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ABSTRACT

Sparse autoencoders (SAEs) are a promising approach to extracting features from neural networks,
enabling model interpretability as well as causal interventions on model internals. SAEs generate
sparse feature representations using a sparsifying activation function that implicitly defines a set
of token-feature matches. We frame the token-feature matching as a resource allocation problem
constrained by a total sparsity upper bound. For example, TopK SAEs solve this allocation problem
with the additional constraint that each token matches with at most k features. In TopK SAEs,
the k active features per token constraint is the same across tokens, despite some tokens being
more difficult to reconstruct than others. To address this limitation, we propose two novel SAE
variants, Feature Choice SAEs and Mutual Choice SAEs, which each allow for a variable number
of active features per token. Feature Choice SAEs solve the sparsity allocation problem under the
additional constraint that each feature matches with at most m tokens. Mutual Choice SAEs solve
the unrestricted allocation problem where the total sparsity budget can be allocated freely between
tokens and features. Additionally, we introduce a new auxiliary loss function, aux_zipf_loss,
which generalises the aux_k_loss to mitigate dead and underutilised features. Our methods result
in SAEs with fewer dead features and improved reconstruction loss at equivalent sparsity levels as a
result of the inherent adaptive computation. More accurate and scalable feature extraction methods
provide a path towards better understanding and more precise control of foundation models.

1 INTRODUCTION

Understanding the internal mechanisms of neural networks is a core challenge in Mechanistic Interpretability. Increased
mechanistic understanding of foundation models could provide model developers with tools to identify and debug
undesirable model behaviour.

Dictionary learning with sparse autoencoders (SAEs) has recently emerged as a promising approach for extracting
sparse, meaningful, and interpretable features from neural networks, particularly language models (Huben et al., 2024;
Sharkey et al., 2022).

One problem with wide SAEs for foundation models is that there are often many dead features (Rajamanoharan
et al., 2024a; Templeton et al., 2024; Gao et al., 2024). Dead features are features which are remain inactive across
inputs, effectively wasting model capacity and hampering efficient training. Another problem is that approaches like
TopK SAEs (Gao et al., 2024) don’t have a natural way to take advantage of Adaptive Computation: spending more
computation, and crucially more features, to reconstruct more difficult tokens.

We frame the problem of generating sparse feature activations corresponding to some given neural activations as a
resource allocation problem, allocating the scarce total sparsity budget between token-feature matches to maximise
the reconstruction accuracy. Within this framing, we naturally motivate two novel SAE variants which can provide
Adaptive Computation: Feature Choice SAEs and Mutual Choice SAEs (FC and MC SAEs respectively). Feature
Choice SAEs solve the sparsity allocation problem under the additional constraint that each feature matches with at
most m tokens. Mutual Choice SAEs solve the unrestricted allocation problem where the total sparsity budget can be
allocated freely between tokens and features. These approaches combine the Adaptive Computation of Standard SAEs
with the simple optimisation and improved performance of TopK SAEs.

Our contributions are as follows:

• We provide a framing for sparsifying activation functions in SAEs as a solution to a resource allocation
problem.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Preprint. Under review.

Figure 1: A comparison of the pre-activation affinities and the resulting feature activations following different
sparsifying activation functions. Red and blue represent positive and negative affinities respectively, with deeper colours
representing larger magnitudes. In the first three approaches we have a total sparsity budget of 6. Affinities (Far-left):
The token-feature affinities Z’, before any sparsifying activation function. Token Choice/TopK (Center-left): We activate
the top k features corresponding to each token. Note that there are features that don’t fire in this batch, which could
lead to dead features. Feature Choice (Center): For each feature, it activates corresponding to the top m tokens with the
highest affinity. Note that all features fire in this batch. Mutual Choice (Center-right): The elements with the largest
magnitude affinities activate, regardless of their token or feature affiliations. ReLU/Standard (Far-right): All strictly
positive elements activate. Here we allow low-magnitude feature activations which may be false positives and which
cause the L0 to be higher.

• We introduce two new SAE architectures: the Mutual Choice SAE and Feature Choice SAE, which are
Pareto improvements on both standard SAEs and TopK SAEs. Additionally, the Feature Choice approach is, to
our knowledge, the first SAE training method which reliably results in zero dead features even at large scale.

• We show that our methods naturally enable Adaptive Computation: using more features to reconstruct more
difficult tokens. Instead of setting the number of features per token as a fixed k, we fix E[k] as a hyperparameter
and allow the model to learn how to allocate the sparsity budget, without increasing computational overhead.

• We propose a novel auxiliary loss function, aux_zipf_loss, which mitigates under-utilisation of features and
better utilises the SAE’s full capacity.

We open-source a reference implementation for the community at [REDACTED]. We believe that with increasingly
accurate approaches to feature extraction, it will become possible to connect sparse features over many layers and
understand how models are computing outputs in a mechanistic, circuits-driven fashion. In particular, given that Feature
Choice SAEs generally have no dead features, they can scale reliably to very large autoencoders, which are likely to
be necessary for effective reconstruction on large foundation models such as GPT-4 (OpenAI et al., 2024) or Llama 3
(Dubey et al., 2024).

