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Abstract

Large language models (LLMs) have developed impressive performance and strong
explainability across various reasoning scenarios, marking a significant stride to-
wards mimicking human-like intelligence. Despite this, when tasked with several
simple questions supported by a generic fact, LLMs often struggle to abstract
and apply the generic fact to provide consistent and precise answers, revealing a
deficiency in abstract reasoning abilities. This has sparked a vigorous debate about
whether LLMs are genuinely reasoning or merely memorizing. In light of this, we
design a preliminary study to quantify and delve into the abstract reasoning abilities
of existing LLMs. Our findings reveal a substantial discrepancy between their
general reasoning and abstract reasoning performances. To relieve this problem,
we tailor an abstract reasoning dataset (AbsR) together with a meaningful learning
paradigm to teach LLMs how to leverage generic facts for reasoning purposes.
The results show that our approach not only boosts the general reasoning perfor-
mance of LLMs but also makes considerable strides towards their capacity for
abstract reasoning, moving beyond simple memorization or imitation to a more
nuanced understanding and application of generic facts. The code is available at
https://github.com/Waste-Wood/MeanLearn.

1 Introduction

Humans proceed with meaningful learning to induce common patterns or high-level abstractions to
acquire abstract reasoning abilities [29, 37]. Such capabilities allow us to apply broad principles
across diverse situations, demonstrating a deep understanding and versatile application of knowledge.
As shown in Figure 1 (a), humans can deduce “rock dissolved” and “the skin suffers pain” when
given “adding rock into hydrochloric acid” and “acid touches human skin”, respectively. This stems
from the established expertise in the human mind (the generic fact “acid is corrosive”), and extends
to applications in different scenarios. Of late, remarkable headways of LLMs have pushed AI
much further towards human-like intelligence [2, 47]. Interestingly, can LLMs act like humans to
instinctively consider the generic fact for flexible applications in different scenarios?

In our pilot investigation, we observed that LLMs appear to lack satisfying capabilities in abstract
reasoning. As illustrated in Table 1, there is a notable discrepancy—exceeding 17%—between vanilla
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Generic Fact: Acid is corrosive

Question1: Adding rock into hydrochloric acid

Rock dissolved

The skin suffers pain

🧑

🧑

🤖✓

✓

Rock corroded

🤖 Skin moisturized

✓

✘
Question2: Acid touches human skin

(a) Humans conduct reasoning    (b) LLMs conduct reasoning

Figure 1: The responses of (a) Humans and (b)
LLMs when facing two questions which are sup-
ported by the same generic fact.

Table 1: The vanilla accuracy and abstract rea-
soning accuracy (AbsAcc) on e-CARE [14].
We will formally define AbsAcc in Sec. 2.1.

Methods Size Vanilla Accuracy AbsAcc

LLaMA-2 [47] 7B 51.67 24.82
13B 68.45 42.94

Orca-2 [35] 7B 74.23 51.19
13B 79.83 59.47

GPT-3.5 [7] >20B 83.25 66.08

Human [14] – 92.00 89.90

accuracy and abstract reasoning accuracy (AbsAcc) for all LLMs, while humans show only a small
disparity. Despite the extensive pre-training of LLMs, which equips them with a vast repository of
generic facts, they seem unable to leverage this information as flexibly as humans do (Figure 1 (b)).

In this paper, we aim to systematically and quantitatively investigate the abstract reasoning of LLMs.
We first formally define the abstract reasoning metric. Then we carry out abstract reasoning and
knowledge probing tasks for a preliminary study. Our investigation comprises two main components:
the reasoning tasks can quantify the abstract reasoning capabilities of LLMs. The generic fact
probing task can give a further analysis from the perspective of generic fact mastery. Hereafter, we
improve abstract reasoning in LLMs based on the analysis of the preliminary study. Unlike existing
chain-of-thought (CoT) methods [52, 27], which conduct reasoning with uncontrolled step-by-step
explanation, we create a dataset AbsR tailored for abstract reasoning. AbsR not only includes generic
facts but also their guided explanations, offering a coached approach to understand the process of
reasoning with common patterns. Finally, to make LLMs subconsciously exploit the generic fact like
humans, we design a simple but effective learning paradigm called meaningful learning (MeanLearn)
to simulate the implicit knowledge learning process [13], enabling LLMs to implicitly learn and
utilize generic facts for reasoning without requiring generic facts as input.

We evaluate MeanLearn on six out-of-domain (OOD) reasoning and language understanding bench-
marks. Experimental results demonstrate that MeanLearn not only improves general reasoning of
LLMs but also excels in abstract reasoning. This distinction in performance is particularly pronounced
in the realm of abstract reasoning, underscoring the unique efficacy of our approach in nurturing
the higher-order thinking skills that are essential for sophisticated cognitive processing in artificial
intelligence systems. Further analysis and ablation studies yield additional evidence supporting the
effectiveness of our approach. We summarize our contributions as follows:

• We provide a systematic and quantitative analysis of abstract reasoning in current LLMs,
and we develop an abstract reasoning dataset with generic-fact-guided explanations.

• We propose meaningful learning to improve abstract reasoning in LLMs with generic fact.
• We achieve significant improvement in general reasoning and abstract reasoning on various

OOD reasoning and language understanding benchmarks.

2 Abstract reasoning study

In this section, we initially define the evaluation metric of abstract reasoning to establish quantifiable
standards. Then we introduce the LLMs used in this study. Finally, we conduct two experiments: one
to directly estimate the abstract reasoning abilities of LLMs, and the other to further analyze it from
the perspective of general fact mastery.

2.1 Abstract reasoning metric

Abstract reasoning requires models to apply general patterns of high-level abstractions to different
scenarios or questions. Different from general reasoning, which focuses on each single example,
abstract reasoning takes the examples supported by a generic fact as a whole. We define abstract
reasoning accuracy due to the lack of a proper metric.
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Table 2: Accuracy of generic fact probing.

