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Abstract
Existingweakly-supervised camouflaged object detection (WSCOD)
methods have much difficulty in detecting accurate object bound-
aries due to insufficient and imprecise boundary supervision in
scribble annotations. Drawing inspiration from human perception
that discerns camouflaged objects by incorporating both object
region and boundary information, we propose a novel Mutual Inter-
action Network (MiNet) for scribble-based WSCOD to alleviate the
detection difficulty caused by insufficient scribbles. The proposed
MiNet facilitates mutual reinforcement between region and edge
cues, thereby integrating more robust priors to enhance detection
accuracy. In this paper, we first construct an edge cue refinement
net, featuring a core region-aware guidance module (RGM) aimed
at leveraging the extracted region feature as a prior to generate
the discriminative edge map. By considering both object seman-
tic and positional relationships between edge feature and region
feature, RGM highlights the areas associated with the object in
the edge feature. Subsequently, to tackle the inherent similarity
between camouflaged objects and the surroundings, we devise a
region-boundary refinement net. This net incorporates a core edge-
aware guidance module (EGM), which uses the enhanced edge map
from the edge cue refinement net as guidance to refine the object
boundaries in an iterative and multi-level manner. Experiments on
CAMO, CHAMELEON, COD10K, and NC4K datasets demonstrate
that the proposed MiNet outperforms the state-of-the-art methods.
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Figure 1: Compared with CRNet [13], our method gives more
accurate localization of the camouflaged object boundaries.

ACM Reference Format:
Yuzhen Niu, Lifen Yang, Rui Xu, Yuezhou Li, and Yuzhong Chen. 2024.
MiNet: Weakly-Supervised Camouflaged Object Detection through Mutual
Interaction between Region and Edge Cues. In Proceedings of the 32nd ACM
International Conference on Multimedia (MM ’24), October 28-November
1, 2024, Melbourne, VIC, Australia. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3664647.3680891

1 Introduction
Camouflaged object detection (COD) aims to identify and separate
objects hidden within their surroundings. It has attracted signif-
icant attention due to the potential applications in various fields
such as medical diagnosis [7, 15], species protection [26], and crop
pest detection [22]. Unlike conventional object detection [6, 11],
COD faces more rigorous challenges. The high intrinsic similarity
between the camouflaged objects and their surroundings demands
that COD can discern object internal information based on fine-
grained details. Furthermore, as a pixel-level classification task,
COD requires more precise boundary detection results.

In recent years, there has been a growing interest in leveraging
data-driven deep learning techniques for COD. Fully-supervised
methods, which rely on pixel-wise annotations, have achieved sig-
nificant advances. Nevertheless, there are still potential obstacles
that hinder the widespread application of these methods in COD.

https://doi.org/10.1145/3664647.3680891
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Firstly, the manual pixel-wise annotation for large-scale datasets is
both time-consuming and labor-intensive. In addition, the conven-
tional pixel-wise annotation methods that treat each pixel within
the object region equally may not adequately capture the essen-
tial structural characteristics of the object [13]. To overcome these
obstacles, sparse annotation methods have emerged to streamline
dataset annotation and mitigate overfitting. Consequently, explor-
ing weakly-supervised camouflaged object detection (WSCOD)
methods that leverage sparse annotations as supervision could
be a promising avenue.

However, the restricted annotations information available for
WSCOD also significantly impedes the detection performance. He
et al. [13] propose a pioneering scribble annotation method by
sketching the main structure of the foreground and background
regions, providing greater flexibility and significantly reducing
the time and labor costs of dataset annotation. However, scribble
annotations are difficult to provide sufficient reference information
to infer the precise boundaries of camouflaged objects. To tackle
this issue, He et al. [13] further introduce a consistency loss to
attain reliable consistency cross different images and inside a single
prediction map. Nevertheless, the loss is calculated based on image
features that are not descriminative enough, potentially resulting
in inaccurate localization of object boundaries. As shown in Fig. 1,
the prediction results of CRNet [13] exhibit a significant deficiency
of the boundary structures for the camouflaged objects.

To tackle the mentioned issue, another strategy to improve ob-
ject boundary accuracy is to incorporate the edge prior as a supple-
mentary aid [42, 44, 50]. For instance, the scribble-based weakly-
supervised salient object detection method [44] has successfully
aided the learning of object boundaries by introducing the edge
detection task. However, in contrast to salient object images, most
camouflaged object images have cluttered backgrounds. As demon-
strated in Fig. 2, the edge map obtained from the edge detection
network for COD image may contain a substantial amount of non-
object noise, which may negatively mislead COD task. Therefore,
it is essential to provide the discriminative edge prior for scribble-
based COD. Moreover, earlier biological research [10] has offered
fresh perspectives on WSCOD. The study reveals that human per-
ception of camouflaged objects entails a sequential process: first
identifying the rough region of the camouflaged objects, then fo-
cusing attention to delineate their boundaries, and ultimately in-
tegrating these boundaries with the object regions to effectively
separate the camouflaged objects from the backgrounds.

