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Abstract001

CLIP (Radford et al., 2021) revolutes vision-002
language pretraining by using contrastive learn-003
ing on paired web data. However, the sheer size004
of these pretrained models makes full-model005
finetuning exceedingly costly. One common006
solution is the “adapter", which finetunes a007
few additional parameters while freezing the008
backbone. It harnesses the heavy-duty back-009
bone while offering a light finetuning for small010
downstream tasks. This synergy prompts us011
to explore the potential of augmenting large-012
scale backbones with traditional machine learn-013
ing techniques. Often employed in traditional014
fields and overlooked in the large-scale era,015
these techniques could provide valuable en-016
hancements. Herein, we delve into the “adapter017
ensembles" in the realm of large-scale pre-018
trained vision-language models. We begin with019
a proof-of-concept study to establish the effi-020
cacy of combining multiple adapters. We then021
present extensive evidence showing these en-022
sembles excel in a variety of settings, particu-023
larly when employing a Multi-Scale Attention024
(MSA) approach thoughtfully integrated into025
the ensemble framework. We further incorpo-026
rate the LoRA to mitigate the additional pa-027
rameter burden. We focus on vision-language028
retrieval, using different backbones under con-029
straints of minimal data, parameters, and fine-030
tuning budgets. This research paves the way for031
a synergistic blend of traditional, yet effective,032
strategies with modern large-scale networks.033

1 Introduction034

Large-scale pretraining leverages massive data,035

robust architectures with strategic training to push036

performance boundaries (Devlin et al., 2018; Rad-037

ford et al., 2018; Li et al., 2022; Radford et al.,038

2021). It notably advances vision-language capa-039

bilities, exemplified by CLIP (Radford et al., 2021),040

which through contrastive learning on a vast image-041

text corpus, seamlessly integrates visual and lin-042

guistic modalities.043
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Figure 1: CLIP ViT-B/16 ensemble ablation on self-
attention and feedforward (Sec. 2). Y-axis/x-axis are the
retrieval accuracy and the unit number of learnable pa-
rameters in each layer. Baselines (On-Top, RB, MLP)
and our Ens are finetuned/evaluated on YFCC. Sharing
the same amount of learnable parameters, ensemble out-
performs baselines and derives improvement when the
number of ensemble parameters increases.

Various studies further advance vision-language 044

pretraining by integrating auxiliary supervision 045

(e.g., self-supervision/captioning loss) or extra in- 046

formation (e.g., tags/bounding boxes) (Ramesh 047

et al., 2022; Saharia et al., 2022; Tewel et al., 048

2022; Chen et al., 2022a; Mokady et al., 2021; 049

Jia et al., 2021; Mu et al., 2022). However, 050

the necessity for extensive datasets and complex 051

training pipelines for pretraining remain a chal- 052

lenge, particularly affecting finetuning efficiency. 053

Adapter (Houlsby et al., 2019) is a favored tech- 054

nique for efficient finetuning, initially for language 055

models like BERT (Devlin et al., 2018) and re- 056

cently adapted for the visual domain (Chen et al., 057

2022b; Gao et al., 2021). Along with its vari- 058

ants such as LoRA (Hu et al., 2021) and Com- 059

pactor (Karimi Mahabadi et al., 2021), adapter 060

offers the solution by updating a few additional 061

parameters with limited data while fixing the pre- 062

trained backbone. These approaches combine large- 063

scale pretraining with small-sized efficient adapters, 064

proposing a unified modeling pipeline. This fusion 065

compels us to consider if we can borrow certain tra- 066
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ditional machine learning techniques, which work067

