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Abstract

Generative steganography is a current research
hotspot, yet its secret message payload capac-
ity is often limited by low entropy during gen-
eration. The low capacity necessitates long
stego texts or numerous transmissions, increas-
ing the risk of detection by third parties. Prior
studies have primarily enhanced payload capac-
ity by making more effective use of available
entropy while largely overlooking the equally
critical step of secret message preprocessing.
In this paper, we propose StegoZip, the first
plug-and-play framework that employs large
language model-driven dynamic semantic re-
dundancy pruning combined with index com-
pression coding to optimize secret message pre-
processing and further increase payload capac-
ity. In combination with advanced steganogra-
phy, the experimental results demonstrate that
StegoZip can increase the payload capacity by
2-3x while reducing the time per unit message
by approximately 50%. Furthermore, StegoZip
operates independently of the steganography
embedding process, ensuring that it does not
impact the security of the original method.

1 Introduction

As an information-hiding technique, steganogra-
phy aims to achieve covert communication by
imperceptibly modifying cover media (e.g., im-
ages, audio, text) while avoiding detection by
adversaries (Kahn, 1996; Provos and Honeyman,
2003; Channalli and Jadhav, 2009; Zhang et al.,
2025). Unlike cryptography, which protects con-
tent through encryption, steganography ensures se-
curity by eliminating physical or statistical traces
of hidden information in cover data (Johnson and
Jajodia, 1998; Cachin, 1998; Hopper et al., 2002).

Linguistic steganography, which exploits text
as the most prevalent communication medium, as
shown in Fig. 1, typically follows two core phases
during message encoding (Rani and Chaudhary,
2013; Krishnan et al., 2017; Majeed et al., 2021):
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Figure 1: General process of linguistic steganography.

1) Message Processing: preprocessing secret mes-
sages through compression (e.g., Huffman cod-
ing), encryption (e.g., AES), and format conver-
sion (e.g., ASCII-to-binary mapping). 2) Message
Embedding: most of these methods adopt channel
coding methods to embed messages while balanc-
ing imperceptibility and capacity, exemplified by
Syndrome-Trellis Codes (STC) (Filler et al., 2011)
and Steganographic Polar Codes (SPC) (Li et al.,
2020). During message decoding, authorized re-
ceivers reconstruct the secret message through in-
verse transformations via shared keys. However,
conventional methods face two principal limita-
tions: restricted payload capacity (the ratio of se-
cret message length to stego text length) and de-
tectable statistical deviations between cover texts
and stego texts (Wu et al., 2023).

With breakthroughs in generative large lan-
guage models (LLMs) (Brown et al., 2020; Tou-
vron et al., 2023), a paradigm shift has emerged
in steganography. The explicit output of token
probability distributions by LLMs enables prov-
ably secure steganography under the security con-
straint of maintaining unchanged sampling dis-
tributions (Chen et al., 2018; Yang et al., 2018;
Chen et al., 2021). ADG (Zhang et al., 2021) par-
titions vocabulary into clusters of similar proba-
bilities through adaptive dynamic grouping and
randomly selects tokens within clusters for infor-
mation hiding; Meteor (Kaptchuk et al., 2021) pro-



poses range reversible sampling that encodes mes-
sages as sampling interval offsets while compress-
ing code length via shared prefixes; iMEC (de Witt
et al., 2022) implements near-theoretical-limit em-
bedding efficiency through iterative optimization of
message encoding paths on the basis of minimum
entropy coupling theory; Discop (Ding et al., 2023)
decomposes high-dimensional token selection into
multi-round binary decisions through Huffman tree
construction of distribution copies, significantly
reducing computational complexity.

However, although existing methods en-
hance payload capacity through iterative embed-
ding (Yang et al., 2018; de Witt et al., 2022; Ding
et al., 2023) and probability reordering (Kaptchuk
et al., 2021), their optimizations focus solely on
the message embedding phase, i.e., how to utilize
the statistical characteristics of cover texts to em-
bed secret messages more efficiently. This singular
focus overlooks critical opportunities in message
preprocessing optimization by LLMs, particularly
regarding redundancy elimination and semantic
compression of secret messages before embedding
operations. Importantly, the low payload capacity
necessitates long stego texts or multiple transmis-
sions to maintain the integrity of the secret mes-
sage; however, these behaviors increase the risk of
detection by adversaries.

Thus, we propose StegoZip, the first plug-and-
play framework designed to address the limitations
in payload capacity via LLM-driven secret message
preprocessing. The framework comprises two key
components: information-driven dynamic seman-
tic redundancy pruning (DSRP) and probability-
driven index compression coding (ICC). By iden-
tifying high semantic redundancy in conventional
message texts (Chen et al., 2024), DSRP leverages
the semantic comprehension of LLMs to eliminate
low-information elements dynamically to produce
compressed content. For the receiver, a fine-tuned
private restorer trained on public datasets recon-
structs the original, semantically rich messages
from their compressed forms. Moreover, building
on Shannon’s information theory (Shannon, 1951)
and extending prior work that harnessed the predic-
tive power of LLMs for compression (Valmeekam
et al., 2023), we pioneer the adaptation of this
theoretical foundation for steganographic message
compression through the ICC. Since StegoZip only
optimizes secret message preprocessing without al-
tering the underlying steganographic algorithms, it
preserves their inherent security. This architecture

not only paves the way for more efficient message
embedding but also ensures the preservation of se-
mantic integrity.

