Randomized Channel Shuffling: Minimal-Overhead
Backdoor Attack Detection without Clean Datasets

Ruisi Cai'*, Zhenyu Zhang!”, Tianlong Chen!, Xiaohan Chen!, Zhangyang Wang!
!'University of Texas at Austin
{ruisi.cai,zhenyu.zhang,tianlong.chen,xiaohan.chen,atlaswang}@utexas.edu

Abstract

Deep neural networks (DNNs) typically require massive data to train on, which is a
hurdle for numerous practical domains. Facing the data shortfall, one viable option
is to acquire domain-specific training data from external uncensored sources, such
as open webs or third-party data collectors. However, the quality of such acquired
data is often not rigorously scrutinized, and one cannot easily rule out the risk of
“poisoned” examples being included in such unreliable datasets, resulting in unre-
liable trained models which pose potential risks to many high-stake applications.
While existing options usually suffer from high computational costs or assumptions
on clean data access, this paper attempts to detect backdoors for potential victim
models with minimal prior knowledge. In particular, provided with a trained model,
users are assumed to (1) have no prior knowledge of whether it is already poisoned,
or what the target class/percentage of samples is poisoned, and (2) have no access
to a clean sample set from the same training distribution, nor any trusted model
trained on such clean data. To tackle this challenging scenario, we first observe
the contrasting channel-level statistics between the backdoor trigger and clean
image features, and consequently, how they can be differentiated by progressive
channel shuffling. We then propose the randomized channel shuffling method for
backdoor-targeted class detection, which requires only a few feed-forward passes.
It thus incurs minimal overheads and demands no clean sample nor prior knowl-
edge. We further explore a “full” clean data-free setting, where neither the target
class detection nor the trigger recovery can access the clean data. Extensive exper-
iments are conducted with three datasets (CIFAR-10, GTSRB, Tiny ImageNet),
three architectures (AlexNet, ResNet-20, SENet-18), and three attacks (BadNets|[1]],
clean label attack [2], and WaNet [3]]). Results consistently endorse the effective-
ness of our proposed technique in backdoor model detection, with margins of
0.291 ~ 0.640 AUROdY over the current state-of-the-arts. Codes are available at
https://github.com/VITA-Group/Random-Shuffling-BackdoorDetect.

1 Introduction

Numerous deep learning-based methods significantly outperform traditional methods and become
useful in many critical domains. To achieve good results, the enormous deep neural networks (DNNs)
require a large amount of training data. Due to the absence of large enough self-gathered datasets
in many applications, many users refer to data samples collected from external sources, e.g., third-
party data collection companies or other web sources. However, these external sources can become
untrustworthy because the companies or the uploaders could be attackers who inject “poison” into
the datasets by maliciously crafting the data samples thus resulting in unreliable models.

“Equal Contribution.
'AUROC stands for the area under the receiver operating characteristic curve.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/VITA-Group/Random-Shuffling-BackdoorDetect

Recently, as one category of training-time attacks, poisoning attacks emerge as a fatal threat to deep
learning applications [4, 5]. Among them, the backdoor attack is notably stealthy. In such an attack,
the attackers will poison a small portion of training data by injecting small triggers into or applying
certain transformations on them. The poisoned dataset is called a backdoored dataset. A backdoored
dataset usually contains both poisoned samples and benign or clean samples that are not contaminated.
Traditional backdoor attackers will also maliciously label the poisoned samples into a target class
[} 416, 13]] when the attackers have full control over the datasets. More recent works [2,[7] do not
require this label control and craft only the raw data. For both types of backdoor attack methods, the
backdoored model, i.e., the DNN that is trained on the backdoored dataset, will behave normally on
benign inputs while classifying most malicious inputs into chosen target classes.

Due to the lack of transparency and interpretability, it is hard to determine whether an unreliable
dataset or a DNN trained on it is backdoor attacked or not, how the trigger looks like under attacks,
and which classes are infected. Users are left in desperate need of a reliable method that can achieve
attack detection and trigger recovery, using their limited resources, in the absence of clean data.

Recently, many detection and trigger recovery methods have been proposed to tackle backdoor attacks
[18L 19, 1100111, (120113, 1144115, 1164 117,118,119, 20, 117, 121]]. However, most of them assume access to a
hold-out dataset only containing benign samples from the training domain. Assuming such access
may be unrealistic in real-world scenarios as users have no control nor prior knowledge of the training
datasets. Besides, constructing a small clean set from public datasets online is often not a feasible fix
either, because samples from public datasets can still possess large domain gaps from the (unknown)
training data, and therefore might hardly help or even hurt the detection and/or trigger recovery.

Several methods attempted to detect backdoor attacks without assuming their access to clean data
[8, 22, 23, 24]. For example, [23] trains a classification auto-encoder to distinguish backdoor
data, which however incurs extra training overhead. [24] identifies backdoor samples via influence
estimation while [[8] analyzes the activation of the last hidden layer. In [22], the authors theoretically
illustrate that the input gradient has a relatively large absolute value at the pixel positions of the
stamped trigger pattern, which supplies a good indicator for distinguishing backdoor samples from
benign ones. [17]] proposes a data-efficient detection method by optimizing triggers for every putative
target class. Yet for a potentially unreliable dataset or a model trained on it, users might prefer a
more efficient and accurate method that can quickly assess the chance of being attacked, rather than
exhaustive checking. Moreover, most of those existing methods remain to compromise their detection
accuracy, and all still rely on clean samples for their trigger recovery step, to our best knowledge.

1.1 Our Contributions

In this work, we investigate a new challenging scenario: how to conduct both backdoor detection and
trigger recovery without clean samples, while maintaining low overhead? Laid on the foundation of
this work is our core hypothesis over the channel-level statistics of the backdoored features:

Trigger Feature Hypothesis: We hypothesize that the trigger features are sparsely encoded in only
a few channels, while clean image features need to be encoded across many channels for effective
classification. This is a key difference from normal data features that are presumably distributed more
evenly across channels, which indicates that these two types of features might behave differently in
certain situations, leading to our main technical contribution.

