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Abstract

Concept-based interpretability addresses the opacity of deep neural networks by constructing
an explanation for a model’s prediction using high-level units of information referred to as
concepts. Research in this area, however, has been mainly focused on image and graph-
structured data, leaving high-stakes tasks whose data is tabular out of reach of existing
methods. In this paper, we address this gap by introducing the first definition of what a
high-level concept may entail in tabular data. We use this definition to propose Tabular
Concept Bottleneck Models (TabCBMs), a family of interpretable self-explaining neural
architectures capable of learning high-level concept explanations for tabular tasks. As our
method produces concept-based explanations both when partial concept supervision or no
concept supervision is available at training time, it is adaptable to settings where concept
annotations are missing. We evaluate our method in both synthetic and real-world tabular
tasks and show that TabCBM outperforms or performs competitively compared to state-of-
the-art methods, while providing a high level of interpretability as measured by its ability to
discover known high-level concepts. Finally, we show that TabCBM can discover important
high-level concepts in synthetic datasets inspired by critical tabular tasks (e.g., single-cell
RNAseq) and allows for human-in-the-loop concept interventions in which an expert can
identify and correct mispredicted concepts to boost the model’s performance.

1 Introduction

Artificial Intelligence, spearheaded by advances in Deep Neural Networks (DNNs), has recently mastered
tasks once believed to be solely achievable by virtue of innate human ingenuity (Krizhevsky et al., 2012;
Jumper et al., 2021; Brown et al., 2020; Silver et al., 2017). Although impressive, these achievements have a
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caveat: even though DNNs offer a powerful learning framework, their complexity obscures their reasoning,
which hampers their applicability in tasks that require human-understandable explanations for predictions.

Concerns on the legal (Erdélyi & Goldsmith, 2018) and ethical (Durán & Jongsma, 2021; Lo Piano, 2020)
ramifications of deploying such “black-box” models in real-world tasks have given rise to explainable artificial
intelligence (XAI), methods that are paving the way for safe DNN deployment. Amongst these, concept-based
interpretability (Kim et al., 2018; Koh et al., 2020a; Espinosa Zarlenga et al., 2022), where a DNN is explained
via high-level human-understandable concepts, has recently gained attention. By constructing explanations
that use low-dimensional human-understandable representations rather than input features, these methods
reduce the mental load required to decode an explanation, thus enabling easy model inspection.

Given the novelty of concept-based explanations, their development has been limited in breadth, with only
a few data modalities explored. As such, most concept-learning methods have focused on image (Ghor-
bani et al., 2019b; Chen et al., 2020b), sequential (Yeh et al., 2020; Kazhdan et al., 2020a), and graph-
structured (Magister et al., 2021; 2022) data, leaving other modalities under-explored. Hence, crucial tab-
ular tasks (e.g., genomics, clinical, and financial tasks), where DNNs have recently been successfully de-
ployed (Kadra et al., 2021; Borisov et al., 2021), have been overlooked by the concept-based XAI literature.
More importantly, while the definition of a concept in highly-structured modalities such as images (e.g.,
image segments (Ghorbani et al., 2019b)) or graphs (e.g., motifs (Magister et al., 2021)) is well-understood,
tabular data does not have the spatial or geometric structure observed in these domains. This renders
existing concept-based methods ill-posed for tabular tasks.

In this paper, we address this gap by defining a concept in tabular domains and proposing TabCBM, an
interpretable neural architecture capable of learning tabular concept-based explanations both in the presence
and absence of concept annotations. More broadly, our contributions are: (1) We propose, to the best of
our knowledge, the first formalisation of a concept in tabular data; (2) we introduce TabCBM, an end-to-
end concept-interpretable neural architecture that learns concept-based explanations for tabular tasks, both
when presented with examples of such concepts (concept-supervised) or when no concept annotations are
available (concept-unsupervised); (3) we show that TabCBM learns meaningful and interpretable concepts
in complex datasets, such as single-cell RNAseq tasks, without sacrificing performance; and (4) we validate
our method by demonstrating that it can be used in a human-in-the-loop setup where an expert may easily
identify and intervene on its learnt concepts to improve model performance.

2 Background & Related Work

Concept Learning Initial Concept Learning methods (Bau et al., 2017; Fong & Vedaldi, 2018) explored
whether DNNs encode known high-level concepts within their learnt latent space. Aiming to circumvent
known failure models (Kindermans et al., 2017; Ghorbani et al., 2019a) in popular saliency methods (Sel-
varaju et al., 2017; Sundararajan et al., 2017), as well circumvent the high mental load required to decode
feature-level explanations, XAI algorithms such as TCAV (Kim et al., 2018), CaCE (Goyal et al., 2019), and
CME (Kazhdan et al., 2020b) explored explaining a DNN using high-level concepts extracted from its latent
space. Follow-up work (Koh et al., 2020a; Chen et al., 2020b), however, argued that extracting concept
explanations after training may fail to capture conceptual relations with high fidelity. This has given rise to
models that are “concept-aware” and instead construct concept-level explanations at inference.

Concept Bottleneck Models (CBMs) (Koh et al., 2020a) provide a framework to study most concept-based
methods. Formally, a CBM is a composition of two models gΦ and fΘ. The first model gΦ : X → C, a
“concept encoder” with parameters Φ, maps input features x ∈ X (e.g., a bird’s image) to a k-dimensional
concept representation ĉ ∈ C ⊆ Rk (k is a property of the task). Each learnt concept’s value ĉi is incentivised
to be aligned with a known ground-truth concept ci (e.g., “has white wings”). The second model fΘ : C →
Y ⊆ [0, 1]L, a “label predictor” with parameters Θ, maps ĉ ∈ C to a distribution over L downstream task
labels y ∈ Y (e.g., bird’s type). A CBM can be trained, either jointly, sequentially, or independently, by
learning fΘ and gΦ in a concept-supervised setting. In this setup, we are given a training set D :=

{
(x, c, y) |

x ∈ X , c ∈ {0, 1}k, y ∈ {1, · · · , L}
}

where each sample x is annotated with a binary concept vector c and a
task label y. Aligning ĉ to c using such a dataset encourages a CBM’s “bottleneck” ĉ = gΦ(x) to serve as an
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explanation for its prediction ŷ = fΘ(gΦ(x)) and makes the CBM receptive to concept interventions (Koh
et al., 2020a), where experts can improve a CBM’s performance by correcting mispredicted concepts.

To circumvent the need for concept annotations during training, concept-unsupervised methods discover
concepts using feedback from a downstream task. Post-hoc concept-unsupervised methods such as Con-
cept Completeness-aware Discovery (CCD) (Yeh et al., 2020) learn a concept basis that contains enough
information to reconstruct a DNN’s latent space. Others, like ACE (Ghorbani et al., 2019b) and GCEx-
plainer (Magister et al., 2021), instead discover concepts by clustering a DNN’s latent space. In parallel,
concept-unsupervised interpretable models, such as Self-explaining Neural Networks (SENNs) (Alvarez-Melis
& Jaakkola, 2018), have also been proposed. Nevertheless, all of these methods have historically been applied
to vision, graph, and language datasets, leaving their behaviour in tabular datasets as an open question.

3 What is a concept in a tabular task?

While it is clear what a concept is in images (e.g., image segments (Ghorbani et al., 2019b)), sequences (e.g.,
sentiment (Kazhdan et al., 2020a)) and graphs (e.g., subgraph motifs (Magister et al., 2021)), tabular data
do not have the well-defined structure observed in these other domains. Nevertheless, it has been observed
that, in tabular datasets, one commonly finds high inter-correlations or multicollinearity amongst features
(Belsley et al., 2005; Wang et al., 2015; Lee et al., 2021). For example, in genomics, where a sample is
formed by thousands of gene expressions, major diseases can be mostly attributed to the interaction of a few
subsets of related genes (Jackson et al., 2018; Lee et al., 2021). Similarly, in single-cell RNAseq (sc-RNAseq)
tasks (Macaulay & Voet, 2014) a cell’s state can be decomposed into groups of highly related genes, known
as Gene Expression Programs (GEPs) (Segal et al., 2003; Kotliar et al., 2019), and groups of transcription
factors whose expression or lack thereof represent simple biological functions (e.g., undergoing cell division).

Definition Inspired by the feature multicollinearity observed in tabular tasks, we propose that fixed subsets
of highly correlated features can be thought of as tabular concepts. Specifically, we argue that a subset of
correlated features defines a concept if its features are the inputs of a possibly nonlinear scoring function s(i)

whose output represents a high-level “meta-feature”’s activation (e.g., a GEP’s activation). We formalise
this by defining a tabular concept on an n-dimensional task as a tuple (π(i), s(i)) where π(i) ∈ {0, 1}n is a
mask indicating the input features that are related to this concept and s(i) : R

∑
j

π
(i)
j → {0, 1} is a function

indicating the concept’s activation given the features selected by π(i) (i.e., features j with π
(i)
j = 1).

To see how this definition can be applied to a real-world example, consider the task of predicting a user’s
credit score from their past financial history. Previous work (Chen et al., 2018a) has shown that grouping a
potential client’s past “criminal” loan history (e.g., “number of defaulted loans”, “longest delayed payment”,
“last delayed payment”, etc.) into a single “delinquency” score can help predict the likelihood of default. In
this context, scoring models, such as that proposed by Chen et al. (2018a), can use a simple interpretable
model h that predicts a “delinquency” score from known delinquency-related features to train a simple
downstream model that predicts the likelihood of loan default. Hence, the subset of features needed for h
can be thought of as a high-level concept when predicting a loan’s risk. We can then formally describe this
as a tabular concept by letting π(i), the mask selecting all the features needed to compute this concept, be
a binary vector indicating each delinquency-related feature and s(i), the concept’s scoring function, be h.

4 Tabular Concept Bottleneck Model

Motivation A key component of our tabular concept definition is that of understanding which subsets of
features form concepts. Here, we explore discovering these subsets by building upon a related field: feature
selection (Liu et al., 1996; Kohavi & John, 1997). Methods in this field reduce the noise in high-dimensional
data by selecting a small subset of relevant features to learn from (Chandrashekar & Sahin, 2014). Recent
advancements in deep learning (Yamada et al., 2020; Huang et al., 2020b), and in particular in self-supervised
learning (Ucar et al., 2021; Yoon et al., 2020; Lee et al., 2021), introduced differentiable neural architectures
for feature selection. In our work, we build on Self-supervision Enhanced Feature Selection (SEFS) (Lee
et al., 2021) to design our concept-based architecture. As we discuss below, the crux of our approach lies in
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Figure 1: TabCBM: for each learnt concept (here shown for k′ = 4) we learn both a per-concept feature
importance mask π̂(i) and a concept score ĉi ∈ [0, 1] that indicates the concept’s activation. All concatenated
scores are passed to a differentiable label predictor to output a downstream prediction.

framing tabular concept discovery as learning multiple feature selection masks simultaneously from which
multiple concept activation scores can be derived and used for downstream tasks.

Model Architecture A Tabular Concept Bottleneck Model (TabCBM), shown in Figure 1, takes as an
input an n-dimensional tabular sample x ∈ Rn and discovers k′ tabular concepts, where k′ is a user-selected
hyperparameter. Inspired by our definition of a tabular concept, TabCBM aims to discover a set of k′

tabular concepts {(π̂(i), s(i))}k′

i=1 from which a downstream task label ŷ can be predicted, and explained, via
a concept score vector ĉ = [s(1)(π̂(1) ⊙ x), · · · , s(k′)(π̂(k′) ⊙ x)]T . We proceed by relaxing our discovery task
so that each concept’s mask π̂(i) ∈ [0, 1]n and scoring function s(i) : Rn → [0, 1] operate within a continuous
space [0, 1]. Such relaxation allows concept discovery in a differentiable manner.

Given a training set D := {(xl, yl)}N
l=1 with N samples and labels, we train TabCBM as follows: for each

concept i ∈ {1, · · · , k′}, we learn a “soft” feature importance mask π̂(i) ∈ [0, 1]n that indicates how “impor-
tant” each input feature is for concept i. Each mask can be thought of as a feature-selection subproblem
and is learnt by adapting the feature selection process used in SEFS. Specifically, the vector π̂(i) is used to
indicate the marginal probabilities of a differentiable multivariate Bernoulli sampler which, by looking at the
empirical feature correlation matrix C, samples a per-sample masking vector θ(i) ∈ {0, 1}n that preserves
empirical inter-feature dependencies1. This means that, for example, in a genomics task where two genes
are highly correlated, the sampler will be more likely to mask these two features together than masking one
but not the other. This prevents information from masked features from leaking via unmasked but highly-
related features. In practice, we use the Gaussian copula (Nelsen, 2007) described by Lee et al. (2021) and
the Bernoulli relaxation and reparameterisation trick described by Wang & Yin (2020) for the differentiable
multivariate Bernoulli sampler (see Appendix B for details). This means that θ(i) will be continuous.

