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Abstract

Generative steganography is a current research001
hotspot, yet its secret message payload capac-002
ity is often limited by low entropy during gen-003
eration. The low capacity necessitates long004
stego texts or numerous transmissions, increas-005
ing the risk of detection by third parties. Prior006
studies have primarily enhanced payload capac-007
ity by making more effective use of available008
entropy while largely overlooking the equally009
critical step of secret message preprocessing.010
In this paper, we propose StegoZip, the first011
plug-and-play framework that employs large012
language model-driven dynamic semantic re-013
dundancy pruning combined with index com-014
pression coding to optimize secret message pre-015
processing and further increase payload capac-016
ity. In combination with advanced steganogra-017
phy, the experimental results demonstrate that018
StegoZip can increase the payload capacity by019
2–3× while reducing the time per unit message020
by approximately 50%. Furthermore, StegoZip021
operates independently of the steganography022
embedding process, ensuring that it does not023
impact the security of the original method.024

1 Introduction025

As an information-hiding technique, steganogra-026

phy aims to achieve covert communication by027

imperceptibly modifying cover media (e.g., im-028

ages, audio, text) while avoiding detection by029

adversaries (Kahn, 1996; Provos and Honeyman,030

2003; Channalli and Jadhav, 2009; Zhang et al.,031

2025). Unlike cryptography, which protects con-032

tent through encryption, steganography ensures se-033

curity by eliminating physical or statistical traces034

of hidden information in cover data (Johnson and035

Jajodia, 1998; Cachin, 1998; Hopper et al., 2002).036

Linguistic steganography, which exploits text037

as the most prevalent communication medium, as038

shown in Fig. 1, typically follows two core phases039

during message encoding (Rani and Chaudhary,040

2013; Krishnan et al., 2017; Majeed et al., 2021):041
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Figure 1: General process of linguistic steganography.

1) Message Processing: preprocessing secret mes- 042

sages through compression (e.g., Huffman cod- 043

ing), encryption (e.g., AES), and format conver- 044

sion (e.g., ASCII-to-binary mapping). 2) Message 045

Embedding: most of these methods adopt channel 046

coding methods to embed messages while balanc- 047

ing imperceptibility and capacity, exemplified by 048

Syndrome-Trellis Codes (STC) (Filler et al., 2011) 049

and Steganographic Polar Codes (SPC) (Li et al., 050

2020). During message decoding, authorized re- 051

ceivers reconstruct the secret message through in- 052

verse transformations via shared keys. However, 053

conventional methods face two principal limita- 054

tions: restricted payload capacity (the ratio of se- 055

cret message length to stego text length) and de- 056

tectable statistical deviations between cover texts 057

and stego texts (Wu et al., 2023). 058

With breakthroughs in generative large lan- 059

guage models (LLMs) (Brown et al., 2020; Tou- 060

vron et al., 2023), a paradigm shift has emerged 061

in steganography. The explicit output of token 062

probability distributions by LLMs enables prov- 063

ably secure steganography under the security con- 064

straint of maintaining unchanged sampling dis- 065

tributions (Chen et al., 2018; Yang et al., 2018; 066

Chen et al., 2021). ADG (Zhang et al., 2021) par- 067

titions vocabulary into clusters of similar proba- 068

bilities through adaptive dynamic grouping and 069

randomly selects tokens within clusters for infor- 070

mation hiding; Meteor (Kaptchuk et al., 2021) pro- 071
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poses range reversible sampling that encodes mes-072