Feature Differentiation: Based on the proposed hypothesis, we devise a novel randomized channel
shuffling mechanism which introduces minimal computation cost to reveal trigger features. Specifi-
cally, given an unreliable dataset and a model trained by it, we control the channel shuffling strength
and observe how representations vary according to it. By observing the abnormally different variation,
we can detect the target class with only a few feed-forward passes. In addition, we further utilize the
proposed mechanism to separate those clean image features and trigger features. Specifically, we
retrain the model using the channel shuffling operation with part of the training set for a few epochs
(0.25% of total training cost and then recover triggers without clean data based on the shuffled model.
The trigger can be directly recovered to the pre-identified target class thus bringing efficiency.

‘We summarize our novel contributions as follows:

* We discover that clean image features and trigger features are different in terms of their activation
distribution in channels, as well as their sensitivity to channel re-ordering. Based on that, we
propose an effective, generalizable approach based on channel shuffling to detect backdoor
attacks and recover triggers with minimal overhead.

* We explore a new “head-to-toe” clean data-free setting, where neither backdoor detection nor
trigger recovery requires any access to clean data from the training domain. Our channel
shuffling-based detection can directly obtain the target class without model retraining. The
resultant shuffled models also facilitate more effective trigger recovery, also free of clean data.

* Across various datasets (CIFAR-10, GTSRB, Tiny ImageNet), architectures (AlexNet, ResNet-
20, SENet-18), and backdoor attacks (BadNets|[/1], clean label attack [2], and WaNet [3]]), the
experiment results consistently endorse the effectiveness of our technique in backdoor model
detection and trigger recovery, specifically, 0.331 ~ 0.640 higher AUROC than NC [14], and
0.291 ~ 0.543 higher than STRIP [18]]. Our trigger recovery method also achieves up to 30%
improvements in attack success rate for trigger recovery than NC [[14] across all scenarios.

2 Related Work

Backdoor Attack and Defense. Several backdoor attacks on deep learning models have been
proposed recently. Among them, most backdoor attacks can be classified as trigger-driven attacks.
Specifically, during the training phase, to launch an attack, the adversary injects an arbitrary trigger
into a small fraction of training pictures and maliciously labels them to the target class. Traditional
triggers are pre-defined patterns that can be simply stamped on benign images [1} 4]. Many advanced
trigger injection methods are proposed recently [6, 3] for stealthiness under both human inspection
and former detection methods [[14} |15 [18]. Another category of backdoor attack is clean-label attack
(2L 25017, 1261127, 28], 29]], which is formulated without control over the labeling function. Among them,
[26]) targets large-scale datasets and scales up the poisoning attack method via gradient matching.
Additionally, both [25]] and [27] focus on improving the transferability of attack methods, while [28]]
utilizes meta-learning and proposes an effective and transferable poisoning method.

Earlier works detect and mitigate backdoor models based on abnormal neuron responses [18, [10} [17],
feature representation[9], entropy [18], and evolution of model accuracy [12]. [19] models the
distribution of Trojan attacks by meta neural analysis, [16] utilizes Deep k-NN with a focus on
clean-label attack, [20] tries to learn the Universal Litmus Patterns (ULPs) from poisoned datasets.

Another category of work [14} [15 17, 113} [11} 21]] focuses on recovering the trigger and detecting
backdoor models based on the properties of the recovered triggers. Utilizing clean testing images,
Neural Cleanse (NC) [[14] calculates minimal perturbation to cause misclassification towards every
putative incorrect label. Backdoor model detection is completed by MAD outlier detection, due to
the observation that the size of minimal perturbation to classify images from all classes to the target
class is markedly smaller than that of other classes. However, the aforementioned methods suffer
from occasional failures in detecting backdoor models. More importantly, most methods except [17]]
that fall in this category generally assume the defender has a clean validation set, which may not be
practical. Instead, we do not assume we can obtain a clean validation set for effective detection.

We also clarify the difference between our new setting and the more classical backdoor detection
setting as adopted in [30, [16l 31]. Those prior arts perform pre-training detection of backdoor
training samples, without needing clean validation sets either. They all follow the same workflow:
first detecting the poison examples in the training set, then removing them prior to training, and finally
training the model using the filtered set. As the downside, to find out whether a pre-trained model has
been poisoned or not, those methods also have to (re)train from scratch, which may often be too costly
or impractical. In contrast, [18] and our method belong to post-training detection that can detect from
a given pre-trained model without costly (re-)training from scratch. That is more practical when the
model is already actively deployed in the field. While [18] needs a clean “reference” set, our method
requires no prior-training sample selection and (re-)training (hence differing from [30, 16} 31]), while
eliminating the necessity of clean samples (hence differing from [18])).

Channel Shuffling. The idea of channel shuffling has mostly been used in efficient model design,
intending to enable information flow between branches and consequently strengthen representation.
Specifically, aiming at high efficiency, [32] and [33]] utilize the channel shuffling method to mitigate
the problem induced by group convolution[34} 35]]. Similarly, [36] includes channel split and shuffle
methods to reduce computation cost while maintaining higher segmentation accuracy. [37] includes
channel shuffling to enable information communication between different sub-features. Different
from the aforementioned works, [38] adopts the channel shuffling method with randomness as a
regularization technique, to reduce overfitting and enhance generalization capabilities.

Clean Label Attack WaNet

) |: II‘) I ‘||| III
007 3 00— 0 12 14 1

0 2 4 6 8 10 12 14 16 8 10 12 14 16 4 8
Layer Layer Layer

=
[

Per of Activated Channels

b4

6

BB Clean Featres ™% Backdoor Features

Figure 2: Green and columns represent the percentages of activated channels in each layer when
inputting clean images and backdoor images, respectively. We empirically set the p = 20% of max activation
level as the threshold and consider channels with higher activation levels than the threshold as activated.

Based on our observation that clean image features and trigger features have different channel distri-
butions which is shown in Section[3.1} we formulated the randomized channel shuffling mechanism
to reveal trigger features, aiming to detect backdoor models and recover triggers. To the best of our
knowledge, we are the first to connect channel shuffling and the feature differentiation goal.

Shortcut Features. Several recent works [39l 40] analyzed that trigger features can serve as
“shortcut” features [15], which are observed to be easier to learn than the discriminative clean image
features [41]]. In addition, [[L0] observed that a small number of neurons are activated by backdoor
images but remain dormant for clean images. In contrast, [42] demonstrated the importance of the
combination of channels when encoding complex and diversified image features on large datasets.

