,

In the above, the 1st inequality is due to βk ≤ 1
L . The 2nd inequality holds due to |Ek[L̄(θk), η(k)]| ≤ Bh as

mentioned above. The second last inequality is from

m−ιm∑
k=0

(1 + k)−(σ4−σ6) ≤
∫ m−ιm+1

0
y−(σ4−σ6) dy = (m− ιm + 1)1−(σ4−σ6)

1− (σ4 − σ6)

25

Under review as submission to TMLR

and in the equality B13 = B12/σ4 > 0.

From I2,

2
1 + m− ιm

m∑
k=ιm

c3δB′
(

1 + Lβk

2− Lβk

)
≤ 2

1 + m− ιm

m∑
k=ιm

c3δB′(1 + Lβk)

≤ 2
1 + m− ιm

m∑
k=ιm

2c3δB′βk ≤ B15βm = O(1
m1/2)

In the above the 1st and 2nd inequality is due to βk ≤ 1
L and B15 > 0 some constant term.

From I3 we get,

L

1 + m− ιm

m∑
k=ιm

βk

(2− Lβk)

[
dc2

3δ2 + c4

δ2

]
≤ L

1 + m− ιm

m∑
k=ιm

βk

[
dc2

3δ2 + c4

δ2

]
≤ B16βm = O(1

m1/2)

In the above, first inequality is due to βk ≤ 1
L , and B16 > 0.

Further, From I4

2
1 + m− ιm

m∑
k=ιm

βk

(2− Lβk)

[
LB14

2δ2 β2
k −

B′B10

δ

]

≤ 2
1 + m− ιm

m∑
k=ιm

βk

[
LB14

2δ2 β2
k −

B′B10

δ

]
≤ B17β3

m = O(1
m3/2)

In the above, first inequality is due to βk ≤ 1
L , and B17 > 0.

Now from (60)

min
0≤k≤m

E
∥∥∇L̄ (θk, η(k))

∥∥2 = 1
1 + m− ιm

m∑
k=ιm

Ek

∥∥∇L̄ (θk, η(k))
∥∥2

≤ 4Bhβ−1
m

1 + m− ιm
+ B13

{m− ιm + 1}1−σ6+σ4

1 + m− ιm
+O(1

m1/2) +O(1
m3/2)

≤ 4Bh max{L, {1 + m}1/2}
1 + m− ιm

+ B13

{m− ιm + 1}σ6−σ4
+O(1

m1/2)

= O(1
m1/2) +O(1

m1/2) +O(1
m1/2) = O(ϵ−2)

26

	Introduction
	Related Work
	Background
	Proposed Algorithm
	Actor-only Algorithm (AOA) for Regular RL
	Safe-Actor-only Algorithm (SAOA) for Constrained RL

	Asymptotic Convergence Analysis
	Asymptotic Analysis of algo:opttheta
	Asymptotic Analysis of algo:optthetaconstrainedMDP

	Finite Time Analysis
	Finite Time Analysis of algo:opttheta
	Finite Time Analysis of algo:optthetaconstrainedMDP

	Experiments and Results
	Conclusions
	Appendix
	Asymptotic Convergence Analysis
	Asymptotic Analysis of algo:opttheta
	Asymptotic Analysis of algo:optthetaconstrainedMDP

	Finite Time Analysis
	Finite Time Analysis of algo:opttheta
	Finite Time Analysis of algo:optthetaconstrainedMDP