In this paper, inspired by human perception, we propose a novel
Mutual Interaction Network (MiNet) for scribbled-based WSCOD.
Specifically, drawing inspiration from human cognitive processes,
our MiNet is intricately designed to utilize mutual reinforcement
between region and edge cues, generating distinctive cues to im-
prove the boundary prediction results of camouflaged objects. To
achieve this goal, we first construct an edge cue refinement net.
Within this net, a coarse edge detection block (EDB) first aggre-
gates multi-level features from the backbone to obtain coarse edge
feature. Subsequently, a region-aware guidancemodule (RGM) high-
lights the regions associated with the object within the edge feature.
RGM takes into account both the object semantic and positional
relationships between edge feature and region feature, resulting
in a discriminative edge map. To address the issue of inaccurate

(a) Salient object (b) Edge map

(e) Edge map(d) Camouflaged object

(c) GT

(f) GT

Figure 2: Examples of extracted edgemaps with edge detector
[23] from salient and camouflaged object images.

boundary localization caused by the high similarity between the
camouflaged objects and their surroundings, we further devise a
region-boundary refinement net, which uses an edge-aware guidance
module (EGM) at each network level. EGM utilizes the edge map
as prior to guide the network to focus more on object boundaries,
thereby generating more discriminative region feature. Moreover,
we employ an iterative refinement manner by propagating the dis-
criminative region features to the next level of the network, where
they are fused with backbone features and enhanced through the
introduced residual inception block [19]. After iterative refinement,
our method achieves more accurate object boundary localization.

In summary, our contributions are summarized as follows:
• We propose a biology inspired WSCOD method, which en-
hances the accuracy of object boundary prediction through
mutual interaction between region and edge cues.

• We devise the region-aware guidance module embedded
within the edge cue refinement net, deliberately leveraging
the semantic and positional information of region cue to
enhance the discriminability of the edge map.

• We develop the edge-aware guidance module integrated into
the region-boundary refinement net, leveraging the discrim-
inative edge map as guidance for multi-level and iterative
refinement of object boundaries.

• Experimental results on four benchmark datasets demon-
strate the superior performance of MiNet.

2 Related Work
2.1 Camouflaged Object Detection
Traditional COD methods attempt to extract the hand-crafted fea-
tures, such as color [14] and texture [8], to describe the camouflaged
objects. However, these methods often fail in complex scenes where
the camouflaged objects are highly similar with their surroundings.
Due to the advances of deep learning and the availability of bench-
mark datasets [5, 18, 24], more and more deep learning based COD
methods have emerged.

Specifically, some methods [5, 16, 29] employ biomimetic ap-
proaches to detect camouflaged objects by imitating human or ani-
mal behaviors. For instance, Fan et al. [5] design the SINet inspired
by the two-stage process of predators hunting, which includes a
search module and an identification module. In addition, several
methods leverage the multi-task learning strategy. For example,
Zhai et al. [42] corporate the COD task and the edge detection
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Figure 3: Overall framework of the MiNet. Specifically, the MiNet consists of the backbone for multi-level feature extraction,
the edge cue refinement net for obtaining discriminative edge map via EDB and RGM, and the region-boundary refinement net
for refining the object boundaries via EGMs in an iterative and multi-level manner.

task, introducing the graph-based model to iteratively reason their
relationship. Considering that relying solely on RGB domain infor-
mation makes it difficult to accurately locate camouflaged objects
in challenging scenes, some works [33, 47] improve the perfor-
mance of COD by introducing additional information as an aid.
For instance, Zhong et al. [47] leverage the frequency domain fea-
tures to assist in distinguishing the subtle differences between the
camouflaged objects and the background.

The above fully-supervised learning-basedmethods have achieved
certain advancements. However, these methods heavily rely on
pixel-wise ground truth and may overlook the primary structure of
the object. Therefore, exploring weakly-supervised camouflaged ob-
ject detection methods based on sparse annotations is a worthwhile
problem to investigate.

2.2 Weakly-supervised Learning with Scribbles
Weakly-supervised learning with scribbles has been studied in some
other tasks, such as semantic segmentation [20, 28, 32] and salient
object detection (SOD) [41, 44]. Lin et al. [20] propagate the scribble
information to other unknown regions based on super-pixels and
graph-cuts methods to obtain the fully labeled pseudo label. Pan et
al. [28] address the inconsistency problem by reducing the uncer-
tainty of neural representations and introducing self-supervision
strategy. Zhang et al. [44] introduce edge detection network to
assist in weakly-supervised SOD based on scribble. Yu et al. [41]

propose a local coherence loss that propagates scribble throughout
the entire image based on color information.

However, the above scribble-based learning methods, specifically
tailored for semantic segmentation and SOD, are generally not suit-
able for the COD task. Firstly, semantic segmentation as a pixel-wise
classification task, typically involves hundreds or thousands of cat-
egories, whereas COD is a binary pixel classification task. Secondly,
due to the inherent similarity between camouflaged objects and
their surroundings, directly applying semantic segmentation or
SOD methods to COD usually achieves inferior performance. To
address the mentioned issues, based on the first scribbled-based
dataset (S-COD) for WSCOD, He et al. [13] present a scribble-based
framework, which extends scribble to wider camouflaged areas by
utilizing low-level contrasts, while also leveraging semantic rela-
tionships to determine the regions of camouflaged objects. However,
due to the sparsity of scribble annotations and the lack of explicit
guidance from edge cue, this method has difficulty in accurately
locating the boundaries of camouflaged objects.

Taking into consideration the challenges mentioned above and
inspired by human behavior in identifying camouflaged objects,
we propose to mine the relationship between region and edge cues.
Specifically, our proposed method leverages the mutual interac-
tion between region and edge cues to achieve more discriminative
features and more accurate detection results.
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3 Proposed method
3.1 Network Overview
As shown in Fig. 3, the proposed MiNet comprises three primary
sub-networks: a backbone net for multi-level feature extraction, an
edge cue refinement net to enhance the coarse edge feature, and
a region-boundary refinement net to improve boundary accuracy
of the detected camouflaged objects. Leveraging the capability of
ResNet-50 [12], the backbone net extracts multi-level features 𝑋𝑖
(𝑖 ∈ {1, 2, 3, 4}), thereby furnishing abundant contextual informa-
tion crucial for identifying camouflaged objects.