well on previous small-sized scenarios but are eas-068

ily ignored in the current large-scale era, to benefit069

the popular pretrained models. Informed by this,070

our study delves the classic ensemble on adapter071

for large-scale vision-language pretrained models072

and assesses its impact on cross-modal retrieval.073

Ensemble has long been a cornerstone in tradi-074

tional machine learning, combining diverse base075

learners to harness collective intelligence, thereby076

enhancing model performance and robustness (Di-077

etterich, 2000; Sagi and Rokach, 2018; Rokach,078

2010). In past decades, early methods provided079

weak yet cheap base learners using limited data, the080

ensemble compensated by pooling their strengths.081

Recently neural networks, with more data and com-082

plex models, present base learners of greater indi-083

vidual capability. Yet, the ensemble continues to084

offer performance boosts (Li et al., 2019; Lee et al.,085

2018), albeit at a cost, given the non-negligible086

resources to entirely train each deep network as a087

base learner. Nowadays, the focus shifts towards088

leveraging single, robustly pretrained models, leav-089

ing ensembles less tapped for these larger models090

due to their prohibitive computational demands.091

However, our curiosity lies in applying ensemble092

to efficiently finetune large-scale pretrained models093

using adapters, which act as a nexus for integrating094

large-scale backbone and small-sized techniques.095

This study marks the initial exploration into the096

use of the adapter-based ensembles in large-scale097

pretrained models. We infuse the pretrained model098

with parallel learnable parameters in an ensemble099

fashion while fixing original weights. Our proof-100

of-concept study (Sec. 2) shows substantial perfor-101

mance gain of ensemble over baselines (Fig. 1).102

We further extensively validate its effectiveness103

with a well-designed Multi-Scale Attention (MSA)104

in an ensemble framework (Sec. 3). Finally, we105

enhance our strategy by incorporating LoRA (Hu106

et al., 2021) technique, managing the extra param-107

eter overhead to maintain efficiency with compet-108

itive performance even when scaling to ensemble109

applications. We summarize contributions of our110

study as below:111

• Driven by the adapter efficiency, we are in-112

trigued by the potential of leveraging classical113

small-sized machine learning techniques to114

enhance the large-scale model performance.115

• We recall the ensemble, which is a classi-116

cal practice but mostly overlooked in current117

large-scale era. Herein, we use adapter en- 118

semble as an intermediary between large-scale 119

pretrained model and small-sized technique 120

to improve pretrained model under efficient 121

finetuning budget. 122

• We conduct 1) a proof-of-concept study, 123

promising our exploration as a valuable per- 124

spective; 2) an extensive ensemble test, show- 125

ing consistent performance gain over different 126

settings; 3) a simple ensemble-style Multi- 127

Scale Attention (MSA), reaching the largest 128

performance gain of cross-modal retrieval 129

(e.g., 6% YFCC zero-shot improvement with 130

only 0.1M Laion finetuning data); 4) an in- 131

corporation with LoRA into our ensemble 132

to maintain the adapter parameter efficiency 133

(e.g., 2.2% additional parameters with com- 134

petitive performance). 135

2 Ensemble Proof-of-Concept Study 136

Ensemble is often interpreted as a weighting 137

strategy (Rokach, 2010; Dietterich, 2000), where 138

data or feature fusion can be regarded as an ensem- 139

ble process to some extent. For example, residual 140

connection (He et al., 2016) is an ensemble process 141

fusing identity mapping and learned residual infor- 142

mation. In this section, we conduct an instructive 143

empirical analysis as a proof-of-concept study to 144

show the effectiveness of using an ensemble strat- 145

egy on adapter. We finetune (using limited 0.1M 146

data) and test on YFCC (Thomee et al., 2016) to 147

compare our ensemble (Att-Ens/FFN-Ens) with 148

three baselines (On-Top, Att-RB/FFN-RB, Att- 149

MLP/FFN-MLP) on CLIP backbone. 150

Att-Ens/FFN-Ens. 151

We make a simple implementation to include a few 152

sets of learnable parameters for ensemble, which is 153

different from typical bottleneck adapter (Houlsby 154

et al., 2019). Given a feature f ∈ Rd after multi- 155

head attention (Att) or feedforward (FFN) in each 156

transformer block, we project the copied and con- 157

catenated feature using a pyramid layer: 158

f ens = f + ([

N︷ ︸︸ ︷
f, ..., f ])W ens, (1) 159

where W ens ∈ RNd×d and we omit bias term for 160

convenience (Fig. 2a). N is the number of copied 161

feature to be concatenated. In this way, each d-dim 162

sub-matrix in W ens can be treated as a base learner. 163

The pyramid projection is an ensemble module. 164
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(a) Att-Ens/FFN-Ens add a
pyramid projection to ensem-
ble concatenated copied fea-
tures for MHA or FFN.
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(b) On-Top adds additional
parameter (reverse bottle-
neck) on the top of both CLIP
vision/language towers.
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(c) Att-RB/FFN-RB add a
reverse bottleneck as addi-
tional parameters after MHA
or FFN.
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(d) Att-MLP/FFN-MLP add
projections (same dimension)
as learnable parameters after
MHA or FFN.

Figure 2: Instructive analysis to show our ensemble strategy (Fig. 2a) works better than baselines (Fig. 2b 2c 2d)
while sharing the same number of additional learnable parameters overall. We adjust 1) the number of copied
feature for Att-Ens/FFN-Ens (Fig. 2a); 2) the hidden dimension in reverse bottleneck for On-Top/Att-RB/FFN-RB
(Fig. 2b 2c); 3) the number of hidden layers for Att-MLP/FFN-MLP (Fig. 2d) to keep the same amount of additional
parameter for all methods. All four methods are deployed in both vision and language towers. In figures, green and
blue blocks represent learnable and frozen modules, respectively.

Accordingly, we can conveniently calculate the165

total number of additional learnable parameters.166

Assuming we have total L blocks in pretrained167

CLIP, the totally amount of additional parameters168

is L × Nd × d. We regard d × d as an adapter169

unit and L×N is the number of the total units. To170

show the benefits of ensemble strategy, we make a171

comparative analysis with the following three de-172

signed baselines, w.r.t. different numbers of units173

of additional parameters, shown as the number of174

x-axis in Fig. 1.175

On-Top176

To eliminate any potential ensemble effect, we177

use CLIP to extract feature f and place all the178

additional learnable parameters as a reverse bottle-179

neck on the top (Fig. 2b) without any residual skip,180

which is given by181

f top = (f ·W 1)W 2, (2)182

where W 1 ∈ Rd×(LNd/2) and W 2 ∈ R(LNd/2)×d.183

This is the most basic baseline, with no ensemble184

influence.185

Att-RB/FFN-RB186

We insert a reverse bottleneck after Att or FFN in187

each block (Fig. 2c). Residual skip is used here to188

relatively involve ensemble factor and alleviate the189

non-ensemble constraint compared with On-Top,190

given by:191

f rb = f + (f ·W 1)W 2, (3)192

where W 1 ∈ Rd×(Nd/2) and W 2 ∈ R(Nd/2)×d.193

Skip connection involves ensemble concept but the194

reverse bottleneck is not for ensemble compared195

with Att-Ens/FFN-Ens.196

Att-MLP/FFN-MLP 197

We insert an MLP after Att or FFN in each block 198

(Fig. 2d). This is another version to allow ensemble 199

by using skip connection, given by 200

f rb = f + (f ·W 1)W 2 · · ·WN , (4) 201

where W i ∈ Rd×d, i = {1, 2, ..., N}. We keep the 202

same dimension for all hidden layers across i. 203

For a fair comparison, we keep the same total 204

number of additional parameters (L × Nd × d) 205

for all four methods through adjusting the number 206

of layers for Att-MLP/FFN-MLP and hidden di- 207

mension for others. All of four methods (Fig. 2) 208

are deployed on both vision and language towers 209

simultaneously. Fig. 1 shows the performance com- 210

parison between ensemble and baselines. *-Ens 211

consistently outperforms others. With more addi- 212

tional parameters, we also observe the increasing 213

ensemble performance. *-RB and *-MLP using 214

ensemble to some extent obtain competitive results, 215

even if adding more units of parameters damages 216

the learning process for *-MLP due to no skip 217

connection inside. On-Top with no ensemble has 218

lowest performance and adding more parameters 219

fails to improve more. Based on these observations, 220

we conclude relaxing a few learnable parameters to 221

execute a light-weight ensemble is effective in effi- 222

ciently improving a pretrained large-scale model. 223

3 Adapter Ensemble 224

We show the effectiveness of involving an 225

adapter ensemble into a pretrained model in Sec. 2. 226

Next, we introduce a bottleneck adapter baseline, a 227

pyramid ensemble, and a well-designed multi-scale 228
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attention (MSA) ensemble for our comprehensive229

