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The online weighted matching problem is a fundamental problem in machine learn-
ing due to its numerous applications. Despite many efforts in this area, existing
algorithms are either too slow or don’t take deadline (the longest time a node can be
matched) into account. In this paper, we introduce a market model with deadline
first. Next, we present our two optimized algorithms (FastGreedy and FastPost-
ponedGreedy) and offer theoretical proof of the time complexity and correctness
of our algorithms. In FastGreedy algorithm, we have already known if a node is a
buyer or a seller. But in FastPostponedGreedy algorithm, the status of each node is
unknown at first. Then, we generalize a sketching matrix to run the original and
our algorithms on both real data sets and synthetic data sets. Let ϵ ∈ (0, 0.1) denote
the relative error of the real weight of each edge. The competitive ratio of original
Greedy and PostponedGreedy is 1

2 and 1
4 respectively. Based on these two original

algorithms, we proposed FastGreedy and FastPostponedGreedy algorithms and
the competitive ratio of them is 1−ϵ

2 and 1−ϵ
4 respectively. At the same time, our

algorithms run faster than the original two algorithms. Given n nodes in Rd, we
decrease the time complexity from O(nd) to Õ(ϵ−2 · (n+ d)), where for any function
f , we use Õ(f) to denote f · poly(log f).

1. Introduction
The online weighted matching problem is a fundamental problem with numerous applications, e.g.
matching jobs to new graduates [1], matching customers to commodities [2], matching users to
ads [3]. Motivated by these applications, researchers have spent decades designing algorithms to
solve this problem [4–13]. Let n denote the number of items that can be very large in real-world
settings. For example, TikTok pushes billions of advertisements every day. Thus, it is necessary
to find a method to solve this matching problem quickly. Finding the maximum weight is one of
the processes of this method. Our goal is to provide faster algorithms to solve the online weighted
matching problem with deadline by optimizing the part of finding the maximum weight. In a real-
world setting, the weight of the edge between each pair of nodes can show the relationship between
two nodes (for example, the higher the weight is, the more likely the buyer wants to buy the product).
Each node may have multiple entries to describe its attribute, such as the times of searching for
a specific kind of merchandise. And there might exist a time limit called deadline to confine the
longest time a node can be matched. For example, most meat and milk in Amazon need to be sold
before it goes bad. This shows the significance of solving the online weighted matching problem
with deadline. Let d be the original node dimension and dl denote deadline. Sometimes the weight
is already provided, but we offer a new method to calculate the weight of the edge. This helps
accelerate the process of finding the maximum weight.
In this paper, we solve the onlinematching problemwith deadline and inner productweightmatching.
We introduce a sketching matrix to calculate the weight of the edge. By multiplying a vector with
this matrix, we can hugely decrease the number of entries. Thus, it takes much less time to calculate
the norm of the transformed vector. For n nodes with d entries each, we decrease the time complexity
fromO(nd) to Õ(ϵ−2 · (n+ d)). In our experiment part, we also prove that the total matching value of
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our FastGreedy and FastPostponedGreedy is very close to Greedy and PostponedGreedy in practice,
which means our approximated weight is very similar to the real weight.

1.1. Related Work
Online Weighted Bipartite Matching. Online weighted bipartite matching is a fundamental prob-
lem that has been studied by many researchers. [14] provided basic and classical algorithms to
solve this problem. Our experimental results demonstrate that our optimized version achieves
10-20x speedup while maintaining similar matching quality, making it valuable for time-constrained
matching scenarios, like [6, 10, 13, 15–19].
Fast Algorithm via Data Structure. Over the last few years, solving many optimization problems
has boiled down to designing efficient data structures. For example, linear programming [20–25],
empirical risk minimization [26, 27], cutting plane method [28], computing John Ellipsoid [29, 30],
exponential and softmax regression [31–33], integral minimization problem [34], matrix completion
[35], discrepancy [36–38], training over-parameterized neural tangent kernel regression [38–42],
matrix sensing [43, 44].
Roadmap. In Section 2, we introduce the model we use. We provide our two optimized algorithms
and their proof of correctness in Section 3. We use experiments to justify the advantages and the
correctness of our algorithms in Section 4. At last, we draw our conclusion in Section 5.

2. Preliminaries
Notation. We use ∥ · ∥2 to denote ℓ2 norm. For any function f , we use Õ(f) to denote f · poly(log f),
where poly(log f) refers to the polynomial of log f . For integer n, we use [n] to denote {1, 2, . . . , n}.
For a set S, we use |S| to denote its cardinality.

2.1. Model
Now, given a bipartite graph G, we start by defining matching.
Definition 2.1. Let G = (V1, V2, E) denote a bipartite graph with |V1| = |V2|. We say S ⊂ E is a matching
if |S| = |V1|, for each vertex v ∈ V1 there is exactly one edge e in S such that v is one of the vertexes in e, and
for each vertex u ∈ V2 there is exactly one edge e in S such that u is one of the vertexes in e. Let w : E → R
denote a weight function. Let we denote the weight of edge e ∈ E. We say w(S) = ∑

e∈S we is the weight of
matching S. Our goal is to make w(S) as large as possible.
Definition 2.2. Let [n] denote {1, . . . , n}. Let S denote the set of all the sellers. Let B denote the set of all the
buyers. Each set contains n vertices indexed by i ∈ [n]. Each node arrives sequentially time t ∈ [n]. And for a
seller s ∈ S, it can only be matched in dl time after it reaches the market.
Definition 2.3. We create an undirected bipartite graph G(S,B, E). We let vi,j ≥ 0 denote the weight of
edge e ∈ E between node i and node j.
Definition 2.4. Let m : S → B denote a matching function. For a seller s ∈ S, there is a buyer b ∈ B
matched with seller s if m(s) = b.

2.2. Useful Lemma
JL Lemma creates a sketching matrix to accelerate the process of calculating the distance between
two points.
Lemma 2.5 (JL Lemma, [45]). For any X ⊂ Rd of size n, there exists an embedding f : Rd → Rs where
s = O(ϵ−2 log n) such that (1− ϵ) · ∥x− y∥2 ≤ ∥f(x)− f(y)∥2 ≤ (1 + ϵ) · ∥x− y∥2, where x, y ∈ X .