In the edge cue refinement net, the EDB is used to integrate
the extracted multi-level features and generate the coarse edge
feature 𝐹𝑒 . Furthermore, the RGM incorporates the region cue (i.e.,
the region feature 𝐹4) from the region-boundary refinement net to
suppress non-object noise within the edge feature 𝐹𝑒 , thus obtaining
a more discriminative edge map𝑀𝑒 .

In the region-boundary refinement net, the RIB and the EGM are
embedded in the each level of the network. The RIB first enhances
the feature 𝑋

′
𝑖
to produce region feature 𝐹𝑖 . Subsequently, the EGM

utilizes the edge cue (i.e., the edge map𝑀𝑒 ) as guidance to enhance
𝐹𝑖 , resulting in the discriminative region feature𝑂𝑖 . Furthermore, by
propagating each𝑂𝑖 (𝑖 ∈ {2, 3, 4}) to the i-1-th level of the network,
object boundaries can be refined in an iterative and multi-level
manner. Finally, based on the region feature𝑂𝑖 , a 3×3 convolutional
layer is employed to derive the result𝑀𝑖 (𝑀1 is the final result).

The pink and purple arrows between the edge cue refinement
net and the region-boundary refinement net in Fig. 3 illustrate the
mutual interaction between region and edge cues. Specifically, the
region cue help to achieve more discriminative edge map, which in
turn help to locate the object boundaries accurately.

3.2 Edge Cue Refinement Net
In the edge cue refinement net, as shown in Fig. 3, EDB is first used
to generate the coarse edge feature 𝐹𝑒 . As the presence of non-object
edge noise in 𝐹𝑒 may mislead the COD task, it’s necessary to refine
the edge feature to obtain discriminative edge prior. Specifically,
the RGM suppresses the non-object noise in 𝐹𝑒 with the guidance
of region cue (i.e., the region feature 𝐹4) from the region-boundary
refinement net, resulting in an enhanced edge map 𝑀𝑒 . And 𝑀𝑒
will be fed as edge cue into the region-boundary refinement net to
make the prediction of object boundaries more accurate.

Coarse Edge Detection Block (EDB). EDB extracts the coarse
edge feature and further estimates the coarse edge map. As shown
in the top left corner of Fig. 3, each of the backbone feature 𝑋𝑖
(𝑖 ∈ {1, 2, 3, 4}) is processed by a 3×3 convolutional block, and then
up-sampled to the same size. These features, which incorporate
rich edge details and high-level semantic information, are then
progressively aggregated through concatenation operations and
1 × 1 convolutional blocks. Subsequently, a 3 × 3 convolutional
block is applied to derive the coarse edge feature 𝐹𝑒 . In addition,
a 3 × 3 convolutional layer and a Sigmoid function are performed
on 𝐹𝑒 to generate the coarse edge map 𝑒 . Here, the coarse edge
feature 𝐹𝑒 is taken as the input of RGM, and the coarse edge map 𝑒
is supervised by the edge ground truth 𝐸 of the camouflaged image,
which is obtained by the edge detector [23]. Examples of extracted
edge maps 𝐸 are illustrated in Fig. 2.
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Figure 4: Structure of the region-aware guidance module.

Region-aware Guidance Module (RGM). RGM highlights the
object edge and suppresses the non-object noise by taking into
account the object semantic and positional information relation-
ships between edge feature and region feature. By employing a
combination of pixel-level matching operation, probability-based
spatial suppressing operation, and rank-based channel weighting
operation, the module achieves the enhanced edge map𝑀𝑒 .

Specifically, as illustrated in Fig. 4, a pixel-level matching op-
eration is first employed to highlight areas within the edge fea-
ture exhibiting high semantic correlation with the region feature
(see the yellow anchor box in the feature heatmap visualization in
Fig. 3). However, the region feature primarily emphasizes holistic
and semantic information, whereas the edge feature concentrates
more on object structures. This results in notable disparities in
their numerical distributions and feature content. To tackle this
issue, we integrate the edge feature with the region feature, thereby
mitigating the differences between them while retaining their dis-
tinct characteristics. In detail, after up-sampling the region feature
𝐹4 ∈ R𝐶×𝐻4×𝑊4 to match the size of 𝐹𝑒 ∈ R𝐶×𝐻×𝑊 , these two
features are then added to obtain edge feature 𝐹

′
𝑒 ∈ R𝐶×𝐻×𝑊 .

Considering the disruptive effect of cluttered background noise on
correlation calculations based on non-local spatial attention [1], we
split the reshaped region feature along both channel and spatial
dimensions. The correlations are then calculated in a spatial-wise
and channel-wise manner sequentially. In particular, the decom-
posed region feature contains 𝑁4=𝐻4𝑊4 spatial feature vectors of
size 𝐶 × 1 and 𝐶 channel feature vectors of size 1 × 𝑁4, denoted
as 𝐹4𝑠={𝐹 14𝑠 , 𝐹

2
4𝑠 , · · · , 𝐹

𝑁4
4𝑠 } and 𝐹4𝑐={𝐹 14𝑐 , 𝐹

2
4𝑐 , · · · , 𝐹

𝐶
4𝑐 }, respectively.