LLMs LLaMA-2 Orca-2 GPT-3.5

7B 13B 7B 13B >20B

Accu. 62.44 70.32 26.97 12.78 77.30

Table 3: The categorized abstract reasoning accuracy
based on whether the generic facts are known.

Category Metrics LLaMA-2 Orca-2 GPT-3.5

7B 13B 7B 13B >20B

Known AbsAcc 34.26 43.51 64.98 81.51 68.31
Unknown AbsAcc 17.19 31.84 49.00 58.38 58.49

Generic Fact 1

Label: A
Prediction: A 

Label: B
Prediction: B

Label: C
Prediction: A

Label: B
Prediction: A

Label: D
Prediction: D

Label: C
Prediction: C

Example 1

Example 2

Example 4

Example 5

Example 6

Example 7

Generic Fact 2 Generic Fact 3

Vanilla : (1+1+0+0+0+1+1) / 7 = 0.57
AbsAcc-H: (1 + 0 + 0) / 3 = 0.33
AbsAcc-S: (2/3 + 0/2 + 2/2) / 3 = 0.56

Label: A
Prediction: B

Example 3

Generic Fact 𝑟!

Label: A
Prediction: A 

Label: B
Prediction: B

Label: C
Prediction: A

Label: B
Prediction: A

Label: D
Prediction: D

Label: C
Prediction: C

Example 𝒔𝟏𝟏

Example 𝒔𝟐𝟏

Example 𝒔𝟏𝟐

Example 𝒔𝟐𝟐

Example 𝒔𝟏𝟑

Example 𝒔𝟐𝟑

Generic Fact 𝑟% Generic Fact 𝑟&

Vanilla : (1+1+0+0+0+1+1) / 7 = 0.57
AbsAcc: (0 + 0 + 1) / 3 = 0.33

Label: A
Prediction: B

Example 𝒔𝟑𝟏

Figure 2: Computation of abstract reasoning metric.

Given a dataset D with n generic facts
R = {r1, r2 · · · , rn}, for the i-th generic
fact ri, it supports mi examples Si =
{si1, si2, · · · , simi

} ∈ D.

As shown in Figure 2, akin to Qiu et al. [37],
we suppose an LLM LM has grasped the
generic fact ri if and only if LM can cor-
rectly answer all examples in Si. Hence, we
define abstract reasoning accuracy (denoted
as AbsAcc) as the proportion of generic facts
that LM has grasped:

AbsAcc =

∑
i I(Φ(LM, Si) = |Si|)

n
, (1)

where Φ quantifies the number of examples in Si that LM answers correctly. I serves as the indicator
function, taking 1 when the specified condition is met and 0 otherwise.

2.2 Large language models for evaluation

We employ several LLMs in our preliminary experiments: (1) LLaMA-2 [47] is an open-access LLM.
We use 7B and 13B LLaMA-2 for experiments; (2) Orca-2 [35] is an open-access LLM finetuned on
LLaMA-2 with over 80K reasoning-specific examples. We use 7B and 13B Orca-2 for experiments.
(3) GPT-3.5 [7] is a limited access LLM, we use gpt-3.5-turbo-0125 for experiments.

2.3 Experiment I: abstract reasoning

We formulate the first preliminary experiment to gain an initial insight into the abstract reasoning
abilities of current LLMs.

To achieve this goal, we choose a multiple-choice question-answering dataset e-CARE [14] for
implementation. e-CARE is a large-scale explainable causal reasoning dataset with a generic fact in
each example, and a generic fact can support more than one example. The full set (train, test, and dev)
of e-CARE is selected for experiments. We filter out the examples that the corresponding generic
facts support only one example. Finally, we obtain 13,045 examples supported by 5,608 generic facts.

We follow zero-shot setting to prompt the LLMs for answer selection from multiple choices, and the
generic facts are not provided in the inputs (refer to Appendix B.1). Table 1 shows the overall results:

(1) The significant disparity (over 17%) between the vanilla accuracy and AbsAcc for all LLMs
proves two aspects: on the one hand, vanilla accuracy is not ideal for estimating abstract reasoning.
On the other hand, although LLMs could answer questions accurately, they still cannot capture the
common patterns or generic facts behind the questions.

(2) Larger LLMs outperform smaller ones due to their richer knowledge and stronger reasoning ability.
Orca-2, additional trained on LLaMA-2, notably outperforms LLaMA-2, indicating that supervised
fine-tuning enhances both reasoning and abstract reasoning abilities. However, even with large-scale
post-training, the significant gap between vanilla accuracy and AbsAcc remains unbridged.

(3) The minimal gap between vanilla accuracy and AbsAcc for humans suggests the large gap for
LLMs is not due to varying difficulties of the example supported by the same generic fact.
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Question: Which of the following scenarios is most 
likely to influence a person's typical shopping habits?

Options: 
A) A regular day with no significant changes in weather 

or social conditions
B) A holiday season with sales and promotions in stores
C) When the person has not received their paycheck yet
D) A day with consistent weather and social conditions 

as the previous week
Answer: B)
Explanation: Holiday seasons with promotions and 
sales present unusual conditions that can significantly 
alter a person's typical shopping behavior, often 
encouraging more spending.

Question: In a psychological study, which condition is 
most likely to yield atypical results in participants?
Options: 
A) A study conducted during a stressful event
B) A study conducted in a controlled environment with 

no distractions
C) A study conducted with the same participants as a 

previous similar study
D) A study conducted with used questionnaires
Answer: A)
Explanation: A stressful event like a natural disaster 
creates an unusual condition that can significantly affect 
participants' behavior and responses, leading to atypical 
results in a psychological study.

Generic Fact: Unusual conditions affect behavior

Figure 3: Two samples of AbsR guided by the generic fact about “unusual conditions”.

