
Fast and Efficient Matching Algorithm with Deadline
Instances

Zhao Song1, Weixin Wang2, Chenbo Yin3, Junze Yin4
1Simons Institute for the Theory of Computing, UC Berkeley, 2Johns Hopkins University, 3University

of Texas at Austin, 4Rice University
magic.linuxkde@gmail.com, wwang176@jh.edu, chenboyin1@gmail.com, jy158@rice.edu

The online weighted matching problem is a fundamental problem in machine learn-
ing due to its numerous applications. Despite many efforts in this area, existing
algorithms are either too slow or don’t take deadline (the longest time a node can be
matched) into account. In this paper, we introduce a market model with deadline
first. Next, we present our two optimized algorithms (FastGreedy and FastPost-
ponedGreedy) and offer theoretical proof of the time complexity and correctness
of our algorithms. In FastGreedy algorithm, we have already known if a node is a
buyer or a seller. But in FastPostponedGreedy algorithm, the status of each node is
unknown at first. Then, we generalize a sketching matrix to run the original and
our algorithms on both real data sets and synthetic data sets. Let ϵ ∈ (0, 0.1) denote
the relative error of the real weight of each edge. The competitive ratio of original
Greedy and PostponedGreedy is 1

2 and 1
4 respectively. Based on these two original

algorithms, we proposed FastGreedy and FastPostponedGreedy algorithms and
the competitive ratio of them is 1−ϵ

2 and 1−ϵ
4 respectively. At the same time, our

algorithms run faster than the original two algorithms. Given n nodes in Rd, we
decrease the time complexity from O(nd) to Õ(ϵ−2 · (n+ d)), where for any function
f , we use Õ(f) to denote f · poly(log f).

1. Introduction
The online weighted matching problem is a fundamental problem with numerous applications, e.g.
matching jobs to new graduates [1], matching customers to commodities [2], matching users to
ads [3]. Motivated by these applications, researchers have spent decades designing algorithms to
solve this problem [4–13]. Let n denote the number of items that can be very large in real-world
settings. For example, TikTok pushes billions of advertisements every day. Thus, it is necessary
to find a method to solve this matching problem quickly. Finding the maximum weight is one of
the processes of this method. Our goal is to provide faster algorithms to solve the online weighted
matching problem with deadline by optimizing the part of finding the maximum weight. In a real-
world setting, the weight of the edge between each pair of nodes can show the relationship between
two nodes (for example, the higher the weight is, the more likely the buyer wants to buy the product).
Each node may have multiple entries to describe its attribute, such as the times of searching for
a specific kind of merchandise. And there might exist a time limit called deadline to confine the
longest time a node can be matched. For example, most meat and milk in Amazon need to be sold
before it goes bad. This shows the significance of solving the online weighted matching problem
with deadline. Let d be the original node dimension and dl denote deadline. Sometimes the weight
is already provided, but we offer a new method to calculate the weight of the edge. This helps
accelerate the process of finding the maximum weight.
In this paper, we solve the onlinematching problemwith deadline and inner productweightmatching.
We introduce a sketching matrix to calculate the weight of the edge. By multiplying a vector with
this matrix, we can hugely decrease the number of entries. Thus, it takes much less time to calculate
the norm of the transformed vector. For n nodes with d entries each, we decrease the time complexity
fromO(nd) to Õ(ϵ−2 · (n+ d)). In our experiment part, we also prove that the total matching value of

Second Conference on Parsimony and Learning (CPAL 2025).

our FastGreedy and FastPostponedGreedy is very close to Greedy and PostponedGreedy in practice,
which means our approximated weight is very similar to the real weight.

1.1. Related Work
Online Weighted Bipartite Matching. Online weighted bipartite matching is a fundamental prob-
lem that has been studied by many researchers. [14] provided basic and classical algorithms to
solve this problem. Our experimental results demonstrate that our optimized version achieves
10-20x speedup while maintaining similar matching quality, making it valuable for time-constrained
matching scenarios, like [6, 10, 13, 15–19].
Fast Algorithm via Data Structure. Over the last few years, solving many optimization problems
has boiled down to designing efficient data structures. For example, linear programming [20–25],
empirical risk minimization [26, 27], cutting plane method [28], computing John Ellipsoid [29, 30],
exponential and softmax regression [31–33], integral minimization problem [34], matrix completion
[35], discrepancy [36–38], training over-parameterized neural tangent kernel regression [38–42],
matrix sensing [43, 44].
Roadmap. In Section 2, we introduce the model we use. We provide our two optimized algorithms
and their proof of correctness in Section 3. We use experiments to justify the advantages and the
correctness of our algorithms in Section 4. At last, we draw our conclusion in Section 5.

2. Preliminaries
Notation. We use ∥ · ∥2 to denote ℓ2 norm. For any function f , we use Õ(f) to denote f · poly(log f),
where poly(log f) refers to the polynomial of log f . For integer n, we use [n] to denote {1, 2, . . . , n}.
For a set S, we use |S| to denote its cardinality.

2.1. Model
Now, given a bipartite graph G, we start by defining matching.
Definition 2.1. Let G = (V1, V2, E) denote a bipartite graph with |V1| = |V2|. We say S ⊂ E is a matching
if |S| = |V1|, for each vertex v ∈ V1 there is exactly one edge e in S such that v is one of the vertexes in e, and
for each vertex u ∈ V2 there is exactly one edge e in S such that u is one of the vertexes in e. Let w : E → R
denote a weight function. Let we denote the weight of edge e ∈ E. We say w(S) = ∑

e∈S we is the weight of
matching S. Our goal is to make w(S) as large as possible.
Definition 2.2. Let [n] denote {1, . . . , n}. Let S denote the set of all the sellers. Let B denote the set of all the
buyers. Each set contains n vertices indexed by i ∈ [n]. Each node arrives sequentially time t ∈ [n]. And for a
seller s ∈ S, it can only be matched in dl time after it reaches the market.
Definition 2.3. We create an undirected bipartite graph G(S,B, E). We let vi,j ≥ 0 denote the weight of
edge e ∈ E between node i and node j.
Definition 2.4. Let m : S → B denote a matching function. For a seller s ∈ S, there is a buyer b ∈ B
matched with seller s if m(s) = b.

2.2. Useful Lemma
JL Lemma creates a sketching matrix to accelerate the process of calculating the distance between
two points.
Lemma 2.5 (JL Lemma, [45]). For any X ⊂ Rd of size n, there exists an embedding f : Rd → Rs where
s = O(ϵ−2 log n) such that (1− ϵ) · ∥x− y∥2 ≤ ∥f(x)− f(y)∥2 ≤ (1 + ϵ) · ∥x− y∥2, where x, y ∈ X .

3. Algorithm
In this section, we present the important properties of the algorithms.

2

Lemma 3.1 (Restatement of LemmaA.1). StandardGreedy in Algorithm 5 is a 1/2-competitive algorithm.
Lemma 3.2 (Restatement of Lemma A.2). Let wi,j denote the real weight of the edge between seller i and
buyer j, and w̃i,j denote the approximated weight. Let ϵ ∈ (0, 0.1) denote the precision parameter. If for all
ϵ, there exists an α-approximation algorithm for the online weighted matching problem and a δ > 0, where
(1− δ)wi,j ≤ w̃i,j ≤ (1 + δ)wi,j for any seller node i and buyer node j, there exists a greedy algorithm with
competitive ratio α(1− ϵ).
Lemma 3.3 (Restatement of Lemma A.3). If a node is determined to be a seller or a buyer with 1/2
probability in StandardGreedy in Algorithm 5, then this new StandardPostponedGreedy algorithm is a
1/4-competitive algorithm.
Theorem 3.4. For precision parameter ϵ ∈ (0, 0.1), FastGreedy is a 1−ϵ

2 -competitive algorithm.

Proof. According to Lemma 3.1, there exists a 1
2 -competitive algorithm. According to Lemma 2.5, we

create a sketching matrix M ∈ Rs×d, let f(x) = Mx and wi = ∥yj − xi∥2 denote the real matching
weight of the edge between seller node xi and buyer node yj , and w̃i,j = ∥f(yj)− f(xi)∥2 denote
the approximated weight of the edge between seller node xi and buyer node yj , then there will be
(1− ϵ)wi,j ≤ w̃i,j ≤ (1 + ϵ)wi,j for ∀i, j ∈ [n]. Then according to Lemma 3.2, we can conclude that
the competitive ratio of FastGreedy is 1−ϵ

2 .
Theorem 3.5 (Restatement of Theorem A.4, Correctness of FastPostponedGreedy in Algorithm 3
and Algorithm 4). FastPostponedGreedy is a 1−ϵ

4 -competitive algorithm.
Theorem 3.6. Consider the online bipartite matching problemwith the inner product weight, for any ϵ ∈ (0, 1),
δ ∈ (0, 1), there exists a data structure FastGreedy that usesO(nd+ϵ−2(n+d) log(n/δ)) space. FastGreedy
supports the following operations

• Init({x1, x2, . . . , xn} ⊆ Rd, ϵ ∈ (0, 1), δ ∈ (0, 1)). Given a series of offline points x1, x2, . . . , xn,
a precision parameter ϵ and a failure tolerance δ as inputs, this data structure preprocesses in
O(ϵ−2nd log(n/δ))

• Update(y ∈ Rd). It takes an online buyer point y as inputs and runs in O(ϵ−2(n+ d) log(n/δ))
time. Let t ∈ N denote the arrival time of any online point.

• Query(y ∈ Rd). Given a query point y ∈ Rd, the Query approximately estimates the Euclidean
distances from y to all the data points x1, x2, . . . , xn ∈ Rd in time O(ϵ−2(n + d) log(n/δ)). For
∀i ∈ [n], it provides estimates estimates {w̃i}ni=1 such that: (1−ϵ)∥y−xi∥2 ≤ w̃i ≤ (1+ϵ)∥y−xi∥2.

• TotalWeight.It outputs the matching value between offline points and n known online points in
O(1) time. It has competitive ratio 1−ϵ

2 with probability at least 1− δ.

We prove the data structure (see Algorithm 1 and Algorithm 2) satisfies the requirements of Theorem
3.6 by proving the following lemmas.
Lemma 3.7. The procedure Init (Algorithm 1) in Theorem 3.6 runs in time O(ϵ−2nd log(n/δ)).

Proof. s = O(ϵ−2 log(n/δ)) is the dimension after transformation. Line 14 is assigning each element
of the sketching matrix, and it takes O(sd) = O(ϵ−2d log(n/δ)) time since it is a Rs×d matrix. Line
20 is multiplying the sketching matrix and the vector made up of each coordinate of a node, and it
will take O(sd) = O(ϵ−2d log(n/δ)). Since we have n nodes to deal with, this whole process will take
O(nsd) = O(ϵ−2nd log(n/δ)) time. After carefully analyzing the algorithm, it can be deduced that
the overall running time complexity is O(sd+ nsd) = O(ϵ−2nd log(n/δ)).

Lemma 3.8. The procedureUpdate (Algorithm 2) in Theorem 3.6 runs in timeO(ϵ−2(n+d) log(n/δ)). The
total matching value p maintains a 1−ϵ

2 -approximate matching before calling Update, then p also maintains a
1−ϵ
2 -approximate matching after calling Update with probability at least 1− δ.