3. Algorithm
In this section, we present the important properties of the algorithms.
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Lemma 3.1 (Restatement of LemmaA.1). StandardGreedy in Algorithm 5 is a 1/2-competitive algorithm.
Lemma 3.2 (Restatement of Lemma A.2). Let wi,j denote the real weight of the edge between seller i and
buyer j, and w̃i,j denote the approximated weight. Let ϵ ∈ (0, 0.1) denote the precision parameter. If for all
ϵ, there exists an α-approximation algorithm for the online weighted matching problem and a δ > 0, where
(1− δ)wi,j ≤ w̃i,j ≤ (1 + δ)wi,j for any seller node i and buyer node j, there exists a greedy algorithm with
competitive ratio α(1− ϵ).
Lemma 3.3 (Restatement of Lemma A.3). If a node is determined to be a seller or a buyer with 1/2
probability in StandardGreedy in Algorithm 5, then this new StandardPostponedGreedy algorithm is a
1/4-competitive algorithm.
Theorem 3.4. For precision parameter ϵ ∈ (0, 0.1), FastGreedy is a 1−ϵ

2 -competitive algorithm.

Proof. According to Lemma 3.1, there exists a 1
2 -competitive algorithm. According to Lemma 2.5, we

create a sketching matrix M ∈ Rs×d, let f(x) = Mx and wi = ∥yj − xi∥2 denote the real matching
weight of the edge between seller node xi and buyer node yj , and w̃i,j = ∥f(yj)− f(xi)∥2 denote
the approximated weight of the edge between seller node xi and buyer node yj , then there will be
(1− ϵ)wi,j ≤ w̃i,j ≤ (1 + ϵ)wi,j for ∀i, j ∈ [n]. Then according to Lemma 3.2, we can conclude that
the competitive ratio of FastGreedy is 1−ϵ

2 .
Theorem 3.5 (Restatement of Theorem A.4, Correctness of FastPostponedGreedy in Algorithm 3
and Algorithm 4). FastPostponedGreedy is a 1−ϵ

4 -competitive algorithm.
Theorem 3.6. Consider the online bipartite matching problemwith the inner product weight, for any ϵ ∈ (0, 1),
δ ∈ (0, 1), there exists a data structure FastGreedy that usesO(nd+ϵ−2(n+d) log(n/δ)) space. FastGreedy
supports the following operations

• Init({x1, x2, . . . , xn} ⊆ Rd, ϵ ∈ (0, 1), δ ∈ (0, 1)). Given a series of offline points x1, x2, . . . , xn,
a precision parameter ϵ and a failure tolerance δ as inputs, this data structure preprocesses in
O(ϵ−2nd log(n/δ))

• Update(y ∈ Rd). It takes an online buyer point y as inputs and runs in O(ϵ−2(n+ d) log(n/δ))
time. Let t ∈ N denote the arrival time of any online point.

• Query(y ∈ Rd). Given a query point y ∈ Rd, the Query approximately estimates the Euclidean
distances from y to all the data points x1, x2, . . . , xn ∈ Rd in time O(ϵ−2(n + d) log(n/δ)). For
∀i ∈ [n], it provides estimates estimates {w̃i}ni=1 such that: (1−ϵ)∥y−xi∥2 ≤ w̃i ≤ (1+ϵ)∥y−xi∥2.

• TotalWeight.It outputs the matching value between offline points and n known online points in
O(1) time. It has competitive ratio 1−ϵ

2 with probability at least 1− δ.

We prove the data structure (see Algorithm 1 and Algorithm 2) satisfies the requirements of Theorem
3.6 by proving the following lemmas.
Lemma 3.7. The procedure Init (Algorithm 1) in Theorem 3.6 runs in time O(ϵ−2nd log(n/δ)).

Proof. s = O(ϵ−2 log(n/δ)) is the dimension after transformation. Line 14 is assigning each element
of the sketching matrix, and it takes O(sd) = O(ϵ−2d log(n/δ)) time since it is a Rs×d matrix. Line
20 is multiplying the sketching matrix and the vector made up of each coordinate of a node, and it
will take O(sd) = O(ϵ−2d log(n/δ)). Since we have n nodes to deal with, this whole process will take
O(nsd) = O(ϵ−2nd log(n/δ)) time. After carefully analyzing the algorithm, it can be deduced that
the overall running time complexity is O(sd+ nsd) = O(ϵ−2nd log(n/δ)).

Lemma 3.8. The procedureUpdate (Algorithm 2) in Theorem 3.6 runs in timeO(ϵ−2(n+d) log(n/δ)). The
total matching value p maintains a 1−ϵ

2 -approximate matching before calling Update, then p also maintains a
1−ϵ
2 -approximate matching after calling Update with probability at least 1− δ.

Proof. s = O(ϵ−2 log(n/δ)) is the dimension after transformation. We call Update when a new node
y comes. If y is a buyer node, line 9 is calling Query, which takes O(ϵ−2(n+ d) log(n/δ)) time. Line
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Algorithm 1 Initialization Of Fast Greedy
1: data structure FastGreedy
2: members
3: x1, x2, . . . xn ∈ Rd are nodes in the market, and x̃1, x̃2, . . . x̃n ∈ Rs are nodes after sketching.
4: mi is the vertex matching with vertex i, and wi is the matching value on xi.
5: p andM are the matching value and the sketching matrix, respectively.
6: Let d1, d2, . . . dn ∈ N be the deadline for each node ▷ Each offline point xi can only be

matched during time di.
7: flag[n] ▷ flag[i] decides if node i can be matched.
8: end members
9: procedure Init(x1, . . . , xn, ϵ, δ)
10: p← 0
11: s← O(ϵ−2 log(n/δ))
12: for i = 1, 2, . . . , s do
13: for j = 1, 2, . . . , d do
14: sample M [i][j] from {−1/√s,+1/

√
s} each with 1/2 probability

15: end for
16: end for
17: for i = 1, 2, . . . , n do
18: wi ← 0
19: flag[i]← 1
20: x̃i = Mxi

21: end for
22: end procedure

Algorithm 2 Update Of Fast Greedy
1: procedure Update(y ∈ Rd)
2: if the present time is di then
3: flag[i]← 0
4: end if
5: if y is i-th seller node then
6: flag[i]← 1
7: end if
8: if y is a buyer node then
9: {w̃i}ni=1 ← Query(y)
10: i0 ← argmaxflag[i]=1{w̃i − wi}
11: mi0 ← y
12: p← p+max{wi0 , w̃i0} − wi0
13: wi0 ← max{wi0 , w̃i0}
14: end if
15: end procedure
16: procedure Query( y ∈ Rd)
17: ỹ = My
18: for i = 1, 2, . . . , n do
19: if flag[i] = 1 then w̃i ← ∥ỹ − x̃i∥2
20: end if
21: end for
22: return {w̃i}ni=1
23: end procedure
24: procedure TotalWeight
25: return p
26: end procedure
27: end data structure

10 is finding i0 which makes w̃i − wi maximum if that vertex can still be matched, which takes O(n)
time. So, in total, the running time is O(ϵ−2(n+ d) log(n/δ)).
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Then we will prove the second statement. We suppose the total matching value pmaintains a 1−ϵ
2 -

approximate matching before calling Update. From Lemma 3.9, we can know that after we call
Query, we can get {w̃i}ni=1 and for ∀i ∈ [n], (1− ϵ)∥y− xi∥2 ≤ w̃i ≤ (1 + ϵ)∥y− xi∥2 with probability
1− δ at least. According to Lemma 3.1 and Lemma 3.2, the competitive ratio of FastGreedy is still
1−ϵ
2 after running Query. Therefore, the total matching value p still maintains a 1−ϵ

2 -approximate
matching with probability at least 1− δ.
Lemma 3.9. The procedure Query (Algorithm 2) in Theorem 3.6 runs in time O(ϵ−2(n+ d) log(n/δ)). For
∀i ∈ [n], it provides estimates estimates {w̃i}ni=1 such that: (1− ϵ)∥y− xi∥2 ≤ w̃i ≤ (1 + ϵ)∥y− xi∥2, with
probability at least 1− δ.