2.4 Experiment II: generic fact probing

To delve into the abstract reasoning from the perspective of generic fact mastery, we design a generic
fact probing task to ask LLMs whether they possess the given generic fact (refer to Appendix B.2 for
more details). Drawing inspiration from knowledge uncertainty estimation [3], we formulate this task
as a yes or no problem. The overall results are shown in Table 2. We could conclude as follows:

(1) LLaMA-2 and GPT-3.5 have substantial knowledge reserves. This indicates the poor AbsAcc of
LLaMA-2 might come from a lack of ability to apply the generic fact to different reasoning scenarios.
This problem also exists in GPT-3.5, but it is not as serious as LLaMA-2.

(2) In contrast, Orca-2 knows limited generic facts, and the larger the model, the less it knows. This
contrasts sharply with its strong reasoning abilities (vanilla accuracy). We suppose training Orca-2
is more like rote learning rather than meaningful learning, which implies that Orca-2 tends to lose
knowledge while acquiring reasoning.

To deeply investigate the relation between generic facts and abstract reasoning, we categorize the
examples in e-CARE according to whether LLMs know the generic facts. The results are represented
in Table 3, from which we can draw the following conclusions:

(1) The performance of “Known” category has superiority over “Unknown” category across all LLMs.
This demonstrates knowing the generic facts is helpful for abstract reasoning, which provides a
potential avenue for abstract reasoning enhancement through generic fact retrieval.

(2) Nonetheless, most of the results in the “Unknown” category still have undeniable performance,
suggesting that LLMs may engage in reasoning based on suspicious correlations or rely on memo-
rization.

In conclusion, we can enhance the abstract reasoning abilities of LLMs in two ways: (1) Knowledge,
injecting generic facts through additional training or prompting; (2) Reasoning, teaching LLMs how
to utilize the generic facts to provide more precise responses to questions.

3 AbsR: abstract reasoning dataset

To enhance the abstract reasoning abilities of LLMs through Knowledge and Reasoning ways, we
need a dataset that can not only provide generic facts but also teach LLMs how to exploit the generic
fact to derive the correct answer in different scenarios (meaningful learning). Since there is no
suitable dataset to assist us in achieving the goals, we create an Abstract Reasoning dataset (AbsR).

3.1 Generic fact collection

To obtain the generic facts, We chose GenericsKB [5] as the foundational generic fact base for
AbsR. GenericsKB is a large-scale knowledge base with over 3.4 million sentences (e.g. Dogs bark)
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expressing general truths, each of which also includes the corresponding concept (e.g. Dog) and
the confidence score (between 0 and 1). Hence, we filter and then sample a collection of 4,613
high-quality generic facts of different concepts from GenericsKB (details of generic fact filtering and
sampling can refer to Appendix C).

3.2 Dataset construction Table 4: The statistics of AbsR.

Examples Questions Generic Facts
Train 18,020 9,010 4,613
Test 200 200 104

To construct the whole dataset, and inspired
by previous works [49, 56], we choose GPT-
4 [2] as our data annotator. The API we used is
gpt-4-1106-preview.

Specifically, for each sampled generic fact ri, we would ask GPT-4 to create samples Si =
{si1, · · · , simi

|1 ≤ mi ≤ 3} in various scenarios based on ri. Each sample sij contains the fol-
lowing terms: (1) a question Xi

j with a few options, (2) a response Y i
j with an answer and an

explanation guided by ri. All terms form a triple sij =< Xi
j , ri, Y

i
j > for each sample. The prompt

for dataset creation can refer to Appendix D. Figure 3 shows an illustration of the created samples.

Finally, without loss of generality, given the j-th sample sij of generic fact ri, we can create two kinds
of examples for meaningful learning. One is predicting Y i

j given < Xi
j , ri > (K-example), while the

other is predicting Y i
j given only Xi

j (R-example). The examples can implicitly enhance abstract
reasoning in LLMs through Knowledge and Reasoning ways. Table 4 shows the statistics of AbsR.

3.3 The quality of AbsR

We conduct human evaluations to measure the quality of AbsR from the following dimensions (details
and more statistics such as evaluation criteria, agreements, and pay can refer to Appendix E and F):

• Human Performance: humans can achieve vanilla accuracy of 95% and AbsAcc of 93.27%;
• Support Rate: 89% (the rate of examples which can be supported by the generic fact);
• Diversity: 88.5% (the diversity of the examples supported by the same generic fact. Greater

diversity indicates greater differences among the examples of the same generic fact).

For comparison, e-CARE [14] is also human-annotated, with examples generated from generic facts.
On e-CARE, humans reached 92% vanilla accuracy, 89.9% AbsAcc, and an 87% support rate [14],
showing that AbsR matches the quality of the human-annotated dataset.

4 Method: meaningful learning

To imitate humans’ instinctive use of general facts in reasoning, we develop a simple but effective
learning paradigm called meaningful learning (MeanLearn). It can enhance the abstract reasoning
abilities of LLMs in Knowledge and Reasoning ways. This is inspired by the implicit knowledge
learning process, which uses hidden variables to learn event background knowledge [13]. MeanLearn
can make LLMs implicitly learn generic facts and solve problems under the guidance of generic facts.

Specifically, an LLM LM with parameters θ and the input x can construct a conditional probability
for the output y:

LM(x, y, θ) = −
∑
t

log pθ(yt|x, y<t). (2)

In MeanLearn, for a K-example < X, r, Y > and R-example < X,Y > pair guided by generic fact
r, we send the example pair into LM to model two conditional probabilities:

LM(X,Y, θ) = −
∑
t

log pθ(Yt|X,Y<t),

LM(X, r, Y, θ) = −
∑
t

log qθ(Yt|X, r, Y<t).
(3)

Hereafter, on the one hand, we train LM to learn policies pθ(Yt|X,Y<t) and qθ(Yt|X, r, Y<t)
together to enable LM implicitly learn the generac fact r. On the other hand, LM can learn how
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to apply r into different scenarios by learning the explanations in Y of different X supported by
r. Finally, we can reason with the implicit guidance of r when only given X , just like humans
instinctively answer questions without explicitly giving the general facts.