Proof. s = O(ϵ−2 log(n/δ)) is the dimension after transformation. We call Update when a new node
y comes. If y is a buyer node, line 9 is calling Query, which takes O(ϵ−2(n+ d) log(n/δ)) time. Line

3

Algorithm 1 Initialization Of Fast Greedy
1: data structure FastGreedy
2: members
3: x1, x2, . . . xn ∈ Rd are nodes in the market, and x̃1, x̃2, . . . x̃n ∈ Rs are nodes after sketching.
4: mi is the vertex matching with vertex i, and wi is the matching value on xi.
5: p andM are the matching value and the sketching matrix, respectively.
6: Let d1, d2, . . . dn ∈ N be the deadline for each node ▷ Each offline point xi can only be

matched during time di.
7: flag[n] ▷ flag[i] decides if node i can be matched.
8: end members
9: procedure Init(x1, . . . , xn, ϵ, δ)
10: p← 0
11: s← O(ϵ−2 log(n/δ))
12: for i = 1, 2, . . . , s do
13: for j = 1, 2, . . . , d do
14: sample M [i][j] from {−1/√s,+1/

√
s} each with 1/2 probability

15: end for
16: end for
17: for i = 1, 2, . . . , n do
18: wi ← 0
19: flag[i]← 1
20: x̃i = Mxi

21: end for
22: end procedure

Algorithm 2 Update Of Fast Greedy
1: procedure Update(y ∈ Rd)
2: if the present time is di then
3: flag[i]← 0
4: end if
5: if y is i-th seller node then
6: flag[i]← 1
7: end if
8: if y is a buyer node then
9: {w̃i}ni=1 ← Query(y)
10: i0 ← argmaxflag[i]=1{w̃i − wi}
11: mi0 ← y
12: p← p+max{wi0 , w̃i0} − wi0
13: wi0 ← max{wi0 , w̃i0}
14: end if
15: end procedure
16: procedure Query(y ∈ Rd)
17: ỹ = My
18: for i = 1, 2, . . . , n do
19: if flag[i] = 1 then w̃i ← ∥ỹ − x̃i∥2
20: end if
21: end for
22: return {w̃i}ni=1
23: end procedure
24: procedure TotalWeight
25: return p
26: end procedure
27: end data structure

10 is finding i0 which makes w̃i − wi maximum if that vertex can still be matched, which takes O(n)
time. So, in total, the running time is O(ϵ−2(n+ d) log(n/δ)).

4

Then we will prove the second statement. We suppose the total matching value pmaintains a 1−ϵ
2 -

approximate matching before calling Update. From Lemma 3.9, we can know that after we call
Query, we can get {w̃i}ni=1 and for ∀i ∈ [n], (1− ϵ)∥y− xi∥2 ≤ w̃i ≤ (1 + ϵ)∥y− xi∥2 with probability
1− δ at least. According to Lemma 3.1 and Lemma 3.2, the competitive ratio of FastGreedy is still
1−ϵ
2 after running Query. Therefore, the total matching value p still maintains a 1−ϵ

2 -approximate
matching with probability at least 1− δ.
Lemma 3.9. The procedure Query (Algorithm 2) in Theorem 3.6 runs in time O(ϵ−2(n+ d) log(n/δ)). For
∀i ∈ [n], it provides estimates estimates {w̃i}ni=1 such that: (1− ϵ)∥y− xi∥2 ≤ w̃i ≤ (1 + ϵ)∥y− xi∥2, with
probability at least 1− δ.

Proof. Line 17 is multiplying the sketching matrix with the vector made up of each coordinate
of the new buyer node y, which takes O(sd) = O(ϵ−2d log(n/δ)) time. Line 19 is calculating the
weight of edge between the new buyer node y and the seller node still in the market, which takes
O(s) = O(ϵ−2 log(n/δ)) time. Since we need to calculate for n times at most, the whole process will
take O(ns) = O(ϵ−2n log(n/δ)) time. After carefully analyzing the algorithm, it can be deduced that
the overall running time complexity is O(sd+ ns) = O(ϵ−2(n+ d) log(n/δ)).

According to Lemma 2.5, we create a sketching matrixM ∈ Rs×d, let f(x) = Mx and wi = ∥y − xi∥2
denote the real matching weight of the edge between seller node i and buyer node y, and w̃i =
∥f(y)− f(xi)∥2 denote the approximated weight of the edge between seller node i and buyer node y,
then there will be (1− ϵ)∥y − xi∥2 ≤ w̃i ≤ (1 + ϵ)∥y − xi∥2 for ∀i ∈ [n]. Since the failure parameter
is δ, for i ∈ [n] it will provide (1 − ϵ)∥y − xi∥2 ≤ w̃i ≤ (1 + ϵ)∥y − xi∥2, with probability at least
1− δ.
Lemma 3.10 (Restatement of Lemma A.5). The procedure TotalWeight (Algorithm 2) in Theorem 3.6
runs in time O(1). It outputs a 1−ϵ

2 -approximate matching with probability at least 1− δ,
Lemma 3.11 (Restatement of LemmaA.6, Space storage for FastGreedy in Algorithm 1 andAlgorithm
2). The space storage for FastGreedy in Algorithm 1 and Algorithm 2 is O(nd+ ϵ−2(n+ d) log(n/δ)).
Theorem 3.12. Consider the online bipartite matching problem with the inner product weight, for any ϵ ∈
(0, 1), δ ∈ (0, 1) there exists a data structure FastPostponedGreedy that usesO(nd+ ϵ−2(n+ d) log(n/δ))
space. Assuming there are no offline points at first, each of the online points x1, x2, . . . , xn will be determined
if it is a buyer node or a seller node when it needs to leave the market. FastPostponedGreedy supports the
following operations

• Init(ϵ ∈ (0, 1), δ ∈ (0, 1)). Given a precision parameter ϵ and a failure tolerance δ as inputs, this
data structure preprocesses in O(ϵ−2d log(n/δ)) time.

• Update(xi ∈ Rd). It takes an online point xi as inputs and runs in O(ϵ−2(n+ d) log(n/δ)) time.
Let t ∈ N denote the arrival time of any online point. Query approximately estimates the Euclidean
distances from bx̃i

to all the data points sx̃1
, sx̃2

, . . . , sx̃n
∈ Rd in time O(ϵ−2(n + d) log(n/δ)).

For ∀i ∈ [n], it provides estimates estimates {w̃j}nj=1 such that: (1 − ϵ)∥sxj
− bxi

∥2 ≤ w̃j ≤
(1 + ϵ)∥sxj − bxi∥2.

• TotalWeight. It outputs the matching value between offline points and n known online points in
O(1) time. It has competitive ratio 1−ϵ

4 with probability at least 1− δ.

To establish the validity of the data structure utilized in Algorithm 3 and its adherence to the
conditions specified in Theorem 3.12, we provide a series of lemmas for verification. These lemmas
serve as intermediate steps in the overall proof.
Lemma 3.13. The procedure Init (Algorithm 3) in Theorem 3.12 runs in time O(ϵ−2d log(n/δ)).

Proof. s = O(ϵ−2 log(n/δ)) is the dimension after transformation. Line 15 is assigning each element
of the sketching matrix, and it takes O(sd) = O(ϵ−2d log(n/δ)) time since it is a Rs×d matrix. After
carefully analyzing the algorithm, it can be deduced that the overall running time complexity is
O(sd) = O(ϵ−2d log(n/δ)).

5

Algorithm 3 Initialization Of Fast Postponed Greedy
1: data structure FastPostponedGreedy
2: members
3: x1, x2, . . . xn ∈ Rd ▷ Nodes in the market
4: mi is the vertex matching with vertex i, and wi is the matching value on xi.
5: p andM are the matching value and the sketching matrix, respectively.
6: Let d1, d2, . . . dn ∈ N be the deadline for each node ▷ Each offline point xi can only be

matched during time di.
7: end members
8: procedure Init(ϵ, δ)
9: p← 0
10: s← O(ϵ−2 log(n/δ))
11: S0 ← ∅.
12: B0 ← ∅.
13: for i = 1, 2, . . . , s do
14: for j = 1, 2, . . . , d do
15: sample M [i][j] from {−1/√s,+1/

√
s} each with 1/2 probability

16: end for
17: end for
18: end procedure

Lemma 3.14 (Restatement of Lemma A.7). The procedure Update (Algorithm 3) in Theorem 3.12 runs
in time O(ϵ−2(n+ d) log(n/δ)). The total matching value p maintains a 1−ϵ

4 -approximate matching before
calling Update, then p also maintains a 1−ϵ

4 -approximate matching after calling Update with probability at
least 1− δ.
Lemma 3.15 (Restatement of Lemma A.8). The procedure Query (Algorithm 4) in Theorem 3.12 runs in
time O(ϵ−2n log(n/δ)). For ∀j ∈ [n], it provides estimates {w̃j}nj=1 such that: (1− ϵ)∥sxj

− bxi
∥2 ≤ w̃j ≤

(1 + ϵ)∥sxj − bxi∥2, with probability at least 1− δ.
Lemma 3.16 (Restatement of Lemma A.9). The procedure TotalWeight (Algorithm 4) in Theorem 3.12
runs O(1) time. It outputs a 1−ϵ

2 -approximate matching with probability at least 1− δ.
Lemma 3.17 (Restatement of Lemma A.10, Space storage for FastPostponedGreedy in Algorithm 3
and Algorithm 4). The space storage for FastPostponedGreedy is O(nd+ ϵ−2(n+ d) log(n/δ)).

4. Experiments
After presenting these theoretical analyses, we now move on to the experiments.

15 20 25 30 35
parameter s

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

ru
nn

in
g

tim
e(

s)

n = 801, d = 20531
greedy
fast greedy

50 100 150 200 250
parameter dl

1
2
3
4
5
6
7

ru
nn

in
g

tim
e(

s)

n = 801, s = 25, d = 20531
greedy
fast greedy

(a) Greedy and Fast Greedy Algorithm
15 20 25 30 35

parameter s

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

ru
nn

in
g

tim
e(

s)

n = 801, d = 20531
postponed greedy
fast postponed greedy

50 100 150 200 250
parameter dl

1
2
3
4
5
6
7

ru
nn

in
g

tim
e(

s)

n = 801, s = 25, d = 20531
postponed greedy
fast postponed greedy

(b) PGreedy and Fast PGreedy Algorithm
Figure 1: The relationship between running time and parameter s and dl on GECRS data set. The
parameters are defined as follows: n is the node count, d is the original node dimension, s is the
dimension after transformation, and dl is the maximum matching time per node (referred to as
the deadline). Here GECRS denotes gene expression cancer RNA-Seq Data Set. PGreedy denotes
Postponed Greedy.

Purpose. This section furnishes a systematic evaluation of our optimized algorithms’ performance
using real-world data sets. We employ a sketching matrix to curtail the vector entries, thus expediting

6

Algorithm 4 Update Of Fast Postponed Greedy
1: procedure Update(xi ∈ Rd)
2: Set the status of xi to be undetermined.
3: x̃i ←Mxi

4: St ← St−1 ∪ sx̃i
▷ Add a seller copy.

5: msx̃i
← null

6: wi ← 0
7: Bt ← Bt−1 ∪ bx̃i

▷ Add a buyer copy
8: if the present time is di then
9: if status of point xi is undetermined then
10: set it to be either seller or buyer with probability 1/2 each.
11: end if
12: if mx̃i

̸= null then
13: bx̃l

← mx̃i
.

14: if xi is a seller then
15: p← p+ w̃i

16: Finalize the matching of point xi with point xl. Set the status of point xl to be a
buyer.