Here, 𝐹 𝑗4𝑠 ∈ R𝐶×1, 𝑗 ∈ {1, 2, ..., 𝑁4}, 𝐹𝑘4𝑐 ∈ R1×𝑁4 , 𝑘 ∈ {1, 2, ...,𝐶}.
Then, 𝐹

′
𝑒 is reshaped into 𝐹

′
𝑒 ∈ R𝐶×𝑁 , where 𝑁=𝐻𝑊 . Subsequently,

the correlation between edge feature 𝐹
′
𝑒 as well as spatial feature

vectors 𝐹4𝑠 and channel feature vectors 𝐹4𝑐 can be calculated in a
sequentially manner, which can be expressed as follows:

𝐹 1𝑟 [𝑝, 𝑞] =
∑︁

𝑜,𝑝
𝐹
′
𝑒 [𝑝, 𝑞] · 𝐹4𝑠 [𝑜, 𝑝] · 𝐹4𝑐 [𝑝, 𝑜], (1)

where 𝑝 denotes the channel index, 𝑞 and 𝑜 denote the spatial index,
𝑝 ∈ [1,𝐶], 𝑞 ∈ [1, 𝑁 ], and 𝑜 ∈ [1, 𝑁4], respectively. 𝐹 1𝑟 ∈ R𝑁×𝐶

denotes the matching result. Then 𝐹 1𝑟 is reshaped to 𝐹 1𝑟 ∈ R𝐶×𝐻×𝑊 .
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Furthermore, in some complex scenarios, the pixel-level match-
ing operation may lead to undesired background enhancement. To
address this, we design the probability-based spatial suppressing
operation to incorporate positional information for helping further
suppress non-object noise, while retaining the uncertainty of the
object localization provided by the region feature 𝐹4. This operation
includes the probability map calculation and spatial suppressing
via Hadamard product. Specifically, considering the uncertainty
of the object localization, we assign different levels of probability
value to each pixel. In detail, 𝐹4 is up-sampled to match the size
of 𝐹 1𝑟 , then processed by a 1 × 1 convolutional block. After that, a
channel-wise mean operation and a Softmax function are applied
to yield the feature 𝐹𝑠 ∈ R1×𝐻×𝑊 . For the top 𝑠𝑖 ( 𝑖 ∈ {1, 2, 3, 4},
𝑠𝑖 ∈ { 12𝐻𝑊 , 23𝐻𝑊 , 34𝐻𝑊 , 45𝐻𝑊 } ) pixels with the highest values
in 𝐹𝑠 , a probability weight of 1 is assigned, while all other pixels
receive a weight of 0.5, resulting in a probability map 𝑃𝑖 ∈ R1×𝐻×𝑊 .
Then different 𝑃𝑖 are summed to produce a combined probability
map 𝑃 ∈ R1×𝐻×𝑊 . Subsequently, a spatial suppressing process is
performed by Hadamard product between 𝐹 1𝑟 and 𝑃 , followed by a
normalization operation to produce edge feature 𝐹 2𝑟 .

To acquire a more discriminative edge map, we further present a
lightweight yet effective rank-based channel weighting operation.
This operation leverages a parameter-free rank-based mechanism
to discard some less informative channels. The rank and discard
mechanism is illustrated in the top right corner of Fig. 4. Through
a global max pooling, ranking score for each channel in 𝐹 2𝑟 are de-
rived, yielding a ranking score vector 𝑟 ∈ R1×𝐶 . Then, the channels
are ranked based on the values in 𝑟 , and the top half of channels
with higher ranking scores are retained while the remaining chan-
nels are discarded. Moreover, with a channel attention layer, the
retained channels are re-weighted to highlight the object infor-
mation. Finally, two convolutional layers followed by a Sigmoid
function are applied to generate the discriminative edge map𝑀𝑒 .

3.3 Region-boundary Refinement Net
Due to the inherent similarity between the camouflaged objects
and their surroundings, accurately distinguishing their boundaries
poses a certain level of difficulty. To address this issue, within the
region-boundary refinement net, the edge map𝑀𝑒 engages in multi-
level interactions with region features, consequently iteratively
refining the object boundaries.

In this sub-network, RIB is first used to explore object informa-
tion from multi-receptive fields by using convolutional layers of
different kernel sizes, detailed structure of RIB can be found in [19].
More specifically, for the deepest-level, RIB takes the region feature
𝑋

′
4 (which is obtained by projecting 𝑋4 via a convolutional block)

as input and produces region feature 𝐹4. Subsequently, the EGM
enhances 𝐹4 to obtain the discriminative region feature 𝑂4. For
the other three levels, 𝑂𝑖+1 (𝑖 ∈ {1, 2, 3}) from the higher level is
propagated to the i-th level of the network, fused with the feature
from the backbone, and then the combined feature is fed into the
RIB as follows:

𝐹𝑖 = 𝑅𝐼𝐵 (C (𝑋𝑖 )) , 𝑖 = 4
𝐹𝑖 = 𝑅𝐼𝐵 (C (𝑋𝑖 ) ⊕ (C (𝑋𝑖 ) ⊙ U (𝑂𝑖+1))) , 𝑖 ∈ {1, 2, 3}
𝑂𝑖 = 𝐸𝐺𝑀 (𝐹𝑖 , 𝑀𝑒 ) , 𝑖 ∈ {1, 2, 3, 4}

, (2)
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where C (·) represents the 1×1 convolutional block,U (·) represents
the up-sampling operation, ⊙ represents the Hadamard product
operation, and ⊕ represents the element-wise addition operation.