3 Methodology

In Section [3.1] we first present our main hypothesis on trigger features’ unique characteristics
compared to clean image features, alongside with experimental validation. Section [3.2]proposes our
randomized channel shuffling method for backdoor model detection, as motivated by the hypothesis.
Section [3.3]shows further how we can improve trigger recovery with the channel shuffling scheme.

3.1 Differentiating Trigger and Image Features: A Hypothesis

Authors of [5] pointed out that DNNs tend to unintendedly exploit features unrelated to the task of
interest to achieve good performance. These “shortcut” features are usually simpler and easier to
learn [41] but highly correlated to the task-related features, such as the sky background and the bird
objective. It is then verified in [39, 40] that the backdoor triggers play a similar role as shortcuts
exploited by the backdoored models.

Moreover, a small fraction of channels are observed to remain dormant for clean images but are
activated by backdoor images [1,/10]. Based on all these observations, we conjecture that the trigger
features have a key difference from clean image features in terms of channel-level activation, and raise
the following hypothesis: Trigger features are sparsely encoded and activated in only a few channels,
while clean image features need to be encoded across many channels for effective classification.

Clean Images Backdoor Images

To validate the hypothesis, we investigate the ac- 0 0
tivation level of a specific channel, defined as the i e I e
average magnitudes of elements in its (output) fea-
ture map. In each layer, we consider channels
with activation levels larger than a ratio p of its
highest activation level as ‘activated’. We then
observe how channels are activated differently for | Sorted Channel
clean and backdoor images. In Figurem we take F}gurp 1: Blue columns represent the detailed dis-
the second last layer in a model backdoored by trlbut}on (?f activation levels of the sgcond last layer.
BadNets [I] as an example. When the input is Red lines indicate the threshold fpr acFlvated channels,
. 20% of the max activation level in this figure.
backdoored, only one single channel shows an ex-
ceptionally high activation level, leaving all other channels “unactivated" based on our definition.
In contrast, a clean input has more balanced activations across all channels. In Figure 2] we have
consistent observations on more advanced backdoor methods such as clean label attack [2] and
transformation-based attack, WaNet [3]. Moreover, we can see that the sparse encoding of trigger
features is more obvious in the latter layers, which are known to encode more discriminate semantic
features while the shallow layers usually encode histogram features.

Activation Level
=
E

3.2 Trigger Feature Exposure via Channel Shuffling

The next question is, what can be implied from the significant imbalance in the activation distribution
of trigger features? Consider the encoding of a poisoned image at a latter layer in the backdoored

Before Shuffling After Shuffling

Conv Weights

Intermediate Features|

Output Features

Figure 3: The overview of randomized channel shuffling operation. Before shuffling, the convolutional weights
and feature maps are ‘matched’ in terms of channels (e.g., the input feature with a hole in the shape of a polygon
is supposed to encode by the polygon weight). After channel shuffling, we deliberately induce a mismatch (the
input feature with a hole in the shape of a polygon has to be encoded by the star-shaped weight), interfering with
the feature encoding process and generating meaningless output features.

model, where only as few as one channel is vital with a high activation level. This channel needs
to match well with convolutional weights in the next layer for the attack to succeed. However, if
we deliberately create a mismatch between them, the lack of any second “vital channel” will lead
to unsuccessful encoding with a high probability. In contrast, channel features of clean images are
activated more evenly, leaving a lot of backup channels to substitute when a mismatch is created.
Motivated by this insight, we design a randomized channel shuffling mechanism to manually induce
a mismatch between the activated channels and channel weights, and propose a way to observe how
much the encoding process is being affected, thus revealing trigger features.

Randomized Channel Shuffling with Controlled Strength. Consider the convolutional weight #' at
the I*! layer of shape C! , x C! x F! x F', where C! , and C}, are the number of output channels
and input channels, respectively; F' is the kernel size. We shuffle the order of input channels (the
second dimension) of #’. And the overview of randomized channel shuffling is illustrated in Figure

Let © = {6, ..., 0%} denote the set of all weights in the network. We create a shuffled version of
itself, ©(n) by randomly shuffling the last n convolutional layers, n = 0,1, ..., L — 1, since trigger
features show more obvious sparsity characteristics in the latter layers according to Section[3.1] We
control the strength of channel shuffling by setting different n values for shuffling; the larger n is,
the stronger channel shuffling is applied. Then, for a given input x, we calculate its representation
(the output of the last convolutional layer) using © and ©(n), denoted as fo(x) and fg(n)(x),
respectively, where f is the representation extraction part of a model. Finally, we compute the
representation shift s, using the £-norm distance: s,,(z) = || fo(x) — fo(m)(T) ||2.

Detect the Class-wise Abnormal Variation. First, for a dataset D with K class, we split it into K
subsets according to the labels. For Dy, the subset with class k, we calculate the standard deviation
of representation shift caused by the shuffling operation on the last n layers, over all samples in
that subset, denoted by y*(n) = std z,ep, {sn(x;)}. Then, by changing n, we can obtain a curve
y*[0 : n] for class k showing the variation of the standard deviation of representation shift versus
different strengths of channel shuffling. Finally, We can detect the target class by observing the
abnormal curve, and its rationale is rooted in our sparsity hypothesis in Section[3.1] Note that using
the mean of representation shift instead of using standard deviation still works for detection, and
results are provided in Appendix[A3.1] We fix n (maximum layer number to shuffle, starting from
the top/last layer) as four, and we analyze the choice in Section[4.4]

To describe how a specific curve y*[0 : n] deviates from a cluster of curves {y7[0 : n],j =
0,..., K — 1} and how to detect an anomaly, we formulate the following two metrics:

(¢) Distance: We use the £ distance between the curve and the median to measure how far the curve
is away from the cluster, formulated as ®4 = || y*[0 : n] —median; {y?[0: n], j =0,..., K —1} ||1.

(i1) Tendency: First, we preprocess each curve to achieve ‘zero-mean’ and get §7[0 : n]. Then, we
calculate the standard deviation of the difference between the curve and the median. To be specific,
@, = std,, { 9*[0 : n] — median;{§’[0: n],j =0,..., K — 1} }.