Our main contributions are as follows:

* We identify communication risks arising from
the low payload capacity in existing steganog-
raphy, highlighting that their emphasis on em-
bedding often neglects the crucial phase of
secret message preprocessing optimization.

* We propose StegoZip, the first plug-and-play
secret message preprocessing method de-
signed to enhance the payload capacity inde-
pendently of advanced steganography without
compromising their security.

* We integrate StegoZip with current advanced
linguistic steganography. The experimental
results reveal that it increases the capacity by
2-3x and reduces the processing time per unit
message by up to 50%.

2 Related Work

2.1 Generative Linguistic Steganography.

Linguistic steganography conceals secret messages
within a text carrier. Traditional methods, e.g.,
Syndrome-Trellis Codes (STC) (Filler et al., 2011),
and Steganographic Polar Codes (SPC) (Li et al.,
2020), achieve this by modifying components of
the cover text, often inducing statistical deviations
from the natural distribution, rendering the stego
text susceptible to detection by adversaries. In
contrast, generative language modeling has revolu-
tionized the field by offering novel avenues for em-
bedding secret messages into generative data (Chen
et al., 2018). These models are designed not only to
learn underlying distributions but also to act as pre-
cise sampling mechanisms, producing content that
is increasingly statistically indistinguishable from
naturally occurring text, which provides a robust
foundation for secure steganography.
Autoregressive language models, which domi-
nate the field of text generation, operate by process-
ing an initial prompt and iteratively sampling from
an explicit probability distribution over tokens to
generate text. Within this framework, secret mes-
sages can be incorporated into the token genera-
tion process without perturbing the intrinsic sta-
tistical properties of the output (Yang et al., 2018;
Zhou et al., 2022). This embedding mechanism
leverages the random sampling process, where non-
overlapping subintervals of the unit interval are
used to govern token selection, facilitating the en-
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Figure 2: The framework of StegoZip comprises two core components: information-driven semantic pruning (DSRP)
and probability-driven token-rank mapping (ICC). The extraction process mirrors their inverse operations.

coding of secret messages in a manner that pre-
serves the overall distribution of the generated text.

Recent advances in provably secure linguistic
steganography have capitalized on these principles.
For example, ADG (Zhang et al., 2021) partitions
the explicit probability distributions of generative
models into groups of equal probability masses and
encodes secret messages through group selection.
Meteor (Kaptchuk et al., 2021) utilizes range re-
versible sampling to represent secret data within
the shared prefixes of the sampled intervals. Dis-
cop (Ding et al., 2023) generates multiple “distribu-
tion copies” from a given probability distribution
and uses the index values of these copies to denote
the secret messages.

Despite these advancements, the inherent low
entropy in the probability of text generation limits
payload capacity. However, the emergence of large-
scale models introduces significant opportunities
not only during the embedding stage but also in
the processing of secret messages. In light of this,
we propose StegoZip to increase capacity via LLM-
driven message processing and compression.

3 Method

3.1 Overview

As illustrated in Fig. 2, StegoZip comprises two
LLM-driven components: Dynamic Semantic Re-
dundancy Pruning (DSRP) and Index Compressed
Coding (ICC). Initially, the framework leverages
LLMs to systematically remove redundant ele-
ments via information-driven semantic pruning.
Subsequently, the same LLM facilitates probability-
driven index compression to generate rank se-
quences. These sequences are then subjected to

binary encoding and cryptographic-grade pseudo-
randomization, generating provably secure bit
streams compatible with current steganographic
systems. Finally, these bit streams are embedded
into cover texts via a steganographic algorithm for
secure transmission over public channels.

The authorized receiver, possessing prior knowl-
edge of steganography, binary encoding schema,
and cryptographic parameters, along with archi-
tecturally congruent LLM configurations, executes
inverse transformation to decode the compressed
indices. Following successful extraction, a shared
semantic restorer R fine-tuned on public datasets
reconstructs the rich semantic representation via
context-aware. To ensure synchronization between
the sender and receiver, the sender side also utilizes
‘R as the LLM for DSRP and ICC aforementioned.

Throughout the steganographic process, the pay-
load capacity optimization of StegoZip is indepen-
dent of the steganographic embedding process and
thus does not affect its security. The details of each
module are as follows.

3.2 Private Restorer in StegoZip Framework.

First, we introduce the private restorer R, a core
component throughout the StegoZip framework ob-
tained by fine-tuning a base language model as
illustrated in Fig. 3. In everyday communication,
rich semantics help the receiver fully understand
the sender’s point of view. However, such semantic
redundancy can significantly increase the payload
burden in public channel transmission and is im-
practical for scenarios with limited communication
resources. Therefore, we leverage the powerful lan-
guage comprehension capability of LLM to prune



the semantics of secret messages and retain only
the most critical parts for transmission. However,
on the basis of human language perception alone,
it may be difficult for the receiver to understand
the semantic pruned secret messages, or ambiguity
may arise. For this reason, we once again utilize
the context-aware capability of the LLM to restore
the rich semantics of the original message from
the compressed version. Therefore, we fine-tune
a private restorer R shared by both parties to ac-
complish these tasks. The implementation involves
three key steps: Self-Information Calculation, Se-
mantic Pruning, and Instruction Fine-tuning.