Once θ(i) is generated, we mask the input features to compute a new sample whose unselected inputs are
near zero x̃(i) := x⊙θ(i). When constructing our TabCBM model, we associate each concept with a learnable
model ρ(i) : Rn → Rm that takes x̃(i) and generates a concept embedding representation ρ(i)(x̃(i)) for concept
i. Intuitively, ρ(i)(x̃(i)) can be thought of as a per-sample embedding representation for the i-th concept
and can be used to generate a concept score indicating whether this concept is “activated” in x. Using
a learnable model ϕ : Rn → Rm that generates an m-dimensional latent representation from x̃(i) (shared
across all concepts and learnt end-to-end with TabCBM), we consider the inner product between a concept
embedding and ϕ(x̃(i)) to be a measure of concept “activation”. We generate a scalar concept activation
score ĉi ∈ [0, 1] through the sigmoidal inner product:

s(i)(x) := ĉi = σ
(
ϕ(x̃(i))T ρ(i)(x̃(i))

)
. (1)

Although future work may explore different scoring functions, here we opt to use the sigmoidal inner product
between ϕ(x̃(i)) and ρ(i)(x̃(i)) rather than, say, the cosine similarity between these two vectors. Our choice of

1This is only done at training time to incentivise concept discovery. During testing, we deterministically set θ(i) = π̂(i).
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activation allows our model to utilise the magnitude of these vectors to help it more easily express a concept’s
activation or deactivation when passed to a sigmoidal function. This avoids the need to threshold the inner
product to generate a concept score between 0 and 1, as done by CCD, and leads to better downstream
performance (see Appendix J). Furthermore, notice that TabCBM generates its latent representation and
concept scores using the masked sample x̃(i), therefore avoiding information from irrelevant features leaking
into a concept’s score. Once all concept scores have been computed, they are concatenated into a concept
bottleneck ĉ ∈ [0, 1]k′ which is passed to a label predictor model f : [0, 1]k′ → [0, 1]L to predict the
downstream task. Once all concept scores have been computed, they can be concatenated to form a concept
bottleneck representation ĉ ∈ [0, 1]k′ which is passed to a label predictor model f : [0, 1]k′ → [0, 1]L to
predict the downstream task.

Desiderata We argue that meaningful concept generators {ρ(i)}k′

i=1 and masks {π̂(i)}k′

i=1, must satisfy:

1. Concept Completeness: one should be able to predict the labels y of a specific downstream task
of interest from the concept scores ĉ.

2. Diversity: concept embeddings {ρ(i)(x̃(i))}k′

i=1 should each capture semantically unique concepts.
3. Coherence: If two samples are very similar, under some similarity metric (e.g., Euclidean distance),

their concept scores ĉ should be equally as similar. This should hold even when determining similarity
in a latent representation space (e.g., representations learnt by a feature extractor such as PCA).

4. Specificity: learnt concepts should be a function of only a small subset of input features (i.e.,
feature importance masks {π̂(i)}k′

i=1 should be sparse).

We incorporate these desiderata into our model’s objective function using a weighted loss of four components:

Lconcept-unsup(x, y) := Ltask(f(ĉ), y) + λcoLco(x) + λdivLdiv(x) + λspecLspec(π̂(1), · · · , π̂(k′)) (2)

where λco, λdiv, and λspec control how much we weigh each property.

The form taken by the task loss Ltaskis task-specific (e.g., cross-entropy) and incentivises concept complete-
ness. As in previous works (Alvarez-Melis & Jaakkola, 2018; Yeh et al., 2020), this loss function aims to
discover concepts that jointly encode all the information necessary for predicting the downstream task. In
light of the impossibility of discovering disentangled latent representations for a given distribution without
any supervision (Locatello et al., 2019), this loss, therefore, provides the necessary feedback to discover
important concepts for this task in the absence of full concept supervision.

For both the coherence and diversity loss terms, we extend the regularisers proposed by Yeh et al. (2020) by
letting them operate on per-sample concept vectors. Specifically, our coherence loss incentivises the model
to generate similar concept scores for samples whose latent representations are similar (according to their ℓ2
distance). This is achieved by minimising:

Lco(x1, · · · , xN ) := − 1
Nt

∑
xi∈{x1,··· ,xN }

∑
ϕ(xj)∈Ψt(ϕ(xi))

ĉ(xi)T ĉ(xj)
||ĉ(xi)|| ||ĉ(xj)|| (3)

where ĉ(xi) is the concept score vector for xi and Ψt(ϕ(xi)) represents the set of t-nearest-neighbours of
ϕ(xi), selected using their ℓ2 distances, in the training set {ϕ(xl)}N

l=1 (t is a hyperparameter selected as
suggested by Yeh et al. (2020)). Similarly, we define the concept diversity loss as:

Ldiv(x1, · · · , xN ) := 1
Nk′(k′ − 1)

∑
x∈{x1,··· ,xN }

k′∑
i=1

k′∑
j=1
j ̸=i

ρj

(
x̃(j))T

ρi

(
x̃(i))

||ρj

(
x̃(j)

)
|| ||ρi

(
x̃(i)

)
||

. (4)

That is, we learn diverse concepts by minimising the cosine similarity between distinct concept vectors for a
sample. This loss term is similar to that used in several state-of-the-art contrastive learning pipelines (Chen
et al., 2020a; Zbontar et al., 2021). Finally, we incentivise specificity by minimising the ℓ1 norm of all feature
importance masks:

Lspec(π̂(1), · · · , π̂(k′)) := 1
k′n

k′∑
i=1

∣∣∣∣π̂(i)∣∣∣∣
1 (5)
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This loss, as in several Lasso-based sparse classifiers (Tibshirani, 1996; Liu et al., 2017; Margeloiu et al.,
2022), increases concept interpretability by forcing the selection of only a handful of features per concept.

Providing partial concept supervision TabCBM can benefit from available training concept supervi-
sion, even if given only for some training samples. Assume that a subset Xconcept-annotated ⊆ D of our training
data has k binary ground-truth concept annotations C :=

{
ci ∈ {0, 1}k | (xi, yi) ∈ Xconcept-annotated}. This

gives us a dataset of triplets Dconcept-sup := {(xi, ci, yi)}i. During training, assuming k′ ≥ k, we can then
encourage specific concept scores to be aligned with ground-truth concepts in C by minimising

Ltotal = E(x,y)∼D
[
Lconcept-unsup(x, y)

]
+ λconcept-supE(x,c,y)∼Dconcept-sup

[
Lconcept-sup(x, c)

]
(6)

where λconcept-sup controls how much we value concept alignment with the training concepts vs concept
discovery, and Lconcept-sup(x, c) is the mean cross-entropy loss between ĉi and ci:

Lconcept-sup(x, c) := − 1
k

k∑
i=1

(
ci log(ĉi) + (1 − ci) log(1 − ĉi)

)
. (7)

This loss encourages the first k concept scores to be aligned with known ground truth concepts c while
incentivising the rest of concept scores to discover semantically distinct concepts to those given during
training. This enables TabCBM to maintain high performance without many concept annotations while
reducing concept impurities (Espinosa Zarlenga et al., 2023) and leakage (Mahinpei et al., 2021) in its
bottleneck.

5 Experiments

In this section, we evaluate TabCBM by focusing on four sets of research questions:

• Performance (Q1) — Is TabCBM’s performance competitive against that of “black-box” models
and other concept-based models when trained with different degrees of concept supervision?

• Concept Score Alignment (Q2a) — Do concept scores predicted by TabCBM align with ground
truth tabular concepts in the input task?

• Concept Mask Alignment (Q2b) — Even when the concept scores are aligned with known
ground-truth concepts, this does not guarantee that the learnt feature importance masks match
their corresponding ground-truth concept feature masks. Is it the case that TabCBM’s concept
masks capture subsets of features known to have some high-level interpretation? If so, can we use
these masks to provide global feature importance?

• Human-in-the-loop Interventions (Q3) — Can we improve the downstream task performance
of TabCBM if an expert can identify the semantics of a specific concept and intervene on it?

To answer these questions, we first evaluate TabCBM’s task and concept accuracy in a variety of concept-
supervised and concept-unsupervised setups. Next, we quantitatively and qualitatively study the concepts
discovered by TabCBM when no concept supervision is given. Finally, we explore how TabCBM’s perfor-
mance can be boosted in a human-in-the-loop setting with the introduction of test-time concept interventions.

Datasets We evaluate our method on both synthetic and real-world tabular datasets. We construct
four synthetic tabular datasets of increasing complexity: Synth-Linear, Synth-Nonlin, Synth-Nonlin-
Large, and Synth-scRNA. In these datasets, each sample x is annotated with a downstream categorical
task label y and a set of k ground truth tabular concepts {(π(i), s(i))}k

i=1 (k = 5 for Synth-Nonlin-Large,
k = 11 for Synth-scRNA, and k = 2 otherwise). By construction, s(i)(x) depends only on a small number
of input features for all i and the label y is uniquely described by the sample’s concept activation vector
c := [s(1)(x), · · · , s(k)(x)]T . Synth-scRNA, in particular, is a synthetic single-cell RNA high-dimensional
task in which each concept represents one of 11 known GEPs, 10 of which are identity GEPs (i.e., they are
aligned with the sample’s cell type) and one which is an activity GEPs (i.e., a group of co-regulated genes
and transcription factors which represent environmental/epigenetic biological functions). This makes this
task representative of an impactful application of TabCBM due to the importance of discovering GEPs from
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Table 1: Downstream accuracy (%) and standard errors show that TabCBM (trained without concept
supervision) outperforms or is on par with all methods across tasks. Values are rounded up to two decimals
and errors are not shown if they are less than 10−5. Because CCD is a post-hoc method, its reported accuracy
corresponds to that obtained when reconstructing its DNN’s latent space with its concept scores.

Dataset TabCBM (ours) SENN CCD (recon) MLP TabNet TabTransformer XGBoost LightGBM
Synth-Linear 99.84 ± 0.06 98.15 ± 0.2 96.47 ± 1.3 97.57 ± 0.37 97.57 ± 0.37 82.91 ± 0.55 96.43 96.8
Synth-Nonlin 98.36 ± 0.15 89.14 ± 0.71 85.99 ± 2.28 87.65 ± 0.98 91.57 ± 0.48 81.07 ± 0.83 88.43 89.33

Synth-Nonlin-Large 62.78 ± 1.13 49.78 ± 2.08 51.64 ± 1.71 40.73 ± 6.42 51.01 ± 2.57 54.63 ± 1.17 22.48 ± 0.48 23.58 ± 0.78
Synth-scRNA 93.66 ± 1.41 78.32 ± 3.03 68.83 ± 1.73 73.87 ± 1.43 90.66 ± 1.10 87.29 ± 0.68 90.44 ± 1.06 89.96 ± 1.57

Higgs (without high-level) 80.42 ± 0.3 70.61 ± 0.12 77.84 ± 0.08 79.90 ± 0.15 79.44 ± 0.16 74.94 ± 0.21 68.85 ± 0.02 68.87 ± 0.06
Higgs (with high-level) 78.62 ± 0.12 73.53 ± 0.71 77.92 ± 0.09 78.44 ± 0.02 78.12 ± 0.05 74.22 ± 0.42 75.33 ± 0.04 75.33 ± 0.03

PBMC 93.35 ± 0.16 92.24 ± 0.23 93.14 ± 0.30 91.66 ± 1.95 92.74 ± 0.46 91.01 ± 0.33 93.09 ± 0.29 93.01 ± 0.24
FICO 72.08 ± 0.42 66.78 ± 0.69 65.46 ± 4.91 67.98 ± 1.36 71.20 ± 0.87 65.66 ± 0.85 72.33 ± 0.44 72.63 ± 0.12

sc-RNAseq data in genomics (Kotliar et al., 2019; Kharchenko et al., 2014; Satija et al., 2015). All of these
synthetic datasets allow TabCBM to be evaluated in a controlled environment where we know the underlying
set of complete tabular concepts and their relationship to the downstream task.

Finally, we use three real-world datasets with unknown ground-truth concepts: (1) PBMC (10x Genomics,
2016a;b) as a high-dimensional single-cell transcriptomic dataset, (2) Higgs (Aad et al., 2012) as a large
real-world physics tabular dataset (we also include a variant of this dataset without the hand-crafted high-
level features defined by Baldi et al. (2014)), and (3) FICO (Fair Isaac Corporation, 2019) as a high-stakes
financial task whose features are both categorical and continuous. For further details of each dataset used
in our evaluation, refer to Appendix D.