Then, we adopt ®gey, = P4 + A * P, to take both deviation in distance and tendency of a curve into
account, and) is to balance two factors. A larger value of ®g4., implies that its corresponding curve
is less similar to others and more likely to be the target class. We default to set A as 0.01 in our
experiments, and we conduct an ablation study about the effect of different A values in Section
showing the effectiveness of the proposed method is not sensitive to the choice. After calculating
®4.v for each curve, we use Median Absolute Deviation to detect outliers, which is a common choice

for numerous backdoor detection methods[14} [15]. An anomaly index can be obtained for each curve,
measuring the probability of the curve being an outlier and relating to the target class. By properly
setting the threshold, the target class and backdoor model can be detected. In Section[d.2} we measure
the detection ability of our proposed method by AUROC. In addition, our method only needs a few
feed-forward passes, showing exceptional efficiency compared to existing methods. More details can
be found in Appendix §.5]

3.3 Improved Trigger Recovery with Shuffled Models

In this section, we improve the challenging trigger recovery by leveraging the distinctive properties
of channel-level feature distributions from clean images and triggers. Specifically, we first design a
training procedure with randomized channel shuffling to destroy clean image features while retaining
trigger-related features. Such models perform terribly for predicting clean images, but can be easily
attacked by samples with a trigger (i.e., almost perfect ~ 100% attack success rate). Then, this
“impaired” model is adopted for the subsequent trigger recovery where substantial performance
improvements can be observed without access to clean data.

The rationale lies in: (1) Based on our verified hypothesis in Section[3.1]- trigger features are sparsely
encoded while clean image features are encoded across multiple channels, randomized channel
shuffling alters the channel order every iteration, damages the relationship among channels, and
therefore stops the model to encode meaningful clean image features. On the contrary, trigger features
are more amenable to the perturbed channel orders thanks to their sparse encoding manner. (2) by
disentangling trigger and clean image features, the channel-shuffled models (where clean image
features are supposed to have been destroyed) should be more tractable for trigger recovery since
they contain almost “pure" trigger features now. This intuition is echoed by recent findings in [43].

Training with Randomized Channel Shuffling. Given a backdoor model G, the randomized channel
shuffling is applied at each training iteration and produces its shuffled variant G in the end. We find
that a few training epochs (e.g., 5 epochs) on a subset (e.g., 10%) of the original training set, are
sufficient to generate a high quality G with low clean testing accuracy and high attack success rate.

Enhanced Backdoor Trigger Recovery without Clean Data. In the backdoor model G, the presence
of clean image features and the stealthiness of trigger features make it hard to directly activate trigger
features when users lack knowledge of the trigger pattern. Previous approaches typically rely on clean
images to activate clean image features, helping to reveal trigger features based on the connection
between trigger features and clean image features[[14]]. In contrast, G has enriched trigger features
with suppressed clean image features, making the trigger feature exposure much easier, which also
removes its dependency on clean data as the reference. Therefore, on top of previous approaches, we
improve its trigger recovery performance by utilizing G. In practice, we use noise images drawn from
the standard Gaussian distribution to substitute clean data. And the recovered triggers have similar
high quality as with clean data, as shown in Section Additionally, we introduce an enhanced
objective function as depicted below:
Classical Term [14] Our Term with Shuffled Models

‘C(vavA’yt) = ‘CXE(g(m,)vyt)—’_ ‘C’XE((j(wl)vyt))

where '’ = 2 ® (1 —M) + M©® A, « is the randomly generated noise image and y; denotes the target
label detected in our previous stage (Section . Lxg(+) refers to a cross-entropy loss, A represents
a recovered trigger pattern, and the mask M characterizes the region that the trigger stamped on. Here
M is a binary mask, belonging to {0, 1}9*?, where d x d denotes the resolution of input images.

€y

4 Experiments

4.1 Implementation Details

Trojan Details. We consider three representative backdoor attacks from two categories in our
experiments, including (7) traditional backdoor attacks, i.e., BadNets [1]] and WaNet [3]]; (i%) clean
label attack (CLA) [44]. Among them, WaNet is more advanced which is designed to be more stealthy
to human inspection [3]. We have also compared with [45] in Appendix [A3.7]

For BadNets [1]], we adopt 5 x 5 gray-scale triggers. And 10% of the full training samples are
injected with the trigger. More details about the trigger injection and the trigger pattern are provided
in Appendix [AT.T] And for CLA [2], we craft all training images from the target class and stamp the
gray-scale trigger. We follow the default hyperparameter configurations in [3]], in which 10% of total

training images are warped. Also, it is worth mentioning that we adopt the “noise mode” of WaNet,
which is reported to be more stealthy and challenging.

Datasets and Architectures. We evaluate our randomized channel shuffling method across various
backdoor attacks, datasets and architectures with a total of seven combinations, i.e., { BadNets, CIFAR-
10, ResNet-20}, {BadNets, CIFAR-10, AlexNet}, {BadNets, CIFAR-10, SENet-18}, {BadNets,
GTSRB, ResNet-20}, {BadNets, Tiny ImageNet, ResNet-18}, { CLA, CIFAR-10, ResNet-20} and
{WaNet, CIFAR-10, ResNet-18}. For each combination, we train 25 backdoor and 25 benign models
via independent runs. Training details are collected in Table

Table 1: Detailed training configurations of the backdoor injection procedure.