Self-Information Calculation. Initially, we must
assemble the dataset for fine-tuning. The objec-
tive is to train the model to handle the task of se-
mantic restoration effectively. To achieve this, the
input should consist of text characterized by low
semantic content, whereas the output should fea-
ture text with rich semantics. Considering a public
text dataset D), for each sample x,, € D), desig-
nated as output, we must quantize and compress
its semantics to form the corresponding input. We
employ the concept of self-information from infor-
mation theory to quantify the information content
of each lexical unit (the entity resulting from word
tokenization, e.g., English sentences segmented
by spaces) in z;,. This metric is facilitated by the
base language model, and the self-information for
a lexical unit u; in the text sample x), is defined as:

) = Y7 (w”) ()
i=1

where u; represents the j-th lexical unit consisting

of k tokens {wj(.l), oy wj(k)}. Each lexical unit can
be broken down into multiple tokens for processing
by an LLM. For the t¢-th token w; in the sequence,
its self-information is defined as:

T(wy) = —log P(w;) = —log p(wi|w<t) (2)

where p(w;|w<) represents the conditional proba-
bility given by the LLM. The more unlikely a token
is to be sampled, the greater its self-information.
Semantic Pruning. After the self-information of
all lexical units in x;, obtained, we remove the units
with low information through a-ratio pruning:

De = {xp © I(Liex(uj) > 7a) | Y, € Dp} (3)

where © denotes element-wise multiplication, I(-)
is the indicator function, and 7, represents the a-
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Figure 3: Process of the instruction fine-tuning.
quantile threshold satisfying:
P(I]ex(uj) < Ta) =« 4

Instruction Fine-tuning. After completing Seman-
tic Pruning, we obtain the semantic compressed
dataset D... Then, we construct the instruction fine-
tuning dataset Dy; via template-based pairing, as
shown in Fig. 3:

Dy = Tp € Dp,zc € De 5

Tins||Te, Tp
—_—— =~

Input  Output

where z;,s is the instruction and || denotes string
concatenation. For the model to fully understand
the semantic restoration task, we require it to re-
store the original rich semantics only by inserting
words without deleting or modifying the existing
content in the compressed text. Then, we fine-tune
the base language model to obtain a private restorer
‘R shared by both the sender and the receiver.

3.3 Dynamic Semantic Redundancy Pruning.

After establishing the shared private restorer R,
the StegoZip module can be integrated into cur-
rent steganography. The dynamic pruning mech-
anism operates through two coordinated phases
aligned with the restorer fine-tuning process: Self-
Information Calculation and Semantic Pruning.

For the secret message m, we generate its
compressed representation m,. via similar self-
information processing by using R:

me=m oI (Ilex(uj) > T;) 6)

To prevent excessive pruning in short texts with
high entropy, we dynamically adjust the prun-
ing threshold on the basis of the average self-
information of m and the empirical value on the
instruction fine-tuning dataset Dy:

Té=7a~<1—77'w> O



Algorithm 1: Index Compressed Coding.

Algorithm 2: Secret Message Restoration.

Input: Compressed Message m.., Tokenizer 7T,
Restorer R, Huffman Codebook C,
Pseudo-Random Binary Key K.

Output: Pseudo-Random Bit Stream S.

1 We « T(me);
2 B+ 0;
3 foreach roken w; € W, = {ws, ..., w } do

4 p(w}vwwq) +— R{wi, ..., we;});
5 r(w;) + rank (wj | p (’UJLV||’LU<]'));
6 bj « HuffmanEncode(r(w;),C);

7 B+ BU{b;};
8
9

S+~ BaoK;
o return S;

—

where 7, is the predefined threshold from Eq. (4).
Z(m) is the average self-information of secret mes-
sage m and Z(D,) is the average self-information
of Z(z;,) from the public dataset Dy:

T T
Zm) = 7 32 (™) =~ 2 (sl ul2)
B B @®)

2 (=9) ©)

el

IDp

S]]

1
(Dp) = 15~
The values of self-information approaching infinity
are not considered in the calculations. The ratio
of units to be removed is dynamically determined

based on the information of the secret message.

3.4 Index Compressed Coding

Following dynamic semantic pruning, we convert
the compressed message m, into binary codes
through probability-driven index encoding. In-
spired by (Valmeekam et al., 2023), our method
leverages the token prediction prior of the LLM to
achieve high compression ratios.

Let W, = {wi,...,w,} where each w; repre-
sents a token in the tokenizerd sentence. We rank
tokens by their conditional probabilities:

r(w;) = rank (wj]p (wywwq)) e{1,...,|V|}
(10)
where |V| is the vocabulary size of the LLM, and
p(wy)' |w<j) indicates the sampling probability
when generating the j-th token. The probability-
driven token-rank mapping enables efficient com-
pression coding, where a higher sampling probabil-
ity results in a lower rank. Given that our fine-tuned
restorer R has been exposed to numerous instances
of semantic pruning text, we employ it to deduce

Input: Pseudo-Random Bit Stream S, Tokenizer 7T,
Restorer R, Huffman Codebook C,
Pseudo-Random Binary Key K.