Edge-aware Guidance Module (EGM). EGM leverages the
edge map𝑀𝑒 as prior to guide the representation learning of object
boundaries by mining the affinity between edge cue and region
feature. As depicted in Fig. 5, the edge map𝑀𝑒 ∈ R1×𝐻×𝑊 is first
down-sampled by factor 𝑑 to the same size with the region feature
𝐹𝑖 ∈ R𝐶×𝐻𝑖×𝑊𝑖 (𝐻𝑖 = 𝐻

𝑑
and𝑊𝑖 =

𝑊
𝑑
, 𝑑 ∈ {1, 2, 4, 8}). Then, a 1× 1

convolutional layer combined with a 3×3 depth-wise convolutional
layer are performed on the down-sampled𝑀𝑒 and 𝐹𝑖 (𝑖 ∈ {1, 2, 3, 4})
to obtain three features. These features are then reshaped to obtain
𝑀
𝑄
𝑒 ∈ R1×𝑁𝑖 , 𝐹𝐾

𝑖
∈ R𝑁𝑖×𝐶 and 𝐹𝑉

𝑖
∈ R𝐶×𝑁𝑖 , respectively, where

𝑁𝑖 = 𝐻𝑖𝑊𝑖 . Next, a matrix multiplication operation is performed
between𝑀

𝑄
𝑒 and 𝐹𝐾

𝑖
, followed by a Softmax function, yielding the

edge-aware affinity vector 𝐸𝑎 ∈ R1×𝐶 :

𝐸𝑎 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑀𝑄
𝑒 ⊗ 𝐹𝐾𝑖 ), (3)

where ⊗ represents the matrix multiplication operation.
The element 𝐸𝑙𝑎 in the edge-aware affinity vector 𝐸𝑎 represents

the channel correlation probability between the edge cue𝑀𝑒 and
the l-th channel in region feature 𝐹𝑖 . Subsequently, a matrix multi-
plication operation between 𝐸𝑎 and 𝐹𝑉

𝑖
is performed. The resulting

feature is reshaped into R1×𝐻𝑖×𝑊𝑖 , and then combined with 𝐹𝑖 via
a skip connection, thus resulting in the feature 𝐹 𝑖𝑜 ∈ R𝐶×𝐻𝑖×𝑊𝑖 .
The computation process can be formulated as follows:

𝐹 𝑖𝑜 = R(𝐸𝑎 ⊗ 𝐹𝑉𝑖 ) ⊕ 𝐹𝑖 . (4)

Finally, a channel attention layer and a 3× 3 convolutional block
are performed on 𝐹 𝑖𝑜 to obtain the output feature 𝑂𝑖 ∈ R𝐶×𝐻𝑖×𝑊𝑖 .

3.4 Loss Function
A combination of edge loss, region loss, boundary localization loss,
and auxiliary loss is used to supervise our network.

Edge Loss. Considering the significantly larger number of nega-
tive samples than positive samples in edge maps, to overcome this
imbalance, the dice loss [39] is used to supervise the EDB to obtain
more discriminative edge feature. The edge loss is defined as:

L𝑒𝑑𝑔𝑒 =
2
∑
𝑥,𝑦 (𝑒𝑥,𝑦 × 𝐸𝑥,𝑦)∑

𝑥,𝑦 𝑒
2
𝑥,𝑦 +∑

𝑥,𝑦 𝐸
2
𝑥,𝑦

, (5)

where 𝑒𝑥,𝑦 and 𝐸𝑥,𝑦 represent the values of pixel (𝑥,𝑦) in the coarse
edge map 𝑒 and the edge ground truth 𝐸 obtained by an edge detec-
tor [23], respectively.
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Table 1: Quantitative results on four benchmarks. “F”, “U”, and “W” denote fully-supervised, unsupervised, and weakly-
supervised methods, respectively. For the fully-supervised SOD methods shown in the top, as well as the fully-supervised
COD methods shown in the middle, the best results are marked in bold. For the weakly-supervised and unsupervised methods
shown in the bottom, the best and second best results are marked in Red and Blue, respectively.

Methods Sup.
CAMO CHAMELEON COD10K NC4K

𝑀 ↓ 𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝜔
𝛽
↑ 𝑀 ↓ 𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝜔

𝛽
↑ 𝑀 ↓ 𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝜔

𝛽
↑ 𝑀 ↓ 𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝜔

𝛽
↑

PoolNet [21] CVPR’19 F 0.105 0.729 0.746 0.575 0.054 0.845 0.863 0.691 0.056 0.740 0.776 0.507 0.073 0.784 0.814 0.636
EGNet [46] ICCV’19 F 0.109 0.732 0.800 0.604 0.065 0.797 0.860 0.649 0.061 0.736 0.810 0.517 0.075 0.777 0.841 0.639
SCRN [38] ICCV’19 F 0.090 0.779 0.797 0.643 0.042 0.876 0.889 0.741 0.047 0.789 0.817 0.575 0.059 0.830 0.854 0.698
F3Net [35] AAAI’20 F 0.109 0.711 0.741 0.564 0.047 0.848 0.894 0.744 0.051 0.739 0.795 0.544 0.070 0.780 0.824 0.656
CSNet [9] ECCV’20 F 0.092 0.771 0.794 0.641 0.047 0.855 0.868 0.718 0.047 0.778 0.809 0.569 0.088 0.750 0.773 0.603
UCNet [43] CVPR’20 F 0.094 0.739 0.787 0.640 0.036 0.880 0.930 0.817 0.042 0.776 0.857 0.633 0.055 0.811 0.871 0.729
ITSD [48] CVPR’20 F 0.102 0.750 0.779 0.610 0.057 0.814 0.844 0.662 0.051 0.767 0.808 0.557 0.064 0.811 0.844 0.680