Baselines and model selection We compare TabCBM against other concept-based methods such as
CBMs and Concept Embedding Models (CEMs) (Espinosa Zarlenga et al., 2022) when concept supervision
is provided, and against SENN and CCD when concept annotations are not provided. Similarly, we evaluate
TabNet (Arık & Pfister, 2021), TabTransformer (Huang et al., 2020a), Multi-layer Perceptrons (MLPs),
XGBoost (Chen & Guestrin, 2016) and LightGBM (Ke et al., 2017) as representative methods of high-
performing tabular models, where TabNet, TabTransformer and MLP are neural models and the others are
gradient-boosted models (GBMs). When studying TabCBM’s concept representations, we include Principle
Component Analysis (PCA) (Pearson, 1901) as a representation-learning baseline due to its common use
in high-dimensional tabular datasets. For the sake of fairness, when possible we train all models using the
same architecture/capacity and training configuration. Similarly, we select a model’s hyperparameters via
a grid search over a set of possible values and report test scores for the hyperparameters that maximise the
validation loss. In particular, unless specified otherwise, the number of concepts in concept-learning methods
(i.e., k′) is set to the number of ground truth concepts k. If k is unavailable for the task (e.g., as in FICO),
we estimate k′ by selecting the value that maximises the validation loss over a fixed set of candidate values.
Similarly, for both CCD and TabCBM the number of top-t neighbours for their coherence loss is selected as
suggested by Yeh et al. (2020). Furthermore, when training neural models we map categorical features to
continuous scalars using a 1D embedding and, to speed up training, we pre-train TabCBM’s latent encoder
and mask generators using the process described by Lee et al. (2021) (see Appendix C for details). Finally,
when presenting our results, we average each metric over five models trained with different initialisations.
For further details on our training setup, see Appendix E.

5.1 Model Performance (Q1)

In this section, we evaluate TabCBM’s first desideratum, concept completeness, by contrasting its downstream
task accuracy against that of competing methods. The objective of these experiments is to explore whether
our method can maintain a competitive performance against state-of-the-art baselines across several tasks.
For this, we study two training setups: (1) a concept unsupervised setup (i.e., no concept annotations), and
(2) a partially and fully concept supervised setup (i.e., a fraction of samples are concept-annotated).

Concept unsupervised Our experiments’ results, shown in Table 1, suggest that TabCBM’s task ac-
curacy is competitive against that of black box and concept-interpretable models. Particularly, TabCBM
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Figure 2: (a) Task accuracy (%) and (b) mean concept AUC (%) in synthetic tasks. We vary the number of
supervised concepts k (x-axis) and the fraction r of concept-annotated samples (25% and 100% of samples for
the top and bottom rows, respectively). We include only concept-supervised methods, disqualifying CCD
and SENN. Similarly, only TabCBM and Hybrid-CBM have results shown when the number of training
concepts is 0 (i.e., x = 0) as CBM and CEM do not support training without available concept labels.

significantly outperforms existing concept-based architectures (i.e., CCD and SENN) and neural models (i.e.,
MLP, TabNet, TabTransformer) across all tasks. Similarly, we observe that TabCBM outperforms XGBoost
and LightGBM in most tasks with the exception of the FICO dataset, in which TabCBM is marginally
outperformed by gradient-boosted methods potentially due to the discrete nature of this task’s features and
the small training set (something which has been previously observed for other neural models in financial
tasks (Schmitt, 2022)). Nevertheless, our aggregate results strongly indicate that TabCBM does not sacrifice
the performance seen in state-of-the-art black-box models when it is not provided with supervision.

Concept supervised Next, we explore TabCBM’s task and concept accuracy when it is provided with
concept supervision. For this, we compare TabCBMs against equivalent-capacity CEMs, CBMs, and Hybrid-
CBMs (Mahinpei et al., 2021; Espinosa Zarlenga et al., 2022), the latter being a CBM with extra unsupervised
bottleneck activations (we add as many activations as TabCBM’s bottleneck). We train all models on our
synthetic datasets, given that they have ground-truth concept annotations, while we vary the number of
supervised concepts. This is done to study TabCBM’s sensitivity to concept incompleteness and is imple-
mented by selecting a fixed random subset of concepts we provide annotations for. Finally, we evaluate each
method’s data efficiency w.r.t. the number of concept-annotated samples by providing concept supervision
for 100% and 25% of the training samples (see Appendix F for details).

Our task results, shown in Figure 2a, suggest that TabCBM attains better task predictive performance
than CEMs, CBMs, and Hybrid-CBMs. We observe this regardless of (i) the number of annotated concepts
(x-axis) and (ii) the number of concept-annotated samples (TabCBM’s task accuracy is nearly constant in
both rows of Figure 2). Furthermore, we observe this improvement, which is significant in complex datasets,
comes without sacrificing TabCBM’s mean concept predictive ROC-AUC2 for the concepts that receive
supervision, as seen by TabCBM’s competitive concept accuracy in Figure 2b. The same cannot be said of
CBMs which struggle to find a balance between concept interpretability and task accuracy when the training
set of concepts is incomplete (see Figure 2a when a small number of training concepts is provided).

Notice that although TabCBM’s task accuracy is generally unaffected by the introduction of concept super-
vision (as opposed to Hybrid-CBM’s), we observe an exception in Synth-scRNA. We see that TabCBM’s
performance in Synth-scRNA drops when concept supervisions are introduced, suggesting that an accuracy-
interpretability trade-off may exist in complex tasks. Nevertheless, as discussed in Appendix K, when
provided with enough concept supervision this trade-off causes TabCBM to be only marginally worse than

2This is defined as the mean area under the ROC when predicting each training concept ci with concept score ĉi.
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the next best-performing model. In practice, this may be alleviated by fine-tuning λconcept-sup and it may be
a negligible sacrifice considering that it leads to high-fidelity concept explanations for TabCBM’s predictions
while allowing performance-boosting test-time concept interventions as we will see in Section 5.4.

5.2 Concept Score Alignment (Q2a)

In this section, we explore whether TabCBM learns concepts that align with known ground-truth concepts
when it receives no concept supervision. We show that, under a series of reasonable quantitative metrics,
TabCBM’s concepts are better aligned with known ground-truth concepts than those learnt by other concept-
based methods. This implies that our method, even without any concept supervision, is able to discover
concepts that are semantically aligned to high-level units of information that experts may use in the same
task. We follow this quantitative analysis by qualitatively studying TabCBM’s concepts in Synth-scRNA
and showing a clear alignment between TabCBM’s concepts and known GEPs.

Quantitative results We investigate the alignment of TabCBM’s concept explanations/scores by consid-
ering different metrics that capture TabCBM’s desiderata. For this, we compare TabCBM’s concept-based
explanations against those learnt by CCD, SENN, and PCA by looking at (a) their predictive power w.r.t.
ground-truth concepts, (b) their alignment to known ground-truth concepts, and (c) their diversity. We
first capture the predictive power of learnt concept representations w.r.t. ground truth concepts using the
DCI Informativeness score (Info) (Eastwood & Williams, 2018b), which measures the information content of
discovered concepts w.r.t. ground truth concepts. Then, we capture an explanation’s alignment with known
ground-truth concepts by checking whether learnt concept scores lead to (i) coherent clusters w.r.t. known
ground-truth concepts, as captured by a high Concept Alignment Score (CAS) (Espinosa Zarlenga et al.,
2022), (ii) representations that have at least one aligned dimension per ground truth concept, as captured
by a high DCI-Completeness (Compl) (Eastwood & Williams, 2018b), and (iii) representations that have
one and only one dimension aligned to a ground-truth concept, as captured by a high R4 score (Ross &
Doshi-Velez, 2021). Finally, we quantify the diversity of the set of learnt concepts by computing their Mu-
tual Information Gap (MIG) (Chen et al., 2018b) and Disentanglement Score (Dis) (Eastwood & Williams,
2018b), both measurements of whether each ground truth concept is aligned with one and only one learnt
concept, complementing the R4 with metrics that do not assume invertible correspondences. We provide a
summary of these metrics in Appendix L.

Table 2: Mean concept representation quality metrics (%) measured across all synthetic datasets for concept-
based methods (higher values are better). We show the desideratum closely captured by each metric in italics
and parenthesis. To disambiguate variances across tasks, we also show each method’s relative mean rank r̄.

CAS (coherence) MIG (diversity) R4 (coherence & diversity) Dis (diversity) Compl (completeness) Info (completeness)
TabCBM (ours) 87.55 ± 14.07 (r̄ = 1.5) 57.71 ± 26.27 (r̄ = 1.5) 78.36 ± 17.65 (r̄ = 1.5) 69.83 ± 23.65 (r̄ = 1.5) 70.44 ± 22.81 (r̄ = 1.5) 80.83 ± 11.22 (r̄ = 1.25)

SENN 60.11 ± 6.26 (r̄ = 2.75) 9.92 ± 5.68 (r̄ = 3.5) 30.83 ± 17.38 (r̄ = 3.5) 21.49 ± 6.51 (r̄ = 3.5) 29.56 ± 7.30 (r̄ = 3.75) 32.50 ± 25.82 (r̄ = 3.25)
CCD 52.86 ± 20.82 (r̄ = 3) 29.57 ± 5.86 (r̄ = 2) 65.79 ± 10.49 (r̄ = 2) 39.66 ± 5.89 (r̄ = 2) 41.04 ± 6.93 (r̄ = 2.25) 66.77 ± 9.30 (r̄ = 2.5)
PCA 57.54 ± 12.89 (r̄ = 2.75) 9.48 ± 5.73 (r̄ = 3) 19.59 ± 28.18 (r̄ = 3) 24.15 ± 16.9 (r̄ = 3) 36.17 ± 15.86 (r̄ = 2.25) 18.7 ± 32.68 (r̄ = 3)

We compute these metrics across all of our synthetic tasks, as they have concept annotations, and show their
averages across all of these tasks in Table 2. Our results suggest that TabCBM significantly outperforms
all other concept-learning methods across all metrics. Specifically, high CAS and R4 scores for TabCBM
suggest that it is learning concepts that are highly aligned to known ground truth concepts. Similarly, high
Dis and MIG scores suggest that TabCBM’s concepts are disentangled and diverse. Finally, as indicated
by TabCBM’s high Info and Compl scores, TabCBM effectively captures significant information needed
for predicting the set of ground truth concepts, therefore learning complete explanations of its task and
explaining the observed higher performance of TabCBM over other concept-based methods in Section 5.1.

Qualitative Results To qualitatively corroborate our previous results, we visualise TabCBM’s discovered
concepts in Synth-scRNA using UMAP (McInnes et al., 2018), a commonly-used dimensionality reduction
method for scRNA data. For each ground truth concept ci, we visualise the Synth-scRNA dataset (both
train and test data) via its UMAP projection while colouring each cell’s representation according to ci.
Then, we select the discovered TabCBM concept whose score ĉj has the highest absolute Pearson correlation
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Figure 3: UMAP of Synth-scRNA showing five randomly selected ground truth GEPs (top row with the
right-most plot showing the only activity GEP) and the score of TabCBM’s learnt concept with the highest
mutual information (captured by the absolute Pearson correlation ρ) with each GEP (bottom row). Note that
because TabCBM may learn a ground-truth concept’s complement labelling, we use the absolute correlation
to capture strong negative (e.g., ĉ9) correlations as well as strong positive correlations (e.g., ĉ11). We highlight
that the TabCBM model whose scores are shown in this plot did not receive any concept supervision.

coefficient with ci and recreate the plot by colouring each cell using ĉj . This allows us to visually inspect
ci’s alignment with a (linearly) strongly correlated learnt concept score in TabCBM. Notice that although
other proxies for mutual information could be used (e.g., Gini impurity), we opt for Pearson correlation due
to its efficiency. Similarly, because we only study a cell’s cluster membership, our analysis avoids known
issues with hypothesising from low-dimensional data visualisations (Wattenberg et al., 2016). Our results in
Figure 3 show that TabCBM’s concepts are closely aligned with ground truth concepts. In particular, we
see that TabCBM discovers cell types/identity GEPs (e.g., ĉ4 and ĉ9) and the task’s only activity GEP (i.e.,
ĉ11). As seen in Appendix G, the same cannot be said of concepts discovered by CCD and SENN.

5.3 Concept Mask Alignment (Q2b)

An advantage of TabCBM over existing concept-based methods is that its concepts allow for easy identifi-
cation of the input features that compose them. In this section, we study TabCBM’s learnt concept masks
to explore whether they can (1) identify features that are known to be important for ground-truth concepts,
and (2) provide a sense of global feature importance through mask aggregation. Our experiments show that
both properties hold and, therefore, experts analysing data with TabCBM may use its learnt concept masks
to discover novel interactions between groups of input features that are important for their task of interest.

Ground-truth concept mask alignment First, we explore whether TabCBM’s feature importance
masks align with sets of features known to compose each ground truth concept. For this, we study TabCBM in
our concept-annotated synthetic datasets, as they have ground truth binary concept annotations c and known
ground truth concept feature masks {π(i)}k

i=1. We evaluate the alignment between TabCBM’s learnt concept
masks {π̂(i)}k′

i=1 and those in {π(i)}k
i=1 by first computing an alignment α : {1, 2, · · · , k′} → {1, 2, · · · , k}

between discovered concepts and ground truth concepts. For the sake of efficiency, we compute this align-
ment by matching each learnt concept ĉi with the ground truth concept cj whose training labels have the
highest absolute Pearson linear correlation |p(ĉi,cj)| with the training concept scores for ĉi. We then capture
how well π̂(i) is aligned with the feature mask of concept c(α(i)) using the Mask AUC (M-AUC) defined as
M-AUC := 1

k′

∑k′

i=1 ROC-AUC
(
π(α(i)), π̂(i)). Here, ROC-AUC

(
π(α(i)), π̂(i)) is the area under the ROC curve

when predicting ground truth π(α(i)) with the feature importance mask π̂(i). This score is 1 if π̂(i) = π(α(i))

for all i and 0 if π̂(i) is the complement of π(α(i)) for all i.

