

STRUCTURED REASONING FOR LLMs: A UNIFIED FRAMEWORK FOR EFFICIENCY AND EXPLAINABILITY

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Recent Large Language Models (LLMs) have made remarkable progress, but they still struggle with complex reasoning tasks such as logical deduction and planning. This is partly because they rely primarily on token-level probability relationships, which limits their ability to reason effectively. In this paper, inspired by cognitive science and neurosymbolic AI, we introduce **Structured Reasoning**, which aims at enhancing the reasoning capabilities of LLMs from the step level. To this end, we first collect high-frequency, domain-agnostic reasoning step tags and construct a structured reasoning dataset with those tags. Then, we treat a reasoning process as a **directed acyclic graph**, where the vertices represent steps and the edges indicate the direction of reasoning. In this context, an efficient reasoning process corresponds to, or can be characterized by, a sparse reasoning graph. To construct reasoning graphs, we introduce **structured tags** for reliable step extraction from LLM outputs. For single-graph optimization, we propose the **MaxFlow reward**, which rewards graphs with balanced node contributions and fewer redundant steps. The quality of a sparse reasoning graph can be reflected by the total flow from all steps to the final answer. For multi-graph comparison, we propose the **LCS reward**, which selects reliable reasoning paths by identifying optimal common subsequences (consecutive steps) shared across multiple generated responses (sequences). Experiments with DeepSeek-R1-Distill-Qwen-1.5B and 7B models show that our method consistently outperforms GRPO and other carefully tuned baselines across various context lengths (0.5k–8k). Structured Reasoning shows particular strength in efficiency (better performance with fewer steps) and stability (consistently generating high-quality outputs across a temperature range of 0.1 to 1.0). Methods and examples is currently available on our website: Structured-Reasoning.

1 INTRODUCTION

Large Language Models (LLMs) such as DeepSeek-R1 (DeepSeek-AI et al., 2025a), OpenAI-01 (OpenAI, 2024), and QwQ (QwQ, 2025) have rapidly advanced the state of natural language processing, knowledge access, and automated decision support. Despite their impressive language capabilities and broad applicability, the existing reasoning patterns suffer from several limitations: (i) **redundant** and verbose content, (ii) **unstable** performance, and (iii) **poor interpretability** of internal reasoning logic. These challenges hinder LLMs’ safety, controllability, and trustworthiness in practical applications.

We posit that advancing trustworthy reasoning in LLMs requires a transition to explicitly structured, auditable processes. Structured reasoning, inspired by cognitive science and dual-process theories (Bronkhorst et al., 2022; Forstmann et al., 2016; Evans, 2018; Miller & Cohen, 2001), breaks down problem solving into clear steps with specific purposes (like restating the problem and checking the answer). Making these steps explicit and central to the process helps in several ways: (i) keeps the reasoning focused and on-track, (ii) allows us to evaluate each step properly, (iii) makes it easier to understand how different layers of the model handle these steps.

This paper proposes a novel approach to enhance LLMs with structured reasoning capabilities, inspired by cognitive science theories and recent advances in neurosymbolic artificial intelligence. Specifically, we introduce mechanisms that explicitly encode structured knowledge representations and reasoning processes in LLMs. Then, we treat reasoning processes as directed graphs, where

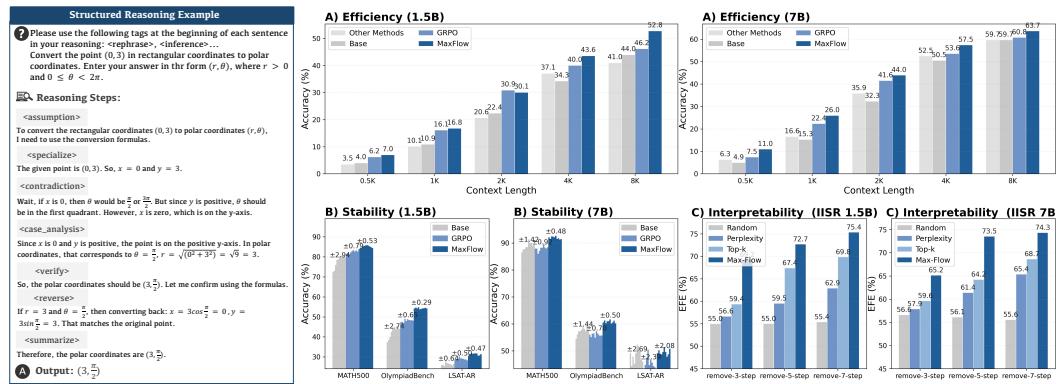


Figure 1: Structured reasoning improves efficiency, stability, and interpretability. Left: an example of our structured reasoning process. Right: across general tasks, combining structured data tuning with structure-aware optimization outperforms GRPO and other baselines in (i) efficiency (fewer, denser steps), (ii) stability (robust across temperatures), and (iii) interpretability (clear step dependencies).

the vertices represent steps and the edges indicate the direction of reasoning, leveraging both the flexibility of neural networks and the interpretability and precision of symbolic reasoning.