Proof. Line 17 is multiplying the sketching matrix with the vector made up of each coordinate
of the new buyer node y, which takes O(sd) = O(ϵ−2d log(n/δ)) time. Line 19 is calculating the
weight of edge between the new buyer node y and the seller node still in the market, which takes
O(s) = O(ϵ−2 log(n/δ)) time. Since we need to calculate for n times at most, the whole process will
take O(ns) = O(ϵ−2n log(n/δ)) time. After carefully analyzing the algorithm, it can be deduced that
the overall running time complexity is O(sd+ ns) = O(ϵ−2(n+ d) log(n/δ)).

According to Lemma 2.5, we create a sketching matrixM ∈ Rs×d, let f(x) = Mx and wi = ∥y − xi∥2
denote the real matching weight of the edge between seller node i and buyer node y, and w̃i =
∥f(y)− f(xi)∥2 denote the approximated weight of the edge between seller node i and buyer node y,
then there will be (1− ϵ)∥y − xi∥2 ≤ w̃i ≤ (1 + ϵ)∥y − xi∥2 for ∀i ∈ [n]. Since the failure parameter
is δ, for i ∈ [n] it will provide (1 − ϵ)∥y − xi∥2 ≤ w̃i ≤ (1 + ϵ)∥y − xi∥2, with probability at least
1− δ.
Lemma 3.10 (Restatement of Lemma A.5). The procedure TotalWeight (Algorithm 2) in Theorem 3.6
runs in time O(1). It outputs a 1−ϵ

2 -approximate matching with probability at least 1− δ,
Lemma 3.11 (Restatement of LemmaA.6, Space storage for FastGreedy in Algorithm 1 andAlgorithm
2). The space storage for FastGreedy in Algorithm 1 and Algorithm 2 is O(nd+ ϵ−2(n+ d) log(n/δ)).
Theorem 3.12. Consider the online bipartite matching problem with the inner product weight, for any ϵ ∈
(0, 1), δ ∈ (0, 1) there exists a data structure FastPostponedGreedy that usesO(nd+ ϵ−2(n+ d) log(n/δ))
space. Assuming there are no offline points at first, each of the online points x1, x2, . . . , xn will be determined
if it is a buyer node or a seller node when it needs to leave the market. FastPostponedGreedy supports the
following operations

• Init(ϵ ∈ (0, 1), δ ∈ (0, 1)). Given a precision parameter ϵ and a failure tolerance δ as inputs, this
data structure preprocesses in O(ϵ−2d log(n/δ)) time.

• Update(xi ∈ Rd). It takes an online point xi as inputs and runs in O(ϵ−2(n+ d) log(n/δ)) time.
Let t ∈ N denote the arrival time of any online point. Query approximately estimates the Euclidean
distances from bx̃i

to all the data points sx̃1
, sx̃2

, . . . , sx̃n
∈ Rd in time O(ϵ−2(n + d) log(n/δ)).

For ∀i ∈ [n], it provides estimates estimates {w̃j}nj=1 such that: (1 − ϵ)∥sxj
− bxi

∥2 ≤ w̃j ≤
(1 + ϵ)∥sxj − bxi∥2.

• TotalWeight. It outputs the matching value between offline points and n known online points in
O(1) time. It has competitive ratio 1−ϵ

4 with probability at least 1− δ.

To establish the validity of the data structure utilized in Algorithm 3 and its adherence to the
conditions specified in Theorem 3.12, we provide a series of lemmas for verification. These lemmas
serve as intermediate steps in the overall proof.
Lemma 3.13. The procedure Init (Algorithm 3) in Theorem 3.12 runs in time O(ϵ−2d log(n/δ)).

Proof. s = O(ϵ−2 log(n/δ)) is the dimension after transformation. Line 15 is assigning each element
of the sketching matrix, and it takes O(sd) = O(ϵ−2d log(n/δ)) time since it is a Rs×d matrix. After
carefully analyzing the algorithm, it can be deduced that the overall running time complexity is
O(sd) = O(ϵ−2d log(n/δ)).
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Algorithm 3 Initialization Of Fast Postponed Greedy
1: data structure FastPostponedGreedy
2: members
3: x1, x2, . . . xn ∈ Rd ▷ Nodes in the market
4: mi is the vertex matching with vertex i, and wi is the matching value on xi.
5: p andM are the matching value and the sketching matrix, respectively.
6: Let d1, d2, . . . dn ∈ N be the deadline for each node ▷ Each offline point xi can only be

matched during time di.
7: end members
8: procedure Init(ϵ, δ)
9: p← 0
10: s← O(ϵ−2 log(n/δ))
11: S0 ← ∅.
12: B0 ← ∅.
13: for i = 1, 2, . . . , s do
14: for j = 1, 2, . . . , d do
15: sample M [i][j] from {−1/√s,+1/

√
s} each with 1/2 probability

16: end for
17: end for
18: end procedure

Lemma 3.14 (Restatement of Lemma A.7). The procedure Update (Algorithm 3) in Theorem 3.12 runs
in time O(ϵ−2(n+ d) log(n/δ)). The total matching value p maintains a 1−ϵ

4 -approximate matching before
calling Update, then p also maintains a 1−ϵ

4 -approximate matching after calling Update with probability at
least 1− δ.
Lemma 3.15 (Restatement of Lemma A.8). The procedure Query (Algorithm 4) in Theorem 3.12 runs in
time O(ϵ−2n log(n/δ)). For ∀j ∈ [n], it provides estimates {w̃j}nj=1 such that: (1− ϵ)∥sxj

− bxi
∥2 ≤ w̃j ≤

(1 + ϵ)∥sxj − bxi∥2, with probability at least 1− δ.
Lemma 3.16 (Restatement of Lemma A.9). The procedure TotalWeight (Algorithm 4) in Theorem 3.12
runs O(1) time. It outputs a 1−ϵ

2 -approximate matching with probability at least 1− δ.
Lemma 3.17 (Restatement of Lemma A.10, Space storage for FastPostponedGreedy in Algorithm 3
and Algorithm 4). The space storage for FastPostponedGreedy is O(nd+ ϵ−2(n+ d) log(n/δ)).