Qutput: Restored Secret message m.

1 B+~ SpK;

2 {r1,...,m%} < HuffmanDecode(B, C);
3 We+0;

4 foreach rankr; € {ry,...,r} do

5 p(w}v||w<j) +— R(W.);

6 wj < de-rank (r(wj) | p (wj|w‘<vj‘));
7 W, + W, U{w;};

s end

9 me < T (We);

10 17— R(me);

11 return m;

the ranks with the same template prefix, thereby
achieving a higher compression rate. Furthermore,
since the rank list is numerical, we convert these
numbers into bit format B via Huffman encoding.
Then, to align the provably secure steganography,
we pseudo-randomize the B via XOR with pseudo-
random binary key K generated by a secure stream
encryption algorithm such as ChaCha20 (Bernstein
et al., 2008). Finally, we can embed the resulting
pseudo-random bit stream S into the cover text by
secure steganographic embedding function. The
whole process of the ICC is shown in Algo. 1.

3.5 Secret Message Restoration

The decoding framework enables message extrac-
tion and reconstruction through invertible transfor-
mations of the encoding pipeline, as formalized in
Algo. 2. Given stego text xg, the receiver first
extracts the embedded bit stream S via the ne-
gotiated steganographic extraction function. Sub-
sequently, the original numerical rank sequences
can be obtained through de-pseudo-randomization
with cryptographically synchronized parameters
and Huffman decoding with the same codebook.
Furthermore, the restorer R replicates the index
compression coding generation process via inverse
rank-token mapping, converting each rank into its
corresponding token to reconstruct the semantic
pruning message.

As the compressed representation may be in-
sufficient for complete semantic comprehension
through human perception, the shared restorer R
performs instruction-guided semantic expansion.
Crucially, the information-driven pruning method
preserves high-information lexical units while dis-
carding redundant elements lower than threshold



Table 1: The efficiency of StegoZip. As a plug-and-play module, StegoZip significantly improves the payload
capacity while reducing the whole steganography processing time.

Base Model Dataset  Algo Payload (%) © Encoding Time (s) | Decoding Time (s) |
Meteor 9.13 115.93 117.46
Moo *StesoZip 297301 20.60)  6475(1 51.18) 92.00(] 25.46)
Discop 15.14 100.73 100.39
Qwen2.5-7B +StegoZip  49.52(1 34.38) 34.58(] 66.15) 60.82(] 39.57)
Meteor 8.59 32.02 33.24
AGNews +StegoZip  33.24(1 24.65) 11.15(] 20.87) 14.44(] 18.80)
Discop 14.29 16.97 15.64
+StegoZip  55.17(7 30.88) 5.97() 11.00) 9.86(] 5.78)
Meteor 9.12 115.75 119.60
IMDb +StegoZip  27.69(7 18.57) 69.54(] 46.21) 88.81(] 30.79)
Discop 15.12 100.46 103.70
Vicuna-7B-v1.5 +StegoZip  45.95(7 30.83) 37.04(] 63.42) 52.98(] 50.72)
Meteor 8.63 31.96 34.99
AGNews +StegoZip  27.22(7 18.49) 13.58(] 18.38) 21.74(] 13.25)
Discop 14.31 20.35 20.54
+StegoZip  45.28(1 30.97) 7.26() 13.09) 14.21(] 6.33)

Ta, €nabling the restorer to reconstruct original
semantic content through maximum likelihood es-
timation. The larger the « is, the less information
is retained, and the greater the error between the
restored secret message and the original message.

4 Experiments

4.1 Implementation Details

LLMs. In this paper, we select two mainstream
open-source LLMs, Qwen2.5-7B (Team, 2024) and
Vicuna-7B-v1.5 (Touvron et al., 2023). For genera-
tion, random sampling is employed with a temper-
ature setting of 0.7, without using top-p or top-k.

Datasets. Text datasets are used for fine-tuning the
restorer and generating stego text. For fine-tuning,
the IMDDb (Maas et al., 2011) and AGNews (Maas
et al., 2011) datasets are used. The IMDb dataset,
with an average sample length of 1300 characters,
is divided into a training set with 25,000 texts and
a test set with 25,000 texts, but only 2,000 texts
are randomly sampled for testing in each evalua-
tion. Only the "business" category of the AGNews
dataset with an average sample length of 241 char-
acters is selected and divided into a training set
containing 30,000 texts and a test set containing
1,900 texts. We use LoRA (Hu et al., 2021) to
fine-tune the base LLMs for 2 epochs. To gener-
ate the stego text, the WikiText-2-v1 (Merity et al.,
2016) dataset is used for the text generation task.
In each instance, a text is randomly sampled from
the dataset, and the first two sentences are extracted

to serve as the prompt for guiding the generation.
Baselines. In the main experiment, the parameters
for the proposed Dynamic Semantic Redundancy
Pruning method are set to a = 0.3 and n = 1.0.
To the best of our knowledge, current linguistic
steganography do not specifically consider message
processing; thus, we adopt a common setup, using
Huffman compression with UTF-8 encoding as the
baseline message processing method. We consider
mainstream methods for the underlying generative
steganography: Meteor and Discop.