Our framework first transforms unstructured data into structured format by incorporating explicit reasoning step tags that clearly indicate each step of the reasoning process. These structured annotations enable adaptive fine-tuning that helps models develop systematic reasoning patterns. Additionally, we implement a layer-wise dependency tracing procedure using step-to-step attention matrices, enabling detailed analysis of reasoning relationships within the LLM’s computation process.

To further enhance reasoning efficiency, we extend Group Relative Policy Optimization (GRPO) Shao et al. (2024b) with two structure-aware algorithms: (1) *MAX-Flow*: Constructs sparse reasoning graphs by analyzing step-to-step attention matrices and measures the quality of the graph based on each step’s contribution to the final answer, (2) *Longest Common Subsequence (LCS)*: Improves reasoning quality by identifying optimal common subsequences across multiple generated responses and leveraging these consistent steps as reliable reasoning paths. Our contributions are as follows:

- We propose a novel Structured Reasoning approach that achieves more concise reasoning and stable performance, demonstrating significant improvements in efficiency (better performance at shorter lengths), stability (consistent quality across temperatures 0.1-1.0), and interpretability across various scenarios on DeepSeek-R1-Distill-Qwen models.
- We develop a method to automatically extract common reasoning patterns and convert unstructured reasoning into structured formats, creating a dataset that helps transform free-form reasoning steps into well-organized structured reasoning chains.
- We propose an attention-based layer-wise analysis framework that constructs step-to-step attention maps across model layers, providing enhanced interpretability of reasoning steps and revealing that middle layers play a crucial role in integrating broader reasoning context.
- We enhance GRPO with two complementary algorithms: 1) MAX-Flow, which constructs sparse reasoning graphs by analyzing step-to-step attention matrices and measures each step’s contribution to the final answer, and 2) LCS, which improves reasoning quality by identifying optimal common subsequences across multiple generated responses and leveraging these consistent steps as reliable reasoning paths.

2 RELATED WORK

Reinforcement Learning Helps Efficiency Improvement Recent approaches use RL to improve reasoning efficiency, from basic length penalties (Team et al., 2025; Li et al., 2025; Arora & Zanette, 2025) to more sophisticated methods. L1 (Aggarwal & Welleck, 2025) embeds length constraints in training instructions, while O1-Pruner (Luo et al., 2025a) balances brevity and accuracy against