Attacks | #Epoch Learning Rate Optimizer Batch Size Target Label Poison Ratio s &k Cross Ratio
BadNets [1] 200 0.1 SGD 128 “0” 0.1

Clean Label Attack [2] 200 0.1 SGD 128 “0” 0.1 - -
WaNet [3] 200 0.01 SGD 128 “0” 0.1 08 6 2

Detection and Evaluation Details. > Detection. To examine the reliability of the training dataset
with N classes, we first divide it into N subsets based on their label. For each subset, we then feed
them into the target model as well as its randomly shuffled variant, and compute the associated repre-
sentation shifts over different numbers of shuffled layers. Based on our observations in Section 3.1}
the last few layers mainly encode discriminate features and therefore they are used in our detection. In
our implementation, we only shuffle the channel order within the last four layers and generate feature
sensitivity curves as {y*[n],k = 0,..,N — 1,n = 0,1,2, 3}. 4[] denotes the standard deviation of
representation shift from the subset of class ¢ after randomly shuffling the last 5 convolutional layer.
Note that the range of the number of layers used for our detection plays a minor role in the achievable
performance, as evidenced in Section Lastly, we utilize the metric ®4., shown in Section to
measure whether there exists an outline curve significantly different from other curves. An abnormal
curve usually indicates: i) the dataset and model contain backdoor triggers; i7) its corresponding
class is likely to be the backdoor target class. > Evaluation. Similar to [17], we use area under
the receiver operating characteristic curve (AUROC) to measure the backdoor model detection’s
performance. More experimental details are provided in Appendix [A2]

4.2 Backdoor Detection by Leveraging Abnormal Variation

Superior Performance across Diverse Datasets and Architectures. We verify the effectiveness
of the proposed detection algorithm with the randomized channel shuffling method on seven rep-
resentative combinations of datasets, network architectures, and attack methods. Detection’s ROC
results are presented in Figure[d] where , green, and blue curves are generated by Ours, Neural
Cleanse [14], and STRIP [18]], respectively. Consistent performance improvements are observed:
@ Across Architectures: Compared with NC and STRIP, our method achieves an improvement of
AUROC values on CIFAR-10 with BadNets by {0.331, 0.375, 0.339} and {0.541, 0.543, 0.306} for
architectures {ResNet-20, AlexNet, SENet-18}, respectively. @ Across Datasets: On GTSRB and
Tiny ImageNet, our approach consistently outperform NC by a substantial margin of 0.539 and 0.388
AUROC values, with 0.293 and 0.457 improvements compared to STRIP. ® Across Attack Methods:
Even for more advanced attack methods CLA and WaNet, our methods still gain 0.362,0.291, and
0.64,0.512 AUROC improvements on CIFAR-10 against NC and STRIP.

For further evaluation, we calculate the percentage of successfully detected models with a fixed
threshold. And we choose the threshold that maximize the total detection accuracy, i.e., (# correctly
detected benign models and backdoor models) | (# total models). As shown in Table [2] in each
combination of {dataset, architecture, attack method}, our detection method consistently outperforms
other competitive approaches by up to 37.72% detection accuracy.

Feature Sensitivity Curves and the Distribution of Indicator ®4.,. We present the feature
sensitivity curves and the distribution of indicator ®g.y in Figure[5|and Figure[6} respectively. Without
loss of generality, for each attack, we randomly select one model for further analysis. Each point in
Figure 5] denotes the standard deviation of feature shifts between the original and randomly shuffled
models, given a subset of input images from a certain class. After we vary the number of shuffled
layers, a feature-sensitive curve can be drawn. From the results in Figure [5] we see the standard
deviation of feature shifts on the target class’s samples appears as a distinctive pattern (red curves),
especially for the first few points, which lies the foundation of our detection algorithm.

Table 2: Comparisons between ours and classic detection approaches. The reported numbers represent
(# correctly detected models) | (# models). Note that “”CLA’ stands for the clean label attack.

Attack Dataset Arch Neural Cleanse STRIP Ours
benign backdoor AUROC benign backdoor AUROC benign backdoor AUROC
ResNet-20 14/25 20/25 0.669 18/25 8/25 0.459 25/25 25/25 1.000
BadNets CIFAR-10 AlexNet 19/25 13/25 0.622 16/25 11/25 0.454 24/25 25/25 0.997
SENet-18 15/25 18/25 0.578 12/25 13/25 0.611 23/25 21/25 0.917
GTSRB ResNet-20 24/25 2/25 0.341 12/25 21/25 0.587 23/25 21/25 0.880
Tiny ImageNet ResNet-18 19/25 15/25 0.612 11/25 15/25 0.543 25/25 25/25 1.000
CLA CIFAR-10 ResNet-20 14/25 20/25 0.635 20/25 15/25 0.706 24/25 25/25 0.997
WaNet CIFAR-10 ResNet-18 25/25 1/25 0.314 25/25 1/25 0.442 21/25 23/25 0.954
Total 130/175 89/150 114/175 84/175 - 165/175 165/175 -

BadNets, CIFAR-10 (ResNet-20) BadNets, CIFAR-10 (AlexNet) BadNets, GTSRB (ResNet-20) CLA, CIFAR-10 (ResNet-20) ‘WaNet, CIFAR-10 (ResNet-18)

—— STRIP (Arca: 0.459)
—— NC (Area: 0.669)
ours (Area: 1.000)

—— STRIP (Arca: 0.454)
—— NC (Area: 0.622)
ours (Area: 0.997)

—— STRIP (Area: 0.587)
—— NC (Area: 0.341)
ours (Area: 0.880)

—— STRIP (Arca: 0.706)
—— NC (Arca: 0.635)
ours (Area: 0.997)

—— STRIP (Arca: 0.442)
—— NC (Area: 0.314)
ours (Area: 0.954)

00 02 0%

04 06
False Positive Rate

02 0% 10 00 02

04 06
False Positive Rate

08 10

0406
False Positive Rate

00 02 0% 10

040
False Positive Rate

00 02 0% 10

04 06
False Positive Rate

Figure 4: Performance of existing and our detection approaches, measured by ROC and related AUROC values.

On top of it, we compute the indicator ®4e, to quantitatively measure the deviation from the majority
of curves. Then, in order to locate the abnormal curve, the MAD outlier detection [46]] is performed to
Pyey. Figure[6]shows that the ®qcy of the target label tends to have significantly large values compared

to the ones of benign labels, which allows the target label to be easily identified.

4.3 Improved Triggers Recovery by Models Trained with Randomized Channel Shuffling

Table 3: TA (%) and ASR (%) after randomly shuffling channels
on various dataset-architecture combinations.