Evaluation metrics. We evaluate StegoZip from
both efficiency and text quality perspectives:

1. Efficiency: We divide the efficiency into pay-
load capacity and processing time. The payload
capacity refers to the ratio of the secret message
length to the stego text length, which is the most
important metric for assessing StegoZip’s compres-
sion capability. The processing time encompasses
the average encoding time, which spans from pro-
cessing the secret message to the completion of
generating the stego text, and the average decoding
time, which involves extracting the bit stream from
the stego text and restoring the secret message.

2. Text Quality: We evaluate restored message
quality at the word, sentence, and paragraph lev-
els via metrics such as Rouge-1, Rouge-2, Rouge-
£ (Lin, 2004), and Pairwise Similarity Percentages
(P-SP). Higher values of these metrics are better.
Rouge-1 and Rouge-2 calculate the proportion of
single words (1-gram) and word pairs (2-grams)
from the original secret message that appears in



Table 2: The efficiency of Restorer R. Using the original secret message D, as the reference text, the restored
message D,. is much better than the compressed message D, in word, sentence, and paragraph levels.

Model Dataset ~ Ori-Gen Rouge-1 (%) 1 Rouge-2 (%)t Rouge-¢ (%) 1 P-SP (%) 1

IMDb Do, —D. 7417 53.48 74.17 93.34

- 5.10) 21.06 2.45

Qwen2.5-7B Do — D, 89.27(7 15.10)  74.54(1 21.06)  86.59(1 12.42) 95.79(1 2.45)
AGNews Do —D. 7515 56.56 75.15 92.20

Do — D, 89.96(1 14.81) 78.38(1 21.82) 88.98(1 13.83) 93.96(1 1.76)
IMDb Do —D. 72.00 51.48 72.00 93.34

Vieuna 7Bl S D, — D, 93.55(1 21.55) 7834(1 26.86) 87.13(1 15.13) 94.78(1 1.44)
AGNews Do —D. 7254 52.69 72.54 82.78

Do —D, 90.83(7 18.29) 76.59(1 23.90) 86.82(1 14.28) 90.93(1 8.15)

120 Meteor Meteor
Meteor+StegoZip Meteor+StegoZip

(a) IMDb-Meteor (b) AGNews-Meteor

120 Discop Discop
Discop+StegoZip Discop+StegoZip

Time (5)

DSRP ICC Embed Extract De-ICC Restore
(c) IMDb-Discop

DSRP ICC Embed Extract De-ICC Restore
(d) AGNews-Discop

Figure 4: Time consumption of stego process.

the restored secret message, which better captures
word order information. Rouge-/ calculates the pro-
portion of the longest common subsequence in the
original secret message that appears in the restored
message, measuring semantic coherence. P-SP,
which is based on a paraphraser model (Wieting
et al., 2021), quantifies the semantic similarity be-
tween the original secret message and the restored
message at the paragraph level.

All the experiments are run on a single RTX
A6000 GPU. More detailed experimental settings
are shown in the Appendix B.

4.2 Main Performance of StegoZip

Efficiency of StegoZip. The experimental results,
shown in Tab. 1, demonstrate that the proposed
plug-and-play StegZip significantly enhances the
original steganography by achieving a 2-3x im-
provement in the secret message payload capac-
ity. This performance gain stems from semantic
pruning and probability-driven index compression,
which efficiently compresses lexical units in covert
messages. Despite introducing additional prepro-
cessing steps that are time consuming, as shown in

Tab. 2 and Fig. 4, the optimized payload efficiency
reduces the steganographic embedding time and
extraction time by approximately 50%, as fewer
binary codes are required to be embedded into
cover text per unit message. Among the additional
steps, rank decompression and semantic restoration
operations are more time-consuming because of the
necessity of implementing the generation-like pro-
cess of new tokens through multiple forward propa-
gation steps. In contrast, the semantic pruning and
rank compression processes require only one for-
ward propagation without generating a new token.
Furthermore, the elevated payload capacity inher-
ently strengthens security by minimizing the vol-
ume of stego text needed for transmission, thereby
reducing adversaries’ suspicion under equivalent
communication requirements compared with those
of the original methods. These advancements po-
sition StegZip as a practical solution for balancing
capacity, time, and security in linguistic steganog-
raphy systems.

Efficiency of the Restorer. We further assess the
efficacy of the restoration model R; the results, as
depicted in Tab. 2, confirm the substantial restora-
tion capabilities of R across various evaluation
metrics. Both LLMs show significant enhance-
ments in Rouge scores when comparing restored
messages D, with compressed messages D., re-
flecting improved unigram overlap and paragraph-
level coherence. While the P-SP index only in-
creases marginally, it consistently exceeds 90%.
This indicates that the DSRP, which employs low
self-information pruning, effectively preserves the
essential semantics of the original message and mit-
igates the pressure of redundancy, thereby reducing
the burden on public channel transmission.

Generalization of Restorer. To assess the cross-
domain generalization capabilities of StegoZip, we
conduct tests on the fine-tuned Qwen-restorer R



Table 3: The generalization of the Restorer .