validation on multiple settings. Furthermore, we230

easily adopt LoRA (Hu et al., 2021) into our en-231

semble design to ease the parameter burden caused232

by ensemble operation.233

Bottleneck Adapter/Pyramid Ensemble234

We follow the typical adapter (Houlsby et al., 2019)235

and insert two bottlenecks after self-attention and236

feedforward modules, and ensemble them together237

with the skip connections, given by238

f bo = f + F ((f ·W 1)W 2, (f ·W 3)W 4), (5)239

where W 1,W 3 ∈ Rd×da and W 2,W 4 ∈ Rda×d.240

da is the hidden dimension. F (·, ·) serves as an241

ensemble operation implemented as averaging in242

our case. The pyramid ensemble is based on our243

introduction in Fig. 2a. The same feature is en-244

coded several times by different sub-matrices in the245

pyramid projection and integrated in an ensemble246

fashion. Specifically, we set N = 2 to ensemble247

two base learners for our extensive validation.248

Multi-Scale Attention249

Recall that the success of ensemble leveraging on250

diverse base learners to achieve the crowd intelli-251

gence (Rokach, 2010; Ganaie et al., 2021). The252

learners’ diversity can be reflected from differ-253

ent aspect by different fashions (Dietterich, 2000;254

Rokach, 2010). For example, base learners can be255

trained from different datasets for ensemble. They256

can also come from different models such as neural257

network, decision tree, etc. Similarly, since neural258

networks are commonly trained by SGD introduc-259

ing randomness into the trained model, repeatedly260

training model is also an effective way for ensem-261

ble (Li et al., 2019; Lee et al., 2018). Here, we262

are motivated by the Longformer (Beltagy et al.,263

2020) to tailor a multi-scale attention (MSA) to264

diversify our attention features. We propose a sim-265

ple ensemble-based approach to implement this266

strategy. Formally, self-attention in transformer is267

originally given by268

Att(Q,K, V ) = softmax(
QKT

√
dk

)V, (6)269

where Q,K, V are query, key, and value vectors270

after projections. dk is the feature dimension of K.271

We separate the original attention into three differ-272

ent scales (large, middle, and small) by applying273

different masks. For language tower, we define the274

mask as275

M∗
C [i, j] =

{
1, |i− j| < D∗

C ,

0, |i− j| ≥ D∗
C ,

(7)276

where M∗
C ∈ RTC×TC and TC is the number of 277

caption tokens. D∗
C is the length of scale ∗ and 278

∗ ∈ {L,M,S} for large, middle and small scales, 279

respectively. Since the language token is a 1D 280

sequence, the mask for language is just as a banded 281

matrix (Fig. 3). Similarly, we define the mask for 282

the image tower as 283

M∗
I [i, j] =

{
1, max(|xi − xj |, |yi − yj |) < D∗

I ,

0, max(|xi − xj |, |yi − yj |) ≥ D∗
I ,

(8) 284

where x∗, y∗ are the 2D visual patch positions 285

converted from the 1D token sequence given by 286

xk = ⌊k/PI⌋, yk = k − xk · PI . PI is the number 287

of patches in each row (or column) in a given im- 288

age. The converting step makes the mask not as 289

a banded matrix but representing different scales 290

in the original 2D visual scenario (Fig. 3). After 291

defining MC and MI , we describe the MSA by 292

revising Eq. 6 as 293

Att∗(Q,K, V ) = softmax(
QKT ⊙M∗

√
dk

)V, (9) 294

for different scales in vision/language towers. ⊙ 295

applies mask on corresponding attention score ma- 296

trix. We ensemble the MSA features from Eq. 9 297

as 298

f ens = f + [fL, fM , fS ]W ens, (10) 299

where W ens is the pyramid projection to ensemble 300

fL, fM , and fS for large, middle, and small scales, 301

respectively. In addition, we also add a bottleneck 302

adapter after feedforward layer with our MSA to 303

further enhance network capacity. 304

LoRA Adoption 305

Our MSA integrates multiple branches as basic 306

learners for ensemble and may also cause addi- 307

tional parameter burden for finetuning, even if we 308

only focus on the adapter module. We simply adopt 309

a low-rank (Hu et al., 2021) design here to solve 310

this concern. We replace the ensemble operation 311

(Eq. 10) by adding a learnable low-rank matrix on 312

each scale branch as 313

f∗ = Att∗(f∗) +BA∗f∗, (11) 314

where ∗ ∈ {L,M,S} are different branches. B 315

and A∗ are learnable low-rank matrices, where B 316

is shared for all branches. We add features of all 317

branches for ensemble as fens = fL + fM + fS 318

instead of using a pyramid layer. We also replace 319

the bottleneck adapter after FFN in MSA with this 320
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Figure 3: Illustration of multi-scale attention (MSA). It is specifically designed to benefit ensemble strategy by
extracting diverse representations from multiple different scales. It consists of two parts: 1) MSA and 2) FFN adapter
shown on the left. Different masks of large, middle, and small scales are applied on self-attention score matrix to
yield different features representing corresponding scales. Given a scale, corresponding masks are constructed for
vision and language shown on the right. Visual and language tokens are originally placed in 2D and 1D, respectively.
A pyramid projection is used to make multi-scale ensemble and map back to original dimension. The FFN adapter
is realized by typical bottleneck adapter. Blue and green parts on the left represent frozen and learnable modules.