2 RELATED WORK

2.1 SPARSE AUTOENCODERS

Sparse Autoencoders (SAEs) (Lee et al., 2007; Le, 2013; Mairal et al., 2014) learn an over-complete basis, or
dictionary, of sparsely activating features. The feature activations, z, correspond to their associated neural activations,
x, via the feature dictionary. In particular, we can write an SAE as:

z = σs(Enc(x)) ∈ RF (1)

x̂ = Dec(z) ∈ RN (2)

2
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where σs is a sparsifying activation function (e.g. ReLU), Dec is an affine map and x ∈ RN 1. z′ = Enc(x) are the
pre-activation features, which we will call the token-feature affinities.

SAEs are trained to minimize the Reconstruction Error (Mean Squared Error) between x and x̂. This reconstruction
error term is combined with an optional Sparsity Loss term (for example, an L1 penalty to induce sparsity) and an
optional Auxiliary Loss term to reduce dead features:

L(x) = |x− x̂|22 + λ1Lsparsity(z) + λ2Laux(x, z, x̂) (3)

Rajamanoharan et al. (2024a); Templeton et al. (2024); Gao et al. (2024) have shown that decomposing neural activations
using the SAE feature dictionary allows for increased human interpretability of models even at model sizes comparable
to frontier foundation models.

2.2 ADAPTIVE COMPUTATION

In Adaptive Computation, neural networks decide how much compute (and/or which parameters) to apply to a given
input example (Graves, 2017; Xue et al., 2023). Ideally, the model should learn to apply less compute to easier examples
and more compute to more difficult examples in order to maximise performance within a compute budget. In our setting,
we consider the token-feature matches to be the scarce quantity to allocate, where we say that a token matches with a
feature if the feature is activated on that token.

2.3 TOPK SAES

TopK SAEs (Gao et al., 2024) use a TopK activation function instead of the L1 penalty to induce sparsity, as in
Makhzani & Frey (2014). Though in the standard L1 SAE formulation, the number of features-per-token is variable, in
the TopK formulation the features-per-token is fixed at the same k for all tokens. We hypothesize that having a fixed k
is a key drawback of the TopK method. Variable k values introduce Adaptive Computation which can focus more of the
token-feature matching budget on more difficult tokens.

In concurrent work, Bussmann et al. (2024) introduce BatchTopK which is closely analogous to our Mutual Choice
SAEs and also provides adaptive computation. However, they do not deal with the problem of underutilised features.

2.4 DEAD FEATURES

SAE features which remain inactive across many inputs are known as dead features. Bricken et al. (2023) declare a
feature to be dead when it hasn’t fired for at least 1e7 tokens. Dead features present a challenge especially when scaling
to larger models and wider autoencoders. For example, Templeton et al. (2024) find 64.7% of features are dead for their
autoencoders with 34M features. Our Feature Choice approach naturally results in zero dead features by ensuring that
each feature activates for every batch.

2.5 AUXILIARY K LOSS FUNCTION

Gao et al. (2024) propose the auxiliary loss function, aux_k_loss to reduce the proportion of dead features. Given the
SAE residual e = x− x̂, they define the auxiliary loss Laux = |e− ê|2, where ê = Dec(zdead) is the reconstruction using
the top kaux dead features. Gao et al. (2024) find fewer dead features when using the aux_k_loss for SAE training.

However, the aux_k_loss is only applied to features which qualify as dead. We apply a similar auxiliary loss, the
aux_zipf_loss, to underutilised, but not yet dead, features.

3 BACKGROUND

3.1 SPARSIFYING ACTIVATION FUNCTIONS AS RESOURCE ALLOCATORS

We consider the following many-to-many matching problem:

• We have F features and a batch of B tokens. We would like to have at most M token-feature matches, where
we say that a token matches with a feature if the feature is activated on that token 2 .

1In practice, there may be additional pre-processing and post-processing of the neural activations, x.
2Here we follow the Mixture of Expert literature in abusing notation slightly to refer to neural activations corresponding to a

given token position as a "token".

3
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Figure 2: An illustration of the sparsifying activation function σs acting on the token-feature affinities. G (left) is a
weighted bipartite graph G = {{T1, T2, T3} × {F1, F2, ..., F6},E}. Edge weights represent token-feature affinities,
with red and blue representing positive and negative values respectively. We are seeking a subgraphH ⊆ G with M = 6
edges. Here we have definedH (right) by the TopK method for k = 2; we select the 2 edges from each token with the
largest edge weights. This provides an equivalent view to Figure 1 in terms of bipartite graphs.

• We would like to allocate our budget of M token-feature matches such that the reconstruction error is
minimised.