5 Experiments

5.1 Experimental details

Training setup. We use LoRA [20] for parameter effcient finetuning. 7B and 13B MeanLearn are
trained on 7B and 13B Orca-2, respectively, 8B MeanLearn is trained on 8B LLaMA-3, with batch
sizes of 256 for 7B and 8B, and 240 for 13B. MeanLearn of various sizes are trained for one epoch at
a 5e-5 learning rate with AdamW [26]. 7B and 8B MeanLearn are trained on 2 NVIDIA A100 80GB
PCIe GPUs for 3 hours. 13B MearnLearn is trained on 3 such GPUs for 4 hours.

Baselines. We adopt a wide range of open and limited access LLMs across different sizes as base-
lines. Open Access LLMs: (1) LLaMA-2 [47] 7B and 13B; (2) LLaMA-3 [34] 8B; (3) Vicuna [8]
7B and 13B (finetuned on ShareGPT [1] data); (4) WizardLM [56] 7B and 13B (fintuned with evolved
instruction data); (5) Orca-2 [35] 7B and 13B (prograssively finetuned on massive reasoning data).
Limited Access LLMs: (1) GPT-3.5 (gpt-3.5-turbo-0125); (2) PaLM-2 (text-bison-001).

Evaluation benchmarks. In addition to AbsR, we also include a wide range of benchmarks of
reasoning and natural language understanding for evaluation: (1) AGIEval [60] consists of tests
ranging from college admission tests, to national civil service examinations; (2) RACE [28] consists
of tests with reading comprehension questions; (3) BBH [43] is a subset of Big-Bench [42], which
contains 23 hardest tasks focusing on challenging scenarios; (4) Com. [55] is a collection of 7
commonsense reasoning datasets (αNLI [4], CSQA [44], COPA [39], e-CARE [14], SocialIQa [40],
PIQA [6], and StrategyQA [16]); (5) MMLU [18] is a massive multitask language understanding
benchmark; (6) ARC [10] is a benchmark of easy (ARC-e) and challenge (ARC-c) science questions.

Evaluation setup. Since generation-based evaluation is time-consuming due to limited computing
resources, we follow OpenCompass [11] to have hybrid evaluation criteria with high reproducibility:
(1) For PaLM-2 and GPT-3.5 on all tasks, and open access LLMs on 4 generation tasks (4 tasks in
BBH), greedy decoding and exact match are utilized for evaluation; (2) For open access LLMs on
classification and multiple-choice tasks, perplexity (PPL) is adopted for prediction. The option or
category with the lowest PPL is chosen as the answer. For all baselines, evaluation is conducted once
since there is no randomness on such evaluation criteria. For MeanLearn, results are averaged of
MeanLearn(s) trained with 3 different random seeds. The evaluation prompts can refer to Appendix H.

5.2 Results: vanilla accuracy

Table 5 shows the Vanilla Accuracy of MeanLearn and baselines:

(1) Additional training usually brings improvements (Vicuna, WizardLM, Orca-2, and MeanLearn),
but it still can result in performance losses on some benchmarks (e.g. AGIEval). This signifies the
effectiveness of massive reasoning-specific data and the necessity of data coverage.

(2) MeanLearn has superiority over all open access baselines on nearly all benchmarks. This
demonstrates that MeanLearn can use generic facts to effectively guide LLMs to reason more
properly and logically, making them more flexible and task-adaptive.

(3) The more challenging the benchmark (e.g. BBH), the less pronounced the improvement in the
performance of MeanLearn. This is mainly because the improvement is mostly constrained by
the complex scenarios in harder benchmarks, which require mightier base LLMs or more complex
training data to perform and learn multi-step and compositional reasoning.

(4) MeanLearn does not have many advantages over LLaMA-3. LLaMA-3 stores dense knowledge in
its parameters, making it harder to learn new knowledge without forgetting existing knowledge.

(5) Larger open-sourced LLMs do not always yield better results. We suppose the main factors behind
this are in two ways: on the one hand, LLMs with different parameter sizes might be good at different
tasks, and excessive contemplation may lead to decreases on some tasks [53]. On the other hand, the
perplexity-based evaluation setting might have moderate cross-scale generalization ability.
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Table 5: Overall vanilla accuracy and AbsAcc (%) of baselines and MeanLearn. Due to the space
limit, we only report the standard deviation of Average performance of each method.

Size LLMs AbsR AGIEval RACE BBH Com. MMLU ARC-e ARC-c Average

Vanilla Accuracy

>20B PaLM-2 75.76 15.83 75.82 48.73 78.05 58.73 89.95 82.37 65.77 ± 0.00
GPT-3.5 84.00 25.84 83.36 54.15 74.80 65.98 94.71 88.81 71.46 ± 0.00

7B

LLaMA-2 50.00 27.89 38.85 26.00 55.37 41.65 58.73 43.05 42.69 ± 0.00
Vicuna 75.00 32.56 65.75 31.93 64.77 49.40 74.78 57.63 56.48 ± 0.00
WizardLM 65.00 22.27 22.11 25.99 43.63 23.26 25.57 22.37 31.28 ± 0.00
Orca-2 73.50 38.57 73.32 34.51 71.58 50.11 79.19 73.90 61.84 ± 0.00
MeanLearn 77.00 38.15 77.15 35.64 76.59 52.98 86.67 78.06 65.28 ± 0.34

8B LLaMA-3 82.50 36.33 76.75 36.60 71.76 61.86 88.54 75.25 66.20 ± 0.00
MeanLearn 84.50 38.53 77.02 37.67 71.73 62.35 88.89 77.97 67.12 ± 0.18