17: end if
18: if xi is a buyer then
19: Set the status of point xl to be a seller.
20: end if
21: end if
22: St ← St\{sx̃i

} ▷ Remove the seller and buyer copies.
23: Bt ← Bt\{bx̃i

}
24: end if
25: {w̃j}nj=1 ← Query(bx̃i

)
26: j0 ← argmaxsx̃j

∈St
{w̃j − wj}

27: mx̃j0
← bx̃i

28: wj0 ← max{wj0 , w̃j0}
29: end procedure
30: procedure Query(bx̃i

∈ Rs)
31: for j = 1, 2, . . . , n do
32: if sx̃j

∈ St then
33: w̃j ← ∥bx̃i

− sx̃j
∥2

34: end if
35: end for
36: return {w̃j}nj=1

37: end procedure
38: procedure TotalWeight
39: return p
40: end procedure
41: end data structure

Table 1: The parameters are defined as follows: n is the node count, d is the original node dimension,
s is the dimension after transformation, and dl is the maximum matching time per node (referred to
as the deadline). Here GECRS denotes gene expression cancer RNA-Seq Data Set. Let ARBT denote
a study of Asian Religious and Biblical Texts Data Set.

Dataset Names n d s dl
GECRS 801 20351 [15, 20, 25, 30, 35] [50, 100, 150, 200, 250]
Arcene 700 10000 [20, 30, 40, 50, 60] [200, 300, 400, 500, 600]
ARBT 590 8265 [10, 20, 30, 40, 50] [50, 100, 150, 200, 250]
REJAFADA 1996 6826 [20, 30, 40, 50, 60] [50, 100, 150, 200, 250]

7

20 30 40 50 60
parameter s

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

ru
nn

in
g

tim
e(

s)

n = 700, d = 10000
greedy
fast greedy

200 300 400 500 600
parameter dl

1

2

3

4

5

6

ru
nn

in
g

tim
e(

s)

n = 700, s = 40, d = 10000
greedy
fast greedy

(a) Greedy and Fast Greedy Algorithm
20 30 40 50 60

parameter s

2

3

4

5

ru
nn

in
g

tim
e(

s)

n = 700, d = 10000
postponed greedy
fast postponed greedy

200 300 400 500 600
parameter dl

1

2

3

4

5

6

ru
nn

in
g

tim
e(

s)

n = 700, s = 40, d = 10000
postponed greedy
fast postponed greedy

(b) PGreedy and Fast PGreedy Algorithm
Figure 2: The relationship between running time and parameter s and dl on Arcene data set. The
parameters are defined as follows: n is the node count, d is the original node dimension, s is the
dimension after transformation, and dl is the maximum matching time per node (referred to as the
deadline).

10 20 30 40 50
parameter s

0.6
0.8
1.0
1.2
1.4
1.6
1.8

ru
nn

in
g

tim
e(

s)

n = 590, d = 8266
greedy
fast greedy

50 100 150 200 250
parameter dl

0.5

1.0

1.5

2.0

2.5

ru
nn

in
g

tim
e(

s)

n = 590, s = 30, d = 8266
greedy
fast greedy

(a) Greedy and Fast Greedy Algorithm
10 20 30 40 50

parameter s

0.6
0.8
1.0
1.2
1.4
1.6
1.8

ru
nn

in
g

tim
e(

s)

n = 590, d = 8266
postponed greedy
fast postponed greedy

50 100 150 200 250
parameter dl

0.5

1.0

1.5

2.0

2.5

ru
nn

in
g

tim
e(

s)

n = 590, s = 30, d = 8266
postponed greedy
fast postponed greedy

(b) PGreedy and Fast PGreedy Algorithm
Figure 3: The relationship between running time and parameter s and dl on ARBT data set. The
parameters are defined as follows: n is the node count, d is the original node dimension, s is the
dimension after transformation, and dl is the maximum matching time per node (referred to as the
deadline). Let ARBT denote a study of Asian Religious and Biblical Texts Data Set.

20 30 40 50 60
parameter s

3

4

5

6

7

ru
nn

in
g

tim
e(

s)

n = 1996, d = 6824
greedy
fast greedy

50 100 150 200 250
parameter dl

2

4

6

8

10

ru
nn

in
g

tim
e(

s)

n = 1996, s = 40, d = 6824
greedy
fast greedy

(a) Greedy and Fast Greedy Algorithm
20 30 40 50 60

parameter s

3

4

5

6

7

ru
nn

in
g

tim
e(

s)

n = 1996, d = 6824
postponed greedy
fast postponed greedy

50 100 150 200 250
parameter dl

2
3
4
5
6
7
8
9

10

ru
nn

in
g

tim
e(

s)
n = 1996, s = 40, d = 6824

postponed greedy
fast postponed greedy

(b) PGreedy and Fast PGreedy Algorithm
Figure 4: The relationship between running time and parameter s and dl on REJAFADA data set.
The parameters are defined as follows: n is the node count, d is the original node dimension, s is the
dimension after transformation, and dl is the maximum matching time per node (referred to as the
deadline).

the resolution of online weighted bipartite problems amidst substantial data quantities. Detailed
accounts of the synthetic data set experimentation are provided in the appendix. Here, we encapsulate
the results obtained from real-world data sets:

• For small enough s, our algorithms demonstrate superior speed compared to their original
counterparts.

• All four algorithms exhibit linear escalation in running time with an increase in n.
• For our algorithms, the running time escalates linearly with s, an effect absent in the original

algorithms.
• The original algorithms exhibit a linear increase in running time with d, and our algorithms

follow suit when n and s are substantially smaller compared to d.

8

• Denoting the parameter deadline as dl, it is observed that the running time of all four
algorithms intensifies with dl.

Configuration. Our computations utilize an apparatus with an AMD Ryzen 7 4800H CPU and an
RTX 2060 GPU, implemented on a laptop. The device operates on the Windows 11 Pro system, with
Python serving as the programming language. We represent the distance weights as ℓ2. The symbol
n signifies the count of vectors in both partitions of the bipartite graph, thereby implying an equal
quantity of buyers and sellers.
Real data sets. In this part, we run all four algorithms on real data sets from the UCI library [46] to
observe if our algorithms are better than the original ones in a real-world setting.

• Gene expression cancer RNA-Seq Data Set [47]: This data set is structured with samples
stored in a row-wise manner. Each sample’s attributes are its RNA-Seq gene expression
levels, measured via the Illumina HiSeq platform.

• Arcene Data Set [48]: The Arcene data set is derived from three merged mass-spectrometry
data sets, ensuring a sufficient quantity of training and testing data for a benchmark. The
original features represent the abundance of proteins within human sera corresponding
to a given mass value. These features are used to distinguish cancer patients from healthy
individuals. Many distractor features, referred to as ’probes’ and devoid of predictive power,
have been included. Both features and patterns have been randomized.

• A study of Asian Religious and Biblical Texts Data Set [49]: This data set encompasses 580
instances, each with 8265 attributes. The majority of the sacred texts in the data set were
sourced from Project Gutenberg.

• REJAFADA Data Set [50]: The REJAFADA (Retrieval of Jar Files Applied to Dynamic Analy-
sis) is a data set designed for the classification of Jar files as either benign or malware. It
consists of 998 malware Jar files and an equal number of benign Jar files.

Results for Real Data Set. We run Greedy, FastGreedy, PostponedGreedy (PGreedy for shorthand
in Figure 1, 2, 3, 4.) and FastPostponedGreedy (Fast PGreedy for shorthand in Figure 1, 2, 3, 4.)
algorithms on GECRS, Arcene, ARBT, and REJAFADA data sets respectively. Specifically, Fig. 1a
and Fig. 1b illustrate the relationship between the running time of the four algorithms and the
parameters s and dl on the GECRS data set, respectively. Similarly, Fig. 2a and Fig. 2b showcase
the running time characteristics of the algorithms with respect to the parameters s and dl on the
Arcene data set. Analogously, Fig. 3a and Fig. 3b represent the relationship between the running time
and parameters s and dl on the ARBT data set. Lastly, Fig. 4a and Fig. 4b exhibit the running time
variations concerning the parameters s and dl on the REJAFADA data set. The results consistently
indicate that our proposed FastGreedy and FastPostponedGreedy algorithms exhibit significantly
faster performance compared to the original Greedy and PostponedGreedy algorithms when applied
to real data sets. These findings highlight the superiority of our proposed algorithms in terms of
efficiency when dealing with real-world data scenarios.

5. Conclusion
In this paper, we study the online matching problem with deadline and solve it with a sketching
matrix. We provided a new way to compute the weight of the edge between two nodes in a bipartite.
Compared with original algorithms, our algorithms optimize the time complexity from O(nd) to
Õ(ϵ−2 · (n+ d)). Furthermore, the total weight of our algorithms is very close to that of the original
algorithms respectively, which means the error caused by the sketching matrix is very small. Our
algorithms can also be used in areas like recommending short videos to users.
For matching nodes with many entries, the experiment result shows that our algorithms only take us
a little time if parameter s is small enough. We think generalizing our techniques to other variations
of the matching problem could be an interesting future direction. We remark that implementing our
algorithm would have carbon release to the environment.

9

References
[1] Christoph Dürr and Shahin Kamali. Randomized two-valued bounded delay online buffer

management. Operations Research Letters, 49(2):246–249, 2021.

[2] Ivo Adan, Ana Bušić, Jean Mairesse, and Gideon Weiss. Reversibility and further properties
of fcfs infinite bipartite matching. Mathematics of Operations Research, 43(2):598–621, 2018.

[3] Aranyak Mehta et al. Online matching and ad allocation. Foundations and Trends® in Theoretical
Computer Science, 8(4):265–368, 2013.

[4] Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang. Online vertex-weighted
bipartite matching: Beating 1-1/e with random arrivals. ACM Transactions on Algorithms
(TALG), 15(3):1–15, 2019.

[5] Krati Nayyar and Sharath Raghvendra. An input sensitive online algorithm for the metric
bipartite matching problem. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 505–515. IEEE, 2017.

[6] Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. Online bipartite matching with
unknown distributions. In Proceedings of the Forty-Third Annual ACM Symposium on Theory of
Computing, pages 587–596, 2011.

[7] AndrewMastin and Patrick Jaillet. Greedy online bipartite matching on random graphs. arXiv
preprint arXiv:1307.2536, 2013.

[8] Adam Meyerson, Akash Nanavati, and Laura Poplawski. Randomized online algorithms
for minimum metric bipartite matching. In Proceedings of the Seventeenth Annual Acm-Siam
Symposium on Discrete Algorithm, pages 954–959, 2006.

[9] Gagan Aggarwal, Yang Cai, AranyakMehta, and George Pierrakos. Biobjective online bipartite
matching. In International Conference on Web and Internet Economics, pages 218–231. Springer,
2014.

[10] Steven Delong, Alireza Farhadi, Rad Niazadeh, and Balasubramanian Sivan. Online bipartite
matching with reusable resources. In Proceedings of the 23rd ACM Conference on Economics and
Computation, pages 962–963, 2022.

[11] Buddhima Gamlath, Sagar Kale, and Ola Svensson. Beating greedy for stochastic bipartite
matching. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2841–2854. SIAM, 2019.

[12] Yajun Wang and Sam Chiu-wai Wong. Two-sided online bipartite matching and vertex
cover: Beating the greedy algorithm. In International Colloquium on Automata, Languages, and
Programming, pages 1070–1081. Springer, 2015.