sages as sampling interval offsets while compress-073

ing code length via shared prefixes; iMEC (de Witt074

et al., 2022) implements near-theoretical-limit em-075

bedding efficiency through iterative optimization of076

message encoding paths on the basis of minimum077

entropy coupling theory; Discop (Ding et al., 2023)078

decomposes high-dimensional token selection into079

multi-round binary decisions through Huffman tree080

construction of distribution copies, significantly081

reducing computational complexity.082

However, although existing methods en-083

hance payload capacity through iterative embed-084

ding (Yang et al., 2018; de Witt et al., 2022; Ding085

et al., 2023) and probability reordering (Kaptchuk086

et al., 2021), their optimizations focus solely on087

the message embedding phase, i.e., how to utilize088

the statistical characteristics of cover texts to em-089

bed secret messages more efficiently. This singular090

focus overlooks critical opportunities in message091

preprocessing optimization by LLMs, particularly092

regarding redundancy elimination and semantic093

compression of secret messages before embedding094

operations. Importantly, the low payload capacity095

necessitates long stego texts or multiple transmis-096

sions to maintain the integrity of the secret mes-097

sage; however, these behaviors increase the risk of098

detection by adversaries.099

Thus, we propose StegoZip, the first plug-and-100

play framework designed to address the limitations101

in payload capacity via LLM-driven secret message102

preprocessing. The framework comprises two key103

components: information-driven dynamic seman-104

tic redundancy pruning (DSRP) and probability-105

driven index compression coding (ICC). By iden-106

tifying high semantic redundancy in conventional107

message texts (Chen et al., 2024), DSRP leverages108

the semantic comprehension of LLMs to eliminate109

low-information elements dynamically to produce110

compressed content. For the receiver, a fine-tuned111

private restorer trained on public datasets recon-112

structs the original, semantically rich messages113

from their compressed forms. Moreover, building114

on Shannon’s information theory (Shannon, 1951)115

and extending prior work that harnessed the predic-116

tive power of LLMs for compression (Valmeekam117

et al., 2023), we pioneer the adaptation of this118

theoretical foundation for steganographic message119

compression through the ICC. Since StegoZip only120

optimizes secret message preprocessing without al-121

tering the underlying steganographic algorithms, it122

preserves their inherent security. This architecture123

not only paves the way for more efficient message 124

embedding but also ensures the preservation of se- 125

mantic integrity. 126

Our main contributions are as follows: 127

• We identify communication risks arising from 128

the low payload capacity in existing steganog- 129

raphy, highlighting that their emphasis on em- 130

bedding often neglects the crucial phase of 131

secret message preprocessing optimization. 132

• We propose StegoZip, the first plug-and-play 133

secret message preprocessing method de- 134

signed to enhance the payload capacity inde- 135

pendently of advanced steganography without 136

compromising their security. 137

• We integrate StegoZip with current advanced 138

linguistic steganography. The experimental 139

results reveal that it increases the capacity by 140

2–3× and reduces the processing time per unit 141

message by up to 50%. 142

2 Related Work 143

2.1 Generative Linguistic Steganography. 144

Linguistic steganography conceals secret messages 145

within a text carrier. Traditional methods, e.g., 146

Syndrome-Trellis Codes (STC) (Filler et al., 2011), 147

and Steganographic Polar Codes (SPC) (Li et al., 148

2020), achieve this by modifying components of 149

the cover text, often inducing statistical deviations 150

from the natural distribution, rendering the stego 151

text susceptible to detection by adversaries. In 152

contrast, generative language modeling has revolu- 153

tionized the field by offering novel avenues for em- 154

bedding secret messages into generative data (Chen 155

et al., 2018). These models are designed not only to 156

learn underlying distributions but also to act as pre- 157

cise sampling mechanisms, producing content that 158

is increasingly statistically indistinguishable from 159

naturally occurring text, which provides a robust 160

foundation for secure steganography. 161

Autoregressive language models, which domi- 162

nate the field of text generation, operate by process- 163

ing an initial prompt and iteratively sampling from 164

an explicit probability distribution over tokens to 165

generate text. Within this framework, secret mes- 166

sages can be incorporated into the token genera- 167

tion process without perturbing the intrinsic sta- 168

tistical properties of the output (Yang et al., 2018; 169

Zhou et al., 2022). This embedding mechanism 170

leverages the random sampling process, where non- 171

overlapping subintervals of the unit interval are 172

used to govern token selection, facilitating the en- 173
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   I saw this at The Tribeca Film Festival, in the family   
   section. I'm not sure either of my kids really got the     
   movie, but I have to say……

   I saw Tribeca Festival, family section. I'm sure either 
   my kids got movie, but I to say .……
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### [Instruction] You are a text restoration expert ……
### [Input:] Compressed: I saw Tribeca Festival, family
section. I'm sure either my kids got movie, but I to say… 
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Figure 2: The framework of StegoZip comprises two core components: information-driven semantic pruning (DSRP)
and probability-driven token-rank mapping (ICC). The extraction process mirrors their inverse operations.

coding of secret messages in a manner that pre-174

serves the overall distribution of the generated text.175

Recent advances in provably secure linguistic176

steganography have capitalized on these principles.177

For example, ADG (Zhang et al., 2021) partitions178

the explicit probability distributions of generative179

models into groups of equal probability masses and180

encodes secret messages through group selection.181

Meteor (Kaptchuk et al., 2021) utilizes range re-182

versible sampling to represent secret data within183

the shared prefixes of the sampled intervals. Dis-184

cop (Ding et al., 2023) generates multiple “distribu-185

tion copies” from a given probability distribution186

and uses the index values of these copies to denote187

the secret messages.188

Despite these advancements, the inherent low189

entropy in the probability of text generation limits190

payload capacity. However, the emergence of large-191

scale models introduces significant opportunities192

not only during the embedding stage but also in193

the processing of secret messages. In light of this,194

we propose StegoZip to increase capacity via LLM-195

driven message processing and compression.196

3 Method197

3.1 Overview198

As illustrated in Fig. 2, StegoZip comprises two199

LLM-driven components: Dynamic Semantic Re-200

dundancy Pruning (DSRP) and Index Compressed201

Coding (ICC). Initially, the framework leverages202

LLMs to systematically remove redundant ele-203

ments via information-driven semantic pruning.204

Subsequently, the same LLM facilitates probability-205

driven index compression to generate rank se-206

quences. These sequences are then subjected to207

binary encoding and cryptographic-grade pseudo- 208

randomization, generating provably secure bit 209

streams compatible with current steganographic 210

systems. Finally, these bit streams are embedded 211

into cover texts via a steganographic algorithm for 212

secure transmission over public channels. 213

The authorized receiver, possessing prior knowl- 214

edge of steganography, binary encoding schema, 215

and cryptographic parameters, along with archi- 216

tecturally congruent LLM configurations, executes 217

inverse transformation to decode the compressed 218

indices. Following successful extraction, a shared 219

semantic restorerR fine-tuned on public datasets 220

reconstructs the rich semantic representation via 221

context-aware. To ensure synchronization between 222

the sender and receiver, the sender side also utilizes 223

R as the LLM for DSRP and ICC aforementioned. 224

Throughout the steganographic process, the pay- 225

load capacity optimization of StegoZip is indepen- 226

dent of the steganographic embedding process and 227

thus does not affect its security. The details of each 228

module are as follows. 229

3.2 Private Restorer in StegoZip Framework. 230

First, we introduce the private restorer R, a core 231

component throughout the StegoZip framework ob- 232

tained by fine-tuning a base language model as 233

illustrated in Fig. 3. In everyday communication, 234

rich semantics help the receiver fully understand 235

the sender’s point of view. However, such semantic 236

redundancy can significantly increase the payload 237

burden in public channel transmission and is im- 238

practical for scenarios with limited communication 239

resources. Therefore, we leverage the powerful lan- 240

guage comprehension capability of LLM to prune 241
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the semantics of secret messages and retain only242