Attack Dataset Arch Type TA ASR 22 Shuffled Model w. Noise Images (Ours)
Orig. 91.4£0.5% 100.0 £0.0% “« EZA Original Model w. Noise Ima u
crarto N0 Shuf. 162+7.3% 1000£00% 3 3 Oriinl Model v Clea Image
BadNets AlexNet | OfiZ S5TE05% 99.9+0.1% & 1001
XN Shuf. 454+6.7% 95.4+4.6% 2 w0l
Orig. 985+05% 100.0+0.0% =
GTSRB ResNet-20 o v 9504+ 17.4% 98.4+ 1.6% g 60
Orig. 83.3+04% 90.1 +8.0% oy
CLA CIFAR-10 ResNet-20 g ¢ 143646.1% 99.2 +0.8% E
204
Orig. 93.1+£04% 99.2+0.8%
WaNet CIFAR-10 ResNet-18 v 1095 930 97.9+ 1.8% 0

Training with Randomized Channel Shuffling Leads to
Low TA and High ASR. We first investigate how the pro-
posed training procedure with randomized channel shuffling
shapes the behaviors of backdoor models. Results of TA
and ASR are collected in Table 3] where “Orig.” and “Shuf.”
indicate the original and shuffled models. Our proposal ef-
fectively produces models with nearly unimpaired ASR (e.g.,
90 ~ 100%) but poor TA which closes the level of random
guessing. Such consistent findings can be drawn from all
{dataset, architecture} combinations. It again supports our

11 v

Figure 7: Attack Success Rate (ASR
%) of recovered triggers from “original
model” (G) and “shuffled model” (Q), us-
ing clean and randomly generated noise
images as inputs respectively. I, II, III,
IV and V represent different backdoor
configurations, i.e., {BadNets, CIFAR-
10, ResNet-20}, {BadNets, CIFAR-10,
AlexNet}, {BadNets, GTSRB, ResNet-
20}, {CLA, CIFAR-10, ResNet-20} and

claim that randomized channel shuffling tends to destroy {WaNet, CIFAR-10, ResNet-18}.

clean image features while preserving trigger features.

Superior Trigger Recovery. To efficiently generate high-quality triggers, it requires two key factors:
(1) detected backdoor models and identified target labels, obtained from our detection algorithms; (2)
shuffled trained models that have rich trigger features but less clean image features. As evidenced
in Figure[7] while previous methods can achieve acceptable results when assuming access to clean

Benign BadNets Clean Label Attack WaNet

Standard Deviation

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 18)
Layer Layer

2 4 6 8§ 10 12 14 16

—— TargetClass —— Benign Class Layer Layer

Figure 5: Standard deviation of feature shifts after applying randomized channel shuffling operation over the
number of shuffled convolutional layers. Red curves are generated from subsets of the target class, while green
curves are calculated from subsets of benign classes.

107 106 0.6 03
X X X X X X
N X o X o4 04 X 02 X
205 o .
© 02 02 é é 02 0.1 =
0.0 = =10 L = | 00 T

0.0 BadNets BadNets BadNets Clean Label Attack WaNet

CIFAR-10 (ResNet-20) CIFAR-10 (AlexNet) CIFAR-10 (GTSRB) CIFAR-10 (ResNet-20) CIFAR-10 (ResNet-18)
[Benign Label) Target Label

Figure 6: The @y distribution for backdoor models. Boxplots show the means and variances of ®gey of curves
related to benign classes. The red crosses stands for ®g4evs of curves for target classes. A larger value of ®geyv
implies that its corresponding curve is less similar to others, and thus more likely to be the target class.

images, the performances drop tremendously when only using noise images. In contrast, even with
noise images, our method can recover as high-quality triggers as with clean images, significantly
surpassing the original models. Details are provided in Table[d] We perform experiments on 8 2080Ti
GPUs. For fair evaluation, we binarize the masks and make their #; norms equal the ground-truth
values (5 x 5). Then, we calculate the attack success rates with the binary masks.

Table 4: Detailed configurations of trigger recovery methods.

Stage | #Epoch Learning Rate Optimizer = Batch Size =~ Num. of Trainset = Num. of Cleanset
Retrain 5 0.1 SGD 128 5120 -
Recovery 200 0.1 SGD 128 - 1000

4.4 Ablation Study

Different Trigger Types in BadNets. Instead of fixing the trigger at the lower right corner of the
image, we change the trigger location to the upper left side, and randomly choose the location of the
trigger to generate two types of poisoned datasets with different stamping location strategies. We
further change the gray-scale trigger into the RGB trigger. We use ResNet-20 and CIFAR-10 in the
above settings. The AUROC values are reported in Table[5] which demonstrate the effectiveness of
the proposed randomized channel shuffling method across multiple trigger positions and types.

Table 5: The detection performance (AUROC) of ablation studies.

Ablation Different Trigger Types Multiple Target Classes Partial
Type N _ N Backdoor
Bottom Left ~ Random Location ~ RGB Trigger =~ 2 Targets 3 Targets 4 Targets 5 Targets
AUROC 1.000 1.000 1.000 0.978 0.981 0.902 0.770 0.945

Multiple Target Classes. We further consider the scenario where multiple backdoors are inserted
into the dataset, with more than one class as the target class. Using CIFAR-10 as the dataset which
has ten classes, ResNet-20 as architecture, and BadNets as the attack, we find that our method is still
effective when multiple target classes exist but target classes still being the minority compared to the
benign classes. AUROC values are reported in Table[5] Detection performances remain acceptable
when fewer than 5 classes are infected. But AUROC drops significantly when 5 out of 10 classes are
the target classes. More visualization results are provided in Figure[§]

Source Label-Specific (Partial) Backdoor. A ‘partial’ backdoor is activated only when inputs are
from specific source labels, which is more stealthy than a non-partial backdoor. We then verify the
effectiveness of our method under this scenario with BadNets|[1]] as the attack, ResNet-20 as the
model architecture, and CIFAR-10 as the dataset. The results are provided in Table 5] showing the
effectiveness of the proposed method in the partial backdoor scenario.