[13] Reshef Meir, Yiling Chen, and Michal Feldman. Efficient parking allocation as online bipartite
matching with posted prices. In AAMAS, pages 303–310, 2013.

[14] Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An optimal algorithm for on-line
bipartite matching. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing, pages 352–358, 1990.

[15] Moses Charikar, Monika Henzinger, and Huy L Nguyen. Online bipartite matching with
decomposable weights. In European Symposium on Algorithms, pages 260–271. Springer, 2014.

[16] Itai Ashlagi, Maximilien Burq, Chinmoy Dutta, Patrick Jaillet, Amin Saberi, and Chris Sholley.
Maximum weight online matching with deadlines. CoRR, abs/1808.03526, 2018. URL http:
//arxiv.org/abs/1808.03526.

10

[17] Justin Y Chen and Piotr Indyk. Online bipartite matching with predicted degrees. arXiv
preprint arXiv:2110.11439, 2021.

[18] Gaofei Xiao, Jiaqi Zheng, and Haipeng Dai. A unified model for bi-objective online stochastic
bipartite matching with two-sided limited patience. In IEEE INFOCOM 2022-IEEE Conference
on Computer Communications, pages 1079–1088. IEEE, 2022.

[19] Hang Hu, Zhao Song, Runzhou Tao, Zhaozhuo Xu, Junze Yin, and Danyang Zhuo. Sublinear
time algorithm for online weighted bipartite matching. arXiv preprint arXiv:2208.03367, 2022.

[20] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. In STOC, 2019.

[21] Zhao Song. Matrix theory: optimization, concentration, and algorithms. The University of Texas at
Austin, 2019.

[22] Jan van den Brand. A deterministic linear program solver in current matrix multiplication
time. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 259–278. SIAM, 2020.

[23] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic matrix
inverse for faster lps. In STOC, 2021.

[24] Zhao Song and Zheng Yu. Oblivious sketching-based central path method for linear program-
ming. In International Conference on Machine Learning, pages 9835–9847. PMLR, 2021.

[25] YuzhouGu and Zhao Song. A faster small treewidth sdp solver. arXiv preprint arXiv:2211.06033,
2022.

[26] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current
matrix multiplication time. In Conference on Learning Theory (COLT), pages 2140–2157. PMLR,
2019.

[27] Lianke Qin, Zhao Song, Lichen Zhang, and Danyang Zhuo. An online and unified algorithm
for projection matrix vector multiplication with application to empirical risk minimization. In
AISTATS, 2023.

[28] Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved cutting plane
method for convex optimization, convex-concave games and its applications. In STOC, 2020.

[29] Michael B Cohen, Ben Cousins, Yin Tat Lee, and Xin Yang. A near-optimal algorithm for
approximating the john ellipsoid. In Conference on Learning Theory, pages 849–873. PMLR,
2019.

[30] Zhao Song, Xin Yang, Yuanyuan Yang, and Tianyi Zhou. Faster algorithm for structured john
ellipsoid computation. arXiv preprint arXiv:2211.14407, 2022.

[31] Zhihang Li, Zhao Song, and Tianyi Zhou. Solving regularized exp, cosh and sinh regression
problems. arXiv preprint, 2303.15725, 2023.

[32] Yeqi Gao, Zhao Song, and Junze Yin. An iterative algorithm for rescaled hyperbolic functions
regression. In The 28th International Conference on Artificial Intelligence and Statistics, 2025. URL
https://openreview.net/forum?id=xJU2GjcC1U.

[33] Yichuan Deng, Zhihang Li, and Zhao Song. Attention scheme inspired softmax regression.
arXiv preprint arXiv:2304.10411, 2023.

[34] Haotian Jiang, Yin Tat Lee, Zhao Song, and Lichen Zhang. Convex minimization with integer
minima in Õ(n4) time. arXiv preprint arXiv:2304.03426, 2023.

11

[35] Yuzhou Gu, Zhao Song, Junze Yin, and Lichen Zhang. Low rank matrix completion via
robust alternating minimization in nearly linear time. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=N0gT4A0jNV.

[36] Yichuan Deng, Zhao Song, and Omri Weinstein. Discrepancy minimization in input-sparsity
time. arXiv preprint arXiv:2210.12468, 2022.

[37] Zhao Song, Zhaozhuo Xu, and Lichen Zhang. Speeding up sparsification using inner product
search data structures. arXiv preprint arXiv:2204.03209, 2022.

[38] Lichen Zhang. Speeding up optimizations via data structures: Faster search, sample and
maintenance. Master’s thesis, Carnegie Mellon University, 2022.

[39] Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (over-
parametrized) neural networks in near-linear time. In ITCS, 2021.

[40] Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized neural
network in subquadratic time. arXiv preprint arXiv:2112.07628, 2021.

[41] Josh Alman, Jiehao Liang, Zhao Song, Ruizhe Zhang, and Danyang Zhuo. Bypass exponential
time preprocessing: Fast neural network training via weight-data correlation preprocessing.
arXiv preprint arXiv:2211.14227, 2022.

[42] Hang Hu, Zhao Song, Omri Weinstein, and Danyang Zhuo. Training overparametrized neural
networks in sublinear time. arXiv preprint arXiv:2208.04508, 2022.

[43] Yichuan Deng, Zhihang Li, and Zhao Song. An improved sample complexity for rank-1 matrix
sensing. arXiv preprint arXiv:2303.06895, 2023.

[44] Lianke Qin, Zhao Song, and Ruizhe Zhang. A general algorithm for solving rank-one matrix
sensing. arXiv preprint arXiv:2303.12298, 2023.

[45] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert
space. Contemporary mathematics, 26(189-206):1, 1984.

[46] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

[47] JN Cancer Genome Atlas Research Network et al. The cancer genome atlas pan-cancer analysis
project. Nature Genetics, 45(10):1113–1120, 2013.

[48] Isabelle Guyon, Steve Gunn, Asa Ben-Hur, and Gideon Dror. Result analysis of the nips 2003
feature selection challenge. Advances in Neural Information Processing Systems, 17, 2004.

[49] Preeti Sah and Ernest FokouÃ©. What do asian religions have in common? an unsupervised
text analytics exploration, 2019.

[50] Ricardo Pinheiro, Sidney Lima, Sérgio Fernandes, Edison Albuquerque, Sergio Medeiros,
Danilo Souza, Thyago Monteiro, Petrônio Lopes, Rafael Lima, Jemerson Oliveira, et al. Next
generation antivirus applied to jar malware detection based on runtime behaviors using neural
networks. In 2019 IEEE 23rd International Conference on Computer Supported Cooperative Work in
Design (CSCWD), pages 28–32. IEEE, 2019.

[51] Zhao Song, Guangyi Xu, and Junze Yin. The expressibility of polynomial based attention
scheme. arXiv preprint arXiv:2310.20051, 2023.

[52] Haochen Zhang, Junze Yin, Guanchu Wang, Zirui Liu, Tianyi Zhang, Anshumali Shrivastava,
Lin Yang, and Vladimir Braverman. I3s: Importance sampling subspace selection for low-rank
optimization in llm pretraining. arXiv preprint arXiv:2502.05790, 2025.

12

[53] Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, and Yingyu Liang. Towards
few-shot adaptation of foundation models via multitask finetuning. In International Conference
on Learning Representations, 2024.

[54] Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional
ability? an investigation into limitations and scalability. In Conference on Language Modeling,
2024.

[55] Chenyang Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Exploring the frontiers of soft-
max: Provable optimization, applications in diffusion model, and beyond. arXiv preprint
arXiv:2405.03251, 2024.

[56] Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably
efficient learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024.

[57] Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do
in-context learning differently? arXiv preprint arXiv:2405.19592, 2024.

[58] Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Toward infinite-long prefix in
transformer. arXiv preprint arXiv:2406.14036, 2024.

[59] Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, Yixuan Li, and Neel Joshi. Is
a picture worth a thousand words? delving into spatial reasoning for vision language models.
Advances in Neural Information Processing Systems, 36, 2024.

[60] Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Differential privacy of cross-attention
with provable guarantee. arXiv preprint arXiv:2407.14717, 2024.

[61] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. A tighter complexity analysis of
sparseGPT. In Workshop on Machine Learning and Compression, NeurIPS 2024, 2024.

[62] Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer transformers
gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233, 2024.

[63] Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. Discovering the
gems in early layers: Accelerating long-context llms with 1000x input token reduction. arXiv
preprint arXiv:2409.17422, 2024.

[64] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Fine-grained attention i/o
complexity: Comprehensive analysis for backward passes. arXiv preprint arXiv:2410.09397,
2024.

[65] Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Advancing the under-
standing of fixed point iterations in deep neural networks: A detailed analytical study. arXiv
preprint arXiv:2410.11279, 2024.

[66] Bo Chen, Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, and Zhao Song. Circuit
complexity bounds for rope-based transformer architecture. arXiv preprint arXiv:2411.07602,
2024.

[67] Yifang Chen, Jiayan Huo, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Fast gradient
computation for rope attention in almost linear time. arXiv preprint arXiv:2412.17316, 2024.

[68] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Mingda Wan. Theoretical con-
straints on the expressive power of rope-based tensor attention transformers. arXiv preprint
arXiv:2412.18040, 2024.

[69] Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Yufa Zhou. Beyond linear
approximations: A novel pruning approach for attention matrix. In International Conference on
Learning Representations, 2025.

13

[70] Bo Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Bypassing the exponential
dependency: Looped transformers efficiently learn in-context by multi-step gradient descent.
In International Conference on Artificial Intelligence and Statistics, 2025.

[71] Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. Fourier circuits in
neural networks and transformers: A case study of modular arithmetic with multiple inputs.
In International Conference on Artificial Intelligence and Statistics, 2025.

[72] Yekun Ke, Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Curse of attention: A
kernel-based perspective for why transformers fail to generalize on time series forecasting
and beyond. In Conference on Parsimony and Learning. PMLR, 2025.

[73] Bo Chen, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Hsr-enhanced sparse
attention acceleration. In Conference on Parsimony and Learning. PMLR, 2025.

[74] Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Zhen Zhuang.
Neural algorithmic reasoning for hypergraphs with looped transformers. arXiv preprint
arXiv:2501.10688, 2025.

[75] Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Universal approximation
of visual autoregressive transformers. arXiv preprint arXiv:2502.06167, 2025.

[76] Yang Cao, Bo Chen, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and
Mingda Wan. Force matching with relativistic constraints: A physics-inspired approach to
stable and efficient generative modeling. arXiv preprint arXiv:2502.08150, 2025.

[77] Ya-Ting Chang, Zhibo Hu, Xiaoyu Li, Shuiqiao Yang, Jiaojiao Jiang, and Nan Sun. Dihan: A
novel dynamic hierarchical graph attention network for fake news detection. In Proceedings of
the 33rd ACM International Conference on Information and Knowledge Management, pages 197–206,
2024.

[78] Jiahao Zhang, Feng Liu, and Aimin Zhou. Off-tanet: A lightweight neural micro-expression
recognizer with optical flow features and integrated attention mechanism. In Pacific Rim
International Conference on Artificial Intelligence, pages 266–279. Springer, 2021.

[79] Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, and Junze Yin. Conv-basis: A new
paradigm for efficient attention inference and gradient computation in transformers. arXiv
preprint arXiv:2405.05219, 2024.

[80] Maryam Aliakbarpour, Syomantak Chaudhuri, Thomas A Courtade, Alireza Fallah, and
Michael I Jordan. Enhancing feature-specific data protection via bayesian coordinate differen-
tial privacy. arXiv preprint arXiv:2410.18404, 2024.