Formally, we seek a reconstruction-error optimal weighted subgraph H ⊆ G = {{1, ..., B} × {1, ..., F},E} where
H has at most M edges, for M ≪ BF . Figure 2 details an example of a given graph G and subgraph H. The edge
weights can be viewed as the token-feature affinities: the pre-sparsifying activation feature magnitudes z′. 3

This problem doesn’t immediately admit an efficient solution because it is currently unspecified how the edge weights
contribute to the token reconstruction error. We make a simplifying assumption that we denote the Monotonic
Importance Heuristic - the edges with the largest edge weights are likely to represent the most important contributions
to the reconstruction error. With this heuristic, we can solve the problem of allocating token-feature matches by
choosing the M edges with the largest magnitude edge weights as the edges for our subgraphH.

We can equivalently view this allocation problem as choosing a binary mask S ∈ RB×F with at most M non-zero
elements which maximises reconstruction accuracy. This mask is to be element-wise multiplied with a token-feature
affinity matrix z′ ∈ RB×F . Applying the Monotonic Importance Heuristic, we are looking for the mask S such that∑

i,j z
′
i,j =

∑
i,j z

′
i,j ⊙ Si,j is maximised.

TopK SAEs: We can now see the TopK SAE approach as a special case of the above allocation problem, with the
additional constraint that the number of features per token is at most k for each token. In other words,

∑
i(Si,j) = k ∀j,

where M = kB. This leads to the solution of S = TopKIndices(z′, dim = −1), i.e. S picks out the k features with the
highest affinity for each token 4. Here σs(z

′) = S ⊙ z′; element-wise multiplication with S defines our sparsifying
activation function σs.

We now consider two other variants of this problem displayed in Figure 1:

Feature Choice SAEs: Whilst TopK SAEs require each token to match with at most k features, we instead add the
constraint that each feature matches with at most m tokens. This is equivalently a constraint on the columns of S rather
than its rows:

∑
j(Si,j) = m ∀i, where M = mF . This leads to the solution of S = TopKIndices(z′, dim = 0), i.e. S

picks out the m tokens with the highest affinity for each feature.

Mutual Choice SAEs: Here we don’t add any additional constraints and allow any choice of token-feature matching.
This leads to the solution of S = TopKIndices(z′, dim = (0, 1)), i.e. S picks out the largest elements of the z′ affinity
matrix, regardless of their position.

The Feature Choice (FC) and Mutual Choice (MC) sparsifying activation functions can be seen as having the desirable
properties of the TopK activation (for example, preventing activation shrinkage, reducing the impact of noisy, low
magnitude activations, allowing for a progressive recovery code, enabling simple model comparison, not requiring
sparsity losses which are in conflict with the reconstruction loss etc.) but whilst allowing for Adaptive Computation, see

3As an illustrative example of the same problem, we can imagine a university which is able to confer at most M degrees where a
student may take many degree subjects and a degree subject may admit many students.

4See Appendix H for a proof that this is the optimal solution under the constraints.

4
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Figure 3: The Feature Density Curve fits a Zipf curve with R2 = 0.982. The middle segment of the feature density
distribution (features 100-20,000) fit the Zipf curve with R2=0.996

Figure 1. Since we do not have constraints on the number of features per token in FC or MC, it’s possible for one token
to activate (i.e. match with) more features than another token.

3.1.1 ANALOGY TO MIXTURE OF EXPERTS ROUTING

We choose our naming here to align with the study of token-expert matching in the Mixture of Experts paradigm,
where there is a close analogy. Token Choice MoE routing strategies (Shazeer et al., 2017; Fedus et al., 2022) have the
constraint that each token can be routed to at most k experts allowing for expert imbalances. On the other hand, Expert
Choice routing strategies (Zhou et al., 2022) have the constraint that each expert processes at most m tokens, which
eliminates the possibility of underutilised experts and allows tokens to be routed to a variable number of experts.

Here the intuitions are “each token picks the k experts to be routed to” and “each expert picks the m tokens to be routed
to that expert” for Token Choice and Expert Choice respectively. The variety of MoE routing algorithms is explored in
Liu et al. (2024). The Feature Choice approach we propose is directly analogous to the Expert Choice approach in
MoEs and TopK SAEs are directly analogous to Token Choice MoEs. For this reason, we will call TopK SAEs, Token
Choice SAEs to unify our notation.

3.2 DISTRIBUTION OF FEATURE DENSITIES

When analysing the distribution of feature densities in open-source SAEs from Gao et al. (2024), we find (as shown in
Figure 3) that the distributions typically follow a power law described by the Zipf distribution with R2 = 0.982.

We note that although the Zipf distribution well fits most of the distribution, there is a considerable residual at the lower
end of the distribution (the 20k+ rank tokens). We suggest that these features are underutilised. Underutilised features
see fewer gradient updates than other features leading to a self-reinforcing cycle of these features being less useful and
hence further underutilised until they die.