13B

LLaMA-2 73.50 34.41 59.46 30.61 61.00 51.87 71.25 55.25 54.67 ± 0.00
Vicuna 74.00 33.23 63.54 33.22 63.10 49.34 77.78 59.77 56.75 ± 0.00
WizardLM 74.00 33.23 63.54 33.22 63.10 49.34 77.78 59.77 56.75 ± 0.00
Orca-2 66.50 43.75 66.86 39.39 65.92 47.27 82.19 70.85 60.34 ± 0.00
MeanLearn 67.17 43.92 70.24 40.36 69.75 51.68 88.69 82.00 64.23 ± 0.25

AbsAcc

>20B PaLM-2 64.58 9.59 61.54 27.69 69.34 44.39 85.68 77.10 54.99 ± 0.00
GPT-3.5 77.08 14.48 66.79 25.45 65.74 52.09 92.16 85.05 59.86 ± 0.00

7B

LLaMA-2 35.42 16.09 14.08 9.56 47.42 25.48 50.27 35.51 29.23 ± 0.00
Vicuna 58.33 19.90 38.68 14.28 58.07 32.50 65.95 49.53 39.84 ± 0.00
WizardLM 53.24 12.94 5.57 9.77 32.96 11.55 20.00 17.29 20.42 ± 0.00
Orca-2 60.42 26.27 50.90 15.67 64.02 33.68 72.16 67.76 48.86 ± 0.00
MeanLearn 64.58 25.27 57.10 16.67 71.17 37.24 81.35 73.83 53.39 ± 0.32

8B LLaMA-3 72.92 23.78 55.61 18.13 66.35 47.31 83.51 70.09 54.71 ± 0.00
MeanLearn 73.96 26.57 55.09 19.24 66.48 46.76 83.78 73.36 55.66 ± 0.17

13B

LLaMA-2 61.46 21.01 32.17 13.74 52.87 35.72 62.43 44.86 40.53 ± 0.00
Vicuna 61.46 19.70 36.50 16.33 55.26 32.21 70.27 52.34 40.37 ± 0.00
WizardLM 59.38 16.96 28.59 18.61 55.73 29.47 57.84 42.06 38.58 ± 0.00
Orca-2 50.00 29.50 42.12 20.61 56.41 31.11 75.95 62.15 45.98 ± 0.00
MeanLearn 45.82 30.01 47.65 21.85 61.04 35.21 85.41 77.08 50.51 ± 0.23

(6) LLMs possess more than 20B parameters still struggle with abstract reasoning. MeanLearn can
achieve comparable performance to PaLM-2 despite their huge gap in model sizes.

5.3 Results: abstract reasoning accuracy

Since the generic facts are not given in the OOD benchmarks, we train a RoBERTa-Large [32] with
constrastive learning to cluster examples supported by the same generic fact. In particular, we utilize
e-CARE as the training set, examples guided by the same generic fact will be pushed closer, or they
will be pushed away. Cosine similarity is used to measure the distance between examples (training
details can refer to Appendix I). For clustering, examples sharing a similarity above 0.6 are considered
to be supported by the same generic fact. Each cluster contains no more than 3 examples.

Hereafter, we calculate the abstract reasoning metrics based on the results of clustering. The overall
results are shown in Table 5 (AbsAcc), we can have the following observations:

(1) AbsAcc is much lower than vanilla accuracy, indicating the large gap between general reasoning
and abstract reasoning. More efforts should be made to fill this gap in the future.

(2) MeanLearn can surpass all baselines, usually exhibiting greater advantages in AbsAcc than in
vanilla accuracy. This suggests that the improvement in vanilla accuracy is more likely due to the
enhancement of abstract reasoning abilities. MeanLearn can tell LLMs the generic facts and teach
them how to implicitly utilize them in different scenarios, resulting in better abstract reasoning.
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Table 6: The overall reasults of ablation studies. “w/o” denotes without.

Size Method AbsR AGIEval RACE BBH Com. MMLU ARC-e ARC-c Average

Vanilla Accuracy

7B

MeanLearn 77.00 38.15 77.15 35.64 76.59 52.98 86.67 78.06 65.28
w/o Knowledge 73.50 38.89 74.10 33.80 73.28 50.97 79.72 75.25 62.44
w/o Reasoning 72.50 38.37 72.60 33.39 71.68 49.55 77.25 73.22 61.07
w/ AbsR∗ 73.50 38.53 73.14 33.65 73.57 50.96 80.60 75.25 62.40

13B

MeanLearn 67.17 43.92 70.24 40.36 69.75 51.68 88.69 82.00 64.23
w/o Knowledge 63.50 44.07 67.19 36.80 70.45 47.88 84.13 74.58 61.08
w/o Reasoning 56.00 43.95 58.05 35.91 68.09 45.31 82.54 69.83 57.46
w/ AbsR∗ 66.50 43.75 66.86 36.92 65.92 47.27 82.19 70.85 60.03

AbsAcc

7B

MeanLearn 64.58 25.27 57.10 16.67 71.17 37.24 81.35 73.83 53.39
w/o Knowledge 61.46 26.67 52.91 14.74 66.26 34.84 72.70 69.16 49.84
w/o Reasoning 59.38 26.18 49.66 14.15 64.13 33.27 69.19 67.29 47.91
w/ AbsR∗ 61.46 26.44 52.24 14.76 55.56 34.88 74.05 69.16 48.57

13B

MeanLearn 45.82 30.01 47.65 21.85 61.04 35.21 85.41 77.08 50.51
w/o Knowledge 46.88 30.43 42.87 18.83 62.95 32.10 78.11 66.82 47.37
w/o Reasoning 36.46 30.81 31.19 18.26 59.70 29.12 75.68 61.68 42.86
w/ AbsR∗ 50.00 29.58 42.12 18.82 56.41 31.11 75.95 62.15 45.77

6 Further analysis
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Figure 4: Visualization of reasoning capabilities on
MMLU, which is categorized by task domians.