[81] Maryam Aliakbarpour, Konstantina Bairaktari, Adam Smith, Marika Swanberg, and Jonathan
Ullman. Privacy in metalearning and multitask learning: Modeling and separations. arXiv
preprint arXiv:2412.12374, 2024.

[82] Maryam Aliakbarpour, Rose Silver, Thomas Steinke, and Jonathan Ullman. Differentially
private medians and interior points for non-pathological data. arXiv preprint arXiv:2305.13440,
2023.

[83] Shahab Asoodeh, Maryam Aliakbarpour, and Flavio P Calmon. Local differential privacy
is equivalent to contraction of an f -divergence. In 2021 IEEE International Symposium on
Information Theory (ISIT), pages 545–550. IEEE, 2021.

[84] Maryam Aliakbarpour, Ilias Diakonikolas, Daniel Kane, and Ronitt Rubinfeld. Private testing
of distributions via sample permutations. Advances in Neural Information Processing Systems, 32,
2019.

14

[85] MaryamAliakbarpour, Ilias Diakonikolas, and Ronitt Rubinfeld. Differentially private identity
and equivalence testing of discrete distributions. In International Conference onMachine Learning,
pages 169–178. PMLR, 2018.

[86] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Junwei Yu. Fast john ellipsoid compu-
tation with differential privacy optimization. In Conference on Parsimony and Learning. PMLR,
2025.

[87] Zhao Song, Junze Yin, Lichen Zhang, and Ruizhe Zhang. Fast dynamic sampling for determi-
nantal point processes. In International Conference on Artificial Intelligence and Statistics, pages
244–252. PMLR, 2024.

[88] Baihe Huang, Zhao Song, Omri Weinstein, Junze Yin, Hengjie Zhang, and Ruizhe Zhang. A
dynamic fast gaussian transform. arXiv preprint arXiv:2202.12329, 2022.

[89] Baihe Huang, Zhao Song, Runzhou Tao, Junze Yin, Ruizhe Zhang, and Danyang Zhuo. In-
stahide’s sample complexity when mixing two private images. arXiv preprint arXiv:2011.11877,
2020.

[90] Jiehao Liang, Zhao Song, Zhaozhuo Xu, Junze Yin, and Danyang Zhuo. Dynamic mainte-
nance of kernel density estimation data structure: From practice to theory. arXiv preprint
arXiv:2208.03915, 2022.

[91] Xiang Chen, Zhao Song, Baocheng Sun, Junze Yin, and Danyang Zhuo. Query complexity of
active learning for function familywith nearly orthogonal basis. arXiv preprint arXiv:2306.03356,
2023.

[92] Zhihang Li, Zhao Song, WeixinWang, Junze Yin, and Zheng Yu. How to inverting the leverage
score distribution? arXiv preprint arXiv:2404.13785, 2024.

[93] Zhi Zhang, Chris Chow, Yasi Zhang, Yanchao Sun, Haochen Zhang, Eric Hanchen Jiang, Han
Liu, Furong Huang, Yuchen Cui, and Oscar Hernan Madrid Padilla. Statistical guarantees for
lifelong reinforcement learning using pac-bayesian theory. arXiv preprint arXiv:2411.00401,
2024.

[94] Haochen Zhang, Xi Chen, and Lin F Yang. Adaptive liquidity provision in uniswap v3 with
deep reinforcement learning. arXiv preprint arXiv:2309.10129, 2023.

[95] Yunfan Li, Yiran Wang, Yu Cheng, and Lin Yang. Low-switching policy gradient with explo-
ration via online sensitivity sampling. In International Conference on Machine Learning, pages
19995–20034. PMLR, 2023.

[96] Yunfan Li and Lin Yang. On the model-misspecification in reinforcement learning. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 2764–2772. PMLR, 2024.

[97] Junyan Liu, Yunfan Li, Ruosong Wang, and Lin Yang. Uniform last-iterate guarantee for
bandits and reinforcement learning. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

[98] Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. The computational
limits of state-space models and mamba via the lens of circuit complexity. arXiv preprint
arXiv:2412.06148, 2024.

[99] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, Wei Wang, and Jiahao Zhang. On the
computational capability of graph neural networks: A circuit complexity bound perspective.
arXiv preprint arXiv:2501.06444, 2025.

[100] Yuefan Cao, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Jiahao
Zhang. Dissecting submission limit in desk-rejections: A mathematical analysis of fairness in
ai conference policies. arXiv preprint arXiv:2502.00690, 2025.

15

[101] Zhao Song, Junze Yin, and Lichen Zhang. Solving attention kernel regression problem via
pre-conditioner. In International Conference on Artificial Intelligence and Statistics, pages 208–216.
PMLR, 2024.

[102] Yeqi Gao, Zhao Song, and Junze Yin. Gradientcoin: A peer-to-peer decentralized large
language models. arXiv preprint arXiv:2308.10502, 2023.

[103] Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformu-
lating single layer attention in llm based on tensor and svm trick, and solving it in matrix
multiplication time. arXiv preprint arXiv:2309.07418, 2023.

[104] Zhao Song, Weixin Wang, and Junze Yin. A unified scheme of resnet and softmax. arXiv
preprint arXiv:2309.13482, 2023.

[105] Zhihang Li, Zhao Song, ZifanWang, and Junze Yin. Local convergence of approximate newton
method for two layer nonlinear regression. arXiv preprint arXiv:2311.15390, 2023.

[106] Chenyang Li, Zhao Song, Zhaoxing Xu, and Junze Yin. Inverting the leverage score gradient:
An efficient approximate newton method. arXiv preprint arXiv:2408.11267, 2024.

[107] Jiehao Liang, Somdeb Sarkhel, Zhao Song, Chenbo Yin, Junze Yin, and Danyang Zhuo. A
faster k-means++ algorithm. arXiv preprint arXiv:2211.15118, 2022.

[108] Song Bian, Zhao Song, and Junze Yin. Federated empirical risk minimization via second-order
method. arXiv preprint arXiv:2305.17482, 2023.

[109] Yichuan Deng, Zhao Song, and Junze Yin. Faster robust tensor power method for arbitrary
order. arXiv preprint arXiv:2306.00406, 2023.

[110] Zhao Song, Mingquan Ye, Junze Yin, and Lichen Zhang. Efficient alternating minimization
with applications toweighted low rank approximation. In The Thirteenth International Conference
on Learning Representations, 2025. URL https://openreview.net/forum?id=rvhu4V7yrX.

[111] Zhao Song, Mingquan Ye, Junze Yin, and Lichen Zhang. A nearly-optimal bound for fast
regression with ℓ∞ guarantee. In International Conference on Machine Learning, pages 32463–
32482. PMLR, 2023.

[112] Zhao Song, Junze Yin, andRuizhe Zhang. Revisiting quantumalgorithms for linear regressions:
Quadratic speedups without data-dependent parameters. arXiv preprint arXiv:2311.14823,
2023.

16

Appendix
Roadmap. In Section A, we also provide more proof, such as Theorem 3.5, Lemma 3.11 and Lemma
3.17 which prove the correctness of FastPostponedGreedy, the space storage of FastGreedy, and the
space storage of FastPostponedGreedy respectively.
In Section B, to illustrate the impact of various parameters, namely n, s, d, and dl, we present
additional experimental results. The parameters are defined as follows: n is the node count, d is the
original node dimension, s is the dimension after transformation, and dl is the maximum matching
time per node (referred to as the deadline).

A. Missing Proofs
In Section A.1, we provide the proof for Lemma 3.1. In Section A.2, we provide the proof for
Lemma 3.2. In Section A.3, we provide the proof for Lemma 3.3. In Section A.4, we provide the proof
for Theorem 3.5. In Section A.5, we provide the proof for Lemma 3.10. In Section A.6, we provide
the proof for Lemma 3.11. In Section A.7, we provide the proof for Lemma 3.14. In Section A.8,
we provide the proof for Lemma 3.15. In Section A.9, we provide the proof for Lemma 3.16. In
Section A.10, we provide the proof for Lemma 3.17.

A.1. Proof of Lemma 3.1
Lemma A.1 (Restatement of Lemma 3.1). StandardGreedy in Algorithm 5 is a 1/2-competitive algo-
rithm.

Proof. We use ws to denote the current matching value of seller s. Let ws,b denote the weight of the
edge between the buyer node and s-th seller node. Let i(b) be the increment of matching value when
buyer b arrives: i(b) = maxs∈S{ws,b, ws} −ws. Let vf (s) be the final matching value for a seller node
s. If we add all the increments of matching value that every buyer node brings, we will get the sum of
every seller node’s matching value. ∑b∈B i(b) =

∑
s∈S vf (s). Let alg be the weight of the matching

in StandardGreedy. Let alg =
∑

s∈S vf (s). Let opt be the optimal matching weight of any matching
that can be constructed. Let λi denote the arrival time of node i. We need to do the following things
to acquire the maximum of opt:

minimize
∑
i∈[n]

ai

subject to ai ≥ 0 ∀i ∈ [n]

|λi − λj | ≤ dl, ∀i < j

ai + aj ≥ wi,j ∀i, j ∈ [n].

During the whole process, we update the value of ws only when ws ≤ ws,b. So vf (s) ≥ ws. Since i(b)
is the maximum of ws,b − ws, we can conclude that i(b) ≥ ws,b − ws. Therefore, vf (s) + i(b) ≥ ws,b

and {vf (s)}s∈S ∪ {i(b)}b∈B is a feasible solution.
We conclude

opt ≤
∑
b∈B

i(b) +
∑
s∈S

vf (s) = 2
∑
s∈S

vf (s) = 2alg,

where the first step follows from vf (s) + i(b) ≥ ws,b, the second step follows from ∑
s∈S vf (s) =∑

b∈B i(b), and the last step follows from alg =
∑

s∈S vf (s).

A.2. Proof of Lemma 3.2
Lemma A.2 (Restatement of Lemma 3.2). Let wi,j denote the real weight of the edge between seller i and
buyer j, and w̃i,j denote the approximated weight. Let ϵ ∈ (0, 0.1) denote the precision parameter. If for all

17

ϵ, there exists an α-approximation algorithm for the online weighted matching problem and a δ > 0, where
(1− δ)wi,j ≤ w̃i,j ≤ (1 + δ)wi,j for any seller node i and buyer node j, there exists a greedy algorithm with
competitive ratio α(1− ϵ).

Proof. Since ϵ ∈ (0, 0.1) and we have (1 − δ)wi,j ≤ w̃i,j ≤ (1 + δ)wi,j . Let alg and opt denote the
matching weight and optimal weight of the original problem G = (S,B, E) respectively. Then we
define alg′ is the matching weight of another problem G′ = (S,B, E′), and our algorithm gives the
optimal weight opt′. Since for each edge w̃i,j ≤ (1 + δ)wi,j and alg =

∑
i∈S
j∈B

wi,j , we can know that
alg′ ≤ (1 + δ)alg. Since for each edge (1 − δ)wi,j ≤ w̃i,j and opt =

∑
i∈S
j∈B

wi,j , we can know that
opt′ ≥ (1− δ)opt. Thus,

alg ≥ 1

1 + δ
alg′ ≥ α

1 + δ
opt′ ≥ α(1− δ)

1 + δ
opt ≥ α(1− 2δ)opt,

where the first step follows from alg′ ≤ (1 + δ)alg, the second step follows from there exists a
α-approximation greedy algorithm, the third step follows from opt′ ≥ (1− δ)opt, and the last step
follows from α(1−δ)

1+δ ≥ α(1−δ)2

1−δ2 ≥ α(1−δ)2

2 ≥ α(1− 2δ). Then we can draw our conclusion because we
can replace 2δ with a new ϵ = 2δ in the last step.