4. Experiments
After presenting these theoretical analyses, we now move on to the experiments.
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(b) PGreedy and Fast PGreedy Algorithm
Figure 1: The relationship between running time and parameter s and dl on GECRS data set. The
parameters are defined as follows: n is the node count, d is the original node dimension, s is the
dimension after transformation, and dl is the maximum matching time per node (referred to as
the deadline). Here GECRS denotes gene expression cancer RNA-Seq Data Set. PGreedy denotes
Postponed Greedy.

Purpose. This section furnishes a systematic evaluation of our optimized algorithms’ performance
using real-world data sets. We employ a sketching matrix to curtail the vector entries, thus expediting
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Algorithm 4 Update Of Fast Postponed Greedy
1: procedure Update(xi ∈ Rd)
2: Set the status of xi to be undetermined.
3: x̃i ←Mxi

4: St ← St−1 ∪ sx̃i
▷ Add a seller copy.

5: msx̃i
← null

6: wi ← 0
7: Bt ← Bt−1 ∪ bx̃i

▷ Add a buyer copy
8: if the present time is di then
9: if status of point xi is undetermined then
10: set it to be either seller or buyer with probability 1/2 each.
11: end if
12: if mx̃i

̸= null then
13: bx̃l

← mx̃i
.

14: if xi is a seller then
15: p← p+ w̃i

16: Finalize the matching of point xi with point xl. Set the status of point xl to be a
buyer.

17: end if
18: if xi is a buyer then
19: Set the status of point xl to be a seller.
20: end if
21: end if
22: St ← St\{sx̃i

} ▷ Remove the seller and buyer copies.
23: Bt ← Bt\{bx̃i

}
24: end if
25: {w̃j}nj=1 ← Query(bx̃i

)
26: j0 ← argmaxsx̃j

∈St
{w̃j − wj}

27: mx̃j0
← bx̃i

28: wj0 ← max{wj0 , w̃j0}
29: end procedure
30: procedure Query( bx̃i

∈ Rs)
31: for j = 1, 2, . . . , n do
32: if sx̃j

∈ St then
33: w̃j ← ∥bx̃i

− sx̃j
∥2

34: end if
35: end for
36: return {w̃j}nj=1

37: end procedure
38: procedure TotalWeight
39: return p
40: end procedure
41: end data structure

Table 1: The parameters are defined as follows: n is the node count, d is the original node dimension,
s is the dimension after transformation, and dl is the maximum matching time per node (referred to
as the deadline). Here GECRS denotes gene expression cancer RNA-Seq Data Set. Let ARBT denote
a study of Asian Religious and Biblical Texts Data Set.

Dataset Names n d s dl
GECRS 801 20351 [15, 20, 25, 30, 35] [50, 100, 150, 200, 250]
Arcene 700 10000 [20, 30, 40, 50, 60] [200, 300, 400, 500, 600]
ARBT 590 8265 [10, 20, 30, 40, 50] [50, 100, 150, 200, 250]
REJAFADA 1996 6826 [20, 30, 40, 50, 60] [50, 100, 150, 200, 250]

7



20 30 40 50 60
parameter s

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

ru
nn

in
g 

tim
e(

s)

n = 700, d = 10000
greedy
fast greedy

200 300 400 500 600
parameter dl

1

2

3

4

5

6

ru
nn

in
g 

tim
e(

s)

n = 700, s = 40, d = 10000
greedy
fast greedy

(a) Greedy and Fast Greedy Algorithm
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(b) PGreedy and Fast PGreedy Algorithm
Figure 2: The relationship between running time and parameter s and dl on Arcene data set. The
parameters are defined as follows: n is the node count, d is the original node dimension, s is the
dimension after transformation, and dl is the maximum matching time per node (referred to as the
deadline).
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Figure 3: The relationship between running time and parameter s and dl on ARBT data set. The
parameters are defined as follows: n is the node count, d is the original node dimension, s is the
dimension after transformation, and dl is the maximum matching time per node (referred to as the
deadline). Let ARBT denote a study of Asian Religious and Biblical Texts Data Set.
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Figure 4: The relationship between running time and parameter s and dl on REJAFADA data set.
The parameters are defined as follows: n is the node count, d is the original node dimension, s is the
dimension after transformation, and dl is the maximum matching time per node (referred to as the
deadline).

the resolution of online weighted bipartite problems amidst substantial data quantities. Detailed
accounts of the synthetic data set experimentation are provided in the appendix. Here, we encapsulate
the results obtained from real-world data sets:

• For small enough s, our algorithms demonstrate superior speed compared to their original
counterparts.

• All four algorithms exhibit linear escalation in running time with an increase in n.
• For our algorithms, the running time escalates linearly with s, an effect absent in the original

algorithms.
• The original algorithms exhibit a linear increase in running time with d, and our algorithms

follow suit when n and s are substantially smaller compared to d.
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• Denoting the parameter deadline as dl, it is observed that the running time of all four
algorithms intensifies with dl.

Configuration. Our computations utilize an apparatus with an AMD Ryzen 7 4800H CPU and an
RTX 2060 GPU, implemented on a laptop. The device operates on the Windows 11 Pro system, with
Python serving as the programming language. We represent the distance weights as ℓ2. The symbol
n signifies the count of vectors in both partitions of the bipartite graph, thereby implying an equal
quantity of buyers and sellers.
Real data sets. In this part, we run all four algorithms on real data sets from the UCI library [46] to
observe if our algorithms are better than the original ones in a real-world setting.

• Gene expression cancer RNA-Seq Data Set [47]: This data set is structured with samples
stored in a row-wise manner. Each sample’s attributes are its RNA-Seq gene expression
levels, measured via the Illumina HiSeq platform.

• Arcene Data Set [48]: The Arcene data set is derived from three merged mass-spectrometry
data sets, ensuring a sufficient quantity of training and testing data for a benchmark. The
original features represent the abundance of proteins within human sera corresponding
to a given mass value. These features are used to distinguish cancer patients from healthy
individuals. Many distractor features, referred to as ’probes’ and devoid of predictive power,
have been included. Both features and patterns have been randomized.

• A study of Asian Religious and Biblical Texts Data Set [49]: This data set encompasses 580
instances, each with 8265 attributes. The majority of the sacred texts in the data set were
sourced from Project Gutenberg.

• REJAFADA Data Set [50]: The REJAFADA (Retrieval of Jar Files Applied to Dynamic Analy-
sis) is a data set designed for the classification of Jar files as either benign or malware. It
consists of 998 malware Jar files and an equal number of benign Jar files.