To further investigate the pros, cons, and ef-
fectiveness of MeanLearn, we conduct several
analyses and ablation studies. LLaMA-2, Orca-
2, and MeanLearn are adopted for analysis.

6.1 Performance on different domains

We categorize tasks of MMLU based on their
respective domains to demonstrate the pros and
cons of MeanLearn for future improvements.
The results are shown in Figure 4 with a total
of 16 categories:

(1) All LLMs possess poor vanilla accuracy
and AbsAcc in math and chemistry. We con-
jecture the primary factors are the complexity
of math problems and the shortage of chem-
istry knowledge.

(2) Compared to Orca-2, MeanLearn possesses
considerable advantages in engineering, geog-
raphy, and physics & astronomy domains. We
suppose this is related to the domain coverage
of AbsR.

(3) Since the overall AbsAcc is not relatively high, for potential improvement in the future, apart
from focusing more on the domains with poor vanilla accuracy and AbsAcc, we should also increase
the overall volume of finetuning data.

6.2 How much do knowledge and reasoning ways contribute to MeanLearn?

We utilize Knowledge and Reasoning ways to enhance abstract reasoning in LLMs. To investigate the
effect of them, we conduct an ablation study of AbsR to respectively remove the Knowledge (generic
facts) and Reasoning (explanations) in each example. Results are shown in Table 6 (w/o Knowledge
and w/o Reasoning), we can observe:
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Table 7: MeanLearn trained based on Mistral.

Method AbsR Com. MMLU RACE Average

Vanilla Accuracy
Mistral 83.00 66.53 57.02 75.33 70.47
MeanLearn (Ours) 84.50 74.56 58.28 76.65 73.50

AbsAcc
Mistral 72.92 58.87 40.19 52.69 56.17
MeanLearn (Ours) 73.96 68.59 41.14 55.77 59.87

Table 8: Performance on mathematical reasonin
datasets from MMLU [18].

Size Method AA CM EM HSS HSM Average

Vanilla Accuracy

7B

Orca-2 23.00 32.00 33.07 37.95 28.15 30.83
MeanLearn 36.00 35.00 33.07 40.28 28.89 34.56

Mistral 25.00 30.00 38.89 46.76 32.96 34.72
MeanLearn 31.00 34.00 37.83 47.69 34.07 36.92

AbsAcc

7B

Orca-2 0.00 4.88 25.00 25.17 14.63 13.94
MeanLearn 2.86 7.32 24.02 27.97 16.26 15.69

Mistral 2.86 7.32 25.49 36.36 14.63 17.33
MeanLearn 5.71 9.76 24.55 37.76 16.26 18.81

(1) Removing Knowledge (generic facts) or Reasoning (explanation) leads to a decrease in perfor-
mance. This is because the generic facts and their guided reasoning process in AbsR can teach LLMs
to learn and utilize the generic fact behind the questions to reason more logically and properly.

(2) In MeanLearn, Knowledge contributes less in boosting the vanilla and abstract reasoning than
Reasoning. It indicates the importance of teaching LLMs how to reason under the guidance of
generic facts. Furthermore, it reveals the bottleneck of small-scale LLMs reasoning is caused more
by reasoning itself rather than knowledge.

(3) MeanLearn without Knowledge can defeat Orca-2 on vanilla accuracy and AbsAcc, while
MeanLearn without Reasoning cannot. This implies the synergy effects between Knowledge and
Reasoning (MeanLearn) can push LLMs further.

(4) In AGIEval, Knowledge and Reasoning are less critical due to their focus on complex reading com-
prehension without needing vast knowledge. Moreover, Knowledge seems useless in Commonsense.
When providing LLMs with knowledge, we should also teach them how to use it.

6.3 Is the improvement in performance solely attributed to additional data?

Supervised fine-tuning can also improve AbsAcc (Table 1), so we design another ablation study to
investigate whether the improvement of MeanLearn only comes from additional data.

To be precise, for each sample in AbsR, we use GPT-4 to generate a new explanation based on the
question and label without the guidance of the generic fact. Hereafter, we obtain AbsR∗. The only
difference between AbsR and AbsR∗ is the explanations in AbsR are guided by the generic fact.
Table 6 (w/ AbsR∗) shows the results of MeanLearn trained with AbsR∗, we can infer:

(1) Training 7B and 13B Orca-2 with AbsR∗ can still outperform Orca-2 on vanilla accuracy.
However, it cannot bring stable improvements on AbsAcc. This underscores that reasoning-specific
post-training can boost performance, while improving abstract reasoning performance might depend
on more careful design such as MeanLearn.

(2) MeanLearn without Knowledge outperforms MeanLearn trained with AbsR∗, showing the su-
periority of training with generic-fact-guided explanation. This stems from the generic-fact-guided
explanation that can teach LLMs to use the regular pattern behind the questions for better reasoning.

6.4 Expanding MeanLearn to LLMs besides the LLaMA series

To investigate the universality of MeanLearn, we train MeanLearn with Mistral-7B-Instruct-v0.2 [21]
(denoted as Mistral). All settings are consistent with Sec 5. We choose AbsR, Com., MMLU, and
RACE for evaluation. As shown in Table 7, we can find MeanLearn has good applicability on Mistral.

6.5 Expanding reasoning domains to mathematical reasoning

Although we do not incorporate math examples in AbsR, we want to investigate whether MeanLearn
can improve the performance of mathematical reasoning by enhancing abstract reasoning in LLMs.
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Following [33], we select five mathematical reasoning datasets from MMLU [18] to demonstrate
this: abstract algebra (AA), college mathematics (CM), elementary mathematics (EM), high school
statistics (HSS), and high school mathematics (HSM). We choose 7B version of Orca-2 and Mistral
for comparison. Results are shown in Table 8, it is interesting to find that MeanLearn can outperform
baselines even if there is no math data in AbsR. This demonstrates the effectiveness of MeanLearn in
enhancing abstract reasoning in LLMs.