A.3. Proof of Lemma 3.3
Lemma A.3 (Restatement of Lemma 3.3). If a node is determined to be a seller or a buyer with 1/2
probability in StandardGreedy in Algorithm 5, then this new StandardPostponedGreedy algorithm is a
1/4-competitive algorithm.

Proof. Let fpg denote the weight constructed by FastPostponedGreedy algorithm. Let alg and opt
denote the matching weight and optimal weight of original problem G = (S,B,E) respectively.
Since the probability of a node being a seller is 1/2, we can know that

fpg = E[
∑
i∈S

wi,j] =
1

2

∑
i∈S,j∈B

wi,j =
1

2
alg ≥ 1

4
opt

where the first step follows from the definition of fpg, the second step follows from the probability of
a node being a seller is 1/2, the third step follows from alg =

∑
i∈S,j∈B wi,j , and the last step follows

from Lemma 3.1.

A.4. Proof of Theorem 3.5
Theorem A.4 (Restatement of Theorem 3.5, Correctness of FastPostponedGreedy in Algorithm 3
and Algorithm 4). FastPostponedGreedy is a 1−ϵ

4 -competitive algorithm.

Proof. According to Lemma 3.3, there exists a 1
4 -competitive algorithm. According to Lemma 2.5, we

create a sketching matrix M ∈ Rs×d, let f(x) = Mx and wi = ∥yj − xi∥2 denote the real matching
weight of the edge between seller node xi and buyer node yj , and w̃i,j = ∥f(yj)− f(xi)∥2 denote
the approximated weight of the edge between seller node xi and buyer node yj , then there will
be (1 − ϵ)wi,j ≤ w̃i,j ≤ (1 + ϵ)wi,j for ∀i, j ∈ [n]. Based on the implications of Lemma 3.2, we can
confidently assert that the competitive ratio of FastPostponedGreedy is 1−ϵ

4 .

A.5. Proof of Lemma 3.10
Lemma A.5 (Restatement of Lemma 3.10). The procedure TotalWeight (Algorithm 2) in Theorem 3.6
runs in time O(1). It outputs a 1−ϵ

2 -approximate matching with probability at least 1− δ,

18

Proof. Line 25 is returning the total matching value p which has already been calculated after calling
Update, which requires O(1) time.
The analysis demonstrates that the overall running time complexity is constant, denoted as O(1).
According to Lemma 3.8, we can know that the total weight pmaintains a 1−ϵ

2 -approximate matching
after calling Update. So when we call TotalWeight, it will output a 1−ϵ

2 -approximate matching if it
succeeds.
The probability of successful running of Update is at least 1− δ, so the probability of success is 1− δ
at least.

A.6. Proof of Lemma 3.11
LemmaA.6 (Restatement of Lemma 3.11, Space storage for FastGreedy in Algorithm 1 andAlgorithm
2). The space storage for FastGreedy in Algorithm 1 and Algorithm 2 is O(nd+ ϵ−2D2(n+ d) log(n/δ)).

Proof. s = O(ϵ−2 log(n/δ)) is the dimension after transformation. In FastGreedy, we need to store a
Rs×d sketching matrix, multiple arrays with n elements, two point sets containing n nodes with d
dimensions, and a point set containing n nodes with s dimensions. The total storage is

O(n+ sd+ nd+ ns) = O(nd+ ϵ−2(n+ d) log(n/δ)).

A.7. Proof of Lemma 3.14
Lemma A.7 (Restatement of Lemma 3.14). The procedure Update (Algorithm 3) in Theorem 3.12 runs
in time O(ϵ−2(n+ d) log(n/δ)). The total matching value p maintains a 1−ϵ

4 -approximate matching before
calling Update, then p also maintains a 1−ϵ

4 -approximate matching after calling Update with probability at
least 1− δ.

Proof. s = O(ϵ−2 log(n/δ)) is the dimension after transformation. We call Update when a new node
xi comes. Line 3 is multiplying the sketching matrix and the vector made up of each coordinate
of a node, and it will take O(sd) = O(ϵ−2d log(n/δ)) time. Line 25 is calling Query, which requires
O(ϵ−2n log(n/δ)) time. Line 26 is finding j0 which makes w̃j − wj maximum if that vertex can still
be matched, which requires O(n) time.
So, in total, the running time is

O(sd+ ns+ n) = O(ϵ−2(n+ d) log(n/δ)).

Then we will prove the second statement.
We suppose the total matching value pmaintains a 1−ϵ

4 -approximate matching before calling Update.
From Lemma 3.15, we can know that after we call Query, we can get {w̃j}nj=1 and for ∀j ∈ [n](1−
ϵ)∥sxj

− bxi
∥2 ≤ w̃j ≤ (1 + ϵ)∥sxj

− bxi
∥2 with probability 1 − δ at least. According to Lemma

3.3 and Lemma 3.2, the competitive ratio of FastPostponedGreedy is still 1−ϵ
4 after running Query.

Therefore, the total matching value p still maintains a 1−ϵ
4 -approximate matching with probability at

least 1− δ.

A.8. Proof of Lemma 3.15
Lemma A.8 (Restatement of Lemma 3.15). The procedure Query (Algorithm 4) in Theorem 3.12 runs in
time O(ϵ−2n log(n/δ)). For ∀j ∈ [n], it provides estimates estimates {w̃j}nj=1 such that:

(1− ϵ)∥sxj
− bxi

∥2 ≤ w̃j ≤ (1 + ϵ)∥sxj
− bxi

∥2

with probability at least 1− δ.

19

Proof. Line 33 is calculating the weight of the edge between the buyer node copy bxi and the seller
node still in the market, which requires O(s) = O(ϵ−2 log(n/δ)) time. Since we need to calculate for
n times at most, the whole process will take O(ns) = O(ϵ−2n log(n/δ)) time.
So, in total, the running time is O(ns) = O(ϵ−2(n+ d) log(n/δ)).

According to Lemma 2.5, we create a sketchingmatrixM ∈ Rs×d, let f(x) = Mx andwj = ∥sxj
−bxi

∥2
denote the real matching value of seller node sxj

when buyer node bxi
comes, and w̃j = ∥f(bxi

)−
f(sxj)∥2 denote the approximated matching value of seller node sxj when buyer node bxi comes,
then there will be (1− ϵ)∥sxj − bxi∥2 ≤ w̃j ≤ (1 + ϵ)∥sxj − bxi∥2 for ∀i ∈ [n].
Since the failure parameter is δ, for j ∈ [n] it will provide

(1− ϵ)∥sxj
− bxi

∥2 ≤ w̃j ≤ (1 + ϵ)∥sxj
− bxi

∥2

with probability at least 1− δ.

A.9. Proof of Lemma 3.16

Lemma A.9 (Restatement of Lemma 3.16). The procedure TotalWeight (in Algorithm 4) in Theorem
3.12 runs in time O(1). It outputs a 1−ϵ

2 -approximate matching with probability at least 1− δ,

Proof. Line 39 is returning the total matching value p which has already been calculated after calling
Update, which requires O(1) time.
The analysis demonstrates that the overall running time complexity is constant, denoted as O(1).
According to Lemma 3.14, we can know that the total weight pmaintains a 1−ϵ

2 -approximatematching
after calling Update. So when we call TotalWeight, it will output a 1−ϵ

4 -approximate matching if it
succeeds.
The probability of successful running of Update is at least 1− δ, so the probability of success is 1− δ
at least.

A.10. Proof of Lemma 3.17

Lemma A.10 (Restatement of Lemma 3.17, Space storage for FastPostponedGreedy in Algorithm 3
and Algorithm 4). The space storage for FastPostponedGreedy is O(nd+ ϵ−2D2(n+ d) log(n/δ)).

Proof. s = O(ϵ−2D2 log(n/δ)) is the dimension after transformation. In FastPostponedGreedy, we
need to store a Rs×d sketching matrix, multiple arrays with n elements, a point set containing n
nodes with d dimensions, and two point sets containing n nodes with s dimensions. The total storage
is

O(n+ sd+ nd+ ns) = O(nd+ ϵ−2D2(n+ d) log(n/δ)).

B. More Experiments
Data Generation. At the beginning, we generate n random vectors of x1, · · · , xn ∈ Rd for seller set
and y1, · · · , yn ∈ Rd for buyer set. Each vector follows the subsequent procedure:

• Each coordinate of the vector is selected uniformly from the interval [−1, 1].
• Normalization is applied to each vector such that its ℓ2 norm becomes 1.

20

Algorithm 5 Standard Greedy Algorithm
1: data structure StandardGreedy
2: members
3: x1, x2, . . . xn ∈ Rd ▷ Nodes in the market
4: wi ▷ Matching value on xi seller node
5: m(i) ▷ The vertex matching with vertex i
6: p ▷ Total matching value
7: Let d1, d2, . . . dn ∈ N be the deadline for each node ▷ Each offline point xi can only be

matched during time di.
8: flag[n] ▷ flag[i] decides if node i can be matched.
9: end members
10: procedure Init(x1, . . . , xn,)
11: for i = 1, 2, . . . , n do
12: wi ← 0
13: flag[i]← 1
14: end for
15: p← 0
16: end procedure
17: procedure Update(b ∈ Rd)
18: if the present time is di then
19: flag[i]← 0
20: end if
21: i0 ← argmaxflag[i]=1{wi,b − wi}
22: mi0 ← b
23: p← p+max{wi0 , wi0,b} − wi0
24: wi0 ← max{wi0 , wi0,b}
25: end procedure
26: procedure Query()
27: return p
28: end procedure
29: end data structure

Given that the vectors are randomly generated, the order of their arrival does not affect the experi-
mental results. We define that i-th vector of a set in each set comes at time i.
In the previous algorithm, for i-th vector of the seller set and j-th vector of the buyer set, we define
the weights between the two nodes to be ∥xi − yj∥2, which requires O(nd) time.
In the new algorithm, we choose a sketching matrix S ∈ Rs×d whose entry is sampled from
{−1/

√
s,+1/

√
s}. We have already known x1, · · · , xn at the beginning, andwe precompute x̃i = Sxi

for ∀i ∈ [n]. In each iteration, when a buyer yj comes, we compute ỹj = Syj and use ∥x̃i − ỹj∥2 to
estimate the weight. This takes O((n+ d)s) time. After we calculate the weight, we need to find the
seller to make the weight between it and the current buyer maximum.
Parameter Configuration. In our experimental setup, we select the following parameter values:
n = 1000, d = 50000, and s = 20 as primary conditions.
Results for Synthetic Data Set. To assess the performance of our algorithms, we conducted experi-
ments comparing their running time with that of the original algorithms. We decide that the i-th
node of a set comes at i-th iteration during our test. Fig. 5a and Fig. 5b illustrate that our algorithms
consistently outperformed the original algorithms in terms of running time at each iteration. Specif-
ically, our algorithms exhibited running times equivalent to only 10.0% and 6.0% of the original
algorithms, respectively.
Additionally, we analyzed the running time of each algorithm per iteration. Fig. 5a and Fig. 5b depict
the running time of each algorithm during per iteration. The results demonstrate that our algorithms
consistently outperformed the original algorithms in terms of running time per iteration. dl the
maximum matching time per node (referred to as the deadline). The dl is randomly chosen from

21

0 200 400 600 800 1000
epoch

0
10
20
30
40
50
60

ru
nn

in
g

tim
e(

s)
greedy
fast greedy

0 200 400 600 800 1000
epoch

0.00

0.02

0.04

0.06

0.08

ru
nn

in
g

tim
e

pe
r e

po
ch

(s
)

greedy
fast greedy

(a) Greedy and Fast Greedy Algorithm

0 200 400 600 800 1000
epoch

0
10
20
30
40
50
60

ru
nn

in
g

tim
e(

s)

postponed greedy
fast postponed greedy

0 200 400 600 800 1000
epoch

0.00

0.02

0.04

0.06

0.08

ru
nn

in
g

tim
e

pe
r e

po
ch

(s
)

postponed greedy
fast postponed greedy

(b) Postponed Greedy and Fast Postponed Greedy Algo-
rithm

Figure 5: Comparison between the running time of each two algorithms.