Results for Real Data Set. We run Greedy, FastGreedy, PostponedGreedy (PGreedy for shorthand
in Figure 1, 2, 3, 4.) and FastPostponedGreedy (Fast PGreedy for shorthand in Figure 1, 2, 3, 4.)
algorithms on GECRS, Arcene, ARBT, and REJAFADA data sets respectively. Specifically, Fig. 1a
and Fig. 1b illustrate the relationship between the running time of the four algorithms and the
parameters s and dl on the GECRS data set, respectively. Similarly, Fig. 2a and Fig. 2b showcase
the running time characteristics of the algorithms with respect to the parameters s and dl on the
Arcene data set. Analogously, Fig. 3a and Fig. 3b represent the relationship between the running time
and parameters s and dl on the ARBT data set. Lastly, Fig. 4a and Fig. 4b exhibit the running time
variations concerning the parameters s and dl on the REJAFADA data set. The results consistently
indicate that our proposed FastGreedy and FastPostponedGreedy algorithms exhibit significantly
faster performance compared to the original Greedy and PostponedGreedy algorithms when applied
to real data sets. These findings highlight the superiority of our proposed algorithms in terms of
efficiency when dealing with real-world data scenarios.

5. Conclusion
In this paper, we study the online matching problem with deadline and solve it with a sketching
matrix. We provided a new way to compute the weight of the edge between two nodes in a bipartite.
Compared with original algorithms, our algorithms optimize the time complexity from O(nd) to
Õ(ϵ−2 · (n+ d)). Furthermore, the total weight of our algorithms is very close to that of the original
algorithms respectively, which means the error caused by the sketching matrix is very small. Our
algorithms can also be used in areas like recommending short videos to users.
For matching nodes with many entries, the experiment result shows that our algorithms only take us
a little time if parameter s is small enough. We think generalizing our techniques to other variations
of the matching problem could be an interesting future direction. We remark that implementing our
algorithm would have carbon release to the environment.
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Appendix
Roadmap. In Section A, we also provide more proof, such as Theorem 3.5, Lemma 3.11 and Lemma
3.17 which prove the correctness of FastPostponedGreedy, the space storage of FastGreedy, and the
space storage of FastPostponedGreedy respectively.
In Section B, to illustrate the impact of various parameters, namely n, s, d, and dl, we present
additional experimental results. The parameters are defined as follows: n is the node count, d is the
original node dimension, s is the dimension after transformation, and dl is the maximum matching
time per node (referred to as the deadline).

A. Missing Proofs
In Section A.1, we provide the proof for Lemma 3.1. In Section A.2, we provide the proof for
Lemma 3.2. In Section A.3, we provide the proof for Lemma 3.3. In Section A.4, we provide the proof
for Theorem 3.5. In Section A.5, we provide the proof for Lemma 3.10. In Section A.6, we provide
the proof for Lemma 3.11. In Section A.7, we provide the proof for Lemma 3.14. In Section A.8,
we provide the proof for Lemma 3.15. In Section A.9, we provide the proof for Lemma 3.16. In
Section A.10, we provide the proof for Lemma 3.17.

A.1. Proof of Lemma 3.1
Lemma A.1 (Restatement of Lemma 3.1). StandardGreedy in Algorithm 5 is a 1/2-competitive algo-
rithm.

Proof. We use ws to denote the current matching value of seller s. Let ws,b denote the weight of the
edge between the buyer node and s-th seller node. Let i(b) be the increment of matching value when
buyer b arrives: i(b) = maxs∈S{ws,b, ws} −ws. Let vf (s) be the final matching value for a seller node
s. If we add all the increments of matching value that every buyer node brings, we will get the sum of
every seller node’s matching value. ∑b∈B i(b) =

∑
s∈S vf (s). Let alg be the weight of the matching

in StandardGreedy. Let alg =
∑

s∈S vf (s). Let opt be the optimal matching weight of any matching
that can be constructed. Let λi denote the arrival time of node i. We need to do the following things
to acquire the maximum of opt:

minimize
∑
i∈[n]

ai

subject to ai ≥ 0 ∀i ∈ [n]

|λi − λj | ≤ dl, ∀i < j

ai + aj ≥ wi,j ∀i, j ∈ [n].

During the whole process, we update the value of ws only when ws ≤ ws,b. So vf (s) ≥ ws. Since i(b)
is the maximum of ws,b − ws, we can conclude that i(b) ≥ ws,b − ws. Therefore, vf (s) + i(b) ≥ ws,b

and {vf (s)}s∈S ∪ {i(b)}b∈B is a feasible solution.
We conclude

opt ≤
∑
b∈B

i(b) +
∑
s∈S

vf (s) = 2
∑
s∈S

vf (s) = 2alg,

where the first step follows from vf (s) + i(b) ≥ ws,b, the second step follows from ∑
s∈S vf (s) =∑

b∈B i(b), and the last step follows from alg =
∑

s∈S vf (s).

A.2. Proof of Lemma 3.2
Lemma A.2 (Restatement of Lemma 3.2). Let wi,j denote the real weight of the edge between seller i and
buyer j, and w̃i,j denote the approximated weight. Let ϵ ∈ (0, 0.1) denote the precision parameter. If for all
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ϵ, there exists an α-approximation algorithm for the online weighted matching problem and a δ > 0, where
(1− δ)wi,j ≤ w̃i,j ≤ (1 + δ)wi,j for any seller node i and buyer node j, there exists a greedy algorithm with
competitive ratio α(1− ϵ).

Proof. Since ϵ ∈ (0, 0.1) and we have (1 − δ)wi,j ≤ w̃i,j ≤ (1 + δ)wi,j . Let alg and opt denote the
matching weight and optimal weight of the original problem G = (S,B, E) respectively. Then we
define alg′ is the matching weight of another problem G′ = (S,B, E′), and our algorithm gives the
optimal weight opt′. Since for each edge w̃i,j ≤ (1 + δ)wi,j and alg =

∑
i∈S
j∈B

wi,j , we can know that
alg′ ≤ (1 + δ)alg. Since for each edge (1 − δ)wi,j ≤ w̃i,j and opt =

∑
i∈S
j∈B

wi,j , we can know that
opt′ ≥ (1− δ)opt. Thus,

alg ≥ 1

1 + δ
alg′ ≥ α

1 + δ
opt′ ≥ α(1− δ)

1 + δ
opt ≥ α(1− 2δ)opt,

where the first step follows from alg′ ≤ (1 + δ)alg, the second step follows from there exists a
α-approximation greedy algorithm, the third step follows from opt′ ≥ (1− δ)opt, and the last step
follows from α(1−δ)

1+δ ≥ α(1−δ)2

1−δ2 ≥ α(1−δ)2

2 ≥ α(1− 2δ). Then we can draw our conclusion because we
can replace 2δ with a new ϵ = 2δ in the last step.