the most critical parts for transmission. However,243

on the basis of human language perception alone,244

it may be difficult for the receiver to understand245

the semantic pruned secret messages, or ambiguity246

may arise. For this reason, we once again utilize247

the context-aware capability of the LLM to restore248

the rich semantics of the original message from249

the compressed version. Therefore, we fine-tune250

a private restorer R shared by both parties to ac-251

complish these tasks. The implementation involves252

three key steps: Self-Information Calculation, Se-253

mantic Pruning, and Instruction Fine-tuning.254

Self-Information Calculation. Initially, we must255

assemble the dataset for fine-tuning. The objec-256

tive is to train the model to handle the task of se-257

mantic restoration effectively. To achieve this, the258

input should consist of text characterized by low259

semantic content, whereas the output should fea-260

ture text with rich semantics. Considering a public261

text dataset Dp, for each sample xp ∈ Dp desig-262

nated as output, we must quantize and compress263

its semantics to form the corresponding input. We264

employ the concept of self-information from infor-265

mation theory to quantify the information content266

of each lexical unit (the entity resulting from word267

tokenization, e.g., English sentences segmented268

by spaces) in xp. This metric is facilitated by the269

base language model, and the self-information for270

a lexical unit uj in the text sample xp is defined as:271

Ilex(uj) =

k∑
i=1

I
(
w

(i)
j

)
(1)272

where uj represents the j-th lexical unit consisting273

of k tokens {w(1)
j , ..., w

(k)
j }. Each lexical unit can274

be broken down into multiple tokens for processing275

by an LLM. For the t-th token wt in the sequence,276

its self-information is defined as:277

I(wt) = − logP (wt) = − log p(wt|w<t) (2)278

where p(wt|w<t) represents the conditional proba-279

bility given by the LLM. The more unlikely a token280

is to be sampled, the greater its self-information.281

Semantic Pruning. After the self-information of282

all lexical units in xp obtained, we remove the units283

with low information through α-ratio pruning:284

Dc = {xp ⊙ I(Ilex(uj) > τα) | ∀xp ∈ Dp} (3)285

where ⊙ denotes element-wise multiplication, I(·)286

is the indicator function, and τα represents the α-287

You'd better choose Paul
Verhoeven's even if you

have watched it.

You'd better choose Paul
Verhoeven's even watched.

Self-Information

Compressed
Dataset

### [Instruction]: You are a text restoration expert. Insert missing words into the compressed
text to reconstruct the original without deleting or modifying existing content.
### [Input]: Compressed: You'd better choose Paul Verhoeven's even watched.
### [Response]: Original: You'd better choose Paul Verhoeven's even if you have watched it.

Instruction Fine-tuning Dataset

Base Model

Fine-tuning

Private Restorer

Public Dataset

Figure 3: Process of the instruction fine-tuning.

quantile threshold satisfying: 288

P (Ilex(uj) ≤ τα) = α (4) 289

Instruction Fine-tuning. After completing Seman- 290

tic Pruning, we obtain the semantic compressed 291

dataset Dc. Then, we construct the instruction fine- 292

tuning dataset Dft via template-based pairing, as 293

shown in Fig. 3: 294

Dft =


xins∥xc︸ ︷︷ ︸

Input

, xp︸︷︷︸
Output


∣∣∣∣∣∣∣∣ xp ∈ Dp, xc ∈ Dc

 (5) 295

where xins is the instruction and ∥ denotes string 296

concatenation. For the model to fully understand 297

the semantic restoration task, we require it to re- 298

store the original rich semantics only by inserting 299

words without deleting or modifying the existing 300

content in the compressed text. Then, we fine-tune 301

the base language model to obtain a private restorer 302

R shared by both the sender and the receiver. 303

3.3 Dynamic Semantic Redundancy Pruning. 304

After establishing the shared private restorer R, 305

the StegoZip module can be integrated into cur- 306

rent steganography. The dynamic pruning mech- 307

anism operates through two coordinated phases 308

aligned with the restorer fine-tuning process: Self- 309

Information Calculation and Semantic Pruning. 310

For the secret message m, we generate its 311

compressed representation mc via similar self- 312

information processing by usingR: 313

mc = m⊙ I
(
Ilex(uj) > τ

′
α

)
(6) 314

To prevent excessive pruning in short texts with 315

high entropy, we dynamically adjust the prun- 316

ing threshold on the basis of the average self- 317

information of m and the empirical value on the 318

instruction fine-tuning dataset Dft: 319

τ ′α = τα ·
(
1− η · Ī(m)− Ī(Dp)

Ī(Dp)

)
(7) 320
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Algorithm 1: Index Compressed Coding.
Input: Compressed Message mc, Tokenizer T ,

RestorerR, Huffman Codebook C,
Pseudo-Random Binary Key K.

Output: Pseudo-Random Bit Stream S.
1 Wc ← T (mc);
2 B← ∅;
3 foreach token wj ∈Wc = {w1, ..., wk} do
4 p

(
w

|V|
j |w<j

)
←R({w1, ..., w<j});

5 r(wj)← rank
(
wj | p

(
w

|V|
j |w<j

))
;

6 bj ← HuffmanEncode(r(wj), C);
7 B← B ∪ {bj};
8 end
9 S← B⊕K;

10 return S;

where τα is the predefined threshold from Eq. (4).321

Ī(m) is the average self-information of secret mes-322

sage m and Ī(Dp) is the average self-information323

of Ī(xp) from the public dataset Dp:324

Ī(m) =
1

T

T∑
t=1

Ī
(
w

(m)
t

)
= − 1

T

T∑
t=1

(
log(w

(m)
t |w(m)

<t )
)
(8)325326

Ī(Dp) =
1

|Dp|

|Dp|∑
i=1

Ī
(
x(i)p

)
(9)327

The values of self-information approaching infinity328

are not considered in the calculations. The ratio329

of units to be removed is dynamically determined330

based on the information of the secret message.331

3.4 Index Compressed Coding332

Following dynamic semantic pruning, we convert333

the compressed message mc into binary codes334

through probability-driven index encoding. In-335

spired by (Valmeekam et al., 2023), our method336

leverages the token prediction prior of the LLM to337

achieve high compression ratios.338

Let Wc = {w1, ..., wk} where each wj repre-339

sents a token in the tokenizerd sentence. We rank340

tokens by their conditional probabilities:341

r(wj) = rank
(
wj |p

(
w

|V|
j |w<j

))
∈ {1, ..., |V|}

(10)342

where |V| is the vocabulary size of the LLM, and343

p(w
|V|
j |w<j) indicates the sampling probability344

when generating the j-th token. The probability-345

driven token-rank mapping enables efficient com-346

pression coding, where a higher sampling probabil-347

ity results in a lower rank. Given that our fine-tuned348

restorerR has been exposed to numerous instances349

of semantic pruning text, we employ it to deduce350

Algorithm 2: Secret Message Restoration.
Input: Pseudo-Random Bit Stream S, Tokenizer T ,

RestorerR, Huffman Codebook C,
Pseudo-Random Binary Key K.