500 1000 1500 2000 2500 3000
parameter n

0
20
40
60
80

100
120
140
160

ru
nn

in
g

tim
e(

s)

s = 20, d = 50000
greedy
fast greedy

0 20 40 60 80 100120140160
parameter s

0

10

20

30

40

50

ru
nn

in
g

tim
e(

s)

n = 1000, d = 50000
greedy
fast greedy

(a) Greedy and Fast Greedy Algorithm

500 1000 1500 2000 2500 3000
parameter n

0
20
40
60
80

100
120
140
160

ru
nn

in
g

tim
e(

s)

s = 20, d = 50000
postponed greedy
fast postponed greedy

0 20 40 60 80 100120140160
parameter s

0

10

20

30

40

50

ru
nn

in
g

tim
e(

s)

n = 1000, d = 50000
postponed greedy
fast postponed greedy

(b) Postponed Greedy and Fast Postponed Greedy Algo-
rithm

Figure 6: The relationship between running time and parameter n and s. n is the node count, and s
is the dimension after transformation.

20000 30000 40000 50000 60000
parameter d

0
20
40
60
80

100
120

ru
nn

in
g

tim
e(

s)

n = 1500, s = 20
greedy
fast greedy

100 200 300 400 500 600
parameter dl

0
10
20
30
40
50
60
70
80

ru
nn

in
g

tim
e(

s)

n = 1000, s = 50, d = 50000
greedy
fast greedy

(a) Greedy and Fast Greedy Algorithm

20000 30000 40000 50000 60000
parameter d

0
20
40
60
80

100
120
140

ru
nn

in
g

tim
e(

s)

n = 1500, s = 20
postponed greedy
fast postponed greedy

100 200 300 400 500 600
parameter dl

0
10
20
30
40
50
60
70
80

ru
nn

in
g

tim
e(

s)

n = 1000, s = 50, d = 50000
postponed greedy
fast postponed greedy

(b) Postponed Greedy and Fast Postponed Greedy Algo-
rithm

Figure 7: The relationship between running time and parameter d and dl. d is the original node
dimension, and dl is the maximum matching time per node (referred to as the deadline).

[1, n]. In this case, the dl of original algorithms is 420. The running time of per iteration increases as
the number of iterations increases until it reaches dl. This is because all nodes are required to remain
in the market for dl iterations and are not matched thereafter.
Furthermore, we investigated the influence of the parameter nwhile keeping the other parameters
constant. Fig. 6a and Fig. 6b illustrate that our algorithms consistently outperformed the original
algorithms when n ∈ [500, 3000]. Additionally, the running time of each algorithm exhibited a linear
increase with the growth of n, which aligns with our initial expectations.
We also examined the impact of the parameter s by varying its value while keeping the other
parameters constant. Fig. 6a and Fig. 6b reveal that s does not significantly affect the running time of
the original algorithms but does impact the running time of our algorithms. Notably, our algorithms
demonstrate faster performance when s is smaller.
To evaluate the influence of the parameter d, we varied its value while running all four algorithms.
Throughout our tests, we observed that the impact of dwas considerably less pronounced compared

22

to n and s. Consequently, we set d to a sufficiently large value relative to n and s. As shown in Fig. 7a
and Fig. 7b, indicate that d does not significantly affect the running time of our algorithms, but it
does have a considerable influence on the running time of the original algorithms.
We conducted experiments to assess the influence of the parameter dl while keeping the other
parameters constant. dlwas selected from the interval [1, n] as choosing values outside this range
would render the parameter irrelevant since all nodes would remain in the market throughout the
entire process. Fig. 7a and Fig. 7b show that our algorithms are faster than original algorithms
when dl ∈ [200, 600].As the value of dl increased, the running time of all algorithms correspondingly
increased. This observation highlights the impact of dl on the overall execution time of the algorithms.

Algorithms s = 20 s = 60 s = 100 s = 200 s = 300
Greedy 706.8± 0.00 706.8± 0.00 706.8± 0.00 706.8± 0.00 706.8± 0.00
FGreedy 698.8± 5.07 704.0± 2.80 705.3± 2.77 705.8± 1.58 706.5± 1.31
PGreedy 352.5± 0.48 352.6± 0.47 352.5± 0.48 352.6± 0.48 352.6± 0.48
FPGreedy 348.1± 4.11 350.4± 2.00 351.1± 1.68 351.4± 1.14 351.5± 1.00

Table 2: We use FGreedy to denote FastGreedy. We use PGreedy to denote the PostponedGreedy. We
use FPGreedy to denote FastPostponedGreedy. Total weight of each algorithm, s is the dimension
after transformation. The total weight of Greedy and PostponedGreedy don’t depend on s. The
reason why the total weight of them isn’t the same in each case is there exists errors caused by
different results of clustering the points. We test for 100 times for each algorithm in each case and
calculate the mean and standard deviation of the total weight. Let A be the mean of the total weight
of an algorithm. Let B be the standard deviation of the total weight of an algorithm. In each entry,
we use A±B to denote the total weight of an algorithm when s is set by a specific value.

Table 2 shows the total weight of each algorithmwhen s changes. SinceGreedy and PostponedGreedy
don’t depend on s, the total weight of them doesn’t change while s changes. We can see that the
total weight of each optimized algorithm is very close to that of each original algorithm respectively,
which means the relative error ϵ of our algorithm is very small in practice. As s increases, the
difference between the total weight of each optimized algorithm and each original algorithm also
becomes smaller. And the total weight of FastGreedy is 2 times of that of FastPostponedGreedy.
These empirical results match our theoretical analysis. Parameter s can’t affect the total weight of
each algorithm. The competitive ratio of FastGreedy and FastPostponedGreedy is 1−ϵ

2 and 1−ϵ
4

respectively.
Optimal Usage of Algorithms. The results presented above demonstrate that our algorithms exhibit
significantly faster performance when the values of n, d, and dl are sufficiently large. Additionally,
reducing the value of s leads to a decrease in the running time of our algorithms. Our proposed
algorithms outperform the original algorithms, particularly when the value of d is extremely large.
Consequently, our algorithms are well-suited for efficiently solving problems involving a large
number of nodes with substantial data entries.
More Experiments. To assess the impact of parameter n in the presence of other variables, we varied
the values of the remaining parameters and executed all four algorithms. As illustrated in Fig. 8,
Fig. 9, Fig. 10, and Fig. 11, it is evident that the running time consistently increases with an increase
in n, regardless of the values assigned to the other parameters.
To investigate the impact of parameter s in the presence of other variables, we varied the values of
the remaining parameters and executed all four algorithms.Fig. 12 and Fig. 13 demonstrate that the
value of s is independent of the original algorithms. Conversely, Fig. 14 and Fig. 15 indicate that the
running time of our algorithms increases with an increase in s, irrespective of the values assigned to
the other parameters.
To examine the impact of parameter d in the presence of other variables, we varied the values of
the remaining parameters and executed all four algorithms. The results depicted in Fig. 16, Fig. 17,
Fig. 18 and Fig. 19 reveal that the running time of both the original and our proposed algorithms
increases with an increase in d, regardless of the values assigned to the other parameters.

23

To assess the impact of parameter dl in the presence of other variables, we varied the values of the
remaining parameters and executed all four algorithms. As evident from Fig. 20, Fig. 21, Fig. 22,
and Fig. 23, the running time consistently increases with an increase in dl, regardless of the values
assigned to the other parameters.

50 100 150 200 250 300
parameter n

0.5

1.0

1.5

2.0

2.5

3.0

ru
nn

in
g

 ti
m

e(
s)

Greedy Algorithm
s =10
s =50
s =100
s =200
s =500

(a) s is changed

50 100 150 200 250 300
parameter n

0.5
1.0
1.5
2.0
2.5
3.0

ru
nn

in
g

 ti
m

e(
s)

Greedy Algorithm
d =20000
d =30000
d =40000
d =50000
d =60000

(b) d is changed

50 100 150 200 250 300
parameter n

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

ru
nn

in
g

 ti
m

e(
s)

Greedy Algorithm
dl =20
dl =30
dl =40
dl =50
dl =60

(c) dl is changed
Figure 8: The relationship between running time of the greedy algorithm and parameter n

50 100 150 200 250 300
parameter n

0.5

1.0

1.5

2.0

2.5

ru
nn

in
g

 ti
m

e(
s)

Postponed Greedy Algorithm
s =10
s =50
s =100
s =200
s =500

(a) s is changed

50 100 150 200 250 300
parameter n

0.5
1.0
1.5
2.0
2.5
3.0

ru
nn

in
g

 ti
m

e(
s)

Postponed Greedy Algorithm
d =20000
d =30000
d =40000
d =50000
d =60000

(b) d is changed

50 100 150 200 250 300
parameter n

0.5
1.0
1.5
2.0
2.5
3.0
3.5

ru
nn

in
g

 ti
m

e(
s)

Postponed Greedy Algorithm
dl =20
dl =30
dl =40
dl =50
dl =60

(c) dl is changed
Figure 9: The relationship between running time of postponed greedy algorithm and parameter n

50 100 150 200 250 300
parameter n

0.0
0.5
1.0
1.5
2.0
2.5
3.0

ru
nn

in
g

 ti
m

e(
s)

Fast Greedy Algorithm
s =10
s =50
s =100
s =200
s =500

(a) s is changed

50 100 150 200 250 300
parameter n

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

ru
nn

in
g

 ti
m

e(
s)

Fast Greedy Algorithm
d =20000
d =30000
d =40000
d =50000
d =60000

(b) d is changed

50 100 150 200 250 300
parameter n

0.2

0.4

0.6

0.8

1.0

ru
nn

in
g

 ti
m

e(
s)

Fast Greedy Algorithm
dl =20
dl =30
dl =40
dl =50
dl =60

(c) dl is changed
Figure 10: The relationship between running time of fast greedy algorithm and parameter n

C. More Related Work
The JL lemma [45] provides strong theoretical guarantees with high probability (1± ϵ)-distortion,
which is critical for maintaining our competitive ratio proofs. This is evidenced in Lemma 2.5 and its
application in Theorems 3.4 and 3.5. Compared with principal component analysis (PCA), sketching
typically requires less computational complexity O(snd), where the sketching matrix is s×n and the
data matrix is n× d and in our case, s = O(ϵ−2 log(n/δ)) because it requires sampling of rows of the
data matrix. However, PCA requires the computation of SVD, which requires min{O(n2d), O(nd2)},
for an n×d data matrix. In sketching, the value of s can be adjusted, representing a trade-off between