Our results, summarised in Table 3, show that there is significant alignment between TabCBM’s con-
cept feature importance masks and ground truth concept feature masks. Nevertheless, we observe that
in Synth-scRNA, TabCBM’s concept masks are not as highly aligned as in other tasks. We believe that this
is due to the high amount of noise found in this dataset, leading to TabCBM focusing on capturing only the
most salient differentiating genes of each GEP.

10



Published in Transactions on Machine Learning Research (07/2023)

Table 3: M-AUC and G-AUC scores and standard errors across synthetic datasets. For M-AUC we include
only TabCBM as other concept-interpretable methods do not provide features for learnt concepts. All values
are shown as percentages rounded up to two decimals (if an error is less than 10−3%, then it is not shown).

Score Method Synth-Linear Synth-Nonlin Synth-Nonlin-Large Synth-scRNA
M-AUC TabCBM 100 100 85.71 ± 5.60 65.69 ± 1.66

G-AUC

TabCBM 100 100 100 69.01 ± 2.61
TabNet 85.33 ± 8.89 75.33 ± 4.42 50.37 ± 0.52 50.39 ± 0.15

XGBoost 100 100 100 56.10 ± 0.5
LightGBM 100 100 100 56.11 ± 0.52

Global feature selection Understanding which features are deemed redundant/unnecessary for a model
is an important problem (Chandrashekar & Sahin, 2014; Lee et al., 2021; Imrie et al., 2022). In this section,
we explore whether TabCBM’s concepts can provide a sense of global feature importance for the downstream
task via their mean feature important mask

∑
i π̂(i)/k′. We investigate this by designing a metric that, for

any method that constructs a vector µ̂ ∈ Rn indicating the relative importance of each input feature w.r.t. a
downstream task, captures how well this vector predicts ground-truth important features for the task. With
this aim, assume we have a binary ground truth vector µ ∈ {0, 1}n indicating which features are globally
important (i.e., selected) w.r.t. a downstream task. We can compute how well µ̂ identifies these features
using the Global feature selection AUC (G-AUC) defined as:

G-AUC := max
δ∈S

ROC-AUC
(

µ, threshold
(
µ̂, δ max

j
µ̂j

))
(8)

where threshold(x, β) is a vector function whose i-th output is given by 1xi≥β . Similarly, we let S ⊂ [0, 1]
be a finite set of reals indicating the thresholds used for binarising µ̂ (as a function of its maximum element)
and we let ROC-AUC(y, ŷ) be the mean area under the ROC curve when predicting yi from ŷi for all i.
Intuitively, if there is a fraction δ ∈ S of µ̂’s maximum value that produces µ when thresholding µ̂, then the
G-AUC is 100%. In contrast, a G-AUC of 0% indicates that µ̂ attains its maximum value in all features
which are not selected in µ. For efficiency purposes, in practice we use S = {0, 0.025, 0.05, · · · , 1}.

For every synthetic dataset, we evaluate the G-AUC by computing µi :=
∨k

j=1 π
(j)
i as an aggregated logical

OR over all ground-truth masks. For fairness, we only compute the G-AUC for methods that provide feature
importance by construction, therefore not requiring post-hoc methods (e.g., LIME (Ribeiro et al., 2016))
to obtain this mask. Hence, we focus on contrasting feature importance masks by XGBoost, LightGBM,
TabNet, and TabCBM. For XGBoost and LightGBM we calculate µ̂ as the total gains of splits using each
feature across all decision trees. Similarly, for TabNet, as in (Arık & Pfister, 2021), we compute µ̂ by
aggregating all attention masks. Our results, shown in Table 3, indicate that TabCBM perfectly identifies
all important features for our simpler synthetic tasks (as GBMs do too) while achieving significantly better
G-AUC scores than other methods in Synth-scRNA, our more complex synthetic task. These results suggest
that TabCBM can globally identify feature selection masks, allowing for global interpretability beyond that
in current concept-learning methods. For further results showing how the value selected for k′ affects both
the M-AUC and G-AUC metrics (as well as the task accuracy), see Appendix I.1.

5.4 Concept Test-time Interventions (Q4)

A significant advantage of the existence of a concept bottleneck in a CBM is to allow for concept-level
interventions at test time. Through interactions with a CBM in a human-in-the-loop setting, an expert
can improve the model’s end performance by correcting mispredicted concepts and allowing the CBM to
update its previously predicted downstream label to take the correction into account. In this section, we
explore whether TabCBM allows for such a mechanism even when no concept supervision has been provided
during training. For this, we begin with the reasonable assumption that a domain expert can identify strong
linear correlations between ground-truth concepts (which are known by the expert) and learnt concept
scores. Under this assumption, we propose an intervention procedure in TabCBM’s bottleneck where, upon
identifying that a learnt concept score is aligned with a known ground-truth concept, an expert can modify
the predicted concept’s score at test time to correct what they believe may be a misprediction, in turn possibly
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Figure 4: Task accuracy of TabCBMs when randomly intervening on a varying number of concepts (x-axis)
across multiple datasets (columns). We show the effect of interventions on task accuracies when intervening
only on learnt concepts that (i) were not provided with training supervision (top row), (ii) were provided with
training concept supervision (middle row). The bottom row shows the results of intervening on discovered
concepts regardless of whether they received training supervision or not.

affecting the TabCBM’s downstream task prediction. Our results, discussed below, suggest that TabCBM
can boost its performance through test-time interventions even when it receives no concept supervision.

To evaluate interventions in TabCBMs, we proceed as follows: we measure the Pearson linear correlation
coefficient p(i,j) between every learnt concept score ĉi and every known ground-truth concept cj in the domain
dataset. If for a ground-truth concept cj we have that ĉi has an absolute correlation coefficient greater than
or equal to a pre-defined “alignment” threshold β ∈ [0, 1] (e.g., we use β = 0.7), then we consider ĉj to be
aligned with ci. In practice, an expert could identify such an alignment by inspecting concept scores in a
subset of the training data and focusing on instances in which a learnt concept score reaches extreme values.

Let Ai := {j | β ≤ |p(i,j)|} be the set of ground-truth concepts that are strongly aligned with learnt concept
ĉi. Notice that this set may be empty if a concept score was not strongly aligned with any known concepts.
When Ai is non-empty, let ηi be the index j ∈ Ai of the ground-truth concept with the highest absolute
correlation with learnt concept ĉi (i.e., ηi := argmaxj∈Ai

(|pi,j |)). Given a set I ⊆ {1, 2, · · · , k′} of learnt
concepts we wish to intervene on, we perform test-time interventions by updating the bottleneck ĉ as follows:

ĉi :=


ĉi (Ai = ∅) or (i /∈ I)
ĉ

[95%]
i cηi (Ai ̸= ∅) and (i ∈ I) and (p(i,ηi) ≥ 0)

ĉ
[5%]
i (1 − cηi

) (Ai ̸= ∅) and (i ∈ I) and (p(i,ηi) < 0)
(9)

where ĉ
[95%]
i and ĉ

[5%]
i are the 95-th and 5-th percentiles of the empirical distribution of ĉi in the training

set, respectively. These values are used to represent a concept’s activation or inactivation by making sure
that we perform an intervention while maintaining the scores within their empirical distribution. Once this
update has been performed, TabCBM updates its prediction by computing f(ĉ) using the new concept score
bottleneck. Notice that this update takes into account the fact that a concept score ĉi may be positively or
negatively correlated with a ground truth concept cj (i.e., TabCBM may learn the complement labelling of
ground-truth concept cj by using ĉi = 0 to indicate cj ’s activation rather than ĉi = 1).

We evaluate this procedure on our synthetic datasets by intervening on a randomly selected set of concepts of
varying size. These results are summarised in Figure 4. For the sake of completeness, we evaluate TabCBM’s
intervention effectiveness on concept-unsupervised and fully concept-supervised setups (partially concept-
supervised setups look similar to fully-supervised and are included in Appendix H.1). Our results suggest
that TabCBM is highly receptive to concept interventions both when it receives concept supervision as well as
when it lacks any form of concept supervision (red solid bars/lines vs dashed coloured bars/lines). We can see
this by observing the top row of Figure 4 where we show how TabCBM’s performance improves significantly
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when intervening only on unsupervised concepts. Only in the more complex dataset, namely our scRNA
task, do we observe that interventions in unsupervised TabCBMs, although significantly beneficial to the
model’s end performance, are limited in number (i.e., on average we can intervene only on 1-2 unsupervised
concepts in Synth-scRNA). This is because only a handful of discovered concepts were significantly linearly
correlated with known ground truth concepts, and suggests that future work can explore how to exploit
weaker non-zero correlations, as those seen in Figure 3, to better utilise partially aligned concepts in real-
world tasks. Nevertheless, and perhaps more importantly, introducing unsupervised concepts in TabCBM
can significantly improve its performance even when some of its learnt concepts are supervised. This can be
seen by noticing that across all models, the performance of concept-supervised TabCBMs improves when we
enable interventions in unsupervised concepts (see the improvement in the bottom row of Figure 4 compared
to the middle row). These results strongly indicate that TabCBMs can benefit from being deployed in a
human-in-the-loop setup, especially when a handful of high-level concepts are known (even if this set is
not complete w.r.t. the downstream task). For further details on interventions, including a discussion on
the effect of β and an evaluation of TabCBM’s interventions against those in CBMs and CEMs showing
improvements against those baselines, see Appendix H.

6 Discussion

Relation with Group Feature Selection TabCBM’s architectural principles are highly related to those
in group feature selection, where methods learn multiple features subsets from which an ensemble can be
built (Yuan & Lin, 2006; Zhou & Zhu, 2010; Imrie et al., 2022). Nevertheless, there are crucial differences
between TabCBM and existing group feature selection methods. First, although as in group feature selection
TabCBM uses subsets of highly correlated features to construct a highly predictive model for a downstream
task, our method is capable of discovering such feature subsets without a priori knowledge required about
the nature of these subgroups, as it is usually needed in traditional group feature selection methods. Second,
TabCBM does not require the masks used for each discovered concept to be distinct from the masks of other
discovered concepts, as multiple high-level concepts can be a function of overlapping subsets of concepts.
This is in contrast to recent group feature selection methods such as Composite Feature Selection (Imrie
et al., 2022). Third, our method allows for concept supervision to be provided at training time to encourage
alignment between certain learnt concepts and known ground-truth concepts, something we have not found
in previous literature on feature selection. Finally, TabCBM allows for test time interventions through
modifications in its predicted concept scores, enabling better performance in a human-in-the-loop setting.

Limitations and Future Work Although we have shown that TabCBM achieves high accuracy in a
variety of tasks while learning useful concept-based explanations, this comes with a set of limitations. First,
as in topic models (Mcauliffe & Blei, 2007) and concept discovery methods (Yeh et al., 2020), TabCBM
requires k′, the number of discovered concepts, to be a priori defined by a user. While selecting a reasonable
value for k′ can be aided by domain knowledge or through a linear search over multiple values of k′, one is
still required to fine-tune k′ to deploy TabCBM successfully. Luckily, as seen in our k′-ablation discussed in
Appendix I.1, we empirically observe that TabCBM is relatively robust to changes in k′ as long as TabCBM is
not under-parameterised. Nevertheless, future work can explore ways of automatically learning an optimal k′.
Second, TabCBM can suffer from parameter and computational growth if either the number of concepts or the
size of each concept embedding is large. Future work can explore alleviating this practical limitation through
the use of parameter sharing between concept embedding generators and/or better transfer learning protocols
which enable learning these generators independently (i.e., separately from the rest of the model). Third,
given the lack of previous work on concept-based learning for tabular data, our interpretability evaluation was
constrained to mostly synthetic datasets. This is because we found it difficult to find public tabular datasets
with both concept and label annotations. Nevertheless, we hope that this work will encourage the application
of TabCBM to tabular tasks where, when used with domain-specific experts, one may be able to discover
novel properties which one may later use as annotations for training future concept-based models. Finally,
our method requires several hyperparameters to be selected before training as it has several regularisers and
architectural choices that need to be made a priori. This can lead to intensive hyperparameter searches and
the requirement of access to certain hardware capabilities. To better understand TabCBM’s sensitivity to
its hyperparameters, we perform an ablation search over all our hyperparameters in Appendix I.2 and see
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that our method can perform well within a large range of hyperparameters. To further help future research,
we include a set of recommendations for each hyperparameter in that appendix.