We will refer to these underutilised features as dying features. We define a dying feature as a feature which is one of
the 25% least prevalent features which is also <60% as prevalent as we might predict from the prevalence rank of the
feature using the fitted Zipf curve. More formally:
Definition 3.1. Given a feature set F = {f1, f2, ..., fF} ordered by feature prevalence5, we say fi is a dying feature if:

1. i > 3
4F - i.e. is in the bottom quartile of features when ranked by prevalence

2. actual prevalence(fi)
expected prevalence(fi)

≡ actual prevalence(fi)
Zipf(i) < 0.6

5That is feature fi is the i’th most prevalent feature

5
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3. ∀j > i, fj is also a dying feature

Previous approaches to dealing with dead features either resampled dead features (Bricken et al., 2023) or applied
gradients to dead features (for example aux_k_loss (Gao et al., 2024)) but they didn’t address dying features. We
hypothesise that many of the revived dead features were still not appropriately utilised.

4 METHODS

4.1 MUTUAL CHOICE AND FEATURE CHOICE ACTIVATION FUNCTION

As detailed in Section 3.1, we introduce two activation functions for SAEs: the Mutual Choice and Feature Choice
TopK activation functions. Our SAEs have the same structure as standard (ReLU) SAEs and TopK SAEs except for in
activation function:

• Mutual Choice Activation Function: z = σs(z
′) = TopK(z′, k = M, dim = (0, 1));

• Feature Choice Activation Function: z = σs(z
′) = TopK(z′, k = mi, dim = 0);

4.2 REDUCING THE PROPORTION OF DYING FEATURES

To address the problem of dying features discussed in Section 3.2, we add an additional auxiliary loss for dying features,
which is a natural generalisation of the aux_k_loss. Given the SAE residual e = x− x̂, we define the auxiliary loss
Laux_zipf = |e− ê|2, where ê = Dec(zdying) is the reconstruction using the top kaux dying features. We can think of this
aux_zipf_loss acting preventatively on features which could be at risk of becoming dead and acting rehabilitatively
on features which have been recently revived. In this way, we reduce the proportion of both dead and dying features.

4.3 CHOOSING THE FEATURE CHOICE CONSTRAINT

In the Feature Choice approach, there remains the question of how to distribute the sparse feature activations across the
feature dimension.

The simplest approach to this is to take mi = M/F for all i, where F is the number of features. In other words, each
feature can pick exactly m tokens to process. We call this approach Uniform Feature Choice.

Uniform prevalence is a natural way to organize the features so that a feature firing provides maximal information
about the token, under the assumption that all features provide approximately equal information. However, we have
seen that in existing open-source SAEs, all features are not equivalently prevalent. Instead, they are approximately
Zipf-law distributed. To maintain this distribution of feature density we choose mi ∼ Zipf(α, β), where Zipf represents
a truncated Zipf distribution and i is the rank of a given feature in terms of feature density.

mi = Zipf(i) ∝ 1

(i+ β)α
(4)

We call the Feature Choice approach where the mi are Zipf-distributed, Zipf Feature Choice, henceforth simply Feature
Choice.

4.4 TRAINING APPROACH

Our approach is as follows:

• Given the Zipf exponent and bias hyperparameters, α and β, 6 , we use Algorithm 1 to determine the estimated
feature density for each ranked feature. We use the estimated feature densities to define the threshold for dying
features for the aux_zipf_loss.

6We may obtain these hyperparameters by performing a hyperparameter sweep. Alternatively, if we have trained SAE of the
same dimensions, we may run inference with this SAE over a large dataset (100 million tokens) and track the number of times each
feature activates as its feature density and each feature’s relative feature density rank. We can then fit the (rank, feature density) pairs
to a Zipf distribution and estimate the exponent and bias parameters, α and β. For GPT-2 sized residual stream activations (n=768),
we find α ≈ 1.0, β ≈ 6.8. In our experiments, we fix the exponent to exactly 1 for simplicity and we find that we may reuse similar
α and β parameters across SAE widths.

6
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• We then train Mutual Choice SAEs with both the aux_zipf_loss and aux_k_loss.

• Finally, we optionally fine-tune these SAEs with the Feature Choice activation function, adding the constraint
on the number of tokens that each feature should process. Here there are no auxiliary loss terms.

The sparsifying activation functions σs for each approach are all TopK activations where the TopK is taken over the
feature dimension for Token Choice (i.e. TopK), the batch dimension for Feature Choice and all dimensions for Mutual
Choice.

5 EXPERIMENTAL SETUP

Inputs: We train our sparse autoencoders on the layer 6 residual stream activations of GPT-2 small (Radford et al.,
2019). For larger SAE widths (over 1M features) we train our sparse autoencoders on the 24th layer residual stream
activations of Pythia-2.8B-deduped (Biderman et al., 2023). We use a context length of 64 tokens for all experiments.
We preprocess the activations by subtracting the mean over the dmodel dimension and normalize all inputs to unit L2

norm. All experiments use the FineWeb dataset (Penedo et al., 2024) unless otherwise specified. We shuffle the
activations for training our SAEs (as in Nanda (2023)). Experiments with Token Choice, Mutual Choice and Feature
Choice SAEs are performed without feature resampling, where Standard and SAE++ SAEs are trained with resampling
7.

Hyperparameters: We tune learning rates based on Gao et al. (2024) suggestion that the learning rate scales like
√
n.