24

50 100 150 200 250 300
parameter n

0.0
0.5
1.0
1.5
2.0
2.5
3.0

ru
nn

in
g

 ti
m

e(
s)

Fast Postponed Greedy Algorithm
s =10
s =50
s =100
s =200
s =500

(a) s is changed

50 100 150 200 250 300
parameter n

0.2

0.4

0.6

0.8

1.0

1.2

ru
nn

in
g

 ti
m

e(
s)

Fast Postponed Greedy Algorithm
d =20000
d =30000
d =40000
d =50000
d =60000

(b) d is changed

50 100 150 200 250 300
parameter n

0.2

0.4

0.6

0.8

ru
nn

in
g

 ti
m

e(
s)

Fast Postponed Greedy Algorithm
dl =20
dl =30
dl =40
dl =50
dl =60

(c) dl is changed
Figure 11: The relationship between running time of fast postponed greedy algorithm and parameter
n

0 100 200 300 400 500
parameter s

0.5

1.0

1.5

2.0

2.5

ru
nn

in
g

 ti
m

e(
s)

Greedy Algorithm
n =50
n =100
n =150
n =200
n =300

(a) n is changed

0 100 200 300 400 500
parameter s

0.6

0.8

1.0

1.2

1.4

1.6

ru
nn

in
g

 ti
m

e(
s)

Greedy Algorithm
d =20000
d =30000
d =40000
d =50000
d =60000

(b) d is changed

0 100 200 300 400 500
parameter s

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

ru
nn

in
g

 ti
m

e(
s)

Greedy Algorithm
dl =20
dl =30
dl =40
dl =50
dl =60

(c) dl is changed
Figure 12: The relationship between running time of the greedy algorithm and parameter s

0 100 200 300 400 500
parameter s

0.5

1.0

1.5

2.0

2.5

ru
nn

in
g

 ti
m

e(
s)

Postponed Greedy Algorithm
n =50
n =100
n =150
n =200
n =300

(a) n is changed

0 100 200 300 400 500
parameter s

0.6

0.8

1.0

1.2

1.4

1.6

ru
nn

in
g

 ti
m

e(
s)

Postponed Greedy Algorithm
d =20000
d =30000
d =40000
d =50000
d =60000

(b) d is changed

0 100 200 300 400 500
parameter s

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

ru
nn

in
g

 ti
m

e(
s)

Postponed Greedy Algorithm
dl =20
dl =30
dl =40
dl =50
dl =60

(c) dl is changed
Figure 13: The relationship between running time of postponed greedy algorithm and parameter s

0 100 200 300 400 500
parameter s

0.0
0.5
1.0
1.5
2.0
2.5
3.0

ru
nn

in
g

 ti
m

e(
s)

Fast Greedy Algorithm
n =50
n =100
n =150
n =200
n =300

(a) n is changed

0 100 200 300 400 500
parameter s

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

ru
nn

in
g

 ti
m

e(
s)

Fast Greedy Algorithm
d =20000
d =30000
d =40000
d =50000
d =60000

(b) d is changed

0 100 200 300 400 500
parameter s

0.2
0.4
0.6
0.8
1.0
1.2
1.4

ru
nn

in
g

 ti
m

e(
s)

Fast Greedy Algorithm
dl =20
dl =30
dl =40
dl =50
dl =60

(c) dl is changed
Figure 14: The relationship between running time of fast greedy algorithm and parameter s

efficiency and accuracy. This trade-off can be also seen in our experimental results (especially in

25

0 100 200 300 400 500
parameter s

0.0
0.5
1.0
1.5
2.0
2.5
3.0

ru
nn

in
g

 ti
m

e(
s)

Fast Postponed Greedy Algorithm
n =50
n =100
n =150
n =200
n =300

(a) n is changed

0 100 200 300 400 500
parameter s

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

ru
nn

in
g

 ti
m

e(
s)

Fast Postponed Greedy Algorithm
d =20000
d =30000
d =40000
d =50000
d =60000

(b) d is changed

0 100 200 300 400 500
parameter s

0.2
0.4
0.6
0.8
1.0
1.2
1.4

ru
nn

in
g

 ti
m

e(
s)

Fast Postponed Greedy Algorithm
dl =20
dl =30
dl =40
dl =50
dl =60

(c) dl is changed
Figure 15: The relationship between running time of fast postponed greedy algorithm and parameter
s

20000 30000 40000 50000 60000
parameter d

0.5
1.0
1.5
2.0
2.5
3.0

ru
nn

in
g

 ti
m

e(
s)

Greedy Algorithm
n =50
n =100
n =150
n =200
n =300

(a) n is changed

20000 30000 40000 50000 60000
parameter d

0.6

0.8

1.0

1.2

1.4

ru
nn

in
g

 ti
m

e(
s)

Greedy Algorithm
s =10
s =50
s =100
s =200
s =500

(b) s is changed

20000 30000 40000 50000 60000
parameter d

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

ru
nn

in
g

 ti
m

e(
s)

Greedy Algorithm
dl =20
dl =30
dl =40
dl =50
dl =60

(c) dl is changed
Figure 16: The relationship between running time of the greedy algorithm and parameter d

20000 30000 40000 50000 60000
parameter d

0.5
1.0
1.5
2.0
2.5
3.0

ru
nn

in
g

 ti
m

e(
s)

Postponed Greedy Algorithm
n =50
n =100
n =150
n =200
n =300

(a) n is changed

20000 30000 40000 50000 60000
parameter d

0.6

0.8

1.0

1.2

1.4

ru
nn

in
g

 ti
m

e(
s)

Postponed Greedy Algorithm
s =10
s =50
s =100
s =200
s =500

(b) s is changed

20000 30000 40000 50000 60000
parameter d

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

ru
nn

in
g

 ti
m

e(
s)

Postponed Greedy Algorithm
dl =20
dl =30
dl =40
dl =50
dl =60

(c) dl is changed
Figure 17: The relationship between running time of postponed greedy algorithm and parameter d

20000 30000 40000 50000 60000
parameter d

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

ru
nn

in
g

 ti
m

e(
s)

Fast Greedy Algorithm
n =50
n =100
n =150
n =200
n =300

(a) n is changed

20000 30000 40000 50000 60000
parameter d

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

ru
nn

in
g

 ti
m

e(
s)

Fast Greedy Algorithm
s =10
s =50
s =100
s =200
s =500

(b) s is changed

20000 30000 40000 50000 60000
parameter d

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

ru
nn

in
g

 ti
m

e(
s)

Fast Greedy Algorithm
dl =20
dl =30
dl =40
dl =50
dl =60

(c) dl is changed
Figure 18: The relationship between running time of fast greedy algorithm and parameter d

Table 2). Regarding accuracy, sketching can generate more random results because of its sampling
procedure and the choice of s, whereas PCA has a more deterministic error.

26

20000 30000 40000 50000 60000
parameter d

0.2

0.4

0.6

0.8

1.0

1.2

ru
nn

in
g

 ti
m

e(
s)

Fast Postponed Greedy Algorithm
n =50
n =100
n =150
n =200
n =300

(a) n is changed

20000 30000 40000 50000 60000
parameter d

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

ru
nn

in
g

 ti
m

e(
s)

Fast Postponed Greedy Algorithm
s =10
s =50
s =100
s =200
s =500

(b) s is changed

20000 30000 40000 50000 60000
parameter d

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

ru
nn

in
g

 ti
m

e(
s)

Fast Postponed Greedy Algorithm
dl =20
dl =30
dl =40
dl =50
dl =60

(c) dl is changed
Figure 19: The relationship between running time of fast postponed greedy algorithm and parameter
d

20 25 30 35 40 45 50 55 60
parameter dl

0

1

2

3

4

ru
nn

in
g

 ti
m

e(
s)

Greedy Algorithm
n =50
n =100
n =150
n =200
n =300

(a) n is changed

20 25 30 35 40 45 50 55 60
parameter dl

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

ru
nn

in
g

 ti
m

e(
s)

Greedy Algorithm
s =10
s =50
s =100
s =200
s =500

(b) s is changed

20 25 30 35 40 45 50 55 60
parameter dl

0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

ru
nn

in
g

 ti
m

e(
s)

Greedy Algorithm
d =20000
d =30000
d =40000
d =50000
d =60000

(c) d is changed
Figure 20: The relationship between running time of greedy algorithm and parameter dl

20 25 30 35 40 45 50 55 60
parameter dl

0

1

2

3

4

ru
nn

in
g

 ti
m

e(
s)

Postponed Greedy Algorithm
n =50
n =100
n =150
n =200
n =300

(a) n is changed

20 25 30 35 40 45 50 55 60
parameter dl

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

ru
nn

in
g

 ti
m

e(
s)

Postponed Greedy Algorithm
s =10
s =50
s =100
s =200
s =500

(b) s is changed

20 25 30 35 40 45 50 55 60
parameter dl

0.50
0.75
1.00
1.25
1.50
1.75
2.00

ru
nn

in
g

 ti
m

e(
s)

Postponed Greedy Algorithm
d =20000
d =30000
d =40000
d =50000
d =60000

(c) d is changed
Figure 21: The relationship between running time of postponed greedy algorithm and parameter dl

20 25 30 35 40 45 50 55 60
parameter dl

0.2

0.4

0.6

0.8

1.0

ru
nn

in
g

 ti
m

e(
s)

Fast Greedy Algorithm
n =50
n =100
n =150
n =200
n =300

(a) n is changed

20 25 30 35 40 45 50 55 60
parameter dl

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

ru
nn

in
g

 ti
m

e(
s)

Fast Greedy Algorithm
s =10
s =50
s =100
s =200
s =500

(b) s is changed

20 25 30 35 40 45 50 55 60
parameter dl

0.2

0.3

0.4

0.5

0.6

ru
nn

in
g

 ti
m

e(
s)

Fast Greedy Algorithm
d =20000
d =30000
d =40000
d =50000
d =60000

(c) d is changed
Figure 22: The relationship between running time of fast greedy algorithm and parameter dl

More generally, other theoretical machine learning works study LLM efficiency [51–79], differential
privacy [80–86], determinantal point processes [87], fast Gaussian transform [88], attack problems

27

20 25 30 35 40 45 50 55 60
parameter dl

0.2

0.4

0.6

0.8

1.0

ru
nn

in
g

 ti
m

e(
s)

Fast Postponed Greedy Algorithm
n =50
n =100
n =150
n =200
n =300

(a) n is changed

20 25 30 35 40 45 50 55 60
parameter dl

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

ru
nn

in
g

 ti
m

e(
s)

Fast Postponed Greedy Algorithm
s =10
s =50
s =100
s =200
s =500

(b) s is changed

20 25 30 35 40 45 50 55 60
parameter dl

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

ru
nn

in
g

 ti
m

e(
s)

Fast Postponed Greedy Algorithm
d =20000
d =30000
d =40000
d =50000
d =60000

(c) d is changed
Figure 23: The relationship between running time of fast postponed greedy algorithm and parameter
dl

[89], kernel density estimation [90], online bipartite matching [89], active learning [91], leverage
score [92], reinforcement learning [93–97], circuit complexity [98, 99], and fairness analysis [100].
Sketching has been applied to many other fields, such as attention approximation [101–106], k
means clustering [107], federated learning [108], tensor decomposition [109], weighted low rank
approximation [110], linear regression [111, 112].

28