7 Related work

7.1 Reasoning with LLMs

LLMs have overturned the research paradigm of NLP, which makes reasoning more accessible. Using
LLMs to perform reasoning can be categorized into tunning-based and prompt-based methods.

Tunning-based methods, originating from T0 [48] and FLAN [52], finetuned T5 [38] and LaMDA-
PT [46] on massive NLP tasks, achieving notable zero-shot performance on unseen tasks. Flan-
PaLM [9] and Tk-INSTRUCT [50] further scaled up the model and task size for improvement.
Orca [36] and Orca-2 [35] leveraged vast instruction data to teach small-scale LLMs reasoning skills.

As for prompt-based methods, Wei et al. [53] introduced CoT prompt to elicit reasoning in LLMs
by encouraging step-by-step thinking. Additionally, Kojima et al. [27] presented zero-shot CoT to
bypass manual annotation issues. Subsequently, Zhang et al. [59] proposed AutoCoT to automatically
generate few-shot examples with CoT for reasoning. Various CoT-based methods [22, 51] have since
emerged, such as complex CoT [15], and the tree of thought [57], etc.

These methods are designed for improving the general reasoning abilities of LLMs, while we focus
on the abstract reasoning capabilities of LLMs.

7.2 LLMs-as-annotators

LLMs are increasingly used as annotators to create data for training and evaluation due to their
advanced instruction-following skills.

Some studies distilled various CoT data from LLMs to train student models ([30, 19, 58], inter alia),
achieving impressive performance. For instance, Li et al. [30] distilled symbolic CoT from GPT-3
and observed enhanced performance in commonsense reasoning. Dai et al. [12] used ChatGPT to
generate augmentation data to enhance BERT [24]. With the advent of open-source LLMs like
LLaMA [47], other studies distilled instruction data from large-scale LLMs to train small-scale
models ([56, 36, 25, 31, 23, 17], inter alia). For example, Xu et al. [56] and Luo et al. [33] employed
an evolving strategy to obtain complex data, trained LLaMA, and achieved strong performance. Tang
et al. [45] constructed a concept graph and used GPT-3.5 to synthesize math data with high diversity.
We employ LLMs to generate training data and develop AbsR tailored for abstract reasoning.

8 Conclusion

In this paper, we investigate the abstract reasoning of existing LLMs. To achieve this, we first define
the evaluation metric of abstract reasoning and design a series of preliminary experiments. Then we
discover a significant performance gap between general reasoning and abstract reasoning. Hence,
we tailor an abstract reasoning dataset AbsR with the help of GPT-4 to enhance LLMs. Finally, we
devise a simple but effective paradigm (MeanLearn) to teach LLMs abstract reasoning in Knowledge
and Reasoning ways. Extensive experiments demonstrate the superiority and effectiveness of
MeanLearn in vanilla and abstract reasoning accuracies. The limitations of MeanLearn are discussed
in Appendix A.
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A Limitations

There are several limitations of our work: First, the size of the training data should be larger to obtain
better and more stable results. Second, there should be some examples (whether MeanLearn can
generate meaningful explanations) to demonstrate the superiority of MeanLearn. Third, more efforts
should be made to focus more on abstract reasoning itself. Finally, complex scenarios (with complex
generic facts) such as causal chain reasoning [54] and logical reasoning [41] is a potential direction
of abstract reasoning.

B Asbstract reasoning study

B.1 Prompt for experiment I

B.1.1 Orca-2

<|im_start|>system
You are Orca, an AI language model created by Microsoft. You are
a cautious assistant. You carefully follow instructions. You are
helpful and harmless and you follow ethical guidelines and promote
positive behavior.<|im_end|>
<|im_start|>user
{premise} Hypothesis1 or Hypothesis2?
Hypothesis1: {hypothesis1}
Hypothesis2: {hypothesis2}
Your answer should follow the format like “Answer: Hypothesis(1 or 2)
is more plausible.
Explanation: ___”<|im_end|>
<|im_start|>assistant

B.1.2 LLaMA-2 and GPT-3.5

System: You are a helpful assistant.
User: {premise} Hypothesis1 or Hypothesis2?
Hypothesis1: {hypothesis1}
Hypothesis2: {hypothesis2}
Your answer should follow the format like “Answer: Hypothesis(1 or 2)
is more plausible.
Explanation: ___”

The placeholders {premise} , {hypothesis1} , and {hypothesis2} will be filled with the corre-
sponding terms in each example of e-CARE dataset.
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B.2 Prompt for experiment II: Orca-2

B.2.1 Orca-2

<|im_start|>system
You are Orca, an AI language model created by Microsoft. You are
a cautious assistant. You carefully follow instructions. You are
helpful and harmless and you follow ethical guidelines and promote
positive behavior.<|im_end|>
<|im_start|>user
You are given a fact, do you know this fact? Just answer Yes or No,
do not give any additional information.
Fact: {fact} <|im_end|>
<|im_start|>assistant

B.2.2 LLaMA-2 and GPT-3.5

System: You are a helpful assistant.
User: You are given a fact, do you know this fact? Just answer Yes
or No, do not give any additional information.
Fact: {fact}

The placeholders {premise} , {hypothesis1} , {hypothesis1} , and {fact} will be filled with
the corresponding terms in each example of e-CARE dataset.

C Details for generic facts filtering

We apply the following steps to filter generics facts from GenericsKB:

(1) Exclude sentences with confidence < 0.7.

(2) Categorize the sentences by the concepts.

(3) Randomly sample 4,613 concepts, and then randomly sample one sentence as the generic fact
from the category of each sampled concept.

Hereafter, we can obtain a collection of 4,613 generic facts.

D Prompt for AbsR construction

We use the following prompt to generate our AbsR examples.