Output: Restored Secret message m̂.
1 B← S⊕K;
2 {r1, . . . , rk} ← HuffmanDecode(B, C);
3 Wc ← ∅;
4 foreach rank rj ∈ {r1, ..., rk} do
5 p

(
w

|V|
j |w<j

)
←R(Wc);

6 wj ← de-rank
(
r(wj) | p

(
wj |w|V|

<j

))
;

7 Wc ←Wc ∪ {wj};
8 end
9 mc ← T (Wc);

10 m̂← R(mc);
11 return m̂;

the ranks with the same template prefix, thereby 351

achieving a higher compression rate. Furthermore, 352

since the rank list is numerical, we convert these 353

numbers into bit format B via Huffman encoding. 354

Then, to align the provably secure steganography, 355

we pseudo-randomize the B via XOR with pseudo- 356

random binary key K generated by a secure stream 357

encryption algorithm such as ChaCha20 (Bernstein 358

et al., 2008). Finally, we can embed the resulting 359

pseudo-random bit stream S into the cover text by 360

secure steganographic embedding function. The 361

whole process of the ICC is shown in Algo. 1. 362

3.5 Secret Message Restoration 363

The decoding framework enables message extrac- 364

tion and reconstruction through invertible transfor- 365

mations of the encoding pipeline, as formalized in 366

Algo. 2. Given stego text xs, the receiver first 367

extracts the embedded bit stream S via the ne- 368

gotiated steganographic extraction function. Sub- 369

sequently, the original numerical rank sequences 370

can be obtained through de-pseudo-randomization 371

with cryptographically synchronized parameters 372

and Huffman decoding with the same codebook. 373

Furthermore, the restorer R replicates the index 374

compression coding generation process via inverse 375

rank-token mapping, converting each rank into its 376

corresponding token to reconstruct the semantic 377

pruning message. 378

As the compressed representation may be in- 379

sufficient for complete semantic comprehension 380

through human perception, the shared restorer R 381

performs instruction-guided semantic expansion. 382

Crucially, the information-driven pruning method 383

preserves high-information lexical units while dis- 384

carding redundant elements lower than threshold 385
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Table 1: The efficiency of StegoZip. As a plug-and-play module, StegoZip significantly improves the payload
capacity while reducing the whole steganography processing time.

Base Model Dataset Algo Payload (%) ↑ Encoding Time (s) ↓ Decoding Time (s) ↓

Qwen2.5-7B

IMDb

Meteor 9.13 115.93 117.46
+StegoZip 29.73(↑ 20.60) 64.75(↓ 51.18) 92.00(↓ 25.46)

Discop 15.14 100.73 100.39
+StegoZip 49.52(↑ 34.38) 34.58(↓ 66.15) 60.82(↓ 39.57)

AGNews

Meteor 8.59 32.02 33.24
+StegoZip 33.24(↑ 24.65) 11.15(↓ 20.87) 14.44(↓ 18.80)

Discop 14.29 16.97 15.64
+StegoZip 55.17(↑ 30.88) 5.97(↓ 11.00) 9.86(↓ 5.78)

Vicuna-7B-v1.5

IMDb

Meteor 9.12 115.75 119.60
+StegoZip 27.69(↑ 18.57) 69.54(↓ 46.21) 88.81(↓ 30.79)

Discop 15.12 100.46 103.70
+StegoZip 45.95(↑ 30.83) 37.04(↓ 63.42) 52.98(↓ 50.72)

AGNews

Meteor 8.63 31.96 34.99
+StegoZip 27.22(↑ 18.49) 13.58(↓ 18.38) 21.74(↓ 13.25)

Discop 14.31 20.35 20.54
+StegoZip 45.28(↑ 30.97) 7.26(↓ 13.09) 14.21(↓ 6.33)