low-rank structure. Detailed implementations and321

discussions of the LoRA structure are provided in322

the supplementary material.323

4 Empirical Validation324

4.1 Vision-Language Retrieval on CLIP325

Datasets326

We use Laion (Schuhmann et al., 2021),327

YFCC (Thomee et al., 2016), and MS-COCO (Lin328

et al., 2014) for CLIP backbones. We randomly329

choose 0.1 million subset from Laion and YFCC to330

make light finetuning. We use 10K, 60K, and 5K331

evaluation sets for Laion, YFCC, and MS-COCO,332

respectively.333

Settings334

We use CLIP (pretrained on Laion) with ViT-B/16335

and ViT-L/14 as backbone1 and set three finetuning336

settings: 1) Regular uses Laion for both finetuning337

and evaluation; 2) Zero-shot finetunes and vali-338

dates the pretrained model on different datasets339

(e.g., finetuning on Laion and validating on YFCC340

or MS-COCO); 3) Adaptation finetunes and vali-341

dates the model on the same data but different from342

pretraining dataset (e.g., finetuning and testing on343

YFCC). In addition, we also include the model eval-344

uated on Laion but finetuned on YFCC, which is345

not a common scenario but for a comprehensive346

validation. As image retrieval is more commonly347

used for practice (e.g., searching engine) compared348

with text retrieval, we only report image retrieval349

1https://github.com/openai/CLIP

results for real-world large-scale datasets (Laion, 350

YFCC). We still report both image and text retrieval 351

for COCO, which is a typical evaluation for this 352

small dataset. 353

Comparison Methods 354

We include zero shot performance on CLIP (CLIP- 355

ZS) and CLIP-Adapter (Gao et al., 2021) (CLIP- 356

Ada) as two baselines. We refer the bottleneck 357

adapter/pyramid ensemble as Bo/Py, respectively. 358

Bo and Py can be used after multi-head attention 359

(MHA), feedforward (FFN), or Both. Thus, there 360

are several combinations, such as pyramid emsem- 361

ble with multi-head attention (PyMHA), bottle- 362

neck adapter with feedforward (BoFFN), etc. De- 363

tailed combinations are show in Fig. 4 and Fig. 5. 364

We refer the multi-scale attention/multi-scale at- 365

tention with LoRA adoptation as MSA/MSA-Lo, 366

respectively. All comparisons are separeted into 367

two groups for a clear analysis as below. 368

Bottleneck Adapter/Pyramid Ensemble 369

Fig. 4 shows the comparisons using ViT-B/16 CLIP. 370

Y-axis means the Top1 accuracy and X-axis rep- 371

resents the ratio of additional learnable parame- 372

ter compared with original CLIP. We conclude 1) 373

both Bo/Py achieve sizable performance gains com- 374

pared with CLIP-ZS and CLIP-Ada. 2) improving 375

Laion performance is harder compared with that 376

of YFCC (e.g., (b)/(d) have larger improvements 377

than (a)/(c)). 3) Py-family ensemble is generally 378

better than Bo-family. 4) FFN and MHA ensem- 379

bles have comparable results. 5) adding ensemble 380

after both MHA and FFN always outperforms each 381
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(a) Image retrieval on ViT-
B/16 CLIP: model is fine-
tuned and tested both on
Laion (regular setting) with
several ensemble strategies
and baselines.
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(b) Image retrieval on ViT-
B/16 CLIP: model is fine-
tuned on Laion and tested
on YFCC (zero-shot setting)
with several ensemble strate-
gies and baselines.
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(c) Image retrieval on ViT-
B/16 CLIP: model is fine-
tuned on YFCC and tested on
Laion (see Sec. 4.1) with sev-
eral ensemble strategies and
baselines.
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(d) Image retrieval on ViT-
B/16 CLIP: model is fine-
tuned and tested both on
YFCC (adaptation setting)
with several ensemble strate-
gies and baselines.

Figure 4: Evaluation of image retrieval using ViT-B/16 CLIP. Four evaluation settings are tested based on Laion and
YFCC datasets for finetuning or testing. Two ensemble strategies, bottleneck adapter and pyramid ensemble, are
tested by being deployed after multi-head attention (MHA), feedforward (FFN), or both. The zero-shot evaluation
using pretrained CLIP without finetuning (CLIP-ZS) and CLIP adapter (CLIP-Ada) are used as baselines. Y-axis
means the Top1 retrieval accuracy and X-axis denotes the ratio of additional learnable parameter size to the original
CLIP. Several ensemble designs generally outperform two baselines.

individual one except for the setting (c). It may382

be caused by using YFCC to finetune but testing383

on Laion which is also used for pretraining. 6)384

Compared with CLIP, the number of additional pa-385

rameter for all settings is relatively small. The most386

expensive setting PyBoth requires around 30% ad-387

ditional learnable parameters but others still derive388

promising improvement.389

Fig. 5 shows the ViT-L/14 CLIP results. Ensem-390

ble on larger model performs differently compared391

with a smaller one: 1) improving Laion perfor-392

mance is even harder as it originally pretrained393

on Laion and less improvement potential left in394

larger CLIP. Performance gain in (a) and (c) is395

smaller than ViT-B/16 and performance may drop396

sometimes after finetuning. 2) Ensemble on FFN397

is better than MHA here while they are almost398

comparable in ViT-B/16. Please note even if our399

adapter ensemble requires more additional parame-400

ters compared with the typical adapter (shown in401

x-axis in Fig. 4 and Fig. 5), our exploration uses402

an very limited 0.1M data, which is 1/4000 of the403

original 400M pretraining Laion data and a few404

epochs (5 in our cases). We use the 256/128 batch405

size for ViT-B/16 and ViT-L/14 CLIP. They are406

more memory efficient, unlike recently methods us-407

ing a much larger batch size (Radford et al., 2021).408

Overall, we observe significant improvements on409

various settings, validating our adapter ensemble is410

effective for vision-language retrieval based on the411

pretrained CLIP. The parameter efficiency solution412

and corresponding discussion are provided next.413

ViT-B/16 CLIP: Image Retrieval

Setting CLIP w/o MSA V-MSA L-MSA MSA MSA-Lo

Regular 75.8 77.8 79.0 78.9 79.6 78.7
Zero-shot 54.1 57.3 59.7 56.5 58.6 58.8

Adaptation 54.1 62.3 67.7 61.0 67.9 65.3

ratio (%) - 5.3 37.3 37.3 74.7 2.2

Table 1: MSA evaluation on Regular, Zero-shot, and
Adaptation settings using ViT-B/16 CLIP. The ratio of
learnale parameter compared with backbone is in the last
row. Three ablations, w/o MSA, V-MSA, and L-MSA,
are provided. MSA-Lo obtains competitive performance
with much less additional parameters.

414

ViT-L/14 CLIP: Image Retrieval

Setting CLIP w/o MSA V-MSA L-MSA MSA MSA-Lo

Regular 80.1 81.6 83.6 83.3 84.3 83.8
Zero-shot 63.7 64.7 69.6 65.3 68.0 67.8

Adaptation 63.7 67.2 79.2 69.2 78.6 78.4

ratio (%) - 5.3 37.3 37.3 74.7 2.2

Table 2: MSA evaluation on Regular, Zero-shot, and
Adaptation settings using ViT-L/14 CLIP. The ratio of ler-
anable parameter compared with backbone is in the last
row. Three ablations, w/o MSA, V-MSA, and L-MSA,
are provided. MSA-Lo obtains competitive performance
with much less additional parameters.

415

416

MSA Performance 417

Tab. 1 2 shows the MSA results with different set- 418

tings on ViT-B/16 and ViT-L/14 backbones. CLIP- 419

ZS is the pretrained CLIP zero-shot evaluation. w/o 420

MSA is the model without MSA. V-MSA, L-MSA, 421

and MSA represent using MSA on vision only, lan- 422

guage only, both towers, respectively. MSA-Lo 423

means MSA with LoRA adoption. We test on Reg- 424
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(a) Image retrieval on ViT-
L/14 CLIP: model is fine-
tuned and tested both on
Laion (regular setting) with
several ensemble strategies
and baselines.
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(b) Image retrieval on ViT-
L/14 CLIP: model is fine-
tuned on Laion and tested
on YFCC (zero-shot setting
with several ensemble strate-
gies and baselines.
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(c) Image retrieval on ViT-
L/14 CLIP: model is fine-
tuned on YFCC and tested on
Laion (see Sec. 4.1) with sev-
eral ensemble strategies and
baselines.
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(d) Image retrieval on ViT-
L/14 CLIP: model is fine-
tuned and tested both on
YFCC (adaptation setting)
with several ensemble strate-
gies and baselines.