You are an expert in creating questions, you should first offer a question together with some
options based on the fact the user gives. Second, you should give an answer and an explanation
guided by the given fact. You can propose questions in any area, including but not limited to
history, law, medicine, math, science, computer science, psychology, AI, politics, economics,
etc. Your response should follow the following format: “Question: ____ Options:_____
Answer: _____ Explanation: _____”. NOTE that the fact should be an implicit explanation
for obtaining the true answer, which means the fact SHOULD NOT appear explicitly in
the questions or the options. The explanations should be short. Please create {number}
examples.

The placeholder {number} will be randomly filled with “one”, “two” or “three”.
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E Details of human evaluation

We choose three annotators with good backgrounds in textual inference and event reasoning. The
whole test set of AbsR is involved in the human evaluation (200 instances). For each annotator, we
pay $10 per hour, while in our country, the minimum wage is less than $5 per hour. All annotators
agreed to let us use their annotations. The evaluation agreements are 95%, 91%, and 90% for the
question answering, generic fact supportance, and diversity tasks, respectively.

F Instructions of human evaluation

F.1 Performance

You are given some questions each with some options, all the questions are about commonsense and
are generated by GPT-4. Please choose the most plausible option for each question. Just type your
choice (such as (A)) in the Answer column.

F.2 Support rate

You are given some questions each with some options and a generic fact, all the questions are about
commonsense and are generated by GPT-4. Please judge whether the generic can support to answer
the question. Just type your choice (Yes or No) in the Answer column.

F.3 Diversity

You are given some generic facts, each generic fact possesses several samples (each sample consists
of a question and a few options). The samples can be supported by the corresponding generic fact.
Please judge whether the samples within a generic are similar and are just different in nouns or
expressions. If sample 1 and sample 2 are similar and are just different in nouns or expressions, just
type a tuple (1, 2) in the Answer column. If there are multiple similar sample pairs, just separate
them with a “\n”. For example, (1, 2)\n(3, 4).

G K-example and R-example

G.1 K-example

<|im_start|>system
You are a cautious assistant. You carefully follow instructions.
You are given a question, a few options, and a rule, you should
follow the given rule to answer the question. Your response should
follow the format like “Explanation: ___Answer: ____”<|im_end|>
<|im_start|>user
Fact: Cookie files are simple text files that can be viewed in
Windows Notepad.
Question: What type of application can be used to open and view
cookie files on a Windows computer?
Options:
A) Microsoft Excel B) Adobe Photoshop C) Windows Notepad D) 3D
Modeling Software<|im_end|>
<|im_start|>assistant
Explanation: Windows Notepad is a text editor that is capable of
opening and displaying the contents of simple text files, which is
the format of cookie files.
Answer: C) Windows Notepad<|im_end|>
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G.2 R-example

<|im_start|>system
You are a cautious assistant. You carefully follow instructions.
You are given a question together with a few options, you should
give an explanation first and then answer the question. Your
response should follow the format like “Explanation: ___Answer:
____”<|im_end|>
<|im_start|>user
Question: What type of application can be used to open and view
cookie files on a Windows computer?
Options:
A) Microsoft Excel B) Adobe Photoshop C) Windows Notepad D) 3D
Modeling Software<|im_end|>
<|im_start|>assistant
Explanation: Windows Notepad is a text editor that is capable of
opening and displaying the contents of simple text files, which is
the format of cookie files.
Answer: C) Windows Notepad<|im_end|>

H Templates for evaluation

H.1 LLaMA-2, LLaMA-3, and MeanLearn (8B)

The following are multiple-choice questions (with answers) about
abstract algebra.

Find the degree for the given field extension Q(sqrt(2), sqrt(3),
sqrt(18)) over Q.
A. 0 B. 4 C. 2 D. 6
Answer: A

H.2 Orca-2 and MeanLearn (7B and 13B)

<|im_start|>system
The following are multiple-choice questions (with answers) about
abstract algebra.<|im_end|>
<|im_start|>user
Question: Find the degree for the given field extension Q(sqrt(2),
sqrt(3), sqrt(18)) over Q.
Options:
A. 0 B. 4 C. 2 D. 6<|im_end|>
<|im_start|>assistant
Answer: A<|im_end|>

I Training details of RoBERTa-Large-based clusterer

We use the RoBERTa-Large [32] released by Meta. The batch size is 256. We use AdamW [26] to
optimize the model with a learning rate of 1e-5 for 5 epochs. The computing device is one NVIDIA
A100-SXM-64GB. The running time is about 12 minutes.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims can be supported by the experiments and ablation studies.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have provided limitations of the work in Sec. 6.1 and Appendix. A.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We have provided complete proof in all the tables and figures in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided the training and evaluation details for reproducibility in
Sec. 5. We also submit the code and data in the supplementary material. We also run
experiments for multiple times to report the mean and standard deviation of MeanLearn.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided the link for the data and code at the end of the Abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided the training and test details of all baselines and MeanLearn
in Sec. 5. Some other details such as the prompts and human evaluation are provided in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have reported the mean and standard deviation results across 3 runs of
MeanLearn in Table 5. There is no randomness with all the baselines since the evaluation
criterias we used is greedy decoding and PPL-based prediction.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the compute resources and time of execution in Sec. 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have provided the detials of human evaluation (such as the pay) in Ap-
pendix E. We also obtain the agreements of the human annotators to use their annotation.
We also follow the other terms in the code of ethics which would be covered in our paper.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We focus on the reasoning abilities of LLMs, which is a foundational research
and does not concentrate on specific application scenarios.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We use publicly accessible data and LLMs for experiments.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite every resource (such as LLMs and benchmarks) used in this work.
Please refer to Sec. 5. We also follow the the license and terms of use of corresponding
LLMs and data.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have provided the structure of the AbsR dataset in Sec. 3.2. Figure 3 also
shows two samples of AbsR. We also provide the create AbsR dataset with a readme file in
the supplementary material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We have provided the instructions of human evaluations in Appendix F. We
also offer the information such as the pay in Appendix E.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our human evaluations are answering some questions about commonsense.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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