SINet [5] CVPR’20 F 0.092 0.745 0.804 0.644 0.034 0.872 0.936 0.806 0.043 0.776 0.864 0.631 0.058 0.808 0.871 0.723
UGTR [40] ICCV’21 F 0.086 0.784 0.822 0.684 0.031 0.888 0.910 0.794 0.036 0.817 0.852 0.666 0.052 0.839 0.874 0.746
LSR [24] CVPR’21 F 0.080 0.787 0.838 0.696 0.030 0.890 0.935 0.822 0.037 0.804 0.880 0.673 0.048 0.840 0.895 0.766
FAPNet [49] TIP’22 F 0.076 0.815 0.865 0.734 0.028 0.893 0.940 0.825 0.036 0.822 0.888 0.694 0.047 0.851 0.899 0.775
BSANet [50] AAAI’22 F 0.079 0.794 0.851 0.717 0.027 0.895 0.946 0.841 0.034 0.818 0.891 0.699 0.048 0.841 0.897 0.771
ZoomNet [29] CVPR’22 F 0.066 0.820 0.877 0.752 0.023 0.902 0.943 0.845 0.029 0.838 0.888 0.729 0.043 0.853 0.896 0.784
DaCOD [34] MM’23 F 0.051 0.855 0.911 0.796 - - - - 0.028 0.840 0.908 0.729 0.035 0.874 0.923 0.814
FPNet [2] MM’23 F 0.056 0.852 0.905 0.806 0.022 0.914 0.961 0.856 0.029 0.850 0.913 0.748 - - - -
SAM [17] ICCV’23 F 0.132 0.684 0.687 0.606 0.081 0.727 0.734 0.639 0.050 0.783 0.798 0.701 0.078 0.767 0.776 0.696

DUSD [45] CVPR’18 U 0.166 0.551 0.594 0.308 0.129 0.578 0.634 0.316 0.107 0.580 0.646 0.276 - - - -
USPS [27] NeurIPS’19 U 0.207 0.568 0.641 0.399 0.188 0.573 0.631 0.380 0.196 0.519 0.536 0.265 - - - -
SS [44] CVPR’20 W 0.120 0.673 0.762 0.545 0.065 0.772 0.858 0.662 0.065 0.678 0.764 0.469 0.087 0.718 0.800 0.587

SCWS [41] AAAI’21 W 0.104 0.718 0.812 0.614 0.055 0.785 0.890 0.683 0.057 0.716 0.821 0.546 0.070 0.764 0.853 0.668
CRNet [13] AAAI’23 W 0.092 0.735 0.815 0.641 0.046 0.818 0.897 0.744 0.049 0.733 0.832 0.576 0.063 0.775 0.855 0.688

Ours W 0.091 0.750 0.840 0.669 0.044 0.825 0.910 0.749 0.049 0.749 0.840 0.596 0.061 0.793 0.869 0.709

Region Loss. The region loss ensures the predicted result align
with the scribble region in the scribble ground truth. The region
loss in this paper is partial cross-entropy loss, which is defined as:

L𝑟𝑒𝑔 =
∑︁

𝑖∈𝑆𝑟
−𝑦𝑖 log𝑦𝑖 − (1 − 𝑦𝑖 ) log (1 − 𝑦𝑖 ) , (6)

where 𝑆𝑟 is the scribble-labeled pixels set, 𝑦 represents the scribble
ground truth, and 𝑦 represents the predicted result, respectively.

Boundary Localization Loss. The boundary localization loss
aims to guide the network to learn the localization of object bound-
aries. The boundary localization loss consists of the context affinity
loss (L𝑐𝑎), the semantic significance loss (L𝑠𝑠 ), and the consistency
loss (L𝑐𝑠𝑡 ). Detailed definitions of these three losses can be found
in [13]. Overall, the boundary localization loss is defined as:

L𝑏𝑙 = L𝑐𝑎 + L𝑠𝑠 + L𝑐𝑠𝑡 . (7)

Auxiliary Loss. To accelerate the network learning powerful
feature representations, the auxiliary loss composed of the region
loss and the context affinity loss is applied to the multi-level pre-
dicted results𝑀2,𝑀3, and𝑀4. The auxiliary loss is defined as:

L𝑎𝑢𝑥 =
∑︁4

𝑖=2
𝛼𝑖 (L𝑖𝑟𝑒𝑔 + L𝑖𝑐𝑎), (8)

where 𝛼𝑖 is a hyperparameter used to gradually decrease the weight
of𝑀𝑖 by setting its value to be 1 − 0.2 (𝑖 − 1).

Finally, the total loss can be defined as:

L𝑡𝑜𝑡𝑎𝑙 = L𝑟𝑒𝑔 + L𝑏𝑙 + L𝑎𝑢𝑥 + 𝛽L𝑒𝑑𝑔𝑒 , (9)

where 𝛽 is a hyperparameter used to trade off the edge loss with
other losses. In our experiments, 𝛽 is set to 20.

4 Experiments
4.1 Experimental Setup
Datasets. Four popular benchmark datasets including CAMO [18],
CHAMELEON [31], COD10K [5], and NC4K [24] are employed
in our experiments. CAMO includes 1,250 samples in total, from
which 1,000 samples are chosen for training and the rest 250 samples
are used for testing. CHAMELEON contains 76 samples. COD10K
contains 5,066 samples, which are divided into 3,040 training sam-
ples and 2,026 testing samples, respectively. NC4K is a large-scale
COD testing dataset, comprising 4,121 samples. All samples in
CHAMELEON and NC4K are used for testing only.