τα, enabling the restorer to reconstruct original386

semantic content through maximum likelihood es-387

timation. The larger the α is, the less information388

is retained, and the greater the error between the389

restored secret message and the original message.390

4 Experiments391

4.1 Implementation Details392

LLMs. In this paper, we select two mainstream393

open-source LLMs, Qwen2.5-7B (Team, 2024) and394

Vicuna-7B-v1.5 (Touvron et al., 2023). For genera-395

tion, random sampling is employed with a temper-396

ature setting of 0.7, without using top-p or top-k.397

Datasets. Text datasets are used for fine-tuning the398

restorer and generating stego text. For fine-tuning,399

the IMDb (Maas et al., 2011) and AGNews (Maas400

et al., 2011) datasets are used. The IMDb dataset,401

with an average sample length of 1300 characters,402

is divided into a training set with 25,000 texts and403

a test set with 25,000 texts, but only 2,000 texts404

are randomly sampled for testing in each evalua-405

tion. Only the "business" category of the AGNews406

dataset with an average sample length of 241 char-407

acters is selected and divided into a training set408

containing 30,000 texts and a test set containing409

1,900 texts. We use LoRA (Hu et al., 2021) to410

fine-tune the base LLMs for 2 epochs. To gener-411

ate the stego text, the WikiText-2-v1 (Merity et al.,412

2016) dataset is used for the text generation task.413

In each instance, a text is randomly sampled from414

the dataset, and the first two sentences are extracted415

to serve as the prompt for guiding the generation. 416

Baselines. In the main experiment, the parameters 417

for the proposed Dynamic Semantic Redundancy 418

Pruning method are set to α = 0.3 and η = 1.0. 419

To the best of our knowledge, current linguistic 420

steganography do not specifically consider message 421

processing; thus, we adopt a common setup, using 422

Huffman compression with UTF-8 encoding as the 423

baseline message processing method. We consider 424

mainstream methods for the underlying generative 425

steganography: Meteor and Discop. 426

Evaluation metrics. We evaluate StegoZip from 427

both efficiency and text quality perspectives: 428

1. Efficiency: We divide the efficiency into pay- 429

load capacity and processing time. The payload 430

capacity refers to the ratio of the secret message 431

length to the stego text length, which is the most 432

important metric for assessing StegoZip’s compres- 433

sion capability. The processing time encompasses 434

the average encoding time, which spans from pro- 435

cessing the secret message to the completion of 436

generating the stego text, and the average decoding 437

time, which involves extracting the bit stream from 438

the stego text and restoring the secret message. 439

2. Text Quality: We evaluate restored message 440

quality at the word, sentence, and paragraph lev- 441

els via metrics such as Rouge-1, Rouge-2, Rouge- 442

ℓ (Lin, 2004), and Pairwise Similarity Percentages 443

(P-SP). Higher values of these metrics are better. 444

Rouge-1 and Rouge-2 calculate the proportion of 445

single words (1-gram) and word pairs (2-grams) 446

from the original secret message that appears in 447
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Table 2: The efficiency of Restorer R. Using the original secret message Do as the reference text, the restored
message Dr is much better than the compressed message Dc in word, sentence, and paragraph levels.

Model Dataset Ori-Gen Rouge-1 (%) ↑ Rouge-2 (%) ↑ Rouge-ℓ (%) ↑ P-SP (%) ↑

Qwen2.5-7B
IMDb Do −Dc 74.17 53.48 74.17 93.34

Do −Dr 89.27(↑ 15.10) 74.54(↑ 21.06) 86.59(↑ 12.42) 95.79(↑ 2.45)

AGNews Do −Dc 75.15 56.56 75.15 92.20
Do −Dr 89.96(↑ 14.81) 78.38(↑ 21.82) 88.98(↑ 13.83) 93.96(↑ 1.76)

Vicuna-7B-v1.5
IMDb Do −Dc 72.00 51.48 72.00 93.34

Do −Dr 93.55(↑ 21.55) 78.34(↑ 26.86) 87.13(↑ 15.13) 94.78(↑ 1.44)

AGNews Do −Dc 72.54 52.69 72.54 82.78
Do −Dr 90.83(↑ 18.29) 76.59(↑ 23.90) 86.82(↑ 14.28) 90.93(↑ 8.15)
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Figure 4: Time consumption of stego process.

the restored secret message, which better captures448

word order information. Rouge-ℓ calculates the pro-449

portion of the longest common subsequence in the450

original secret message that appears in the restored451

message, measuring semantic coherence. P-SP,452

which is based on a paraphraser model (Wieting453

et al., 2021), quantifies the semantic similarity be-454

tween the original secret message and the restored455

message at the paragraph level.456

All the experiments are run on a single RTX457

A6000 GPU. More detailed experimental settings458

are shown in the Appendix B.459

4.2 Main Performance of StegoZip460

Efficiency of StegoZip. The experimental results,461

shown in Tab. 1, demonstrate that the proposed462

plug-and-play StegZip significantly enhances the463

original steganography by achieving a 2–3× im-464

provement in the secret message payload capac-465

ity. This performance gain stems from semantic466

pruning and probability-driven index compression,467

which efficiently compresses lexical units in covert468

messages. Despite introducing additional prepro-469

cessing steps that are time consuming, as shown in470

Tab. 2 and Fig. 4, the optimized payload efficiency 471

reduces the steganographic embedding time and 472

extraction time by approximately 50%, as fewer 473

binary codes are required to be embedded into 474

cover text per unit message. Among the additional 475

steps, rank decompression and semantic restoration 476

operations are more time-consuming because of the 477

necessity of implementing the generation-like pro- 478

cess of new tokens through multiple forward propa- 479

gation steps. In contrast, the semantic pruning and 480

rank compression processes require only one for- 481

ward propagation without generating a new token. 482

Furthermore, the elevated payload capacity inher- 483

ently strengthens security by minimizing the vol- 484

ume of stego text needed for transmission, thereby 485

reducing adversaries’ suspicion under equivalent 486

communication requirements compared with those 487

of the original methods. These advancements po- 488

sition StegZip as a practical solution for balancing 489

capacity, time, and security in linguistic steganog- 490

raphy systems. 491

Efficiency of the Restorer. We further assess the 492

efficacy of the restoration modelR; the results, as 493

depicted in Tab. 2, confirm the substantial restora- 494

tion capabilities of R across various evaluation 495

metrics. Both LLMs show significant enhance- 496

ments in Rouge scores when comparing restored 497

messages Dr with compressed messages Dc, re- 498

flecting improved unigram overlap and paragraph- 499

level coherence. While the P-SP index only in- 500

creases marginally, it consistently exceeds 90%. 501

This indicates that the DSRP, which employs low 502

self-information pruning, effectively preserves the 503

essential semantics of the original message and mit- 504

igates the pressure of redundancy, thereby reducing 505

the burden on public channel transmission. 506

Generalization of Restorer. To assess the cross- 507

domain generalization capabilities of StegoZip, we 508

conduct tests on the fine-tuned Qwen-restorer R 509
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Table 3: The generalization of the RestorerR.