We use the AdamW optimizer (Kingma & Ba, 2015) and a batch size of 1,536 8. We train each SAE for 10,000 steps or
until convergence. We use a weight decay of 1e-5 and apply gradient clipping. We analyse SAE with widths from 4x
to 32x larger than the size of the dmodel dimension. We use gradient accumulation for larger batch sizes. We do not
perform extensive hyperparameter sweeps.

Evaluation: After training, we evaluate autoencoders on sparsity L0, reconstruction (MSE) and the difference on the
model’s final (Cross-Entropy) loss. We report a standard normalized version of the loss recovered (%). We additionally
evaluate our SAEs’ interpretability using Juang et al. (2024)’s automated interpretability (AutoInterp) process. We
report the percentage of dead features across models.

Baselines: We compare our SAEs against Standard (ReLU) SAEs and TopK SAEs 9.

6 RESULTS

We find that Feature Choice SAEs are a Pareto improvement upon the Token Choice TopK SAEs, as in Figure 4.
Similarly Figure 5 illustrates that both Mutual Choice and Feature Choice SAEs provide better utilisation of the SAE
capacity with fewer dead features than comparable SAE methods. Notably the Feature Choice SAE method results in
the fewest (often zero) dead features.

SAE Type 6k latent dim 16m dim 34m dim
Standard SAE (w/ resampling) 9.0% >90.0% –
SAE++ (w/ resampling) 5.1% – 64.7%
Token Choice (TopK) SAE 0.0% 7.0% –
Feature Choice SAE (Ours) 0% 0% 0%

Table 1: The Feature Choice SAE maintains zero dead features at widths of up to 34 million features. This is in contrast
to Standard SAEs (Bricken et al., 2023), the SAE++ (Templeton et al., 2024) and Token Choice (TopK) SAE (Gao
et al., 2024) which have an increasing percentage of dead features with the SAE width.

7Bricken et al. (2023) describe a resampling procedure for dead features in which they reinitialise these dead features midway
through training in order to reduce the number of dead features at the end of training. Models with the aux_k_loss do not require
resampling but for models without the aux_zipf_loss we include resampling for stronger baselines.

8For the Feature Choice approach, it’s important to have sufficiently large minibatch sizes so that each feature is expected to
activate every few minibatches.

9We do not explicitly test against Gated SAEs, but Gao et al. (2024) find that TopK SAEs perform similarly or better than Gated
SAEs with 1.5× less compute to convergence.

7
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Figure 4: SAEs trained with the Mutual Choice activation function, and those finetuned with the Feature Choice
activation function have up to 1.7% greater normalised reconstruction loss recovered at equivalent sparsity levels
compared to TopK and standard SAEs.

Figure 5: Both Mutual Choice SAEs and Feature Choice SAEs have fewer dead features than SAEs trained without the
aux_zipf_loss. Even at 16× expansion factor, Feature Choice SAEs have no dead features. The aux_zipf_loss
and aux_k_loss are effective at reducing the number of dead features in Mutual Choice SAEs. At large SAE widths,
the aux_zipf_loss reduces the number of dead features by up to 13×.

Templeton et al. (2024)’s 34 million latent SAEs have a dead feature rate of 64.7% (with resampling); Gao et al. (2024)’s
16 million latent SAEs have a dead feature rate of 90% without mitigations and 7% with mitigations. We find that
Feature Choice SAEs can be trained with a 0% dead feature rate for both 16m and 34m latent SAEs as in Table 1.

7 DISCUSSION

We summarize the comparison between our approach and related approaches in Table 2:

To our knowledge, we present the first SAE training process which explicitly contains two separate phases: first Mutual
Choice training, then Feature Choice training. We speculate that there may be performance benefits to phased training.

8
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SAE Type Performance Dead Features Auxiliary Losses
Standard SAE Weak Many L1 Sparsity loss
SAE++ Better Many Scaled L1 sparsity loss

Jump-ReLU SAE Better Fewer L1 Sparsity loss
Token Choice (TopK) SAE Better Fewer aux_k
BatchTopK SAE Better Fewer aux_k

Mutual Choice SAE (Ours) Best Fewer aux_k and aux_zipf
Feature Choice SAE (Ours) Best None None

Table 2: Mutual Choice and Feature Choice SAEs (ours) achieve higher reconstruction accuracy with fewer dead
features than other approaches such as Standard SAEs (Bricken et al., 2023), the SAE++ (Templeton et al., 2024),
Jump-ReLU SAEs (Rajamanoharan et al., 2024b), Token Choice (also known as TopK) SAEs (Gao et al., 2024) and
BatchTopK (Bussmann et al., 2024).

We believe that conceiving of the role of SAE encoders as defining matching/routing algorithms (similar to other
Adaptive Computation work, for example, within the Mixture of Experts literature) could be a valuable intuition pump
for further improvements to SAE architectures.

Our approaches can also be combined with the MDL-SAE (Ayonrinde et al., 2024) formulation which treats conciseness
(Description Length) as the relevant quantity for evaluation and model selection rather than sparsity (L0). The
Description Length of a set of feature activations is a function of the sparsity, the distribution of activation patterns for
each feature and the SAE width.