7 Conclusion

In this paper, we address the lack of concept-based interpretable methods that apply to tabular tasks. We
approach this by first arguing that non-linear functions of highly correlated subsets of input features can
be thought of as a sensible definition of what a concept may entail in a tabular domain. Spanning from
this definition, and combining multiple ideas from the fields of feature selection and concept learning, we
propose TabCBM as the first concept-based interpretable neural architecture designed for tabular tasks.
Our extensive evaluation of TabCBM, both in synthetic and real-world datasets, suggests that our model
achieves competitive state-of-the-art predictive performance in a variety of tabular tasks whilst discovering
concepts that align with known ground-truth concepts. We show that the concept representations learnt by
TabCBM are disentangled, highly informative, and complete w.r.t. the downstream task. Furthermore, we
show, both quantitatively and qualitatively, that TabCBM is capable of discovering meaningful concepts both
when it is provided with partial concept supervision and when it is provided with no concept supervision
at all. This enables our model to be deployed in a human-in-the-loop setup in which experts can easily
identify and correct semantically meaningful concepts, leading to significant improvements in downstream
task performance. This work, therefore, serves as an important stepping stone for designing high-performing
interpretable tabular architectures, enabling the use of deep learning in high-stakes tabular tasks such as
medical diagnosis where understanding a model’s prediction is of utmost importance.
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A Relation between Tabular Concepts and Subscale Scoring Models

We notice that our definition of a tabular concept is similar to the core idea behind interpretable subscale or
additive scoring models (Chen et al., 2022; 2018a; Ustun & Rudin, 2016; 2017). The main differences between
the two are that (1) we interpret each subscale as a high-level concept in that domain (whereas subscale
models do not necessarily assign semantics to subcales), (2) we learn these subsets, and their corresponding
functions, via supervision from a downstream task rather than using hand-crafted scoring scales, and (3)
the function mapping each concept’s features to its corresponding score can be highly non-linear (subscale
models tend to assume linear functions between feature subsets and their scores).

B Multivariate Bernoulli Sampler Details

As indicated in Section 4, during training, we use TabCBM’s learnt concept feature importance vectors
{π̂(i)}k′

i=1 to generate per-sample binary masks {θ(i)}k′

i=1 where each feature’s probability of being selected
by θ(i) is proportional to their corresponding feature importance in π̂(i). Furthermore, we avoid assuming
full independence between features when generating θ(i) from π̂(i) by considering π̂(i) only as the marginal
probability distributions of selecting each feature and introducing a non-trivial covariance matrix in the
sampling process that considers inter-feature correlations. As argued by Lee et al. (2021), this has two
advantages: (i) during the pre-training stage of the feature importance masks (see Appendix C), this process
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encourages our latent code generator to avoid relying on information leaked from highly correlated unmasked
features to solve the self-supervised pretext tasks, therefore improving the quality of pre-trained learnt
representations, and (ii) using a non-trivial covariate matrix to sample θ(i) encourages TabCBM’s concepts
to select features that are highly correlated together, aligning with our definition of tabular concepts.

In practice, this is achieved by sampling θ(i) from a multivariate Bernoulli distribution we construct using a
Gaussian copula (Nelsen, 2007). A Gaussian copula is a multivariate cumulative distribution function (CDF)
for random variables {X(l)}n

l=1 in [0, 1]n whose marginals are uniformly distributed (i.e., X(l) ∼ Unif(0, 1)).
Given a matrix C ∈ [−1, 1]n×n capturing the correlations of random variables {X(l)}n

l=1, we define the
Gaussian Copula as:

CopulaC(X(1), · · · , X(n)) := ΦC(Φ−1(X(1)), · · · , Φ−1(X(n)))

where we use Φ−1 to indicate the inverse CDF of a standard univariate normal distribution and ΦC to
indicate the joint CDF of a multivariate zero-mean normal distribution with correlation matrix C. This
construction is extremely powerful as it allows us to sample a binary mask vector θ(i) from the multivariate
Bernoulli distribution MultiBern(π̂(i); C) using the copula’s correlated random variables {X(l)}n

l=1 by letting

θ
(i)
l :=

{
1, if X(l) ≤ π̂

(i)
l

0, otherwise

In TabCBM we construct this copula by building C ∈ [−1, 1]n×n via the empirical feature Pearson correlation
coefficients computed in the task’s training set.

Finally, as in (Lee et al., 2021), we make this sampling process differentiable by working with a relaxation
of the multivariate Bernoulli distribution proposed by Wang & Yin (2020) and using the reparameterisation
trick on the copula’s uniform random variables {X(l)}n

l=1. Specifically, given CopulaC ’s uniform random
variables {X(l)}n

l=1 and the marginal selection probabilities as dictated by a concept’s feature importance
mask π̂(i), we can generate relaxed masking vector θ(i) by setting it to

θ
(i)
l := σ

( 1
τ

(
log π̂

(i)
l − log (1 − π̂

(i)
l ) + log X(l) − log (1 − X(l))

)
where σ is the sigmoid function and τ ∈ (0, ∞) is a temperature hyperparameter which we fix to 1 in our
experiments. This allows the output relaxed mask θ(i) to be differentiable with respect to π̂(i), therefore
enabling us to learn each concept’s feature importance vectors via gradient descent. In practice, we implement
this relaxation using a deterministic transformation of a standard Gaussian noise vector whose entries encode
the correlation structure in the features after being projected into the subspace L of the lower-triangular
Cholesky decomposition LLT of C. For further details, see Section 4.3 of (Lee et al., 2021).

C TabCBM pre-training

In practice, we speed up TabCBM’s learning via two pre-training steps: In the first step, we encourage the
latent code generator ϕ(x) to learn meaningful representations by training it to minimise the expected task
loss E(x,y)∼D[Ltask(gdownstream(ϕ(x)), y)], where gdownstream : Rm → [0, 1]L is a learnable auxiliary linear
layer used to predict a class ŷ from ϕ(x). This encourages ϕ to learn representations that are meaningful for
the downstream task.

In a second pre-training step, we use self-supervision to learn meaningful latent code generators using the
pre-text task proposed by Yoon et al. (2020) and also used in (Lee et al., 2021). Specifically, we first randomly
initialise each concept feature importance mask π̂(i) by sampling it from Unif(0.4, 0.6). We chose to sample
each initial mask from Unif(0.4, 0.6) rather than from Unif(0, 1), as we found that conditioning their values
to be closer to 0.5 at the start of training helped with the training dynamics. For each training sample x and
each learnt concept i, we then sample a binary mask θ(i) ∈ {0, 1}n from a multivariate Bernoulli distribution
whose marginal probabilities are fixed to π̂ and covariance matrix is captured via CopulaC . As opposed to
how we proceed in our training stages for TabCBM, in this pre-training stage we do not apply any relaxations
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when generating θ(i), meaning that it will be binary rather than continuous as in our training stages and
that we will not update any feature importance vectors π̂(i). This is done for us to be able zero out elements
of input x and produce a masked vector x̃ from which we train ϕ(x̃) so that the latent code obtained from
masked input x̃ is informative enough for an auxiliary model gmask : Rm → [0, 1]n to be able to predict mask
θ̂. Simultaneously, we also condition our learnt latent code to be a meaningful representation by using it as
the input of a separate simple auxiliary model gentries : Rm → Rn from which we aim to closely reconstruct
the original sample x from ϕ(x̃). Both of these objectives can be achieved by finding the parameters for ϕ,
gmask, and gentries that minimize the weighted loss independently for each concept

1
k′

k′∑
i=1

Ex∼D,θ(i)∼MultiBern(π̂(i);C)
[
Lcross-entropy(gmask(ϕ(x ⊙ θ(i))), θ) + λrec||gentries(ϕ(x ⊙ θ(i))) − x||22

]
where λrec ∈ R+ is a hyperparameter controlling how much we value perfect reconstruction over mask
identification (we fix it to λrec = 10 throughout evaluation). The purpose of this pre-training step is to
precondition the latent code generator ϕ(·) to capture meaningful semantics of the input features when some
of its features are masked, as this will be done when learning different concepts for TabCBM.

For all of our experiments, we pre-train TabCBM by running the first pre-training stage for Tpre-train epochs
and then running the second pre-training stage for Tself-supervised epochs (specific parameters are described
in Section E.2). Furthermore, we use a linear layer for the helper model gdownstream and a ReLU MLP
with a single hidden layer size of 64 for the gmask and gentries helper models. Finally, for the sake of
fairness, we pre-train the backbones of all other competing models using the first stage of this procedure for
Tpre-train + Tself-supervised epochs to allocate equivalent computational budgets across all methods.

D Datasets

In this section, we give a detailed description of the datasets we use for our evaluation of TabCBM. A
summary of each dataset’s core characteristics can be found in Table 4.

Table 4: Characteristics of all tasks used in this paper. Notice that we worked exclusively with classification
tasks, so all downstream labels are categorical. The class imbalance ratio is defined as the ratio between the
number of samples of the most represented class and the number of samples of the least represented class.

Dataset # of Samples # of Features # of Concepts # of Classes Class Imbalance Ratio
Synth-Linear 15,000 100 2 4 1.05
Synth-Nonlin 15,000 100 2 4 1.05

Synth-Nonlin-Large 15,000 500 5 32 7.4
Synth-scRNA 7,500 5,000 11 20 2.6

Higgs (without high-level) 11,000,000 21 n/a 2 1.13
Higgs (with high-level) 11,000,000 28 n/a 2 1.13

PBMC 20,738 6,212 n/a 2 1.01
FICO 10,459 23 n/a 2 1.09

Synthetic Tabular Datasets To evaluate our methods in a controlled environment, we propose three
synthetic tabular tasks with increasing difficulty. The first two tasks, namely Synth-Linear and Synth-Nonlin,
consist of N = 15, 000, 100-dimensional samples {x ∈ R100}N

i=1 generated from a corresponding latent vector
h ∈ R100 ∼ N (0, I), where I is the identity matrix (each sample x has its own corresponding latent vector
h). Then, we generate each sample x from its corresponding latent vector h by applying a transformation
f : R → R to h. In the case of Synth-Linear, we let f(h) = h be the identity function while in Synth-
Nonlin, we let f(h) = sin(h) + h be a non-linear function of h. To assign a label y to each sample, we first
annotate each sample with a binary concept vector c ∈ {0, 1}k, with k = 2 for these two datasets, such that
its j-th dimension cj := 1(

∑(j+1)s+1
l=js+1

hl)≥0 indicates the sign of adding a subset of s consecutive features in

the latent vector h (we set the spacing s to be 5 for these two datasets). This binary vector is then used
to produce a label y ∈ {0, 1, · · · , 2k − 1} by generating y from the decimal representation of vector c i.e.,
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y =
(
c1c2 · · · ck

)
10. Notice then that the label assigned to each sample can be uniquely determined from its

corresponding concept vector c, which, in turn, is a function of only the first sk dimensions of sample x.
Therefore, to properly learn the generative process for these datasets, a method must be able to capture the
importance of the first sk dimensions and discover, either implicitly or explicitly, the concept vector c.

We further extend the generative process of Synth-Nonlin and generate a more complex dataset, which we
refer to as Synth-Nonlin-Large, in which features have 500 dimensions rather than 100 and k = 5 binary
concepts c ∈ {0, 1}5 are constructed to determine label y ∈ {0, 1, · · · , 25 − 1} instead of only two concepts.
As in Synth-Nonlin, each dimension cj of c is computed using an indicator variable of a subset of features
in h. In contrast with Synth-Nonlin, however, we allow different dimensions of c to depend on overlapping
sets of features in h. We do this by letting cj be defined as cj := 1(

∑(j+1)s+s/2+1
l=max(js−s/2−1,1)

hl)≥0 and setting

y =
(
c1 · · · c5

)
10 as we did for Synth-Nonlin. For this dataset, we use a spacing factor of s = 20 to construct

our concepts, given that we also have more features than in the previous two datasets. This means that only
the first 100 features of the dataset will be useful for learning the downstream task.

Synth-scRNA As an exploration of applying TabCBM to meaningful bioinformatics tasks, we explore a
synthetic RNAseq (Macaulay & Voet, 2014) task where each sample contains gene expression counts for a
total of 5, 000 genes at a single-cell resolution. To generate such a dataset, we follow the approach suggested
by Kotliar et al. (2019) and adapt Splatter (Zappia et al., 2017) to generate a sc-RNAseq dataset where
we can control the number of identity and activity gene expression programs (GEPs) (Segal et al., 2003)
in the cell population. In this context, identity GEPs are aligned in a one-to-one fashion with different
cell types and represent groups of signature genes that are co-regulated for each cell type differentiation.
In contrast, activity GEPs represent groups of co-regulated genes which are not necessarily related to a
cell’s type and instead represent biological functions related to environmental/epigenetic effects (e.g., genes
related to different stages of a cell’s cycle). For our experiments, we generate a synthetic RNAseq dataset
with 7,500 samples in it, with ten different cell types (i.e., ten identity GEPs) and one activity GEP which
can be expressed across all cell types. Given that being able to disentangle and learn identity and activity
GEPs from sc-RNAseq data is an important task in genomics (Macaulay & Voet, 2014; Kotliar et al., 2019;
Kharchenko et al., 2014; Satija et al., 2015), this synthetic task is representative of a potentially impactful
application of our algorithm.