Fine-Tuning Set IMDb AGNews

Test Dataset Payload↑ P-SP↑ Payload↑ P-SP↑

IMDb 49.52 95.79 47.51 93.15
AGNews 47.11 86.90 55.17 93.96
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Figure 5: Impact of pruning threshold α.

using domain-shifted datasets, as detailed in Tab. 3.510

The results integrated on Discop indicate substan-511

tial performance drops in scenarios involving do-512

main shifts. Specifically, a restorer trained on the513

IMDb dataset exhibited pronounced performance514

declines when tested on AGNews data, principally515

due to two critical distribution mismatches: 1) the516

stark contrast between IMDb’s lengthy movie re-517

views and AGNews’ succinct business articles in518

terms of textual complexity and 2) the domain-519

specific structural patterns prevalent in news arti-520

cles as opposed to the subjective narrative styles521

found in movie reviews. These cross-domain varia-522

tions impede the ability of StegoZip to accurately523

predict the next token in index compression coding524

and maintain semantic integrity during text restora-525

tion tasks. Thus, maintaining consistency in the526

steganographic environment during message trans-527

mission is crucial.528

Pruning Threshold α. We also explore the influ-529

ence of the self-information pruning ratio α, focus-530

ing on the payload capacity and semantic preserva-531

tion of Discop. Within the range α ∈ [0.25, 0.40],532

an increase in payload capacity is observed, co-533

inciding with degradation in both the original-534

compressed similarity P-SP(Do − Dc) and the535

original-restored similarity P-SP(Do − Dr), fol-536

lowing a similar trend. This degradation occurs537

as a higher pruning proportion results in more suc-538

cinct compressed data and consequently limits the539

restorer’s contextual awareness, leading to incom-540

plete information reconstruction. Therefore, it is541

important to balance the steganographic payload542

capacity and the faithful representation of the orig-543

inal message post-transmission.544

Table 4: Ablation experiment on StegoZip.

Method IMDb AGNews

Payload↑ P-SP↑ Payload↑ P-SP↑

Discop+StegoZip 49.52 95.79 55.17 93.96
w/o η in DSRP 49.42 95.41 55.37 92.78

w/o DSRP 35.78 100.00 45.54 100.00
w/o Prefix in ICC 49.36 95.79 53.03 93.96

w/oR in ICC 47.28 95.79 47.31 93.96
w/o ICC 19.29 95.79 18.22 93.96
Discop 15.14 100.00 14.29 100.00

4.3 Ablation Experiment 545

We further perform ablation experiments with base 546

model Qwen to prove the effectiveness of all the 547

components of StegoZip as shown in Tab. 4, where 548

“w/o” means not adopted. The ablation results high- 549

lighted substantiate the critical contributions of the 550

individual components of our framework. In par- 551

ticular, the adaptive coefficient η in the dynamic 552

semantic redundancy pruning (DSRP) module mit- 553

igates the risk of overcompression, especially in 554

high-entropy short samples. Such overcompression 555

cases will hinder semantic restoration even though 556

compression may be more efficient. Moreover, in- 557

corporating a prompt prefix template during index 558

compression—as opposed to its omission—enables 559

the restorer, which has been fine-tuned to anticipate 560

subsequent compressed content, to predict the next 561

token more accurately, thereby enhancing compres- 562

sion efficiency. Overall, the experimental results 563

affirm that each advancement within our framework 564

not only bolsters the payload capacity for steganog- 565

raphy but also ensures superior preservation of the 566

embedded semantic message. More experimental 567

results are shown in the Appendix C. 568

5 Conclusion 569

In this paper, we propose StegoZip, a play-and- 570

plug framework that employs large language mod- 571

els for dynamic semantic redundancy pruning and 572

index compression coding. By integrating it into 573

advanced steganography, we realize a payload ca- 574

pacity increase of 2–3× and an approximately 50% 575

reduction in per unit message processing time. 576

These improvements not only increase the effi- 577

ciency of the steganographic process but also re- 578

duce the frequency of communication between two 579

parties, thereby decreasing the risk of detection. 580

This method paves the way for efficient and secure 581

message embedding, highlighting the potential of 582

advanced preprocessing techniques to augment tra- 583

ditional steganographic frameworks. 584
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Limitations585

Despite extensive experimental validation of Ste-586

goZip’s superior performance, our work still has587

certain limitations: First, since StegoZip introduces588

the message preprocessing based on the LLM to589

increase the payload capacity of text steganography590

algorithms, it inevitably incurs additional prepro-591

cessing time and computational resource overhead592

even if the overall steganography time is shortened.593

Second, StegoZip does not perfectly restore the594

original secret information, as shown in Tab. 2,595

where the restored secret message is somewhat596

different from the original secret message at the597

word, sentence, and paragraph levels. If high ac-598

curacy of the secret message is required, the dy-599

namic semantic redundancy pruning module can600

be omitted, and the probability-driven index com-601

pressed coding module alone can be utilized to602

more than double the payload capacity, as demon-603

strated in Tab 4. Finally, StegoZip requires access604

to the high-precision LLM for compressing and605

decompressing secret information, which makes it606

unsuitable for scenarios with limited computational607

resources (Bai et al., 2024).608

Ethics Statement609

In this paper, we propose the StegoZip framework610

to enhance the payload capacity of steganography,611

specifically for scientific research and educational612

purposes. We strictly adhere to established scien-613

tific research regulations to ensure data privacy and614

security throughout the experimental process, and615

we rigorously avoid any violation of personal pri-616

vacy or engagement in illegal activities. We are617

committed to responsibly advancing academic re-618

search in information security and ensuring that619

our contributions positively impact society.620
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et al., 2011) and SPC (Li et al., 2020)) inevitably 773

allows an adversary to distinguish cover text from 774

stego text with a non-negligible advantage. In 775

contrast, provably secure steganography strives 776

either to eliminate this advantage (i.e., achieve 777

information-theoretic security (Cachin, 1998)) or 778

to reduce it to a negligible level (i.e., attain compu- 779

tational security (Hopper et al., 2002)). 780

We define the cover channel, denoted by Ch, 781

as the conditional probability distribution of cover 782

signals C given the history h. Assuming the avail- 783

ability of a perfect sampler M that precisely fol- 784

lows the distribution Ch, we denote by MCh
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process that samples the next segment of cover 786
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key generation, embedding, and extraction, respec-790

tively. The embedding process takes as input a key791

k produced by:792

k ← KGen(α), (11)793

a message m, and history x, and then uses the794

sampler M to produce an output sequence:795

s1 | s2 | · · · | ss ← EmbedM (k,m, x) (12)796

of length s. Similarly, the extraction process uses797

the same key k and history x to extract the secret798

message m̃ from the stego sample:799

m̃← ExtractM
(
k, EmbedM (k,m, x), x

)
.