The computational efficiencies of the Token Choice (TopK), Mutual Choice and Feature Choice approaches are
theoretically equivalent in terms of Floating Point Operations (FLOps) and in our experiments we find empirically that
the Mutual Choice and Feature Choice activation functions do not add significant computational requirements (<1%
difference in wall clock time) despite converging more quickly.

7.1 ZIPF DISTRIBUTED FEATURES

We find that constraining the number of tokens per feature with the Zipf distribution outperforms using the uniform
distribution by >10% model loss recovered. The large drop in performance using the uniform distribution compared to
the Zipf distribution gives additional evidence that naturally occurring features are not uniformly distributed.

We hypothesise that the reason that features appear to be Zipf distributed may be strongly analogous to the reason that
the frequency of words in natural languages like English are also Zipf distributed. Words are the semantic units of
sentences. Since features are the semantic units of computation within language models, a similar mechanism could
explain the empirical tendency for the densities of SAE features to tend towards the Zipf distribution.

In the Computational Linguistics literature, it is well known that the distribution of words in natural languages
approximately follows a Zipf distribution (Zipf, 1949). For example, in written English text, the empirical distribution
over words (treated as a categorical variable) can be modelled as Zipf(α, β) = Zipf(1, 2.7).

We speculate that the Preferential Attachment Theory explanation (Zhu et al., 2018; Chen, 2012) for the tendency
of words to be Zipf-distributed, which states that frequently used words (features) tend to be used more often, may
be analogously applicable here. At initialisation, there is some variance in feature prevalence. The tokens which are
initially most highly activated early in training receive the most gradient signal and are most refined, leading to a
virtuous cycle where they are more effective and useful for a larger part of the feature density spectrum. Figure 6
illustrates this dynamic over time. We would be excited about further work detailing an explicit mechanism for why
features in Neural Networks tend towards being Zipf distributed.

7.2 ADAPTIVE COMPUTATION FOR VARYING TOKEN DIFFICULTY

One benefit of the Mutual Choice and Feature Choice approaches is that they allow for Adaptive Computation - difficult
to reconstruct tokens (which may represent complex or rare concepts) can be reconstructed using more features, whereas
other tokens which are more straightforward can use fewer features. Where Token Choice (TopK) SAEs suggest that all
tokens are equal; MC and FC SAEs suggest that, in fact, some tokens are more equal than others Singer (2017).
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As an extreme example, we might expect that the activations resulting from the < BOS > token are relatively easy to
reconstruct, considering they are both very common and have exactly the same value every time. We might expect that
an effective SAE could learn to productively reallocate the sparsity budget that would have been spent on the < BOS >
token to more difficult tokens, thus increasing the SAE’s effective capacity. We provide an example of the features per
token distribution in Appendix D.

7.3 DEAD FEATURES

Our methods, especially Feature Choice SAEs, have many fewer dead features than other approaches (typically zero)
without complex and compute-intensive resampling procedures (Bricken et al., 2023). This is especially important for
large SAEs where the problem of dead features is typically more significant. We hypothesize that this might be an
additional reason for the improved performance: all features receive some gradient signal at every step.

We note that this simplified approach eliminates the need for complex resampling procedures. This approach suggests a
simplified procedure for SAE training and model selection than previous SAEs with fixed sparsity budget.

7.4 LIMITATIONS

Appeals to the Monotonic Importance Heuristic: In Section 3.1 we defined the Monotonic Importance Heuristic
(MIH) - the assumption that the importance of a feature is monotonically increasing in feature activation magnitude.
We use this assumption when we choose the feature activations with the largest magnitudes with our TopK-style
activation functions. TopK SAEs also implicitly assume the MIH (Monotonic Importance Heuristic). We can think of
Jump-ReLU SAEs and Gated SAEs as relaxing this assumption slightly to a weak MIH. For Jump-ReLU and Gated
SAEs, the importance of activations is still related to their magnitude and they still filter out any low magnitude feature
activations; however, the filtering threshold varies for each feature. So Jump-ReLU SAEs do not have to make magnitude
comparisons across features which may have different natural scales. It may be, however, that there are low magnitude
activations which, within a certain context, are nonetheless critically important in capturing information which is useful
for reconstruction and/or downstream model performance. These important but low magnitude activations are difficult
to capture with our current SAE approaches 10.

Though the weight-sharing form of Gated SAEs (Rajamanoharan et al., 2024a) implicitly encodes the weak MIH
prior, the non-sharing form does not. Weight-sharing Gated SAEs, however, tend to perform better. The improved
performance of approaches which encode the MIH prior could be considered as evidence for the truth of the claim.
Alternatively, we might note that the Monotonic Importance Heuristic acts as an inductive bias for our models. Good
inductive biases often allow models to perform better at first; however, with increased scale we may not need such
inductive biases and may prefer allowing the model to learn more of the solution independently (Xiao, 2024), (Sutton,
2019).