Figure 5: Evaluation of image retrieval using ViT-L/14 CLIP. Four evaluation settings are tested based on Laion and
YFCC datasets for finetuning or testing. Two ensemble strategies, bottleneck adapter and pyramid ensemble, are
tested by being deployed after multi-head attention (MHA), feedforward (FFN), or both. The zero-shot evaluation
using pretrained CLIP without finetuning (CLIP-ZS) and CLIP adapter (CLIP-Ada) are used as baselines. Y-axis
means the Top1 retrieval accuracy and X-axis denotes the ratio of additional learnable parameter size to the original
CLIP. Several ensemble designs generally outperform two baselines.

ular, Zero-shot, and Adaptation settings and the ra-425

tio of additional parameter to the original backbone426

is shown in the last row. Our MSA outperforms427

the zero-shot baseline and the ablated model for428

all settings. Further, employing MSA on vision429

tower is more effective than language tower and430

sometimes even better than using MSA on both.431

The MSA involves more additional parameter, yet,432

the MSA with LoRA (MSA-Lo) significantly re-433

duces the number of additional parameters and still434

obtains competitive performance. It ensures the435

parameter efficiency for our adapter ensemble strat-436

egy. Please note, herein, we mainly consider the437

parameter aspect for the model efficiency. It is di-438

rectly related to disk space instead of latency and439

flops which are mainly for model compression and440

out of the scope of this study. In addition, we also441

evaluate our MSA strategy with its ablated models442

using MS-COCO dataset on a zero-shot retrieval443

setting (Tab. 3).444

Ablation445

We make ablation analysis using MS-COCO446

dataset on zero-shot evaluation. Specifically, we447

remove different branches in our MSA to validate448

the effectiveness of the multi-scale strategy (Tab. 4).449

As the large-scale branch represents the full atten-450

tion score matrix, we remove middle and small451

branches to observe the performance changes. We452

find that adding each of them benefits the model to453

achieve better performance and three scales work-454

ing together in an ensemble fashion obtains the best455

performance gain.456

MS-COCO Zero-Shot Image Retrieval

Backbone CLIP w/o MSA V-MSA L-MSA MSA

ViT-B/16 32.7 34.5 35.2 34.3 35.2
ViT-L/14 35.3 35.9 38.7 37.2 38.8

Table 3: MSA zero-shot evaluation of MS-COCO on
ViT-B/16 and ViT-L/14 CLIP. The CLIP zero-shot base-
line and three ablated models, without MSA (w/o MSA),
vision-only MSA (V-MSA), and language-only MSA
(L-MSA), are also provided.

MSA Ablation for MS-COCO Zero-Shot Retrieval

Backbone MSA-L MSA-L+M MSA-L+S MSA-L+M+S

ViT-B/16 34.1 34.9 34.9 35.2
ViT-L/14 37.1 38.3 38.4 38.8

Table 4: MSA ablation study by removing branches
for different scales on zero-shot MS-COCO evaluation.
Large, middle, and small scales are referred by “L”,
“M”, and “S”, respectively. Our complete MSA obtains
the best performance.

4.2 Further Analysis 457

Feature Visualization 458

The MSA provides diverse visual and language rep- 459

resentations from different scales, which benefits 460

the ensemble strategy. To provide a better intu- 461

ition of the ensemble operation, we use PCA to 462

show the feature distribution variations between 463

MSA and w/o MSA on YFCC (Fig. 6a). Compared 464

with model without MSA, the vision and language 465

representations are further pulled closer by MSA 466
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(a) PCA visualization of
model features with and with-
out MSA.
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(b) t-SNE visualization for
feature distributions of differ-
ent scale models.

Figure 6: Visualization analysis of feature distributions
of MSA (Fig. 6a) and different branches (Fig. 6). Fea-
tures are extracted from ViT-L/14 CLIP finetuned on
YFCC dataset.

operation which improves the cross-modal retrieval467

performance. In addition, we use t-SNE to show468

the features from large, middle, and small scales469

(Fig. 6b). They are clearly separated and provide470

diverse features, benefiting the ensemble strategy.471

Due to the limited space, we leave retrieval visu-472

alizations (see Sec. A.5) and backbone generaliza-473

tion results (see Sec. A.3) in the appendix.474

5 Related Works475

Vision-language retrieval is pioneered by476

VSE++ (Faghri et al., 2017), using hard-negative477

mining. SCAN (Lee et al., 2018) designs478

cross-modal encoding for fine-grained features.479

VSRN (Li et al., 2019) uses graph and recurrent480

networks to reason visual semantics. Large-scale481

pretraining boosts the performance using massive482

web data (Radford et al., 2021). Recent works (Jia483

et al., 2021; Kim et al., 2021; Ramesh et al., 2022;484

Saharia et al., 2022) explore different strategies for485

pretraining such as CoCa (Yu et al., 2022) jointly486

using retrieval and captioning loss and BLIP (Li487

et al., 2022) utilizing cross-modal encoding. They488

significantly improves retrieval performance yet489

requires much more resource. Herein, we explore490

an efficient ensemble, combined with adapter, to491

further enhance the pretrained vision-language492

backbones for retrieval tasks.493

Ensemble leverages on diverse base learners to494

achieve crowd intelligence. It is seen as a weight-495

ing/voting strategy. Ensemble is simple yet effec-496

tive for traditional machine learning (Dietterich,497

2000; Sagi and Rokach, 2018). It is also applied to498

neural networks (Ganaie et al., 2021). Dropout (Sri-499

vastava et al., 2014) as a common way to avoid500

overfitting can be interpreted from an ensemble as-501

pect. Different applications using ensemble derive502

promising performance compared with individual503

model (Li et al., 2019; Lee et al., 2018). Recent 504

model soups (Wortsman et al., 2022) manages to 505

integrate several checkpoints of a large pretrained 506

models in an ensemble fashion to boost final per- 507

formance. Different from them, our study focuses 508

on introducing ensemble into current large-scale 509

backbones, combined with adapter, to improve the 510

pretrained model in an efficient manner. 511

Adapter is originally proposed for efficient fine- 512

tuning of language model (Houlsby et al., 2019). 513

It leverages on the large-scale pretrained mod- 514

els and relaxes a few learnable parameters which 515

is friendly to limited downstream data. Several 516

parameter-efficient strategies are designed to re- 517

lieve the finetuning difficulties of pretrained lan- 518

guage models (Hu et al., 2021; Karimi Mahabadi 519

et al., 2021; Eichenberg et al., 2021; He et al., 520

2021). This insight is also adopted into vision and 521

vision-language fields to benefit various pretrained 522

models for several downstream applications (Chen 523

et al., 2022b; Zhang et al., 2021; Sung et al., 2022; 524

Gao et al., 2021; Chen et al., 2023; Zheng et al., 525

2023; Upadhyay et al., 2023; Zhang et al., 2023a,b). 526

In our study, we are inspired by the adapter insight. 527

However, instead of injecting one set of learnable 528

parameters, we propose to supplement a few sets 529

of learnable parameters with diverse focuses (e.g. 530

multi-scale attention) for efficient ensemble on pre- 531

trained large-scale models. 532

6 Conclusion 533

Our curiosity lies in exploring how traditional 534

machine learning techniques, typically used for 535

small-sized models, can be leveraged to benefit re- 536

cent large-scale pretrained vision-language models. 537

We identify adapter ensemble as an ideal fusion 538

point, effectively finetuning large-scale models 539

while seamlessly integrating small-sized method- 540

ologies. Through a proof-of-concept study, we 541

validate the ensemble adapter efficacy. We then 542

demonstrate its effectiveness for vision-language 543

retrieval on different settings. Specifically, a multi- 544

scale attention (MSA) is designed to benefit ensem- 545

ble operation. Furthermore, to address the potential 546

increase in parameter requirements brought by the 547

ensemble, we integrate the LoRA for MSA, signifi- 548

cantly reducing the parameter overhead. Our em- 549

pirical results showcase the ensemble capacity to 550

enhance the performance of large-scale pretrained 551

models, achieving efficiency in data, parameter, 552

and finetuning budgets. 553
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7 Limitations554