A.3. Proof of Lemma 3.3
Lemma A.3 (Restatement of Lemma 3.3). If a node is determined to be a seller or a buyer with 1/2
probability in StandardGreedy in Algorithm 5, then this new StandardPostponedGreedy algorithm is a
1/4-competitive algorithm.

Proof. Let fpg denote the weight constructed by FastPostponedGreedy algorithm. Let alg and opt
denote the matching weight and optimal weight of original problem G = (S,B,E) respectively.
Since the probability of a node being a seller is 1/2, we can know that

fpg = E[
∑
i∈S

wi,j ] =
1

2

∑
i∈S,j∈B

wi,j =
1

2
alg ≥ 1

4
opt

where the first step follows from the definition of fpg, the second step follows from the probability of
a node being a seller is 1/2, the third step follows from alg =

∑
i∈S,j∈B wi,j , and the last step follows

from Lemma 3.1.

A.4. Proof of Theorem 3.5
Theorem A.4 (Restatement of Theorem 3.5, Correctness of FastPostponedGreedy in Algorithm 3
and Algorithm 4). FastPostponedGreedy is a 1−ϵ

4 -competitive algorithm.

Proof. According to Lemma 3.3, there exists a 1
4 -competitive algorithm. According to Lemma 2.5, we

create a sketching matrix M ∈ Rs×d, let f(x) = Mx and wi = ∥yj − xi∥2 denote the real matching
weight of the edge between seller node xi and buyer node yj , and w̃i,j = ∥f(yj)− f(xi)∥2 denote
the approximated weight of the edge between seller node xi and buyer node yj , then there will
be (1 − ϵ)wi,j ≤ w̃i,j ≤ (1 + ϵ)wi,j for ∀i, j ∈ [n]. Based on the implications of Lemma 3.2, we can
confidently assert that the competitive ratio of FastPostponedGreedy is 1−ϵ

4 .

A.5. Proof of Lemma 3.10
Lemma A.5 (Restatement of Lemma 3.10). The procedure TotalWeight (Algorithm 2) in Theorem 3.6
runs in time O(1). It outputs a 1−ϵ

2 -approximate matching with probability at least 1− δ,
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Proof. Line 25 is returning the total matching value p which has already been calculated after calling
Update, which requires O(1) time.
The analysis demonstrates that the overall running time complexity is constant, denoted as O(1).
According to Lemma 3.8, we can know that the total weight pmaintains a 1−ϵ

2 -approximate matching
after calling Update. So when we call TotalWeight, it will output a 1−ϵ

2 -approximate matching if it
succeeds.
The probability of successful running of Update is at least 1− δ, so the probability of success is 1− δ
at least.

A.6. Proof of Lemma 3.11
LemmaA.6 (Restatement of Lemma 3.11, Space storage for FastGreedy in Algorithm 1 andAlgorithm
2 ). The space storage for FastGreedy in Algorithm 1 and Algorithm 2 is O(nd+ ϵ−2D2(n+ d) log(n/δ)).

Proof. s = O(ϵ−2 log(n/δ)) is the dimension after transformation. In FastGreedy, we need to store a
Rs×d sketching matrix, multiple arrays with n elements, two point sets containing n nodes with d
dimensions, and a point set containing n nodes with s dimensions. The total storage is

O(n+ sd+ nd+ ns) = O(nd+ ϵ−2(n+ d) log(n/δ)).

A.7. Proof of Lemma 3.14
Lemma A.7 (Restatement of Lemma 3.14). The procedure Update (Algorithm 3) in Theorem 3.12 runs
in time O(ϵ−2(n+ d) log(n/δ)). The total matching value p maintains a 1−ϵ

4 -approximate matching before
calling Update, then p also maintains a 1−ϵ

4 -approximate matching after calling Update with probability at
least 1− δ.

Proof. s = O(ϵ−2 log(n/δ)) is the dimension after transformation. We call Update when a new node
xi comes. Line 3 is multiplying the sketching matrix and the vector made up of each coordinate
of a node, and it will take O(sd) = O(ϵ−2d log(n/δ)) time. Line 25 is calling Query, which requires
O(ϵ−2n log(n/δ)) time. Line 26 is finding j0 which makes w̃j − wj maximum if that vertex can still
be matched, which requires O(n) time.
So, in total, the running time is

O(sd+ ns+ n) = O(ϵ−2(n+ d) log(n/δ)).

Then we will prove the second statement.
We suppose the total matching value pmaintains a 1−ϵ

4 -approximate matching before calling Update.
From Lemma 3.15, we can know that after we call Query, we can get {w̃j}nj=1 and for ∀j ∈ [n](1−
ϵ)∥sxj

− bxi
∥2 ≤ w̃j ≤ (1 + ϵ)∥sxj

− bxi
∥2 with probability 1 − δ at least. According to Lemma

3.3 and Lemma 3.2, the competitive ratio of FastPostponedGreedy is still 1−ϵ
4 after running Query.

Therefore, the total matching value p still maintains a 1−ϵ
4 -approximate matching with probability at

least 1− δ.

A.8. Proof of Lemma 3.15
Lemma A.8 (Restatement of Lemma 3.15). The procedure Query (Algorithm 4) in Theorem 3.12 runs in
time O(ϵ−2n log(n/δ)). For ∀j ∈ [n], it provides estimates estimates {w̃j}nj=1 such that:

(1− ϵ)∥sxj
− bxi

∥2 ≤ w̃j ≤ (1 + ϵ)∥sxj
− bxi

∥2

with probability at least 1− δ.
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Proof. Line 33 is calculating the weight of the edge between the buyer node copy bxi and the seller
node still in the market, which requires O(s) = O(ϵ−2 log(n/δ)) time. Since we need to calculate for
n times at most, the whole process will take O(ns) = O(ϵ−2n log(n/δ)) time.
So, in total, the running time is O(ns) = O(ϵ−2(n+ d) log(n/δ)).

According to Lemma 2.5, we create a sketchingmatrixM ∈ Rs×d, let f(x) = Mx andwj = ∥sxj
−bxi

∥2
denote the real matching value of seller node sxj

when buyer node bxi
comes, and w̃j = ∥f(bxi

)−
f(sxj )∥2 denote the approximated matching value of seller node sxj when buyer node bxi comes,
then there will be (1− ϵ)∥sxj − bxi∥2 ≤ w̃j ≤ (1 + ϵ)∥sxj − bxi∥2 for ∀i ∈ [n].
Since the failure parameter is δ, for j ∈ [n] it will provide

(1− ϵ)∥sxj
− bxi

∥2 ≤ w̃j ≤ (1 + ϵ)∥sxj
− bxi

∥2

with probability at least 1− δ.