Generalisation Across Modalities: We tested our SAEs within the domain of language. We currently don’t know
to what extent our results generalise across modalities, especially to inherently continuous modalities like audio and
images. We would be excited about future work applying similar techniques to Interpretability problems in a wider
range of modalities.

Evaluation: The Mechanistic Interpretability field doesn’t currently have widely agreed upon metrics for evaluating
Sparse Autoencoders. Disentanglement benchmarks like Huang et al. (2024) have been proposed as well as evaluation on
tasks where the ground truth is known (Karvonen et al., 2024). Developing a more comprehensive suite of benchmarks
for SAEs would help us to have higher confidence in our comparisons between SAE variants.

8 CONCLUSION

We introduce the Feature Choice and Mutual Choice SAEs as a simple drop-in change to the sparsifying activation
function in Sparse Autoencoders. We also provide a new auxiliary loss, aux_zipf_loss, which prevents dying features
and hence allows the SAE to more fully utilize all of its features without wasting capacity.

10Standard ReLU SAEs do allow low magnitude feature activations but at the expense of failing to filter out noisy low magnitude
activations, which can be seen as false positives (Rajamanoharan et al., 2024b).
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A FEATURE DENSITY MOVES TOWARDS A ZIPF DISTRIBUTION THROUGHOUT TRAINING

Figure 6: For an untrained SAE at initialiation, the Feature Density Distribution is less well fitted to the Zipf distribution
than after training. Whilst in Figure 3, we see the Feature Distribution diverge from the Zipf distribution at the 25,000th
ranked feature, here we see divergence from the 5,000th ranked feature.

Compared to after training (see Figure 3), the Feature Density Distribution diverges from the Zipf distribution at a
much earlier token rank for the features at initialisation. We empirically see that over the course of training, the feature
distribution approaches the Zipf distribution more closely. This convergence over training further suggests that the Zipf
distribution might be a natural distribution for features. We see this pattern over multiple datasets as shown in Table 3

Dataset R2

Wikipedia 0.982
FineWeb 0.983
Arxiv Abstracts 0.986
Biology Arxiv Abstracts 0.984
ML ArXiv Abstracts 0.986

Table 3: Across a range of datasets, the R2 correlation between the Feature Density Distribution and Zipf Distribution
is consistently >0.982 suggesting that the findings that features are Zipf distributed is a general phenomena.

B INFERENCE WITH FEATURE CHOICE AND MUTUAL CHOICE SAES

To run inference on our SAE variants, we may perform batch inference with the method exactly as in the training setup.
However to do single token (or single sequence) inference (i.e. in the low batch size regime) it may be beneficial to
instead impute a threshold value and swap out the activation function to use this value instead with a JumpReLU style
approach (Erichson et al., 2020) (Rajamanoharan et al., 2024b).

C NEURAL FEATURE MATRIX LOSS

One problem with SAEs is undesirable feature splitting. Feature splitting occurs when an SAE finds a sparse combination
of existing directions that allows for a smaller L0 (Ayonrinde et al., 2024). For example, Bricken et al. (2023) note that
a model may learn dozens of features which all represent the letter "P" in different contexts in order to maintain low
sparsity.

In order to reduce feature splitting we propose two additional auxiliary losses: nfm_loss and nfm_inf_loss.
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The Neural Feature Matrix (NFM) is defined as nfm(W) = ŴŴT for a weight matrix W. The NFM is a symmetric
square matrix which describes the correlation of different rows in the matrix W.

We define nfm_loss = |nfm(WDec)|F and nfm_inf_loss = 1
F

∑
i max(nfm(WDec)i).

For our largest runs we apply both of these auxiliary losses with small weight. Empirically we find this seems to reduce
undesirable feature splitting and avoid a failure mode we call "Dictionary Collapse" when many features of the decoder
dictionary start to align with each other. The Dictionary Collapse phenomena appears to be closely analogous to the
Representation Collapse problem in Sparse Mixture of Experts (SMoE) models as detailed in Chi et al. (2022) and Do
et al. (2023).

D ADAPTIVE COMPUTATION ALLOWS FOR A VARIABLE NUMBER OF FEATURES PER
TOKEN

Figure 7: For Mutual Choice SAEs, the distribution of active features per token is bimodal with a long tail at the upper
side. The SAE is able to allocate more features and more computation to more difficult to reconstruct features and
perform Adaptive Computation.

We note that there is a bimodal distribution of features per token (see Figure 7). The SAE allocates close to the main
mode of features to each token, attempting to allocate more features to harder tokens and less features to easier tokens.
The < BOS > token is responsible for the lower peak - this token is much easier to reconstruct and so it is prudent for
the network to allocate fewer features that token. In the ideal SAE, the < BOS > token could be reconstructed with a
single feature, rather than the 10 features required here. Future work might look into optimisations that would allow the
< BOS > token to be single-feature reconstructed as a test case of allowing even greater variance in features per token.

E PROGRESSIVE CODES

Gao et al. (2024) describe learning a progressive code using their Multi TopK loss. In their setting, the Multi TopK loss
(a weighted sum of TopK losses for different values of k) is required because the SAE generally "overfits" to the value
of k which harms a progressive code. In our case, the SAE is robust to having variable k values even for the same token
depending on the context of the batch. Empirically, we obtain progressive codes for a greater range of values of k than
in the TopK case.