Fine-Tuning Set IMDb AGNews
Test Dataset ~ Payloadt P-SP1 Payload{ P-SP{
IMDb 49.52 9579 4751 93.15
AGNews 47.11 86.90  55.17 93.96

100 0 100
Payload Payload

70 P-SP(D, — D,) 70 P-SP(D, - D,)
P-SP(D, — D,) P-SP(D, -~ D,)

0.25 0.30 0.35 0.40
(a) IMDb

a 025 0.30 0.35 0.40

(b) AGNews «

Figure 5: Impact of pruning threshold a.

using domain-shifted datasets, as detailed in Tab. 3.
The results integrated on Discop indicate substan-
tial performance drops in scenarios involving do-
main shifts. Specifically, a restorer trained on the
IMDb dataset exhibited pronounced performance
declines when tested on AGNews data, principally
due to two critical distribution mismatches: 1) the
stark contrast between IMDb’s lengthy movie re-
views and AGNews’ succinct business articles in
terms of textual complexity and 2) the domain-
specific structural patterns prevalent in news arti-
cles as opposed to the subjective narrative styles
found in movie reviews. These cross-domain varia-
tions impede the ability of StegoZip to accurately
predict the next token in index compression coding
and maintain semantic integrity during text restora-
tion tasks. Thus, maintaining consistency in the
steganographic environment during message trans-
mission is crucial.

Pruning Threshold «. We also explore the influ-
ence of the self-information pruning ratio «, focus-
ing on the payload capacity and semantic preserva-
tion of Discop. Within the range a € [0.25, 0.40],
an increase in payload capacity is observed, co-
inciding with degradation in both the original-
compressed similarity P-SP(D, — D,) and the
original-restored similarity P-SP(D, — D,), fol-
lowing a similar trend. This degradation occurs
as a higher pruning proportion results in more suc-
cinct compressed data and consequently limits the
restorer’s contextual awareness, leading to incom-
plete information reconstruction. Therefore, it is
important to balance the steganographic payload
capacity and the faithful representation of the orig-
inal message post-transmission.

Table 4: Ablation experiment on StegoZip.

Method IMDb AGNews
Payload{ P-SP{ Payloadf P-SPt
Discop+StegoZip 49.52  95.79  55.17  93.96
w/o n in DSRP 4942 9541 5537 92.78
w/o DSRP 3578 100.00 45.54  100.00
w/o Prefix in ICC 4936  95.79  53.03 93.96
w/o R in ICC 4728 9579 4731  93.96
w/o ICC 19.29 9579 1822  93.96
Discop 15.14  100.00 14.29 100.00

4.3 Ablation Experiment

We further perform ablation experiments with base
model Qwen to prove the effectiveness of all the
components of StegoZip as shown in Tab. 4, where
“w/o0” means not adopted. The ablation results high-
lighted substantiate the critical contributions of the
individual components of our framework. In par-
ticular, the adaptive coefficient 7 in the dynamic
semantic redundancy pruning (DSRP) module mit-
igates the risk of overcompression, especially in
high-entropy short samples. Such overcompression
cases will hinder semantic restoration even though
compression may be more efficient. Moreover, in-
corporating a prompt prefix template during index
compression—as opposed to its omission—enables
the restorer, which has been fine-tuned to anticipate
subsequent compressed content, to predict the next
token more accurately, thereby enhancing compres-
sion efficiency. Overall, the experimental results
affirm that each advancement within our framework
not only bolsters the payload capacity for steganog-
raphy but also ensures superior preservation of the
embedded semantic message. More experimental
results are shown in the Appendix C.

5 Conclusion

In this paper, we propose StegoZip, a play-and-
plug framework that employs large language mod-
els for dynamic semantic redundancy pruning and
index compression coding. By integrating it into
advanced steganography, we realize a payload ca-
pacity increase of 2-3x and an approximately 50%
reduction in per unit message processing time.
These improvements not only increase the effi-
ciency of the steganographic process but also re-
duce the frequency of communication between two
parties, thereby decreasing the risk of detection.
This method paves the way for efficient and secure
message embedding, highlighting the potential of
advanced preprocessing techniques to augment tra-
ditional steganographic frameworks.



Limitations

Despite extensive experimental validation of Ste-
goZip’s superior performance, our work still has
certain limitations: First, since StegoZip introduces
the message preprocessing based on the LLM to
increase the payload capacity of text steganography
algorithms, it inevitably incurs additional prepro-
cessing time and computational resource overhead
even if the overall steganography time is shortened.
Second, StegoZip does not perfectly restore the
original secret information, as shown in Tab. 2,
where the restored secret message is somewhat
different from the original secret message at the
word, sentence, and paragraph levels. If high ac-
curacy of the secret message is required, the dy-
namic semantic redundancy pruning module can
be omitted, and the probability-driven index com-
pressed coding module alone can be utilized to
more than double the payload capacity, as demon-
strated in Tab 4. Finally, StegoZip requires access
to the high-precision LLM for compressing and
decompressing secret information, which makes it
unsuitable for scenarios with limited computational
resources (Bai et al., 2024).

Ethics Statement

In this paper, we propose the StegoZip framework
to enhance the payload capacity of steganography,
specifically for scientific research and educational
purposes. We strictly adhere to established scien-
tific research regulations to ensure data privacy and
security throughout the experimental process, and
we rigorously avoid any violation of personal pri-
vacy or engagement in illegal activities. We are
committed to responsibly advancing academic re-
search in information security and ensuring that
our contributions positively impact society.
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A  More Related Work

A.1 Provably Secure Steganography.