(13)800

To formalize computational security, we con-801

sider a distinguishing game in which an adversary802

W attempts to differentiate between the cover dis-803

tribution C and the stego distribution S. The ad-804

versary is challenged to distinguish between (i)805

samples produced by the secret-message-driven806

embedding Embed and (ii) samples generated by a807

normal random sampling procedure O that follows808

the cover distribution. The adversary’s advantage809

is defined as:810

AdvSSC,S(W ) =

∣∣∣∣∣ Pr
k,M,Embed

[
WM,Embed(k,·,·) = 1

]
− Pr

M,O

[
WM,O(·,·) = 1

]∣∣∣∣∣,
(14)811

where the probability is taken over the randomness812

in k, M , Embed, and O. A stegosystem is con-813

sidered computationally secure if, for every proba-814

bilistic polynomial-time adversary, this advantage815

is negligible in the security parameter α:816

AdvSSC,S(W ) < negl(α). (15)817

Accordingly, to ensure that the bitstream pro-818

cessed by StegoZip can be securely embedded819

into cover text using established provably secure820

steganography, the bitstream must first be pseudo-821

randomized. This is typically achieved by perform-822

ing an XOR operation with a pseudo-random bi-823

nary keystream generated by a secure stream en-824

cryption algorithm such as CHACHA20 (Bernstein825

et al., 2008).826

B More Experiment Settings 827

B.1 Fine-tune 828

The fine-tuning experiment was configured with a 829

random seed of 42, a micro-batch size of 2, and 830

an overall batch size of 32, resulting in gradient 831

accumulation steps computed as the batch size di- 832

vided by the micro-batch size. The training ran for 833

2 epochs with a learning rate of 3e-4. The sequence 834

length was capped at 1024 for the IMDb dataset 835

and 512 for the AGNews dataset. The LoRA pa- 836

rameters were set to LORA_R = 8, LORA_ALPHA 837

= 32, and a dropout rate of 0.05, and the targeted 838

modules included {q_proj, k_proj, v_proj, o_proj, 839

gate_proj, up_proj, down_proj}. Furthermore, the 840

model was loaded in int8 precision and fine-tuned 841

via FP16, with the training and validation split set 842

to a ratio of 4:1. 843

Furthermore, to accurately identify the end po- 844

sition of the restorer’s response, an “[END]” flag 845

is appended to the conclusion of responses in the 846

training set, and this “[END]” marker is also uti- 847

lized as the termination signal during inference. 848

B.2 Model Inference 849

During the model inference phase, the model is 850

loaded in the FP32 format because of the high- 851

precision probabilistic sort of index compression 852

coding. When the restorer is tasked with recover- 853

ing high semantic information, random sampling 854

is employed with a temperature parameter set to 855

0.7 without using top-p and top-k. The maximum 856

number of newly generated tokens corresponds to 857

the values used during training, with the IMDb 858

dataset for long text capped at 1024 tokens and the 859

AGNews dataset at 512 tokens. 860

B.3 Steganography 861

Meteor. We strictly followed the official open- 862

source repository of Meteor1, adopting the version 863

with probability reordering to increase payload ca- 864

pacity, and integrated it into our codebase. 865

Discop. We strictly followed the official open- 866

source repository of Discop2, adopted the version 867

with Huffman Tree to increase payload capacity, 868

and integrated it into our codebase. 869

LLMs. To avoid the security impact of the fine- 870

tuned LLMR on the steganography process, we do 871

1The repository of Meteor can be found
at: https://gist.github.com/tusharjois/
ec8603b711ff61e09167d8fef37c9b86

2The repository of Discop can be found at: https://
github.com/comydream/Discop
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Figure 6: Huffman codebook.

not use it to generate stego text in our experiments872

but instead use the LLaMA2-7B (Touvron et al.,873

2023) model.874

B.4 Huffman Codebook875

Following the application of a probability-driven876

token-rank mapping, we obtain a sequence of nu-877

merical values, e.g., [0, 2, 1, 6, . . . ]. This sequence878

is then required to be transformed into a binary879

format. Given the variable frequency of data and880

symbol occurrences during the interaction between881

two entities, we employ Huffman coding to con-882

vert this numerical array into a binary sequence, as883

depicted in Fig. 6. In this example, as the separator,884

the symbol “ , ” emerges as the most frequently885

occurring and is consequently assigned the shortest886

code length of 2 bits. The number “0” follows,887

receiving a code length of 3 bits due to being the888

second most frequent. The remaining digits display889

a similar frequency and are thus encoded with a890

uniform code length of 4 bits each.891

It is typical for large language models not to ter-892

minate the generation process immediately after893

the complete embedding of covert messages, i.e.,894

outputting a complete passage. To avoid drawing895

suspicion from external observers, the sender usu-896

ally prolongs the generation until the text reaches a897

natural conclusion. To facilitate this, we introduce898

the additional “0000” encoding to denote the end899

of the secret message. This strategy ensures that900

the covert communication is seamlessly integrated901

within the overall message, thereby preserving the902

integrity of the cover.903

This strategy enables the encoding of secret mes-904

sages via an average code length that is more con-905

cise, and it allows both parties to establish a fixed906

codebook, thereby facilitating a more convenient907

and streamlined communication process.908

For the Huffman compression algorithm utilized909

in the comparison method, we have employed the910

conventional technique of constructing Huffman911

trees and generating codebooks based on the char-912

acter frequency. This method aims to enhance com-913

pression efficiency, thereby optimizing the payload914

capacity of the underlying steganography.915
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Figure 7: Impact of the adaptive coefficient η.
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Figure 8: Impact of the fine-tuning epoch.