In practice, we generate this dataset using Splatter’s Python implementation by Kotliar et al. (2019). In this
framework, we call Splatter by setting the number of genes to 5, 000, the number of cells to 7, 500, and the
number of genes differentiating in the task’s activity GEP to be 250 (we extended Splatter’s implementation
by Kotliar et al. (2019) to allow for a specific number of genes used for each GEP). All other Splatter
parameters (e.g., lib.loc, lib.scale, etc), except for the number of doublets which we set to 0 (i.e., we
do not simulate doublets), are set to the same values as those used for the synthetic scRNA-seq dataset
in (Kotliar et al., 2019). These values were estimated using Splatter on a subset of the organoid dataset
proposed by Quadrato et al. (2017).

Before training, we preprocess the generated dataset by (1) removing all cells with less than 200 gene
expression counts, (2) removing all cells with less than 200 genes with non-zero counts in total, (3) removing
all genes expressed in less than 50 cells, and (4) normalising all counts for all cells (normalisation is done on
a per-cell basis) and transforming these normalised counts to a log space using a log(x + 1) transformation
(as commonly done for scRNA-seq data (Kotliar et al., 2019)).

To produce a task in which GEPs are relevant for the class, we assign each cell a label representing its cell
type (which is in one-to-one correspondence with an identity GEP) and whether or not the dataset’s activity
GEP is on. This yields an annotated dataset where each sample has one of 10 × 2 = 20 labels and each label
can be uniquely determined by knowing the cell’s identity and activity GEPs (see Figure 5 for a visualisation
of this dataset). Therefore, in this task both identity and activity GEPs can be thought of as ground-truth
high-level concepts which can fully describe the label in our task of interest. Furthermore, as we know the
genes that are differentially expressed for each GEP, we can evaluate how accurately our method can discover
the set of differentiating genes for each GEP using these masks as ground-truth concept masks.
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Figure 5: UMAP visualisations of the Synth-scRNA dataset with each identity GEP (i.e., cell type) and
activity GEP highlighted.

PBMC We further explore an application of our method in a real-world single-cell transcriptomics dataset.
With this aim, and inspired by the work by Lee et al. (2021), we construct a binary transcriptomics task
from two subpopulations of peripheral blood monocytes obtained from the PBCM (10x Genomics, 2016a;b)
database. Specifically, we construct a dataset with approximately 20,000 samples where each sample con-
tains transcriptomics measurements of nearly 6,000 genes of a T-cell (i.e., RNA expression patterns). We
preprocess and normalised all counts as done for our Synth-scRNA gene counts and annotate each cell with
a binary task label describing whether the cell corresponds to a regulatory or a naive T-cell.

Higgs As a real-world example of a large tabular dataset in the physical sciences, we make use of the
Higgs dataset (Baldi et al., 2014). In this dataset, we aim to classify a signal process as being one from
which a Higgs boson is produced or as being a background signal. All 11 million samples in this dataset
were produced via a Monte Carlo simulation and each sample signal is formed by 28 continuous features. Of
these features, the first 21 features represent kinematics properties whereas the latter 7 features are high-level
features hand-crafted by experts which allow easier discrimination between background and Higgs-producing
signals. To explore whether hierarchical models such as TabCBM can learn the information encoded into the
hand-crafted features without extra supervision, we evaluate all models both when using the 7 hand-crafted
high-level features (Higgs (with high-level)) and when none of the hand-crafted high-level features are used
(Higgs (without high-level)).

FICO Given that a large proportion of tabular data is seen within financial tasks, and the fact that these
tasks include both numerical and categorical features, we include the Fair Isaac Corporation (FICO) loan
default risk challenge dataset (Fair Isaac Corporation, 2019) as part of our evaluation. We choose this
specific dataset as it has been shown that simple handcrafted subscale models, whose relationship with
high-level concepts was not made until this work, can be used to construct interpretable classifiers for this
dataset (Chen et al., 2018a). Each of the approximately 10,000 samples in this dataset is composed of 23
features, a mixture of numerical and categorical features representing several properties of a client’s past
loan and financial history, and is annotated with a label indicating whether this client defaulted on their
loan. The task is to predict the likelihood of a new client defaulting on a new loan.

E Experimental Details

In this section, we provide details on each method’s configuration and hyperparameters for each task evalu-
ated in this paper. All of our numerical results are produced by averaging a given metric across 5 different
random initialisations of each model and showing the standard error found across those runs.
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E.1 Training and Optimisation Hyperparameters

For each method, and across all tasks, we split each task’s dataset into 80% training data and 20% test data
and generate a validation set by randomly sampling without substitution 20% of the training data. When
sensible, this validation set is used to search over a subset of possible hyperparameters for each method by
running a simple grid search over a set of predefined hyperparameters (described when appropriate below).
Once the best hyperparameters are selected, we report only on the test results obtained for the model with
the best validation error.

As is commonly done for training DNNs, we train all neural models via stochastic gradient descent with the
same batch size B for all methods across a given task. We choose a specific batch size to maximise GPU
utilisation while remaining within our hardware’s memory capabilities. We used an Adam optimiser (Kingma
& Ba, 2014) with learning rate 10−3, momentum 0.99, and standard hyperparameters β1 = 0.9 and β2 =
0.999, across all methods and tasks. The exception for this is TabNet, where the learning rate starts at 0.02
and decays with a factor of 0.9 every ten steps as suggested by Arık & Pfister (2021). All methods are trained
for T epochs, stopping early (Prechelt, 1998) if no improvements have been observed in the validation loss
for P epochs. Hyperparameter values used for each dataset are reported in Table 5.

E.2 Model Selection

For the sake of fairness, we provide each method with the same capacity and training times when possible.
With this aim in mind, we fix the architecture used across methods to be the same for a given dataset. We
select architectures that are simple to train, yet large and expressive enough to perform well in each task
of interest; with the constraint that they should train in our GPU cluster within reasonable times. In this
subsection, we list the architectures used for all methods across a given dataset and summarise their exact
values used for all datasets in Table 5.

TabCBM Model Selection Across all datasets, we construct TabCBM’s latent representation generator
using a simple ReLU MLP whose hidden layers have sizes ϕhidden-sizes and whose output layer has size m
(with m being the size of the learnt concept embeddings). To help reduce training-time covariance shifts,
we also introduce a batch normalisation (Ioffe & Szegedy, 2015) layer before each linear layer of this MLP,
including the first layer. We then construct TabCBM’s label predictor f using a ReLU MLP with hidden
layers whose sizes are determined by fhidden-sizes. The number of output activations of f will correspond to
the number of output classes for the task of interest. Across all tasks, we fix the architectures of TabCBM’s
ρ(i) models to be ReLU MLPs with a single hidden layer with size 64 for all i ∈ {1, · · · , k′} (the only
exception for this are the FICO dataset where, due to hardware constraints, we reduce this to 32 and the
PBMC task where we use an MLP with units {32, 16} to avoid parameter growth). Moreover, when the
number of ground truth concepts is unknown, we train TabCBMs with k′ ∈ K and select the model with the
lowest validation loss. Otherwise, we use k′ = k, where k is the number of known ground truth concepts in
the dataset. As for the loss term weights, we select the values for λco, λdiv, and λspec via a grid search (by
training for a few epochs only) as we vary each parameter, independently of each other, over {0.1, 1, 5, 10}.
Finally, we set t, the hyperparameter of our coherence loss, to t = (batch size · average class ratio)/2 as
suggested by Yeh et al. (2020). We report the best-performing parameters for each task in Table 5.

MLP Model Selection For simplicity, we construct our MLP baseline by constructing a ReLU MLP
whose hidden layers have size ϕhidden-sizes ∪ {m} ∪ fhidden-sizes and where a batch normalisation layer is
introduced before the first ϕhidden-sizes hidden layers, as in TabCBM. To ensure a fair comparison against
TabCBM, which has more parameters than this MLP due to its concept-generating models, we also consider
a larger-capacity MLP which has twice as many activations in each layer as those defined by ϕhidden-sizes ∪
{m} ∪ fhidden-sizes. However, in practice, we observe that this did not bring noticeable performance benefits
(in fact, it sometimes even decreases performance, possibly due to overfitting), and therefore we opted for
the smaller MLPs across all datasets.

CCD Model Selection For CCD, we construct concept-based explanations for the MLP model defined
above using the latent representation at layer |ϕhidden-sizes ∪ {m}| as the representation we will aim to recon-
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struct using CCD’s learnt concept scores. Its K hyper-parameter (representing how many top-K neighbours
we use to compute its coherency regulariser) is set to K = (batch size · average class ratio)/2, as suggested
by the authors, and the thresholding hyperparameter β, indicating the activation of a given concept, is fixed
to 0. Similarly, we fix CCD’s hyperparameters λ1 and λ2 to λ1 = λ2 = 0.1 after experimenting with values
in [0.01, 1] and finding these values to work well across the validation sets. Finally, for the reconstructing
model g of CCD’s topic model (this is the model that will take the concept scores as input and attempt to
reconstruct the latent representation of the DNN), we use a ReLU MLP with a single hidden layer with 500
activations in it and whose output layer has m activations.

SENN Model Selection For our evaluation of SENN, we begin by constructing an autoencoder ϕSENN
whose encoder uses the same architecture as TabCBM’s ϕ function with the exception that its output layer
generates k′ activations (selected in the same way as in TabCBM). The decoder of this autoencoder is
selected to be a ReLU MLP whose hidden layers have size fhidden-sizes and whose output is the same size
as the number of input features in the task. This autoencoder is trained by minimising its reconstruction
loss for Tpre-train + Tself-supervised epochs. We then train a SENN using ϕSENN as its concept encoder and a
ReLU MLP with hidden layer sizes θhidden-units and L×k′ outputs (one vector of size k′ for each output class
{1, · · · , L}) as the relevance parameteriser. Throughout training, we follow the suggestions by Alvarez-Melis
& Jaakkola (2018) and fix SENNs regularisation strength to λ = 0.1 and its sparsity regularisation strength
to ζ = 2 × 10−5.

TabNet Model Selection For TabNet we explore different architectures with different capacities. We do
this by exploring setting hyperparameters Nd, Na, Nsteps by iterating their values from a set of options in sets
Nd = Na = {8, 16, 32, 64, 96} and Nsteps = {3, 5, 8}, respectively. Nevertheless, as with MLPs, we observe
that over-parameterising TabNet led to worse-performing models, therefore in Table 5, we only report the
values of these hyperparameters that resulted in the best validation error. The virtual batch size of all
TabNet models is set to half of the batch size for our dataset (i.e., B/2). Furthermore, we pre-train TabNet,
using the self-supervised task described by Arık & Pfister (2021), for Tpre-train + Tself-supervised epochs.

TabTransformer Model Selection When constructing a TabTransformer model, we use the default
parameters defined by Huang et al. (2020a) while setting the number of hidden layers to Thidden-layers.

XGBoost and LightGBM Model Selection For both of our gradient boosting baselines, namely XG-
Boost and LightGBM, we train them for T epochs, with the same early stopping patience as our neural
baselines, while we vary the max depth of each tree between {5, 10}. All other hyperparameters are left to
the default values suggested by their respective official implementations. In Table 5, we show the depth d of
the model achieving the best validation accuracy.

Table 5: Parameters used to generate the different baseline architectures for different datasets.

Param Synth-Linear Synth-Nonlin Synth-Nonlin-Large Synth-scRNA Higgs (with high) Higgs (no high) PBMC FICO
B 1024 1024 1024 1024 2048 2048 1024 2024
T 1,500 1,500 1,500 3,000 1,500 1,500 1,500 1,500
P 250 250 250 750 50 50 250 300

Tpre-train 50 50 50 50 25 25 25 50
Tself-supervised 50 50 50 50 25 25 25 50
ϕhidden-sizes {16, 16} {16, 16} {16, 16} {128, 64, 64} {1024, 512, 256, 128} {1024, 512, 256, 128} {128, 64, 32} {256, 128, 64, 64}

m 16 16 16 16 64 64 64 64
fhidden-sizes {16} {16} {16} {64, 32} {32, 16} {32, 16} {16, 16} {16}

K {2} {2} {5} {11} {4, 6, 8} {4, 6, 8} {3, 4, 5, 6} {4, 6, 8}
k′ 2 2 5 11 8 8 6 4
λco 0.1 0.1 0.1 1 0.1 0.1 0.1 0.1
λdiv 5 5 5 10 0.1 0.1 0.1 10
λspec 5 5 5 10 0.1 0.1 0.1 10

θhidden-units {16, 16} {16, 16} {16, 16} {64, 64} {300, 300} {300, 300} {300, 300} {300, 300}
Nd 8 8 64 64 32 96 16 32
Na 8 8 64 64 32 32 16 32

Nsteps 3 3 5 5 5 8 3 5
Thidden-layers {16, 16, 16} {16, 16, 16} {16, 16, 16} {64, 32} {1024, 512 · · · , 16} {1024, 512 · · · , 16} {16, 16, 16, 16, 16} {32, 32, 32, 16, 16}

dXGBoost 5 5 5 5 10 10 5 5
dLightGBM 5 5 10 5 10 10 5 5
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F Predictive Performance Experiment Details

When evaluating the concept-supervised baselines (i.e., TabCBM, CBM, Hybrid-CBM, and CEM), we vary
the number of concepts provided during training as well as the fraction of training samples r := |Dconcept-sup|

|D|
that have concept annotations in them. When subsampling only kselected concepts out of a total of k
available concepts in a dataset (e.g., k = 2 for Synth-Linear and Synth-Nonlin while it is 5 and 11 for
Synth-Nonlin-Large and Synth-scRNA, respectively), we select a subset of concepts C ′ ⊂ {1, 2, · · · , k} of size
|C ′| = kselected, chosen uniformly at random from all subsets of size kselected, before training begins. We then
provide all concept-supervised methods with concepts annotations c ∈ {0, 1}kselected for a fraction r ∈ [0, 1] of
the training samples, where the entries in c correspond to the concepts selected in C ′. The hyperparameter r
decides the probability that a sample (x, y) in the training set has annotations c. If a sample is not provided
with concept annotations, then we set its contribution to the concept-specific loss to zero.