This work proposes to explore ensemble, a typ-555

ical machine learning technique, in current large-556

scale model era. We mainly take CLIP backbone as557

a study case and make evaluation on cross-modal558

retrieval task. Due to the limited computational559

resource, we do not include other model backbones560

and tasks like language models or multi-modal561

models. However, the proposed adapter ensem-562

ble can be easily extended to other scenarios and563

we leave it into our future work.564
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A Supplementary Material773

A.1 Supplementary MS-COCO Performance774

We supplement the MSA-Lo and zero-shot text775

retrieval performance on MS-COCO dataset using776

both ViT-B/16 and ViT-L/14 CLIP. Specifically,777

we augment the image retrieval table (Tab.2 in the778

main draft) with MSA-Lo in Tab. 8, and we newly779

provide text retrieval results in Tab. 5. We also780

provide text retrieval ablation study in Tab. 6. We781

observe the consistent improvement compared with782

baselines and different ablated models and draw the783

similar conclusions as our main draft.784

MS-COCO Zero-Shot Text Retrieval

Backbone CLIP w/o MSA V-MSA T-MSA MSA MSA-Lo

ViT-B/16 51.7 53.5 53.5 54.5 54.9 54.7
ViT-L/14 56.1 56.7 57.8 59.2 59.5 59.4

Table 5: MSA zero-shot text retrieval evaluation of MS-
COCO on ViT-B/16 and ViT-L/14 CLIP.

MSA Ablation for MS-COCO Zero-Shot Text Retrieval

Backbone MSA-L MSA-L+M MSA-L+S MSA-L+M+S

ViT-B/16 53.7 54.5 54.5 54.9
ViT-L/14 57.8 59.1 59.0 59.5

Table 6: MSA ablation study by removing branches for
different scales on zero-shot MS-COCO text retrieval.

A.2 Implementation Details785

We provide more implementation details for our786

adapter ensemble exploration. We run our exper-787

iments on 8 V100 GPUs. For bottleneck adapter788

used in our experiments, we consistently set 128789

as hidden dimension. To maintain the near-identity790

initialization for finetuning the pretrained model,791

we initialize the values of weights using 0/1e-3 for792

means/variances values without bias for the bot-793

tleneck adapter. For the pyramid structure of our794

MSA, we initialize the sub-matrix, corresponding795

to the large-scale branch, as identity matrix and796

the other values using 0/1e-3 for means/variances.797

For LoRA structure in MSA-Lo, we add it paral-798

lel to the attention module for large-scale branch,799

and after the attention module for middle-scale and800

small-scale branches, setting 16 as low-rank hid-801

den dimension. The outputs of three branches are802

added as an ensemble operation. In addition, we803

also use the ensemble strategy for the LoRA struc-804

ture after FFN. Specifically, we use a shared matrix805

A and three different matrices B, and three outputs806

are added together as an ensemble operation. For 807

all backbones used in our experiments, we follow 808

their original finetuning configurations to conduct 809

our adapter ensemble finetuning, except for the 810

available finetuning data and epochs (always 0.1M 811

available data and 5 epochs in our study). 812

Herein, we also discuss the MSA-Lo implemen- 813

tation for the potential latency issue caused by 814

ensemble operations. We simply use the LoRA 815

structure after FFN as an example. Since several 816

different B matrices need multiple forward compu- 817

tations, we concatenate them along with the feature 818

dimension the achieve the parallel computation. In 819

this way, multiple branches of the ensemble can 820

be processed efficiently. The time consumption 821

comparison of the FFN ensemble operation in one 822

MSA-Lo block is shown in Tab. 7. “One-branch” 823

means a typical LoRA baseline. “Three-branch” 824

means the ensemble in three-time forward fashion. 825

“Three-branch (parallel)” is the parallel implemen- 826

tation of the ensemble. Results are based on 10 827

runs average. We find leveraging on parallel imple- 828

mentation, the ensemble strategy can be achieved 829

in an efficient fashion without too much additional 830

latency cost. 831

One-branch Three-branch Three-branch (parallel)

1.34e-4 3.52e-4 1.58e-4

Table 7: Time consumption comparison of LoRA in one
FFN block of MSA-Lo.

MS-COCO Zero-Shot Image Retrieval

Backbone CLIP w/o MSA V-MSA L-MSA MSA MSA-Lo

ViT-B/16 32.7 34.5 35.2 34.3 35.2 35.2
ViT-L/14 35.3 35.9 38.7 37.2 38.8 38.6

Table 8: MSA zero-shot image retrieval evaluation of
MS-COCO on ViT-B/16 and ViT-L/14CLIP.

A.3 Backbone Generalization 832

Besides of the CLIP architecture, we further 833

consider other backbones to validate the general- 834

izability of the proposed adapter ensemble strat- 835

egy. Specifically, SLIP (Mu et al., 2022) uses 836

self-supervised learning to help vision-language 837

pretraining. It further improve the cross-modal 838

modeling capacity compared with CLIP. We fol- 839

low its original paper to use a linear probing to 840

evaluate image classification on Imagenet (Deng 841

et al., 2009). We also use a 0.1M Imagenet subset 842
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Image classification on SLIP (ViT/B16)

Pretraining Data Zero-shot Linear w/o MSA w/ MSA

CC3M 23.0 47.5 51.0 51.4
CC12M 40.7 55.8 63.3 64.3

Table 9: Image classification results of SLIP based on
CC3M and CC12M pretraining dataset. We compare
our MSA with zero-shot, linear baselines and the ablated
w/o MSA model. Our MSA shows the generalizability
on SLIP backbone.