F MONOTONIC IMPORTANCE HEURISTIC

In Section 3 we appeal to the Monotonic Importance Heuristic (MIH), as in TopK SAEs, in order to simplify our
allocation problem. Empirically we find that this works well though we discuss the case for not using the MIH in
Section 7.4.

We can formally write the Monotonic Importance Heuristic as the hypothesis that given some token-feature affinities z’
and corresponding feature activations z1 and z2, if ∥z1∥1 > ∥z2∥1, z1 is likely to result in lower reconstruction error
under the decoder map.
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One theoretical (though informal) motivation for the MIH is as follows. Since the decoder dictionary is fixed to unit
norm, the norm of any feature’s contribution to the output is exactly the magnitude of the feature activation to which it
corresponds. Hence if there’s limited cancellation between features (which is likely in an N dimensional space where
the per-token sparsity is much less than N) then we might expect the component of x̂ in any feature direction to be very
close to the feature activation for that feature. In particular, consider a feature with a small magnitude of ε. This feature
can only possibly influence the reconstruction loss by at most ε|e| where e = x− x̂. Features corresponding to larger
activations can plausibly influence the reconstruction loss by a greater amount.

G DETERMINING THE FEATURE DISTRIBUTION

Given the Zipf exponent and bias hyperparameters, α and β, we use Algorithm 1 to determine the estimated feature
density for each ranked feature. We use the estimated feature densities to define the threshold for dying features for the
aux_zipf_loss.

Algorithm 1 Calculate Zipf Feature Distribution
Require: k, F , B, β, α, mmax
Ensure: m: array of size F

1: num_interactions← B × k
2: zipf_sum←

∑F
i=1

1
(i+β)α

3: Napprox ← num_interactions
zipf_sum

4: for i = 1 to F do
5: mi ← min

(⌊
Napprox

(i+β)α

⌋
, mmax

)
6: end for
7: return m

H OPTIMALITY OF TOPK ACTIVATION UNDER THE MONOTONIC IMPORTANCE HEURISTIC

Proposition 1. Let z = {z1, z2, ..., zF } ∈ RF and consider fz(a) = aT · z, where a = {a1, a2, ..., aF } ∈ {0, 1}F is a
k-sparse boolean vector and hence a satisfies

∑F
i=1 ai ≤ k.

Then for any optimal solution a*, if a∗i = 1 then there exist at most k − 1 indices j such that zj > zi > 0.

Proof. We proceed by contradiction. Suppose there exists some optimal solution a* and an index i with a∗i = 1 such
that there are m > k − 1 indices zj with zj > zi > 0. Since a* is k-sparse, there must exist one such index J such that
zJ > zi > 0 and a∗J = 0.

Consider a’ constructed as follows:

a′j =


a∗j if j ̸= i and j ̸= J

0 if j = i

1 if j = J

(5)

First note that a’ remains a k-sparse boolean vector as we have only swapped two elements. We see this as a’ ∈ {0, 1}F
and both a’ and a* have the same number of non-zero elements by construction.

We now note that fz(a’)− fz(a*) = zJ − zi > 0, where the inequality follows from our choice of J . Hence we have
some feasible a’ with fz(a’) > fz(a*).

This contradicts our assumption that fz(a*) was optimal.

In other words, suppose we assume the Monotonic Importance Heuristic (MIH) (Section 3.1, Appendix F) on some
set of real numbers, z. If more than k elements of z are positive, then it follows that the optimal activation function to
maximise the sum of the activated affinities (and hence by the MIH, to maximise the reconstruction accuracy) under the
k-sparsity constraint, is the TopK activation function. For the case where fewer than k elements are positive, optimality
is achieved by activating only the positive elements, as including any negative values would decrease the sum. Therefore,
the composite activation function TopK ◦ ReLU provides the optimal solution in full generality.

18


	Introduction
	Related Work
	Sparse Autoencoders
	Adaptive Computation
	TopK SAEs
	Dead Features
	Auxiliary k loss function

	Background
	Sparsifying Activation Functions as Resource Allocators
	Analogy To Mixture of Experts Routing

	Distribution of Feature Densities

	Methods
	Mutual Choice and Feature Choice Activation Function
	Reducing the Proportion of Dying Features
	Choosing the Feature Choice Constraint
	Training Approach

	Experimental Setup
	Results
	Discussion
	Zipf Distributed Features
	Adaptive Computation for Varying Token Difficulty
	Dead Features
	Limitations

	Conclusion
	Feature Density Moves Towards A Zipf Distribution Throughout Training
	Inference with Feature Choice and Mutual Choice SAEs
	Neural Feature Matrix Loss
	Adaptive Computation Allows For A Variable Number of Features Per Token
	Progressive Codes
	Monotonic Importance Heuristic
	Determining The Feature Distribution
	Optimality of TopK Activation Under the Monotonic Importance Heuristic 