Empirically secure steganography (e.g., STC (Filler
et al., 2011) and SPC (Li et al., 2020)) inevitably
allows an adversary to distinguish cover text from
stego text with a non-negligible advantage. In
contrast, provably secure steganography strives
either to eliminate this advantage (i.e., achieve
information-theoretic security (Cachin, 1998)) or
to reduce it to a negligible level (i.e., attain compu-
tational security (Hopper et al., 2002)).

We define the cover channel, denoted by C},
as the conditional probability distribution of cover
signals C given the history h. Assuming the avail-
ability of a perfect sampler M that precisely fol-
lows the distribution C,, we denote by Mbc h the
process that samples the next segment of cover
output of length b. A steganographic system
(or stegosystem) is defined as a triple of algo-
rithms (KGen, Embed, Extract), corresponding to
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key generation, embedding, and extraction, respec-

tively. The embedding process takes as input a key
k produced by:

k < KGen(a), (11)

a message m, and history z, and then uses the

sampler M to produce an output sequence:

s1|sa| -+ |ss < Embed™ (k,m,z)  (12)

of length s. Similarly, the extraction process uses

the same key k and history z to extract the secret
message m from the stego sample:

m + Extract™ <k, Embed™ (k, m, z), m)
(13)
To formalize computational security, we con-
sider a distinguishing game in which an adversary
W attempts to differentiate between the cover dis-
tribution C' and the stego distribution S. The ad-
versary is challenged to distinguish between (i)
samples produced by the secret-message-driven
embedding Embed and (ii) samples generated by a
normal random sampling procedure O that follows
the cover distribution. The adversary’s advantage
is defined as:

Adverg (W)

. [WM, Embed(k,,") _ 1]
k, M, Embed

= P [wot) =1l

(14)
where the probability is taken over the randomness
in k, M, Embed, and O. A stegosystem is con-
sidered computationally secure if, for every proba-
bilistic polynomial-time adversary, this advantage
is negligible in the security parameter o:

Advgls(W) < negl(a). (15)
Accordingly, to ensure that the bitstream pro-
cessed by StegoZip can be securely embedded
into cover text using established provably secure
steganography, the bitstream must first be pseudo-
randomized. This is typically achieved by perform-
ing an XOR operation with a pseudo-random bi-
nary keystream generated by a secure stream en-
cryption algorithm such as CHACHA?20 (Bernstein
et al., 2008).
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B More Experiment Settings

B.1 Fine-tune

The fine-tuning experiment was configured with a
random seed of 42, a micro-batch size of 2, and
an overall batch size of 32, resulting in gradient
accumulation steps computed as the batch size di-
vided by the micro-batch size. The training ran for
2 epochs with a learning rate of 3e-4. The sequence
length was capped at 1024 for the IMDb dataset
and 512 for the AGNews dataset. The LoRA pa-
rameters were set to LORA_R =8, LORA_ALPHA
= 32, and a dropout rate of 0.05, and the targeted
modules included {q_proj, k_proj, v_proj, o_proj,
gate_proj, up_proj, down_proj}. Furthermore, the
model was loaded in int8 precision and fine-tuned
via FP16, with the training and validation split set
to a ratio of 4:1.

Furthermore, to accurately identify the end po-
sition of the restorer’s response, an “[END]” flag
is appended to the conclusion of responses in the
training set, and this “[END]” marker is also uti-
lized as the termination signal during inference.

B.2 Model Inference

During the model inference phase, the model is
loaded in the FP32 format because of the high-
precision probabilistic sort of index compression
coding. When the restorer is tasked with recover-
ing high semantic information, random sampling
is employed with a temperature parameter set to
0.7 without using top-p and top-k. The maximum
number of newly generated tokens corresponds to
the values used during training, with the IMDb
dataset for long text capped at 1024 tokens and the
AGNews dataset at 512 tokens.

B.3 Steganography

Meteor. We strictly followed the official open-
source repository of Meteor', adopting the version
with probability reordering to increase payload ca-
pacity, and integrated it into our codebase.
Discop. We strictly followed the official open-
source repository of Discop?, adopted the version
with Huffman Tree to increase payload capacity,
and integrated it into our codebase.

LLMs. To avoid the security impact of the fine-
tuned LLM R on the steganography process, we do

'The repository of Meteor can be found
at: https://gist.github.com/tusharjois/
ec8603b711ff61e09167d8fef37c9b86

The repository of Discop can be found at: https://

github.com/comydream/Discop
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Figure 6: Huffman codebook.

not use it to generate stego text in our experiments
but instead use the LLaMA2-7B (Touvron et al.,
2023) model.

B.4 Huffman Codebook

Following the application of a probability-driven
token-rank mapping, we obtain a sequence of nu-
merical values, e.g., [0, 2, 1, 6, . .. ]. This sequence
is then required to be transformed into a binary
format. Given the variable frequency of data and
symbol occurrences during the interaction between
two entities, we employ Huffman coding to con-
vert this numerical array into a binary sequence, as
depicted in Fig. 6. In this example, as the separator,
the symbol “, ” emerges as the most frequently
occurring and is consequently assigned the shortest
code length of 2 bits. The number “0” follows,
receiving a code length of 3 bits due to being the
second most frequent. The remaining digits display
a similar frequency and are thus encoded with a
uniform code length of 4 bits each.