Image classification results on Beit V2

Pretraining Data Model Linear w/o MSA w/ MSA

Imagenet1K
ViT-B 55.3 66.3 68.6
ViT-L 63.8 69.4 72.0

Table 10: Image classification results of Beit V2 based
on ViT-B and ViT-L backbones. We compare our MSA
with zero-shot, linear baselines and the ablated w/o
MSA model. Our MSA shows the generalizability on
Beit V2 backbone.

to finetune the pretrained backbone 5 epochs for843

our ensemble strategy. Tab. 9 shows the compar-844

isons of MSA ensemble with baselines on SLIP845

with different pretraining datasets (e.g., CC3M and846

CC12M (Changpinyo et al., 2021)). The zero-shot847

is evaluated by using prompt template while others848

using typical label prediction.849

Beit V2 (Peng et al., 2022) is a backbone only850

for vision domain. Herein, we also include it to test851

the generalizability of our ensemble strategy on852

visual only task. We use a 0.1M Imagenet subset to853

finetune the pretrained backbone 5 epochs. Since854

the Beit V2 is pretrained in self-supervised fashion,855

it cannot perform zero-shot evaluation without fine-856

tuning. Similar to SLIP, we make a linear probing857

classifier as a baseline. Tab. 10 shows the compar-858

isons of MSA ensemble with baselines on different859

backbones. We observe the proposed adapter en-860

semble is a general finetuning strategy for different861

backbones.862

A.4 More Feature Distribution Visualizations863

We provide more feature distribution visualiza-864

tions for our multi-scale attention (MSA) on dif-865

ferent settings. The Regular setting finetunes and866

evaluates the pretrained model on Laion dataset us-867

ing CLIP backbone. Since it is a more challenging868

setting and its performance gain is not as much as869

other settings, we do not observe significant feature870

variations on this setting. Therefore, we mainly871

show Adaptation and Zero-shot settings for fea- 872

ture distribution visualization. Like our main draft, 873

we show image and text feature distributions from 874

models w/ and w/o MSA (each subfigure (a)), and 875

image feature distributions of different scales (each 876

subfigure (b)). Fig. 9 shows the zero-shot setting 877

visualization on ViT-L/14 CLIP. Fig. 10 shows the 878

adaptation setting visualization on ViT-B/16 CLIP. 879

Fig. 11 shows the zero-shot setting visualization 880

on ViT-B/16 CLIP. We find the adaptation setting 881

shows significant feature variations, which indi- 882

cates the features from different modalities become 883

closer with each other and improve the retrieval 884

performance. 885

A.5 Retrieval Visualizations 886

Retrieval Visualization 887

We show retrieval results to compare the models 888

w/ and w/o MSA. In Fig. 7, MSA obtains the cor- 889

rect Recall@1 image retrieval in the first five sam- 890

ples but fails in the last. We observe compared 891

with w/o MSA, MSA retrieval better matches with 892

the query at different scales. For example, in the 893

first example, MSA retrieves the image with cor- 894

rect cat object and street corner background while 895

w/o MSA retrieves house and chair as background 896

which are incorrect. In Fig. 8, MSA successes in 897

the first five samples and fails in the last. Similarly, 898

MSA matches the query with more details for text 899

retrieval. For example, another standing woman on 900

the edge of the image is captured by our method 901

in the first example. The small zebra instead of 902

giraffe is accurately attended in the second. The 903

water background in both the second and third ex- 904

amples are captured by MSA but missed by w/o 905

MSA. 906

We show more cross-modal retrieval visualiza- 907

tions on MS-COCO dataset using our model (w/ 908

MSA) and w/o MSA. We show text retrieval visual- 909

izations in Fig. 12, where the image query is shown 910

on the left and text retrieval with green color means 911

the groundtruth retrieval. Our model obtains the 912

correct results on Recall@1 in subfigure (a), (b), 913

and (c), where our MSA captures more fine-grained 914

patterns from different scales. For example, MSA 915

finds the “brick” element in (b) and the “bathroom” 916

element in (c) for cross-modal matching in a small 917

scale but w/o MSA ignores them. w/o MSA derives 918

the correct results on Recall@1 in subfigure (d), (e), 919

and (f). However, MSA also finds reasonable re- 920

trievals. For example, in (d), our MSA captures 921
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the “BMW” information which is shown in the922

middle of figure at a very small scale and provides923

the retrieval accordingly. Similarly, in (f), the fine-924

grained visual element “jet way” is considered by925

MSA for retrieval but w/o MSA ignores it. Fig. 13926

and Fig. 14 show the image retrieval visualizations,927

where text query is shown on the top and image928

with green box means the groundtruth retrieval. In929

Fig. 13, our model (w/ MSA) obtains the correct930

retrieval on Recall@1 with more details. For ex-931

ample, in subfigure (a), our model captures the932

detailed color information of the clock tower and933

finds the most accurate retrieval while w/o MSA934

only finds it at Top3. In Fig. 14, w/o MSA derives935

the correct retrieval on Recall@1. However, our936

model also retrieve promising results at Top1 com-937

pared with the groundtruth. In addition, for all top938

five retrievals, our model generally obtains more939

reasonable results. For example, in subfigure (a),940

w/ MSA finds motor cycles in all five retrievals but941

w/o MSA misses this component at Top4.942
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A cat sitting on a street corner 
looking at the camera.

MSA:

w/o MSA:

An old style kitchen with baby 
blue cabinets.

MSA:

w/o MSA:

A cat in between two cars in a 
parking lot.

MSA:

w/o MSA:

Close up of a white kitchen 
setup with a coffee maker on 
counter.
MSA:

w/o MSA:

A parked motorcycle next to a 
green tent.

MSA:

w/o MSA:

A kitten sitting in a skin with a 
green brush with green bristles.

MSA:

w/o MSA:

Figure 7: MS-COCO zero-shot image retrieval examples for ViT-B/16 CLIP backbone. MSA and w/o MSA
represent if the model uses our multi-scale strategy. Caption queries are shown on the top and we show the Top1
image retrieval of both MSA and w/o MSA models. Our MSA obtains correct retrieval for the first five examples (in
green) but fails at the last one (in red).

MSA: A woman sitting on a
bench and a women standing
waiting for the bus.
w/o MSA: A women is sitting 
on a stool on a sidewalk.

MSA: A giraffe and a zebra are 
on a grassy field by the water.
w/o MSA: An adult and a 
younger giraffe are facing the 
same direction.

MSA: Person standing near the 
water with a red disc in hand.
w/o MSA: A man has a frisbee 
in his hand and is standing up.

MSA: A double decker tour bus 
with the logo “SBS Transit”.
w/o MSA: A purple and white 
city bus pulling up to the curb.

MSA: Urban downtown city 
center with a bicyclist and 
pedestrians.
w/o MSA: The passage 
between the modern buildings 
is used by bicycle riders.

MSA: A person on her cell 
phone in a large crowd of 
people.
w/o MSA: A young woman 
looking at her cell phone.

Figure 8: MS-COCO zero-shot text retrieval examples for ViT-B/16 CLIP backbone. MSA and w/o MSA represent
if the model uses our multi-scale attention strategy. Image queries are shown on the top and we show the Top1 text
retrieval of both MSA and w/o MSA models. Our MSA obtains correct retrieval for the first five examples (in green)
but fails at the last one (in red).