A.9. Proof of Lemma 3.16

Lemma A.9 (Restatement of Lemma 3.16). The procedure TotalWeight (in Algorithm 4) in Theorem
3.12 runs in time O(1). It outputs a 1−ϵ

2 -approximate matching with probability at least 1− δ,

Proof. Line 39 is returning the total matching value p which has already been calculated after calling
Update, which requires O(1) time.
The analysis demonstrates that the overall running time complexity is constant, denoted as O(1).
According to Lemma 3.14, we can know that the total weight pmaintains a 1−ϵ

2 -approximatematching
after calling Update. So when we call TotalWeight, it will output a 1−ϵ

4 -approximate matching if it
succeeds.
The probability of successful running of Update is at least 1− δ, so the probability of success is 1− δ
at least.

A.10. Proof of Lemma 3.17

Lemma A.10 (Restatement of Lemma 3.17, Space storage for FastPostponedGreedy in Algorithm 3
and Algorithm 4). The space storage for FastPostponedGreedy is O(nd+ ϵ−2D2(n+ d) log(n/δ)).

Proof. s = O(ϵ−2D2 log(n/δ)) is the dimension after transformation. In FastPostponedGreedy, we
need to store a Rs×d sketching matrix, multiple arrays with n elements, a point set containing n
nodes with d dimensions, and two point sets containing n nodes with s dimensions. The total storage
is

O(n+ sd+ nd+ ns) = O(nd+ ϵ−2D2(n+ d) log(n/δ)).

B. More Experiments
Data Generation. At the beginning, we generate n random vectors of x1, · · · , xn ∈ Rd for seller set
and y1, · · · , yn ∈ Rd for buyer set. Each vector follows the subsequent procedure:

• Each coordinate of the vector is selected uniformly from the interval [−1, 1].
• Normalization is applied to each vector such that its ℓ2 norm becomes 1.
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Algorithm 5 Standard Greedy Algorithm
1: data structure StandardGreedy
2: members
3: x1, x2, . . . xn ∈ Rd ▷ Nodes in the market
4: wi ▷ Matching value on xi seller node
5: m(i) ▷ The vertex matching with vertex i
6: p ▷ Total matching value
7: Let d1, d2, . . . dn ∈ N be the deadline for each node ▷ Each offline point xi can only be

matched during time di.
8: flag[n] ▷ flag[i] decides if node i can be matched.
9: end members
10: procedure Init(x1, . . . , xn,)
11: for i = 1, 2, . . . , n do
12: wi ← 0
13: flag[i]← 1
14: end for
15: p← 0
16: end procedure
17: procedure Update(b ∈ Rd)
18: if the present time is di then
19: flag[i]← 0
20: end if
21: i0 ← argmaxflag[i]=1{wi,b − wi}
22: mi0 ← b
23: p← p+max{wi0 , wi0,b} − wi0
24: wi0 ← max{wi0 , wi0,b}
25: end procedure
26: procedure Query( )
27: return p
28: end procedure
29: end data structure

Given that the vectors are randomly generated, the order of their arrival does not affect the experi-
mental results. We define that i-th vector of a set in each set comes at time i.
In the previous algorithm, for i-th vector of the seller set and j-th vector of the buyer set, we define
the weights between the two nodes to be ∥xi − yj∥2, which requires O(nd) time.
In the new algorithm, we choose a sketching matrix S ∈ Rs×d whose entry is sampled from
{−1/

√
s,+1/

√
s}. We have already known x1, · · · , xn at the beginning, andwe precompute x̃i = Sxi

for ∀i ∈ [n]. In each iteration, when a buyer yj comes, we compute ỹj = Syj and use ∥x̃i − ỹj∥2 to
estimate the weight. This takes O((n+ d)s) time. After we calculate the weight, we need to find the
seller to make the weight between it and the current buyer maximum.
Parameter Configuration. In our experimental setup, we select the following parameter values:
n = 1000, d = 50000, and s = 20 as primary conditions.
Results for Synthetic Data Set. To assess the performance of our algorithms, we conducted experi-
ments comparing their running time with that of the original algorithms. We decide that the i-th
node of a set comes at i-th iteration during our test. Fig. 5a and Fig. 5b illustrate that our algorithms
consistently outperformed the original algorithms in terms of running time at each iteration. Specif-
ically, our algorithms exhibited running times equivalent to only 10.0% and 6.0% of the original
algorithms, respectively.
Additionally, we analyzed the running time of each algorithm per iteration. Fig. 5a and Fig. 5b depict
the running time of each algorithm during per iteration. The results demonstrate that our algorithms
consistently outperformed the original algorithms in terms of running time per iteration. dl the
maximum matching time per node (referred to as the deadline). The dl is randomly chosen from
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Figure 5: Comparison between the running time of each two algorithms.
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Figure 6: The relationship between running time and parameter n and s. n is the node count, and s
is the dimension after transformation.
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Figure 7: The relationship between running time and parameter d and dl. d is the original node
dimension, and dl is the maximum matching time per node (referred to as the deadline).

[1, n]. In this case, the dl of original algorithms is 420. The running time of per iteration increases as
the number of iterations increases until it reaches dl. This is because all nodes are required to remain
in the market for dl iterations and are not matched thereafter.
Furthermore, we investigated the influence of the parameter nwhile keeping the other parameters
constant. Fig. 6a and Fig. 6b illustrate that our algorithms consistently outperformed the original
algorithms when n ∈ [500, 3000]. Additionally, the running time of each algorithm exhibited a linear
increase with the growth of n, which aligns with our initial expectations.
We also examined the impact of the parameter s by varying its value while keeping the other
parameters constant. Fig. 6a and Fig. 6b reveal that s does not significantly affect the running time of
the original algorithms but does impact the running time of our algorithms. Notably, our algorithms
demonstrate faster performance when s is smaller.
To evaluate the influence of the parameter d, we varied its value while running all four algorithms.
Throughout our tests, we observed that the impact of dwas considerably less pronounced compared
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to n and s. Consequently, we set d to a sufficiently large value relative to n and s. As shown in Fig. 7a
and Fig. 7b, indicate that d does not significantly affect the running time of our algorithms, but it
does have a considerable influence on the running time of the original algorithms.
We conducted experiments to assess the influence of the parameter dl while keeping the other
parameters constant. dlwas selected from the interval [1, n] as choosing values outside this range
would render the parameter irrelevant since all nodes would remain in the market throughout the
entire process. Fig. 7a and Fig. 7b show that our algorithms are faster than original algorithms
when dl ∈ [200, 600].As the value of dl increased, the running time of all algorithms correspondingly
increased. This observation highlights the impact of dl on the overall execution time of the algorithms.