In terms of models used, for CBMs, Hybrid-CBMs, and CEMs we use the same architecture as TabCBM’s
ϕ model for their concept encoders (or latent code generator in case of CEM). Similarly, we use the same
architecture as TabCBM’s f model as the label predictor for all of these models, with the exception that its
input layer’s size may be altered for CBMs if they are provided with fewer concepts than k. Similarly, ϕ’s
output layer’s size is extended for CEMs so that it matches CEM’s bottleneck size given by k × mCEM (with
mCEM being the embedding size of CEM’s embeddings). Throughout all of these experiments, we keep the
number of concepts discovered by TabCBM to k′ = k regardless of how many concepts 0 ≤ kselected ≤ k
were given at training time. Notice, however, that this implies that CBM’s bottleneck size will always be
kselected, which can be highly constrained when kselected is small (a key limitation of CBMs). Nevertheless,
for the sake of providing a fair evaluation against a CBM-like model and TabCBM, we compare against
Hybrid-CBMs whose bottleneck sizes will always be fixed to k′, where k′ − kselected of its activations will
be unsupervised. This enables Hybrid-CBMs to have as much capacity in their bottlenecks as TabCBMs.
Finally, we use a sigmoidal activation for both the bottleneck of CBMs and Hybrid-CBMs, as done in (Koh
et al., 2020b) and (Espinosa Zarlenga et al., 2022), and we set CEM’s embedding size to 8 and its RandInt
parameter to pint = 0.25 as suggested by Espinosa Zarlenga et al. (2022). For all of these models, including
TabCBM, we fix the weight of the concept loss to be λconcept-sup = 5 after trying values in {0.1, 1, 5, 10} and
finding that the best validation results were obtained with λconcept-sup in the range (1, 10).

G Extra Qualitative Results in Synth-scRNA

As done for TabCBM in Section 5.2, we plot the same randomly selected GPEs in Synth-scRNA as in
Figure 3 and show the scores of concepts learnt by CCD and SENN that are most linearly correlated with
those GEPs. Our results, shown in Figures 6a and 6b, highlight that the alignment we observe in Figure 3
between TabCBM’s discovered concept scores and ground-truth GEPs is not found for concepts learnt by
SENN and CCD. We reiterate that TabCBM was able to attain the alignment shown in Figure 3 without
any concept supervision. This indicates that, in contrast with SENN and CCD whose concepts do not seem
to align to what one would expect in the Synth-scRNA task, TabCBM can discover concepts that align with
human-interpretable high-level concepts for the downstream task of interest.

H Concept Intervention Experiments

In this section, we complement our results in Section 5.4 by further exploring interventions in TabCBM
and other possible models. We first explore the effect that the fraction of annotated samples has on the
results observed in Figure 4. Then, we investigate how the concept alignment threshold β affects TabCBM’s
receptiveness to interventions. Finally, we include a comparison between interventions on TabCBMs, CBMs,
CEMs, and Hybrid-CBMs showing how each of these models’ performance varies as we intervene on more
concepts.
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(a) CCD best aligned learnt concept scores.

(b) SENN best aligned learnt concept scores.

Figure 6: UMAP visualisations of the Synth-scRNA dataset showing the activation of a randomly selected
selection of ground truth concepts (top row) and the activation of the learnt concept score by (a) CCD and
(b) SENN with the highest absolute correlation with the respective ground truth concept (bottom row).

H.1 Concept Interventions in Partially Concept-Supervised Setups

In Figures 7a and 7b, we show the test task accuracy when intervening on a TabCBM that was trained
with r = 25% and r = 50% of the training samples provided with concept annotations. We notice that
TabCBM appears to be quite robust to different levels of concept annotations, performing similarly to what
we observe in the fully concept-supervised case in Figure 4 where all samples were provided with concept
annotations. There seems to be a slight drop in accuracy when using only 25% of the concept annotations
(see the right-most plot in the bottom row of Figure 7a), however, this does not represent a significant drop.
More importantly, in all cases that we tested (as we varied the fraction of concept-annotated samples r
across {0.25, 0.5, 1}) we observe that TabCBM can discover unsupervised concepts which strongly align to
concepts not provided during training and that, when intervened on, they can boost TabCBM’s downstream
task performance.

H.2 Effect of Alignment Threshold

As discussed in Section 5.4, an important part of how we intervene on TabCBM’s unsupervised concept scores
involves building an alignment map α between these scores and known ground-truth concepts in the task of
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(a) Intervening when r = 25% of training samples for TabCBM are provided with concept annotations.

0 1 2
90
92
94
96
98

100

U
N

SU
PE

RV
IS

E
D

 O
N

LY
=

0.
7

Ta
sk

 A
cc

ur
ac

y 
(%

)

Synth-Linear

0 1 2
90
92
94
96
98

100

Synth-Nonlin

0 1 2 3 4 5
50
60
70
80
90

100

Synth-Nonlin-Large

0 1 2 3 4
75
80
85
90
95

100

Synth-scRNA

0 1 2
90
92
94
96
98

100

SU
PE

RV
IS

E
D

 O
N

LY
Ta

sk
 A

cc
ur

ac
y 

(%
)

0 1 2
90
92
94
96
98

100

0 1 2 3 4 5
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11
75
80
85
90
95

100

0 1 2
# concepts Intervened

90
92
94
96
98

100

C
O

M
B

IN
E

D
=

0.
7

Ta
sk

 A
cc

ur
ac

y 
(%

)

0 1 2
# concepts Intervened

90
92
94
96
98

100

0 1 2 3 4 5
# concepts Intervened

50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11
# concepts Intervened

75
80
85
90
95

100

TabCBM (supervised concepts = 0%) TabCBM (supervised concepts = 50%) TabCBM (supervised concepts = 100%)

(b) Intervening when r = 50% of training samples for TabCBM are provided with concept annotations.

Figure 7: Task accuracy of TabCBMs when randomly intervening on a different number of concepts (x-axis)
across multiple datasets (columns). Each row in each subfigure has the same semantics as its corresponding
one in Figure 4.

interest. We argued in the same section that this map could be built by detecting strong linear correlations
(which could be both negative or positive) and aligning discovered concept ĉi with ground-truth concept
cj if their empirical absolute linear correlation coefficients are greater than a threshold β. This threshold
indicates how strong of a correlation should we look for to declare a discovered concept to be aligned with
a ground-truth concept.

In our experiments reported in Figure 4, we fixed β to β = 0.7, arguing that this indicates what we believe
to be a strong enough correlation between two variables. Here, we show in Figures 8a and 8b how these
results change if we set β to 0.25 and 0.85, respectively. As one would expect, we observe that when β is
very low (i.e., β = 0.25) interventions in TabCBM can be damaging to TabCBM’s performance in complex
datasets such as Synth-scRNA. We attribute this to the fact that the constructed alignment map α may
mark even slightly correlated concept scores and ground-truth concepts as aligned whose correlation can be
attributed to the complexity and noise inherent to the dataset, rather than to a true semantic alignment.
Nevertheless, we do not observe this in the case of the simpler synthetic datasets as TabCBM seems to be
learning correlation scores whose absolute values are close to binary in nature (i.e., discovered concepts seem
to be very strongly correlated to one and only one ground truth concept). In contrast, we observe that if β is
too large (e.g., β = 0.85), then we lose the ability to exploit slightly weaker correlations during intervention
time (as we did when β = 0.7 in Figure 8), resulting in almost no discovered concepts identified as being
aligned with ground-truth concepts in Synth-scRNA. This represents a cost as we know from Figure 4 that
we could improve the model’s test performance through interventions that arise from weaker correlations.
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(a) Intervening when the strength for identifying aligned concepts is set to β = 0.25%.
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(b) Intervening when the strength for identifying aligned concepts is set to β = 0.85%.

Figure 8: Task accuracy of TabCBMs when randomly intervening on a different number of concepts (x-axis)
across multiple datasets (columns). Each row in each subfigure has the same semantics as its corresponding
one in Figure 4.

In summary, these experiments suggest that one can think of β as a parameter indicating how much risk we
are willing to take when intervening with TabCBM. If it is very high, then we will only intervene on concepts
that we are highly confident are aligned with ground-truth concepts, resulting in likely intervention gains
as observed throughout our simpler synthetic datasets. On the other hand, if β is very low, then we may
incorrectly align a discovered concept with a ground truth concept which, when intervened on, may decrease
the end performance of TabCBM due to misaligned semantics. Hence, we select β = 0.7 as a value that
leverages this risk by taking advantage of possible strong correlations for improving test-time interventions,
while avoiding misidentifying alignments that can lead to detrimental interventions.

H.3 Intervention Comparison Across Concept-Supervised Methods

In Figure 9, we compare the effect that interventions have on the test accuracy across multiple concept-
supervised methods (CBM, Hybrid-CBM, and CEM) for Synth-Nonlin-Large and Synth-scRNA as we vary
the number of concepts provided during training between 50% of all concepts (top row) and 100% of all con-
cepts (bottom row). We show our evaluation only on these datasets as, from our pool of concept-annotated
datasets, they have enough concepts (i.e., 5 and 11 concepts, respectively) for us to study interesting be-
haviours emerging when we intervene on a varying number of concepts. As in Figure 4, in this study, we
annotate all r = 100% of the training samples with the selected concept annotations and we use β = 0.7 when
intervening on unsupervised concepts with TabCBM. The training setups for CEM, CBM, and Hybrid-CBM
are the same as those used in Section 5.1. Notice that because TabCBM allows for interventions in unsu-
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Figure 9: Task accuracy of different concept-supervised baselines in the Synth-Nonlin-Large and Synth-
scRNA tasks as we increase the number of concepts intervened on a testing time. During training, we
provide 50% of available concepts (top row) and 100% of available concepts (bottom row). For TabCBM,
we include interventions both on supervised and unsupervised concepts.

pervised concepts, we can intervene on more concepts for this model than for the rest of the baselines (only
applicable when the number of training concepts is less than the number of known ground-truth concepts
in the dataset). Furthermore, we point out that because Hybrid-CBM is the same as a CBM when using
all available concepts (there is no need for extra capacity in this case), we do not include this baseline in
the results when intervening in models that were given training supervision for all concepts (bottom row
figures).

Our results show that TabCBM can perform significantly better than the selected baselines in concept-
incompleteness setup (i.e., when the number of training concepts is less than the number of ground truth
concepts), as seen by the results displayed in Figure 9’s top row. These results suggest that TabCBM can
be an effective model to be used in real-world scenarios when it is likely that the set of concept annotations
available at training time is incomplete with respect to the downstream task (Espinosa Zarlenga et al., 2022).
When facing concept-complete setups, shown in Figure 9’s bottom row where all required concepts for a task
are given as training supervision, we see that TabCBM fares better or competitively against baselines. An
exception for this can be found only in Synth-scRNA, where TabCBM falls behind CBMs when the number
of interventions is small. We believe this to be the case because, given the mutual exclusiveness of Synth-
scRNA’s identity GEP concepts, CBM can properly capture this property better than TabCBM as it does
not have any extra constraints such as TabCBM’s mask discovery. Nevertheless, we observe that as soon as
a few concepts are intervened on, TabCBM’s performance becomes similar to that of CBM in this dataset.

I Hyperparameter Ablations

In this section, we explore TabCBM’s sensitivity to its hyperparameters by studying how they affect dif-
ferent metrics and properties of the resulting model. We first discuss how k′, the number of discovered
concepts, affects TabCBM’s accuracy and quality of learnt representations. Then, we explore how the differ-
ent regularisation terms for TabCBM’s loss affect its end performance. Finally, we conclude by giving some
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recommendations on what are some good values for these regularisers that, from our experience, work well
in practice without much fine-tuning.

I.1 Effect of the Number of Discovered Concepts on TabCBM

Selecting the number of discovered concepts for TabCBM is one of the most important parts of constructing a
model that is high-performing while maintaining a high level of interpretability. While setting this value can
be strongly aided by domain-specific knowledge (e.g., setting k′ = k when we know the value of k a priori), it
is often the case and expectation that TabCBM will be trained on a task in which the true number of ground
truth concepts is unknown. However, in Figure 10 we show that TabCBM’s performance, is relatively robust
to changes in its k′ parameter. We observe that only when it is severely capacity-constrained, as it is the
case when k′ = 1 in both Synth-Linear and Synth-Nonlin, do we observe a significant drop in its accuracy.
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Figure 10: Test accuracies for TabCBM as we vary the number of discovered concepts k′ for all our tasks.