It is typical for large language models not to ter-
minate the generation process immediately after
the complete embedding of covert messages, i.e.,
outputting a complete passage. To avoid drawing
suspicion from external observers, the sender usu-
ally prolongs the generation until the text reaches a
natural conclusion. To facilitate this, we introduce
the additional “0000” encoding to denote the end
of the secret message. This strategy ensures that
the covert communication is seamlessly integrated
within the overall message, thereby preserving the
integrity of the cover.

This strategy enables the encoding of secret mes-
sages via an average code length that is more con-
cise, and it allows both parties to establish a fixed
codebook, thereby facilitating a more convenient
and streamlined communication process.

For the Huffman compression algorithm utilized
in the comparison method, we have employed the
conventional technique of constructing Huffman
trees and generating codebooks based on the char-
acter frequency. This method aims to enhance com-
pression efficiency, thereby optimizing the payload
capacity of the underlying steganography.
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C More Experiment Results

C.1 Dynamic Adaptive Coefficient 7).

The experimental results, as shown in Fig. 7, reveal
the significant impact of the adaptive coefficient
1 on the StegoZip performance in the Dynamic
Semantic Redundancy Pruning (DSRP) module.
As the value of 7 increases, the model seeks a
balance between compression efficiency and se-
mantic resilience. Lower 7 values tend to favor
higher compression efficiency but may lead to over-
compression, which increases the risk of losing
important semantic information and thus affects
the restoration of semantic information. In contrast,
higher n values are more conservative in compres-
sion and help protect semantic information but may
sacrifice some compression efficiency. In addition,
owing to the uneven entropy of the test samples,
the model needs to adaptively adjust the 1 value
to cope with the compression demand of different
samples. This adaptive adjustment helps the model
to flexibly balance the compression efficiency and
semantic restoration ability when facing samples
of different complexities and information densities,
thus improving the performance and robustness of
the StegoZip in general.

C.2 Epoches of Fine-tuning.

We further investigated the impact of the number
of fine-tuning epochs for the restorer R on our ex-
perimental outcomes, as depicted in Fig.8. After a
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Figure 9: Some examples of secret message restoration results. In this case, the background color of green is the
part that is preserved, yellow is the part that is pruned, and red is where the restored secret message differs from the
original message. P-SP measures the similarity between the original secret message and the restored secret message.

single round of fine-tuning, the model essentially
grasps the restoration task and can largely fulfill
the requirements of the restoration process. Two
rounds of fine-tuning are better for this task, ef-
fectively balancing training time and performance.
Notably, an excessive number of fine-tuning rounds
yields diminishing returns for the AGNews dataset,
likely owing to the brevity of its sample texts. With
limited training data, such datasets are more sus-
ceptible to overfitting, which can undermine the
fine-tuning process.

C.3 Case Studies.

We present a comparative analysis between pruned
secret messages and their reconstructed counter-
parts, accompanied by quantitative comparisons of
semantic similarity (Pairwise Similarity Percent-
ages, P-SP). Our case studies reveal that the seman-
tic pruning algorithm predominantly targets and re-
moves non-essential grammatical elements such as
articles and prepositions. However, it inadvertently
also eliminates vital context-dependent informa-
tion, especially temporal, spatial, and quantitative
references. This loss necessitates inference based
on linguistic context or the parametric knowledge
embedded within large language models (LLMs).
As evidenced by our experimental results shown
in Fig. 9, the reconstruction fidelity exhibits a
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strong positive correlation with the P-SP. When
this ratio exceeds 95%, the reconstructed messages
maintain semantic equivalence with the original
content. However, sub-optimal ratios below this
threshold lead to progressive semantic degradation,
primarily manifesting as irretrievable loss of spe-
cific named entities and numerical descriptors that
lack sufficient contextual cues for LLM-based in-
ference.

To address these limitations, we propose two
complementary mitigation strategies:
1. Operational protocol enhancement: This
method involves requiring human operators to man-
ually reintroduce critical metadata tags during the
compression phase. This step ensures that essen-
tial information, which might be overlooked by
automated processes, is preserved.
2. Algorithmic improvement: We propose the
development of context-aware lexical saliency met-
rics and use more powerful language models.
These metrics are designed to more accurately cap-
ture the inferential dependencies of information
elements, thus preventing the premature pruning of
content that is semantically crucial.

Nonetheless, the restorer is instrumental in aid-
ing the enhancement and refinement of the seman-
tic content within the covert message.



	Introduction
	Related Work
	Generative Linguistic Steganography.

	Method
	Overview
	Private Restorer in StegoZip Framework.
	Dynamic Semantic Redundancy Pruning.
	Index Compressed Coding
	Secret Message Restoration

	Experiments
	Implementation Details
	Main Performance of StegoZip
	Ablation Experiment

	Conclusion
	More Related Work
	Provably Secure Steganography.

	More Experiment Settings
	Fine-tune
	Model Inference
	Steganography
	Huffman Codebook

	More Experiment Results
	Dynamic Adaptive Coefficient .
	Epoches of Fine-tuning.
	Case Studies.