Algorithms s = 20 s = 60 s = 100 s = 200 s = 300
Greedy 706.8± 0.00 706.8± 0.00 706.8± 0.00 706.8± 0.00 706.8± 0.00
FGreedy 698.8± 5.07 704.0± 2.80 705.3± 2.77 705.8± 1.58 706.5± 1.31
PGreedy 352.5± 0.48 352.6± 0.47 352.5± 0.48 352.6± 0.48 352.6± 0.48
FPGreedy 348.1± 4.11 350.4± 2.00 351.1± 1.68 351.4± 1.14 351.5± 1.00

Table 2: We use FGreedy to denote FastGreedy. We use PGreedy to denote the PostponedGreedy. We
use FPGreedy to denote FastPostponedGreedy. Total weight of each algorithm, s is the dimension
after transformation. The total weight of Greedy and PostponedGreedy don’t depend on s. The
reason why the total weight of them isn’t the same in each case is there exists errors caused by
different results of clustering the points. We test for 100 times for each algorithm in each case and
calculate the mean and standard deviation of the total weight. Let A be the mean of the total weight
of an algorithm. Let B be the standard deviation of the total weight of an algorithm. In each entry,
we use A±B to denote the total weight of an algorithm when s is set by a specific value.

Table 2 shows the total weight of each algorithmwhen s changes. SinceGreedy and PostponedGreedy
don’t depend on s, the total weight of them doesn’t change while s changes. We can see that the
total weight of each optimized algorithm is very close to that of each original algorithm respectively,
which means the relative error ϵ of our algorithm is very small in practice. As s increases, the
difference between the total weight of each optimized algorithm and each original algorithm also
becomes smaller. And the total weight of FastGreedy is 2 times of that of FastPostponedGreedy.
These empirical results match our theoretical analysis. Parameter s can’t affect the total weight of
each algorithm. The competitive ratio of FastGreedy and FastPostponedGreedy is 1−ϵ

2 and 1−ϵ
4

respectively.
Optimal Usage of Algorithms. The results presented above demonstrate that our algorithms exhibit
significantly faster performance when the values of n, d, and dl are sufficiently large. Additionally,
reducing the value of s leads to a decrease in the running time of our algorithms. Our proposed
algorithms outperform the original algorithms, particularly when the value of d is extremely large.
Consequently, our algorithms are well-suited for efficiently solving problems involving a large
number of nodes with substantial data entries.
More Experiments. To assess the impact of parameter n in the presence of other variables, we varied
the values of the remaining parameters and executed all four algorithms. As illustrated in Fig. 8,
Fig. 9, Fig. 10, and Fig. 11, it is evident that the running time consistently increases with an increase
in n, regardless of the values assigned to the other parameters.
To investigate the impact of parameter s in the presence of other variables, we varied the values of
the remaining parameters and executed all four algorithms.Fig. 12 and Fig. 13 demonstrate that the
value of s is independent of the original algorithms. Conversely, Fig. 14 and Fig. 15 indicate that the
running time of our algorithms increases with an increase in s, irrespective of the values assigned to
the other parameters.
To examine the impact of parameter d in the presence of other variables, we varied the values of
the remaining parameters and executed all four algorithms. The results depicted in Fig. 16, Fig. 17,
Fig. 18 and Fig. 19 reveal that the running time of both the original and our proposed algorithms
increases with an increase in d, regardless of the values assigned to the other parameters.
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To assess the impact of parameter dl in the presence of other variables, we varied the values of the
remaining parameters and executed all four algorithms. As evident from Fig. 20, Fig. 21, Fig. 22,
and Fig. 23, the running time consistently increases with an increase in dl, regardless of the values
assigned to the other parameters.
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Figure 8: The relationship between running time of the greedy algorithm and parameter n
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Figure 9: The relationship between running time of postponed greedy algorithm and parameter n
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Figure 10: The relationship between running time of fast greedy algorithm and parameter n

C. More Related Work
The JL lemma [45] provides strong theoretical guarantees with high probability (1± ϵ)-distortion,
which is critical for maintaining our competitive ratio proofs. This is evidenced in Lemma 2.5 and its
application in Theorems 3.4 and 3.5. Compared with principal component analysis (PCA), sketching
typically requires less computational complexity O(snd), where the sketching matrix is s×n and the
data matrix is n× d and in our case, s = O(ϵ−2 log(n/δ)) because it requires sampling of rows of the
data matrix. However, PCA requires the computation of SVD, which requires min{O(n2d), O(nd2)},
for an n×d data matrix. In sketching, the value of s can be adjusted, representing a trade-off between
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Figure 11: The relationship between running time of fast postponed greedy algorithm and parameter
n
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Figure 12: The relationship between running time of the greedy algorithm and parameter s
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Figure 13: The relationship between running time of postponed greedy algorithm and parameter s
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Figure 14: The relationship between running time of fast greedy algorithm and parameter s

efficiency and accuracy. This trade-off can be also seen in our experimental results (especially in
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Figure 15: The relationship between running time of fast postponed greedy algorithm and parameter
s
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Figure 16: The relationship between running time of the greedy algorithm and parameter d
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Figure 17: The relationship between running time of postponed greedy algorithm and parameter d

20000 30000 40000 50000 60000
parameter d

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

ru
nn

in
g 

 ti
m

e(
s)

Fast Greedy Algorithm
n =50 
n =100 
n =150 
n =200 
n =300 

(a) n is changed

20000 30000 40000 50000 60000
parameter d

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

ru
nn

in
g 

 ti
m

e(
s)

Fast Greedy Algorithm
s =10 
s =50 
s =100 
s =200 
s =500 

(b) s is changed

20000 30000 40000 50000 60000
parameter d

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

ru
nn

in
g 

 ti
m

e(
s)

Fast Greedy Algorithm
dl =20 
dl =30 
dl =40 
dl =50 
dl =60 

(c) dl is changed
Figure 18: The relationship between running time of fast greedy algorithm and parameter d

Table 2). Regarding accuracy, sketching can generate more random results because of its sampling
procedure and the choice of s, whereas PCA has a more deterministic error.
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Figure 19: The relationship between running time of fast postponed greedy algorithm and parameter
d
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Figure 20: The relationship between running time of greedy algorithm and parameter dl
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Figure 21: The relationship between running time of postponed greedy algorithm and parameter dl
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Figure 22: The relationship between running time of fast greedy algorithm and parameter dl

More generally, other theoretical machine learning works study LLM efficiency [51–79], differential
privacy [80–86], determinantal point processes [87], fast Gaussian transform [88], attack problems
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Figure 23: The relationship between running time of fast postponed greedy algorithm and parameter
dl

[89], kernel density estimation [90], online bipartite matching [89], active learning [91], leverage
score [92], reinforcement learning [93–97], circuit complexity [98, 99], and fairness analysis [100].
Sketching has been applied to many other fields, such as attention approximation [101–106], k
means clustering [107], federated learning [108], tensor decomposition [109], weighted low rank
approximation [110], linear regression [111, 112].
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