Although a similar behaviour as that observed with the task accuracy when we vary the value of k′ can be
seen for the G-AUC metric, the same cannot be said of the M-AUC metric. We see this in Figure 11 where
we observe that TabCBM can correctly identify all globally important features regardless of k′, provided it is
not under-parameterised, resulting in a high G-AUC value for all variants evaluated. In contrast, we observe
that the M-AUC metric seems to decrease as the value of k′ increases (particularly in the more complex
synthetic datasets). We hypothesise that this is the case because in both Synth-Nonlin-Large and Synth-
scRNAthe ground-truth concept masks of some concepts are overlapping (e.g., a GEP’s set of differentiated
genes can overlap with the set of differentiated genes for another GEP). Therefore, when using a smaller k′,
TabCBM’s objective function can be minimised by fusing some of these concepts’ masks and scores into a
single concept. This leads to a higher M-AUC score than when k′ is larger because TabCBM does not need
to correctly disentangle such fused concepts as it has to do when k′ is larger.

I.2 Effect of TabCBM’s Regularisers and General Recommendations

Besides k′, the next set of hyperparameters of importance for TabCBM is its different regulariser strengths
{λco, λdiv, λspec}. These control how much we value concept coherence, concept diversity, and concept speci-
ficity, respectively, with respect to downstream task accuracy. In practice, when evaluating TabCBM we
explored different combinations of these hyperparameters by varying them in the set {0.1, 1, 5, 10}. We
observe that, although TabCBM’s performance seems to be relatively robust to fluctuations in these pa-
rameters, the specificity strength is particularly important to fine-tune for TabCBM to correctly identify
and discover concepts it was not given supervision for. To see this, in Figure 12 we show how the test task
accuracy of TabCBM in the Synth-Nonlin-Large dataset changes as we modify all three regularisers while
fixing the others to the parameters defined in Table 5 for this dataset. These results show that test accuracy
fluctuates little for changes in both λco and λdiv, but it is sensitive to changes in λspec. This is because
there seems to be a threshold for λspec at which TabCBM puts more of its attention into discovering masks
first, and then uses these masks to simplify the problem of learning the downstream tasks. This helps in
this particular example as by first finding meaningful concept masks, TabCBM eliminates a lot of noise and
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Figure 11: Test G-AUC and M-AUC scores for TabCBM as we vary the number of discovered concepts k′

for all our tasks that have concept annotations.

redundancy in the data in the same way that feature selection methods do; hence improving the learning
dynamics after these masks have been discovered.
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Figure 12: Test task accuracy of TabCBM in the Synth-Nonlin-Large dataset as we vary its loss regularisers
{λco, λdiv, λspec} during training.

Recommendations for loss hyperparameters Our results above, together with our experience with
TabCBM during evaluation, seem to suggest that the parameter that requires the most fine-tuning during
training is λspec. In practice, we observed that setting λco = 0.1 while searching for values of λdiv and
λspec in the set {0.1, 1, 5, 10} under the constraint λdiv = λspec yielded good results. If such a search is too
expensive, then we found that setting λdiv = λspec = 5 resulted in good performance across all of our tasks
without much fine-tuning.

J Differences Between Scoring Functions

As discussed in Section 4, in this work we opt to use as our concept scoring function s(i) the sigmoidal
unnormalised inner product between ϕ(x̃(i)) and ρ(i)(x̃(i)). We chose this scoring function rather than other
commonly used alternatives such as the cosine similarity (used in CCD (Yeh et al., 2020)) for two main
reasons. First, using the cosine similarity for generating a concept score between 0 and 1 requires one to
threshold the similarity so that its domain (i.e., [-1,1]) is clamped between 0 and 1 (as these vectors are
not guaranteed to be non-negative). This is done in CCD by selecting all similarity scores below some
hyperparameter β to be clamped at 0. While this enables one to have magnitude-independent scores, it
introduces the need for an extra hyperparameter and leads to a gradient-blocking operation, forbidding
gradients to backpropagate to the vector-generating models ϕ and ρ when their concept scores are clamped
to zero. Second, as shown in Table 6 for Synth-Nonlin-Large, in practice we observe that using thresholded
cosine similarities rather than our proposed activation function in TabCBMs can lead to drops in downstream
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performance. We hypothesise that this is the case as our model can utilise the magnitude of these vectors to
help it more easily express a concept’s activation or deactivation after using a sigmoidal activation, something
that normalised vectors may not be able to do. Because of these reasons, we leave the exploration of further
scoring functions for future work and use the sigmoidal inner product in this paper.

Table 6: Differences in task accuracy and concept alignment scores (CAS) when using for TabCBM’s concept
scoring function s(i) (1) a β-thresholded cosine similarity, and (2) a sigmoidal dot product function. For
simplicity, we show only results on the Synth-Nonlin-Large dataset and all TabCBMs are trained without
any concept supervision by setting k′ = k and using the same hyperpameters as those described in Table 5.

Method Task Accuracy (%) CAS (%)
TabCBM (sigmoidal inner product) 62.78 ± 1.13 88.54 ± 4.49

TabCBM (thresholded cosine similarity with β = −0.5) 53.38 ± 2.01 74.73 ± 2.15
TabCBM (thresholded cosine similarity with β = 0) 53.48 ± 1.87 75.19 ± 1.96

TabCBM (thresholded cosine similarity with β = 0.5) 53.53 ± 1.47 74.87 ± 1.57

K Interpretability-accuracy Trade-off in TabCBMs

In our experiments exploring the task accuracy of concept-supervised TabCBMs, shown in Figure 2, we
observe that TabCBM’s task accuracy generally does not significantly vary when concept supervision is
introduced. Nevertheless, we an exception is seen only in the Synth-scRNA task where a noticeable decrease
in task accuracy is introduced as soon as concept supervision is provided to TabCBM. This suggests that
an interpretability-accuracy trade-off may exist when concept supervision is introduced in complex tasks. In
this section, we take a deeper look at this trade-off and show that, although it does indeed affect TabCBM
in complex tasks, our models are still able to obtain competitive performance with respect to black-box
baselines.

In Table 7 we summarise the performance of TabCBM across all synthetic tasks before and after receiving
concept intervention. Our results suggest that at its worst, TabCBM drops around ∼7% in mean aver-
age performance in Synth-scRNA compared to an equivalent unsupervised version (i.e., a TabCBM trained
without any concept supervision). Nevertheless, these differences are not necessarily significant as the vari-
ances are relatively large because of their high sensitivity to which concepts are provided with supervision.
More importantly, when all concepts are provided supervision, we see a drop of only ∼3% in task accuracy.
Such a drop is not significant when one considers that even with ∼3% less accuracy than its unsupervised
version, TabCBM outperforms black-box models such as MLPs and falls behind other black-box models
such as TabNet and XGboost by ∼0.5%. These negligible drops in performance, however, come with the
increased benefit of TabCBM being able to generate faithful concept explanations for its predictions and
being significantly more receptive to test-time interventions that can boost their performance way above that
of black-box models (as seen in Figure 4). Finally, this trade-off may be corrected in practice by decreasing
λconcept-sup during training, although this may lead to less accurate concept explanations.

Table 7: Accuracy-interpretability trade-off : effect of adding concept supervision to TabCBM across
all synthetic datasets. We show the task accuracy (%) obtained as we change the number of supervised
concepts given to the TabCBM during training. For reference, we include MLPs and TabNets as baselines
to compare our model against.

Method TabCBM (0 Sup Concepts) TabCBM (1 Sup Concepts) TabCBM (50% Sup Concepts) TabCBM (100% sup concepts) MLP TabNet
Linear 99.6 ± 0.07 99.51 ± 0.37 99.51 ± 0.37 99.67 ± 0.07 97.57 ± 0.37 97.57 ± 0.37

Synth-Nonlin 96.58 ± 0.23 94.71 ± 0.52 94.71 ± 0.52 94.62 ± 1.01 87.65 ± 0.98 91.57 ± 0.48
Synth-Nonlin-Large 65.37 ± 1.41 65.35 ± 1.24 65.27 ± 0.79 65.81 ± 0.78 40.74 ± 6.42 51.01 ± 2.57

scRNA 93.66 ± 1.41 86.10 ± 2.53 87.40 ± 2.91 90.04 ± 1.78 73.87 ± 1.43 90.66 ± 1.10

L Details on representation learning metrics

In Table 8 we provide a brief summary of the metrics used in our experiments in Section 5.2.
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Table 8: Summary of the metrics used as part of our evaluation in Section 5.2.

Metric Definition
Concept Alignment Score (CAS)
(Espinosa Zarlenga et al., 2022) This metric measures how strongly a learnt concept score ĉi is aligned with a

corresponding ground-truth concept cj . It does this by clustering test samples
based on ĉi and measuring the homogeneity (Rosenberg & Hirschberg, 2007)
(i.e., the coherence) of these clusters with respect to the ground-truth labels of
cj . To compute this metric for a set of learnt concepts, we first match each learnt
concept score with the ground truth concept with the highest absolute Pearson
correlation and then average the homogeneity scores produced for each matching.
A high CAS score of 1 represents a perfect alignment between learnt concepts and
ground-truth concepts. A low CAS score of 0 indicates perfect misalignment.

Mutual Information Gap (MIG)
(Chen et al., 2018b) This metric provides a quantitative measurement of how disentangled, or diverse,

a set of learnt concepts is. It is computed by measuring how much more informa-
tion about a ground-truth concept ci is encoded in the learnt concept ĉa with the
highest mutual information I(ĉa; ci) than in the learnt concept ĉb with the sec-
ond highest mutual information I(ĉb; ci). If the mean gap across all ground-truth
concepts is large, then it implies that each ground-truth concept is being encoded
by a single learnt concept. Otherwise, it implies that multiple learnt concepts are
encoding redundant information about a ground truth concept.

R4

(Ross & Doshi-Velez, 2021) The R4 metric measures whether there exists a bijective alignment function be-
tween learnt concept scores and ground-truth concept labels. Therefore, it at-
tempts to capture whether learnt concepts are coherent and diverse enough to
completely capture all ground-truth concepts. This metric operates by training
two nonlinear univariate models for each (learnt-concept, ground-truth concept)-
pair, one model for each direction, and using their coefficients of determination
R2 to quantify how closely can these two variables be represented using a bijective
mapping. A final score is then produced by averaging the maximum R2 values
obtained for all ground-truth concepts. A high R4 score indicates the existence
of a bijection between learnt concept scores and ground-truth concepts.

DCI Disentanglement
(Eastwood & Williams, 2018a) This metric captures concept diversity by measuring whether each learnt concept

is aligned with at most one ground truth concept. It is computed by averaging the
complement entropies of the probabilities that a learnt concept ĉi is rendered “im-
portant” when predicting ground-truth concept cj . The importance scores used
to construct such a probability distribution are computed using a simple linear
regression model between every learnt concept and every ground-truth concept.
A high DCI disentanglement indicates that all learnt concepts capture one and
only one ground-truth concept.

DCI Completeness
(Eastwood & Williams, 2018a) When the set of ground-truth concepts is fully descriptive of the downstream

task, this metric captures concept completeness by measuring the degree to which
each ground-truth concept is captured by at least one learnt concept. It estimates
this by computing the complement entropy of the probability of learnt concept
ĉi being the only “important” learnt concept to predict ground-truth concept ĉi

(with importance computed as above). A high DCI completeness indicates that
all ground-truth concepts are captured by one and only one learnt concept.

DCI Informativeness
(Eastwood & Williams, 2018a) This metric captures another aspect of concept completeness by looking at how

predictive the overall set of learnt concept scores is of each known ground-truth
concept. This is measured using the average prediction error obtained when
training a simple classifier to predict each ground-truth concept from ĉ. A high
DCI informativeness indicates that all ground-truth concepts can be accurately
predicted using the set of learnt concept scores.
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M Code Used and Hardware Infrastructure

For the experiments reported in this paper, we built a code base on top of the code made available by Es-
pinosa Zarlenga et al. (2023) and by Kazhdan et al. (2021) (under an MIT and Apache 2.0 licenses, respec-
tively) to train the CCD, SENN, and CBM baselines. For both the CEM and Hybrid-CEM baselines, we
used the official implementation by Espinosa Zarlenga et al. (2022). For both XGBoost and LightGBM, we
made use of the official implementations of both frameworks. For TabNet we extended the open-sourced
MIT-licensed implementation by DreamQuark AI3. Similarly, for TabTransformer we extended the open
sourced MIT-licensed implementation by Phil Wang4.

We built our code base using a combination of TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al.,
2019) and implemented TabCBM in TensorFlow. All of the code needed to reproduce our results, and use
our model through a simple API, has been made public at https://github.com/mateoespinosa/tabcbm via
an MIT license.

3https://github.com/dreamquark-ai/tabnet
4https://github.com/lucidrains
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