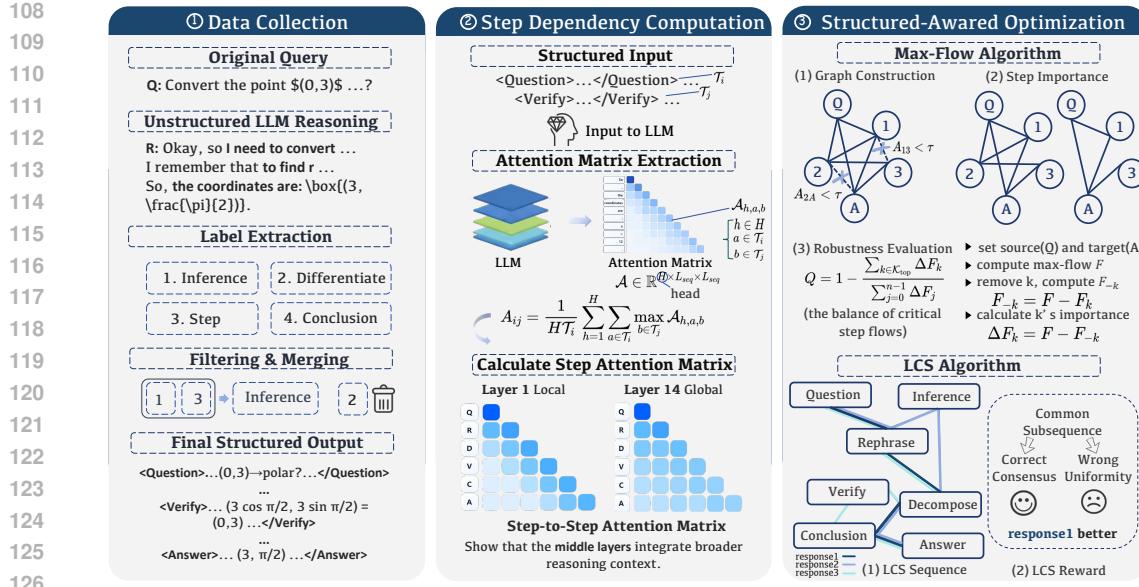


Figure 2: Illustration of our three-stage pipeline for enhancing LLMs with Structured Reasoning. (1) Data Collection: Extract structured reasoning labels from unstructured LLM responses, producing outputs with **structured tags**. (2) Step Dependency Computation: Compute step attention matrices to construct reasoning directed graph. (3) Structure-Aware Optmization: Apply Max-Flow algorithm for providing a significantly more accurate understanding of reasoning step dependencies and LCS algorithm for improving reasoning quality by identifying optimal common subsequences across multiple generated responses and leveraging these consistent steps as reliable reasoning paths.

reference benchmarks. DAST (Shen et al., 2025b) introduces adaptive reasoning through token-length budget, allocating resources based on problem complexity. THINKPRUNE (Hou et al., 2025) employs a length-aware reward with tightening constraints, while Think When You Need (Yang et al., 2025) uses comparative rewards to guide models toward concise yet effective solutions.

Efficient CoT According to Perplexity Several works optimize reasoning chains using perplexity-based methods (Jelinek et al., 2005), including stepwise refinement (Cui et al., 2025b), token pruning (Xia et al., 2025), attack detection (Alon & Kamfonas, 2023) and step elimination strategies (Liu et al., 2024). Furthermore, (Zhang et al., 2025) proposes exploration based on entropy for multistep reasoning. Our research reveals that perplexity metrics inadequately assess the importance of reasoning steps, demonstrating that our MAX-Flow algorithm outperforms perplexity-based approaches in evaluating the importance of reasoning steps.

Language Model Reasoning (for Math) Since OpenAI-O1 (Jaech et al., 2024), followed by O3 (OpenAI, 2025) and DeepSeek-R1 (DeepSeek-AI, 2025), researchers have proposed increasingly sophisticated RL algorithms, including **Dr.GRPO** (Liu et al., 2025b), LCPO (Aggarwal & Welleck, 2025), REINFORCE++ (Hu, 2025), DAPO (Yu et al., 2025), DPO-VP (Tu et al., 2025), VinePPO (Kazemnejad et al., 2024), CPPO (Lin et al., 2025), VAPO (Yue et al., 2025), and GRO (Cai, 2025). Empirical investigations have explored data scaling (Shen et al., 2025a), curriculum strategies (Wen et al., 2025; Roux et al., 2025), and reward engineering (Gao et al., 2024b; Cui et al., 2025a; Ma et al., 2023). Recent evaluations (Hochlehnert et al., 2025) show many reported improvements fail against properly optimized baselines. Our methods evaluate across multiple seeds to ensure reproducibility.

3 MOTIVATION: REASONING AS FLOW ON STRUCTURED GRAPHS

We propose to view the reasoning process as a single-source single-sink flow diffusion process from the question step to the answer step, as illustrated in Figure 2. This perspective transforms the challenge of optimizing redundant reasoning steps and improving efficiency into a problem of optimizing reasoning graph structure.

162 **Single Reasoning Graph Perspective.** For reasoning steps that are redundant, repetitive, or meaning-
 163 less, both the answer step and intermediate conclusion steps tend to ignore them, resulting in weaker
 164 connections for these step nodes to the final answer (sink). Conversely, consider an ideal
 165 case of a strictly step-by-step dependent CoT reasoning process: each new intermediate inference
 166 step strongly depends on the previous step. In such cases, removing any single reasoning step would
 167 interrupt the flow, making each step’s contribution approximately equal. A high-quality reasoning
 168 process should thus exhibit **balanced step contributions**, where no single step dominates the flow,
 169 indicating a robust, non-redundant reasoning chain.