C More Experiment Results 916

C.1 Dynamic Adaptive Coefficient η. 917

The experimental results, as shown in Fig. 7, reveal 918

the significant impact of the adaptive coefficient 919

η on the StegoZip performance in the Dynamic 920

Semantic Redundancy Pruning (DSRP) module. 921

As the value of η increases, the model seeks a 922

balance between compression efficiency and se- 923

mantic resilience. Lower η values tend to favor 924

higher compression efficiency but may lead to over- 925

compression, which increases the risk of losing 926

important semantic information and thus affects 927

the restoration of semantic information. In contrast, 928

higher η values are more conservative in compres- 929

sion and help protect semantic information but may 930

sacrifice some compression efficiency. In addition, 931

owing to the uneven entropy of the test samples, 932

the model needs to adaptively adjust the η value 933

to cope with the compression demand of different 934

samples. This adaptive adjustment helps the model 935

to flexibly balance the compression efficiency and 936

semantic restoration ability when facing samples 937

of different complexities and information densities, 938

thus improving the performance and robustness of 939

the StegoZip in general. 940

C.2 Epoches of Fine-tuning. 941

We further investigated the impact of the number 942

of fine-tuning epochs for the restorerR on our ex- 943

perimental outcomes, as depicted in Fig.8. After a 944
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stroke, a huge clinical trial shows.
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Time Warner Inc. on Wednesday settled criminal
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million to end the Justice Department #39;s probe.

 settles with DOJ, SEC for \\$510 mil Warner Inc. on
Wednesday criminal securities fraud charges leveled
its America unit, agreeing pay \\$210 end Justice
Department #39;s probe.

Time Warner settles with DOJ, SEC for \\$510 mil
Time Warner Inc. on Wednesday settled criminal and
securities fraud charges the government leveled at its
America Online unit, agreeing to pay \\$210 million
to end the Justice Department #39;s probe.

Fed lifts rates a further quarter point By Andrew
Balls in Washington and Jennifer Hughes in New
York. The US Federal Reserve on Tuesday raised
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signalled there had been no change in its assessment
of economic conditions.
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sold off shares of auto parts makers Friday after
Delphi Corp. issued a profit warning and said it
would cut nearly 5 percent of its work force next
year.
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Figure 9: Some examples of secret message restoration results. In this case, the background color of green is the
part that is preserved, yellow is the part that is pruned, and red is where the restored secret message differs from the
original message. P-SP measures the similarity between the original secret message and the restored secret message.

single round of fine-tuning, the model essentially945

grasps the restoration task and can largely fulfill946

the requirements of the restoration process. Two947

rounds of fine-tuning are better for this task, ef-948

fectively balancing training time and performance.949

Notably, an excessive number of fine-tuning rounds950

yields diminishing returns for the AGNews dataset,951

likely owing to the brevity of its sample texts. With952

limited training data, such datasets are more sus-953

ceptible to overfitting, which can undermine the954

fine-tuning process.955

C.3 Case Studies.956

We present a comparative analysis between pruned957

secret messages and their reconstructed counter-958

parts, accompanied by quantitative comparisons of959

semantic similarity (Pairwise Similarity Percent-960

ages, P-SP). Our case studies reveal that the seman-961

tic pruning algorithm predominantly targets and re-962

moves non-essential grammatical elements such as963

articles and prepositions. However, it inadvertently964

also eliminates vital context-dependent informa-965

tion, especially temporal, spatial, and quantitative966

references. This loss necessitates inference based967

on linguistic context or the parametric knowledge968

embedded within large language models (LLMs).969

As evidenced by our experimental results shown970

in Fig. 9, the reconstruction fidelity exhibits a971

strong positive correlation with the P-SP. When 972

this ratio exceeds 95%, the reconstructed messages 973

maintain semantic equivalence with the original 974

content. However, sub-optimal ratios below this 975

threshold lead to progressive semantic degradation, 976

primarily manifesting as irretrievable loss of spe- 977

cific named entities and numerical descriptors that 978

lack sufficient contextual cues for LLM-based in- 979

ference. 980

To address these limitations, we propose two 981

complementary mitigation strategies: 982

1. Operational protocol enhancement: This 983

method involves requiring human operators to man- 984

ually reintroduce critical metadata tags during the 985

compression phase. This step ensures that essen- 986

tial information, which might be overlooked by 987

automated processes, is preserved. 988

2. Algorithmic improvement: We propose the 989

development of context-aware lexical saliency met- 990

rics and use more powerful language models. 991

These metrics are designed to more accurately cap- 992

ture the inferential dependencies of information 993

elements, thus preventing the premature pruning of 994

content that is semantically crucial. 995

Nonetheless, the restorer is instrumental in aid- 996

ing the enhancement and refinement of the seman- 997

tic content within the covert message. 998

13


	Introduction
	Related Work
	Generative Linguistic Steganography.

	Method
	Overview
	Private Restorer in StegoZip Framework.
	Dynamic Semantic Redundancy Pruning.
	Index Compressed Coding
	Secret Message Restoration

	Experiments
	Implementation Details
	Main Performance of StegoZip
	Ablation Experiment

	Conclusion
	More Related Work
	Provably Secure Steganography.

	More Experiment Settings
	Fine-tune
	Model Inference
	Steganography
	Huffman Codebook

	More Experiment Results
	Dynamic Adaptive Coefficient .
	Epoches of Fine-tuning.
	Case Studies.