Evaluation metrics. We apply four widely-used metrics to
evaluate the performance of different methods, including S-measure
(𝑆𝛼 ) [3], mean E-measure (𝐸𝜙 ) [4], weighted F-measure (𝐹𝜔

𝛽
) [25],

and Mean Absolute Error (𝑀) [30]. Larger values of 𝑆𝛼 , 𝐸𝜙 , and 𝐹𝜔𝛽
and smaller values of𝑀 indicate better performance.

Implementation details. Our MiNet is implemented by using
PyTorch framework and accelerated by NVIDIA A40 GPU. Due to
the success of ResNet-50 [12] across multiple tasks [36, 37], we also
use ResNet-50 pre-trained on ImageNet as the backbone, and the pa-
rameters of convolutional layers are initialized by kaiming-normal.
Our model is optimized by SGD with momentum 0.9 and weight
decay 0.0005. During the training phase, the model undergoes 180
epochs with a batch size of 10. We employ the triangle learning rate
schedule with maximum learning rate 0.001. For both training and
inference phases, the images are resized to 320 × 320. Horizontal
flip is performed on input images to augment the training data.
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Figure 6: Qualitative comparison of the proposed MiNet with three fully-supervised COD methods, one scribble-based weakly-
supervised COD method, and another two scribble-based weakly-supervised SOD methods.

4.2 Comparison with State-of-the-Art Methods
Quantitative comparison.Weakly-supervised camouflaged ob-
ject detection (WSCOD) is an emerging research, so we compare our
method with one scribble-based WSCODmethod [13], two scribble-
based weakly-supervised salient object detection (SOD) methods
[41, 44] and two unsupervised SODmethods [27, 45].We also report
the results of 7 fully-supervised SOD methods [9, 21, 35, 38, 43, 46,
48] , 9 fully-supervised COD methods [2, 5, 17, 24, 29, 34, 40, 49, 50].
As shown in Table 1, our proposed MiNet consistently achieves the
best performance compared with other weakly-supervised or unsu-
pervised methods under all the evaluation metrics on four bench-
marks. Compared with the recently presented method CRNet [13],
our MiNet achieves the improvements of 2.2%, 1.9%, 1.8%, and 2.9
% in𝑀 , 𝑆𝛼 , 𝐸𝜙 , and 𝐹𝜔

𝛽
, respectively. In addition, the performance

of our MiNet surpasses that of 5 fully-supervised SOD methods
[9, 21, 35, 46, 48] and is comparable to some fully-supervised COD
methods.

Qualitative comparison. Fig. 6 illustrates the qualitative com-
parisons between our proposed MiNet and several other methods,
including three fully-supervised COD methods, i.e., ZoomNet [29],
UGTR [40], and SINet [5], one scribble-based weakly-supervised
COD method, i.e., CRNet [13], and two scribble-based weakly-
supervised SOD methods, i.e., SCWS [41] and SS [44]. It is evident
from the comparisons that our prediction results exhibit greater
completeness of the camouflaged objects and achieve more accurate
boundary localization compared to other scribble-based weakly-
supervised methods. Furthermore, our proposed method is even
comparable to the fully-supervised COD methods.

4.3 Ablation Study
In this section, we conduct some ablation studies on CAMO and
COD10K to validate the effectiveness of our proposed MiNet.

Impact of region and edge cues. The mutual reinforcement
between region and edge cues significantly enhances the accuracy
of boundary predictions for camouflaged objects. To evaluate their

(a) Input (b) GT (c) w/o region (e) w/o edge (f) MiNet

Figure 7: Visualizations showing region and edge cues effects.

(a) (b) (c) (d) (f)(e) (g)

Figure 8: Visual comparison of variant models incorporating
different core modules. (a) Input; (b) GT; (c) Baseline (B); (d)
B+EDB; (e) B+EDB+RGM; (f) B+EDB+EGM; (g) MiNet.

individual impacts, we design two variants based on MiNet: 1)
‘w/o region cue’ (Table 2 ①), which removes the region feature
𝐹4 and retains only the edge feature 𝐹𝑒 as input for the RGM; 2)
‘w/o edge cue’ (Table 2 ②), which eliminates the edge feature 𝐹𝑒
and employs only region features 𝐹𝑖 as input for the EGM at each
layer. To maintain the structure of RGM and EGM, 𝐹𝑒 is used as the
substitute of 𝐹4 in RGM and 𝐹𝑖 is used as the substitute of 𝑀𝑒 in
EGM. Furthermore, for the variant model ‘w/o edge cue’, the edge
cue refinement net is removed.

As shown in Table 2, removing either region or edge cue leads to
a deterioration in performance. Furthermore, visualizations in Fig.
7 also demonstrate the significance of both edge and region cues in
enhancing the representation learning of object-related boundaries
and mitigating the influence of non-object edge noise.

Effectiveness of core modules.We devise several variant mod-
els built upon the MiNet, so as to analyze the effectiveness of some
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Table 2: Ablation study on region and edge cues.

No. Variants
CAMO COD10K

𝑀 ↓ 𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝜔
𝛽
↑ 𝑀 ↓ 𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝜔

𝛽
↑

① w/o region cue 0.095 0.743 0.828 0.649 0.055 0.740 0.830 0.575
② w/o edge cue 0.099 0.738 0.822 0.645 0.056 0.733 0.827 0.564
③ MiNet (Ours) 0.091 0.750 0.840 0.669 0.049 0.749 0.840 0.596

(a) (b) (c) (d) (e) (f)

Figure 9: Visualization of edge maps (𝑀𝑒 ), which are progres-
sively refined through PLM, PSS, and RCW operations. (a)
Input; (b) GT; (c) Coarse edge feature; (d)𝑀𝑒 with PLM; (e)𝑀𝑒
with PLM and PSS; (f)𝑀𝑒 with PLM, PSS, and RCW (MiNet).