2 Targets 3 Targets 1o
3 o. — _—
04l x £ X A ,A\ L 08
] 04 A < g
. s . = £ | — BadNets, CIFAR-10 (ResNet-20)
EN a2 & A 2| —— BadNets, CIFAR-10 (Ale
1 x E 02 T 7 06 BadNets, GTSRB (
< =] N CLA, CIFAR-10 (R
=| : = : = 2
0.0 g1 g1
@ 2 4 6 8 10 12 14 16 18 00— & 2 4 6 8 10 12 14 16 18 o
10° 10° 107 107 10
Laer J Layer :
4 Targets 5 Targets
ors|] X g? ool x| g? — e —
X] el
5050 % 304 § 5
B ¥ 22 & 82
025 E 02 E
E === == | 2 ; =
- | 3 o g
0. @ 2 4 6 8 10 12 14 16 18 0. @ 2 12 14 16 18
1 3 B 4 6

8 10
Layer Layer Num of Shuffled Layers

Figure 8: The left two columns provide visualization results when multiple backdoor target classes exist. For
each attack scenario, the distribution of ®g., is collected in the left sub-figure, and its standard deviation of
representation shifts is reported in the right sub-figure. The upper right figure provides AUROC values over
different)\, the bottom right figure shows AUROC values over the number of shuffled layers.

Choice of Hyper-Parameters. As is mentioned in Section[3.2} @4y = ®4 + A * P, where A is to
balance two terms. Figure[8|shows the variation of AUROC when changing A. In addition, we also
verify how the number of layers included for detection affects the detection performance for different
attacks. According to Figure[§] curves of AUROC remain high when only the last several layers are
included. But they gradually decrease when including more layers, since the standard deviation of
representation shift from the target class becomes mixed with benign ones, affecting the performance.

4.5 Efficiency of Proposed Detection Method

Compared to existing methods, we claim that our proposed detection method is more efficient.
We approximate the FLOPs of the back-propagation to be twice that of forwarding propagation
following[47]], and provide the total FLOPs needed for detection in Table[6] For CIFAR-10, NC and
STRIP need 7.5 x 10° and 15.6 times more FLOPs than ours, respectively. For GTSRB, NC and
STRIP need 1.9 x 10° and 3.9 times more FLOPs than ours, respectively.

4.6 Efficiency of Proposed Trigger Recovery Method

We claim that our trigger recovery method is also efficient since only 5 epochs and 10% of the original
training set are used. This is motivated by the fact that the ASR and TA saturate after a few epochs if
a model is shuffled and retrained on a full dataset according to the training curve in Figure 9]

100

B
W

—ry Table 6: The approximate of FLOPs(x 10'?) need for detection.

Accuracy
wn
=

ASR
5 Attack Dataset Arch Neural Cleanse STRIP Ours
5
WAMAANNY T . 6 2
CIFAR-10 ResNet-20 5.04 x 10 1.05 x 10 6.72
0 BadNets 5 >
0 20 40 60 80 AlexNet 7.73 x 10 1.61 x 10 10.30

Epoch
GTSRB ResNet-20 5.04 x 106 1.05 x 102 26.88

Figure 9: Test Accuracy (TA %) and CLA CIFAR-10 ResNet:20 5.04 x 10° 1.05 x 102 6.72
Attack Success Rate (ASR %) when re-
training with randomized channel shuf-
fling on CIFAR-10 attacked by Bad-
Nets, based on ResNet-20.

‘WaNet CIFAR-10 ResNet-18 6.84 x 107 1.43 x 103 91.2

5 Conclusion

In this paper, we introduce and investigate a challenging backdoor detection setup without access
to clean datasets. An efficient detection algorithm is proposed by contrasting representations shifts
before and after randomized channel shuffling of clean and trigger features. Moreover, by leveraging
our shuffled backdoor models, the performance of trigger recovery is substantially boosted. Extensive
experiments validate the effectiveness of our proposal.

10

References

[1] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in
the machine learning model supply chain, 2019.

[2] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Du-
mitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural
networks. arXiv preprint arXiv:1804.00792, 2018.

[3] Anh Nguyen and Anh Tran. Wanet—imperceptible warping-based backdoor attack. arXiv
preprint arXiv:2102.10369, 2021.

[4] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on
deep learning systems using data poisoning, 2017.

[5] Robert Geirhos, Jorn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665-673, 2020.

[6] Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflection backdoor: A natural backdoor
attack on deep neural networks. In European Conference on Computer Vision, pages 182—199.
Springer, 2020.

[7] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger backdoor
attacks. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages
11957-11965, 2020.

[8] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung
Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by
activation clustering. arXiv preprint arXiv:1811.03728, 2018.

[9] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. arXiv
preprint arXiv:1811.00636, 2018.

[10] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against
backdooring attacks on deep neural networks. In International Symposium on Research in
Attacks, Intrusions, and Defenses, pages 273-294. Springer, 2018.

[11] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and Xiangyu Zhang.
Abs: Scanning neural networks for back-doors by artificial brain stimulation. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pages
1265-1282, 2019.

[12] Yanyao Shen and Sujay Sanghavi. Learning with bad training data via iterative trimmed loss
minimization. In International Conference on Machine Learning, pages 5739-5748. PMLR,
2019.

[13] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Deepinspect: A black-box trojan
detection and mitigation framework for deep neural networks. In IJCAI, pages 4658-4664,
2019.

[14] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and
Ben Y Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks.
In 2019 IEEE Symposium on Security and Privacy (SP), pages 707-723. IEEE, 2019.

[15] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Song. Tabor: A highly accu-
rate approach to inspecting and restoring trojan backdoors in ai systems. arXiv preprint
arXiv:1908.01763, 2019.

[16] Neehar Peri, Neal Gupta, W. Ronny Huang, Liam Fowl, Chen Zhu, Soheil Feizi, Tom Goldstein,
and John P. Dickerson. Deep k-nn defense against clean-label data poisoning attacks, 2019.

11

[17] Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong, and Meng Wang. Practical
detection of trojan neural networks: Data-limited and data-free cases. In Computer Vision—
ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part
XXIII 16, pages 222-238. Springer, 2020.

[18] Yansong Gao, Chang Xu, Derui Wang, Shiping Chen, Damith C. Ranasinghe, and Surya Nepal.
Strip: A defence against trojan attacks on deep neural networks, 2020.

[19] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A Gunter, and Bo Li. Detecting ai
trojans using meta neural analysis. In 2021 IEEE Symposium on Security and Privacy (SP),
pages 103-120. IEEE, 2021.