15



0.4 0.2 0.0 0.2 0.4
0.6

0.4

0.2

0.0

0.2

0.4

0.6 Img w/ MSA
Txt w/ MSA
Img w/o MSA
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(a) Distribution visualization of model w/ and w/o
MSA.
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(b) Distribution visualization of different scales fea-
ture.

Figure 9: YFCC feature visualization on Zero-shot setting using ViT-L/14 CLIP.
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(a) Distribution visualization of model w/ and w/o
MSA.
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(b) Distribution visualization of different scales fea-
ture.

Figure 10: YFCC feature visualization on Adaptation setting using ViT-B/16 CLIP.
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(a) Distribution visualization of model w/ and w/o
MSA.
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(b) Distribution visualization of different scales fea-
ture.

Figure 11: YFCC feature visualization on Zero-shot setting using ViT-B/16 CLIP.
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w/ MSA:

Top1: Some purple benches and a bird on it.
Top2: A bird sitting on top of a park bench.

Top3: A nice bird standing on a bench gazing at.

Top4: A person sitting on a bench near many birds.

Top5: Man on park bench surrounded by some pigeons.

w/o MSA:

Top1: A person sitting on a bench near many birds.

Top2: A bird sitting on top of a park bench.

Top3: Some purple benches and a bird on it.
Top4: A nice bird standing on a bench gazing at.

Top5: A small bird sitting on the back of a wooden bench.

(a)

w/ MSA:

Top1: An interesting kitchen renovation with brick and wood.
Top2: A wood paneled kitchen with dining table and tiled floor.

Top3: Wooden central counter-top in a tiled kitchen.

Top4: A very old fashioned kitchen with retro floor tiles.

Top5: Kitchen view with brick framework around the sink and by the oven.

w/o MSA:

Top1: Wooden central counter-top in a tiled kitchen.

Top2: A wood paneled kitchen with dining table and tiled floor.

Top3: Kitchen view with brick framework around the sink and by the oven.

Top4: An interesting kitchen renovation with brick and wood.
Top5: A kitchen with a wooden floor and a microwave oven. 

(b)
w/ MSA:

Top1: Lady standing in a retro pink and turquoise bathroom.
Top2: A lady is standing in pastel colored bathroom in front of the bathtub and there are 

christmas lights hanging up outside of the doorway.

Top3: A lady dressed in khakis standing in a bathroom next to the sink.

Top4: Woman in high heels in a crumbling room.

Top5: A woman in a yellow bathroom is holding a camera.

w/o MSA:

Top1: A little blonde girl standing in front of a fridge.

Top2: A lady dressed in khakis standing in a bathroom next to the sink.

Top3: Woman in high heels in a crumbling room.

Top4: Lady standing in a retro pink and turquoise bathroom.
Top5: A woman in a yellow bathroom is holding a camera.

(c)

w/ MSA:

Top1: A BMW motorcycle is parked on display in this field.

Top2: A man looking at motorcycles in a field.
Top3: People stand around an antique motorcycle in a grassy area.

Top4: A man looks at a motorcycle amongst others in a field.

Top5: A World War Military Motocycle on display at an event.

w/o MSA:

Top1: A man looking at motorcycles in a field.
Top2: People stand around an antique motorcycle in a grassy area.

Top3: A man looks at a motorcycle amongst others in a field.

Top4: A BMW motorcycle is parked on display in this field.

Top5: A group of people look at the dark green motorcycle parked on the grass.

(d)
w/ MSA:

Top1: A kitchen with hardwood floors and a sink and oven.

Top2: A kitchen that has a tile floor, a refrigerator, a microwave, and a toaster.

Top3: The small kitchen with the spacious counters is clean.

Top4: An unadorned kitchen with oven, sink, cabinets, microwave, wood floor, and a 
window.
Top5: The small kitchen has large cabinets and two stoves.

w/o MSA:

Top1: An unadorned kitchen with oven, sink, cabinets, microwave, wood floor, and a 
window.
Top2: The small kitchen has large cabinets and two stoves.

Top3: The small kitchen with the spacious counters is clean.

Top4: A kitchen that has a tile floor, a refrigerator, a microwave, and a toaster.

Top5: A kitchen with hardwood floors and a sink and oven.

(e)

w/ MSA:

Top1: View from gate of jet connected to jet way for passengers to board or deplane. 

Top2: An airplane sits outside, ready at the airport.
Top3: A Malaysian airplane that is stationary on the runway.

Top4: A red and blue plan on the runway getting ready to get passengers.

Top5: A person at an airport terminal with planed in view outside of the windows.

w/o MSA:

Top1: An airplane sits outside, ready at the airport.
Top2: A person at an airport terminal with planed in view outside of the windows.

Top3: View from gate of jet connected to jet way for passengers to board or deplane. 

Top4: A red and blue plan on the runway getting ready to get passengers.

Top5: A Malaysian airplane that is stationary on the runway.

(f)

Figure 12: Text retrieval visualization on MS-COCO using w/ and w/o MSA models. Our model (w/ MSA) obtains
the correct retrieval on Recall@1 in (a), (b), and (c). w/o MSA derives the correct retrieval on Recall@1 in (d), (e),
and (f). Image query is shown on the left and text with green color means the groundtruth retrieval result.
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A large clock tower is yellow and white.

w/o

MSA

Top2 Top3 Top4 Top5Top1

w/ 

MSA

(a)
An elderly person in a kitchen cooking food.

w/o

MSA

Top2 Top3 Top4 Top5Top1

w/ 

MSA

(b)
An office kitchen with open windows and no food.

w/o

MSA

Top2 Top3 Top4 Top5Top1

w/ 

MSA

(c)

Figure 13: Image retrieval visualization on MS-COCO. We compare the models w/ and w/o MSA strategy. For
these three samples, our model (w/ MSA) obtains the correct retrieval on Recall@1. Text query is shown on the top
and image retrieval with green box means the groundtruth retrieval result.
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Altered photograph of very shiny motor cycles in a field.

w/o

MSA

Top2 Top3 Top4 Top5Top1

w/ 

MSA

(a)
A display of vintage animal toys on the floor.

w/o

MSA

Top2 Top3 Top4 Top5Top1

w/ 

MSA

(b)
Close up of a white kitchen setup with a coffee maker on counter.

w/o

MSA

Top2 Top3 Top4 Top5Top1

w/ 

MSA

(c)

Figure 14: Image retrieval visualization on MS-COCO. We compare the models w/ and w/o MSA strategy. For
these three samples, w/o MSA derives the correct retrieval on Recall@1. Text query is shown on the top and image
retrieval with green box means the groundtruth retrieval result.
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