Table 3: Ablation study on modules EDB, RGM, and EGM.

No. EDB RGM EGM
CAMO COD10K

𝑀 ↓ 𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝜔
𝛽
↑ 𝑀 ↓ 𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝜔

𝛽
↑

① 0.101 0.736 0.820 0.642 0.058 0.728 0.819 0.559
② � 0.101 0.740 0.826 0.645 0.057 0.737 0.824 0.568
③ � � 0.095 0.744 0.825 0.658 0.051 0.745 0.837 0.592
④ � � 0.097 0.743 0.827 0.653 0.055 0.740 0.828 0.576
⑤ � � � 0.091 0.750 0.840 0.669 0.049 0.749 0.840 0.596

core modules in the edge cue refinement net (contains the EDB
and RGM) and region-boundary refinement net (contains the EGM).
Specifically, the model after removing EDB, RGM, and EGM from
the MiNet (Table 3 ⑤) serves as the baseline (Table 3 ①), and config-
urations of other variant models are presented in Table 3②-④. Com-
pared with the baseline model (Table 3 ①), all three core modules
bring certain gains. Particularly, compared to the model containing
only EDB and using concatenation instead of EGM (Table 3 ②), the
models incorporating the RGM to refine edge map (Table 3 ③) and
the EGM to refine region features (Table 3 ④) on top of EDB bring
more significant performance gains. Furthermore, when employing
both RGM and EGM to refine edge and region cues (Table 3 ⑤), our
final model achieves 𝐹𝜔

𝛽
improvements of 4.2% and 6.6% on CAMO

and COD10K, respectively, over the baseline model.
The visual comparisons of above models are presented in Fig. 8.

We can observe that the coarse edge features introduced by EDB
(Fig. 8(d)) lead to more accurate localization compared to the base-
line model (Fig. 8(c)), but there are still some inaccurate boundary
localization. Further enhancement is observed after refining the
edge information with the RGM (Fig. 8(e)). Additionally, compared
to simply embedding the edge information into the network using
concatenation operation (Fig. 8(d)), using the EGM for edge infor-
mation guidance yields better performance (Fig. 8(f)). Our final
results (Fig. 8(g)) present the most similarity to GTs.

Table 4: Ablation study on each operation in the RGM.

No. PLM PSS RCW
CAMO COD10K

𝑀 ↓ 𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝜔
𝛽
↑ 𝑀 ↓ 𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝜔

𝛽
↑

① 0.097 0.743 0.827 0.653 0.055 0.740 0.828 0.576
② � 0.094 0.746 0.835 0.657 0.053 0.743 0.833 0.581
③ � � 0.095 0.746 0.828 0.659 0.052 0.745 0.836 0.588
④ � � � 0.091 0.750 0.840 0.669 0.049 0.749 0.840 0.596

Table 5: Ablation study on multi-level interaction manner.

No. Interaction Manner
CAMO COD10K

𝑀 ↓ 𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝜔
𝛽
↑ 𝑀 ↓ 𝑆𝛼 ↑ 𝐸𝜙 ↑ 𝐹𝜔

𝛽
↑

① only deepest-level 0.097 0.735 0.833 0.646 0.056 0.727 0.827 0.558
② only shallowest-level 0.096 0.743 0.831 0.653 0.052 0.740 0.834 0.579
③ multi-level 0.091 0.750 0.840 0.669 0.049 0.749 0.840 0.596

Impact of each operation in the RGM. The PLM, PSS, and
RCW operations within RGM play significant roles for acquiring
discriminative edge map. Therefore, we conduct ablation studies
to investigate their individual impacts. Results reported in Table 4
demonstrate the efficacy of each operation in the RGM.

Fig. 9 shows that the non-object noise can be effectively reduced
through the combination of these operations. More specifically,
based on the coarse edge feature (Fig. 9(c)), the PLM operation first
highlights the object-related region (Fig. 9(d)). Then, the PSS opera-
tion suppresses the non-object noise within edge feature (Fig. 9(e)).
Finally, the RCW operation further enhances the object-related
region, thus obtaining the discriminative edge prior (Fig. 9(f)). The
3-rd row also illustrates an example with blurred boundaries, where
highlighting the nearly absent boundary parts is still challenging.

Efficacy of multi-level interaction.We also investigate the
efficacy of multi-level interaction within the region-boundary re-
finement net. Specifically, we devise two variant models utilizing
single-level interaction: one that interacts edge map𝑀𝑒 and region
feature 𝐹4 solely at the deepest level (Table 5 ①) and another that
interacts edge map 𝑀𝑒 and region feature 𝐹1 exclusively at the
shallowest level (Table 5 ②). The performance of these two vari-
ant models, as depicted in Table 5, are both inferior to the model
employing the multi-level interaction (Table 5 ③).

5 Conclusion
In this paper, we propose a novel Mutual Interaction Network
(MiNet) for scribble-based weakly-supervised camouflaged object
detection. The MiNet draws inspiration from human perception in
discerning camouflaged objects and effectively exploits the mutual
reinforcement between region and edge cues. To achieve this goal,
we design the edge cue refinement net, which includes the EDB for
generating the coarse edge feature and the RGM for highlighting
object-related areas within the edge feature, under the guidance of
region cue. Leveraging the enhanced edge cue, we further devise
the region-boundary refinement net to refine the object boundaries
in an iterative and multi-level manner. Specifically, the EGM is
developed and integrated as a core module in this sub-network
to incorporate edge cue with each level of region feature. Experi-
ments on four benchmarks demonstrate that our proposed MiNet
outperforms the state-of-the-art methods.
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