[20] Soheil Kolouri, Aniruddha Saha, Hamed Pirsiavash, and Heiko Hoffmann. Universal litmus
patterns: Revealing backdoor attacks in cnns. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 301-310, 2020.

[21] Guangyu Shen, Yingqi Liu, Guanhong Tao, Shengwei An, Qiuling Xu, Siyuan Cheng, Shiging
Ma, and Xiangyu Zhang. Backdoor scanning for deep neural networks through k-arm optimiza-
tion. arXiv preprint arXiv:2102.05123, 2021.

[22] Alvin Chan and Yew-Soon Ong. Poison as a cure: Detecting & neutralizing variable-sized
backdoor attacks in deep neural networks. arXiv preprint arXiv:1911.08040, 2019.

[23] Fereshteh Razmi and Li Xiong. Classification auto-encoder based detector against diverse data
poisoning attacks. arXiv preprint arXiv:2108.04206, 2021.

[24] Zayd Hammoudeh and Daniel Lowd. Identifying a training-set attack’s target using renormalized
influence estimation. arXiv preprint arXiv:2201.10055, 2022.

[25] Chen Zhu, W Ronny Huang, Hengduo Li, Gavin Taylor, Christoph Studer, and Tom Goldstein.
Transferable clean-label poisoning attacks on deep neural nets. In International Conference on
Machine Learning, pages 7614-7623. PMLR, 2019.

[26] Jonas Geiping, Liam Fowl, W Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller,
and Tom Goldstein. Witches’ brew: Industrial scale data poisoning via gradient matching. arXiv
preprint arXiv:2009.02276, 2020.

[27] Hojjat Aghakhani, Dongyu Meng, Yu-Xiang Wang, Christopher Kruegel, and Giovanni Vigna.
Bullseye polytope: A scalable clean-label poisoning attack with improved transferability. In
2021 IEEE European Symposium on Security and Privacy (EuroS&P), pages 159-178. IEEE,
2021.

[28] W Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein. Metapoi-
son: Practical general-purpose clean-label data poisoning. Advances in Neural Information
Processing Systems, 33:12080-12091, 2020.

[29] Junfeng Guo and Cong Liu. Practical poisoning attacks on neural networks. In European
Conference on Computer Vision, pages 142—158. Springer, 2020.

[30] Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for data poisoning
attacks. Advances in neural information processing systems, 30, 2017.

[31] Andrea Paudice, Luis Mufoz-Gonzalez, Andras Gyorgy, and Emil C Lupu. Detection of
adversarial training examples in poisoning attacks through anomaly detection. arXiv preprint
arXiv:1802.03041, 2018.

[32] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 6848-6856, 2018.

[33] Zhang Ting, Qi Guo-Jun, Xiao Bin, and Wang Jingdong. Interleaved group convolutions for
deep neural networks. In Proceedings of the IEEE International Conference on Computer
Vision, 2017.

12

[34] Frangois Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pages 12511258,
2017.

[35] Saining Xie, Ross Girshick, Piotr Dolldr, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1492-1500, 2017.

[36] Yu Wang, Quan Zhou, Jia Liu, Jian Xiong, Guangwei Gao, Xiaofu Wu, and Longin Jan Latecki.
Lednet: A lightweight encoder-decoder network for real-time semantic segmentation. In 2079
IEEE International Conference on Image Processing (ICIP), pages 1860-1864. IEEE, 2019.

[37] Qing-Long Zhang Yu-Bin Yang. Sa-net: Shuffle attention for deep convolutional neural
networks, 2021.

[38] Sudhakar Kumawat, Gagan Kanojia, and Shanmuganathan Raman. Shuffleblock: Shuffie to
regularize deep convolutional neural networks. arXiv preprint arXiv:2106.09358, 2021.

[39] Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-Yan Liu. Indiscriminate poisoning attacks
are shortcuts. arXiv preprint arXiv:2111.00898, 2021.

[40] Pedro Sandoval-Segura, Vasu Singla, Liam Fowl, Jonas Geiping, Micah Goldblum, David
Jacobs, and Tom Goldstein. Poisons that are learned faster are more effective. arXiv preprint
arXiv:2204.08615, 2022.

[41] Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of
why overparameterization exacerbates spurious correlations. In International Conference on
Machine Learning, pages 8346-8356. PMLR, 2020.

[42] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[43] Tianlong Chen, Zhenyu Zhang, Yihua Zhang, Shiyu Chang, Sijia Liu, and Zhangyang Wang.
Quarantine: Sparsity can uncover the trojan attack trigger for free. In Proceedings of Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.

[44] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks.
arXiv preprint arXiv:1912.02771, 2019.

[45] Neehar Peri, Neal Gupta, W Ronny Huang, Liam Fowl, Chen Zhu, Soheil Feizi, Tom Goldstein,
and John P Dickerson. Deep k-nn defense against clean-label data poisoning attacks. In
European Conference on Computer Vision, pages 55-70. Springer, 2020.

[46] Frank R Hampel. The influence curve and its role in robust estimation. Journal of the american
statistical association, 69(346):383-393, 1974.

[47] Dingqing Yang, Amin Ghasemazar, Xiaowei Ren, Maximilian Golub, Guy Lemieux, and
Mieszko Lis. Procrustes: a dataflow and accelerator for sparse deep neural network training. In
2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
711-724. 1IEEE, 2020.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[49] Peizhuo Lv, Hualong Ma, Jiachen Zhou, Ruigang Liang, Kai Chen, Shengzhi Zhang, and Yunfei
Yang. Dbia: Data-free backdoor injection attack against transformer networks. arXiv preprint
arXiv:2111.11870, 2021.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] (Section [A4)
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A |
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)?

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you're
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A |

14

	Introduction
	Our Contributions

	Related Work
	Methodology
	Differentiating Trigger and Image Features: A Hypothesis
	Trigger Feature Exposure via Channel Shuffling
	Improved Trigger Recovery with Shuffled Models

	Experiments
	Implementation Details
	Backdoor Detection by Leveraging Abnormal Variation
	Improved Triggers Recovery by Models Trained with Randomized Channel Shuffling
	Ablation Study
	Efficiency of Proposed Detection Method
	Efficiency of Proposed Trigger Recovery Method

	Conclusion