170 **Multi-Graph Comparison Perspective.** When comparing multiple reasoning graphs that reach the
 171 correct answers, we can optimize by identifying common attention edges. Under an ideal assumption,
 172 if one reasoning graph’s path is a subset of another’s, it appears more concise in reasoning logic.
 173 Furthermore, if two graphs have identical reasoning paths, we generally consider the process with
 174 shorter corresponding reasoning steps to be more efficient. This motivates our LCS-based reward that
 175 encourages alignment with correct completions with length suppression.

176 4 METHOD

178 4.1 STRUCTURED REASONING DATA COLLECTION

180 Due to the free-form nature of reasoning passages, small LLMs struggle to reliably parse them into
 181 discrete reasoning steps. To address this, we design a pipeline to construct structured reasoning data
 182 with explicit step labels.

183 Given a question set \mathcal{Q}_0 and a teacher model T (DeepSeek-R1), for each $q \in \mathcal{Q}_0$ we obtain raw
 184 reasoning r^{raw} and answer a , then elicit a linear label chain $\mathbf{l} = (l_1 \rightarrow \dots \rightarrow l_m)$ via a self-
 185 summarization prompt A.8. We keep frequent labels, merge synonyms, and remove domain-specific
 186 ones to form the core set. Let \mathcal{P} be the set of the labels.

187 To synthesize aligned structured traces over the questions \mathcal{Q} , we sample labels $\pi \in \mathcal{P}$ for each q and
 188 prompt T to generate a labeled reasoning r , producing the raw structured set $\mathcal{D}_{\text{raw}} = \{(q, \pi, r, a)\}$.
 189 We apply a filtering function $F(q, \pi, r, a)$ to verify answer correctness and reasoning difficulty. The
 190 final corpus is:

$$191 \mathcal{D}_{\text{struct}} = \{(q, \pi, r, a) \in \mathcal{D}_{\text{raw}} \mid F(q, \pi, r, a) = 0\}. \quad (1)$$

192 This produces a tiny but high-quality dataset suitable for structured tuning. We tuned models to
 193 produce structured reasoning under a designed prompt template that enforces explicit reasoning
 194 labels. For each Question-Reasoning-Answer triplet (q, r, a) in the dataset $\mathcal{D}_{\text{struct}}$, the question q is
 195 combined with our structured reasoning prompt I , which guides the model to use specific reasoning
 196 labels at the start of each sentence. The model learns to generate the structured reasoning r and the
 197 answer a . The structured model, θ_{struct} , is trained as follows:

$$199 \theta_{\text{struct}} = \prod_{(q, r, a \in \mathcal{D}_{\text{struct}})} P(r, a \mid q, I), \quad (2)$$

202 where I denotes our structured prompt and $\mathcal{D}_{\text{struct}}$ is the set of selected high-quality samples.

204 4.2 LAYER-WISE STEP-DEPENDENT TRACING

205 **Step-to-Step Attention Matrix.** Given a layer attention tensor $\mathcal{A} \in \mathbb{R}^{H \times L_{\text{seq}} \times L_{\text{seq}}}$ (H heads,
 206 sequence length L_{seq}), we compute the normalized step attention matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ for n reasoning
 207 steps. For steps i, j with token ranges $[s_i^{\text{start}}, s_i^{\text{end}}]$ and $[s_j^{\text{start}}, s_j^{\text{end}}]$ respectively:

$$210 A_{ij} = \frac{1}{H\mathcal{T}_i} \sum_{h=1}^H \sum_{a \in \mathcal{T}_i} \max_{b \in \mathcal{T}_j} \mathcal{A}_{h,a,b}, \quad (3)$$

213 where $\mathcal{T}_k = [s_k^{\text{start}}, s_k^{\text{end}}]$ denotes the token range of step k .

214 We denote the token range of step k by $\mathcal{T}_k = [s_k^{\text{start}}, s_k^{\text{end}}]$. The time complexity of this procedure
 215 is $\mathcal{O}(B \times H \times n^2 \times T_{\text{avg}})$, where T_{avg} is the average number of tokens per step. In practice, the

216 inner max is computed with vectorized reductions, and per-layer intermediate buffers are released
 217 immediately, keeping memory footprint low.
 218

219 4.3 REINFORCEMENT LEARNING FOR IMPROVED STRUCTURED REASONING
 220

221 We assume that a better reasoning process should have fewer unnecessary connections between steps.
 222

223 **1. Max-Flow Reward** We assess step importance via a max-flow/min-cut based reward (Ford
 224 & Fulkerson, 1956). Let the induced reasoning graph have $V = n$ nodes and E retained edges
 225 after thresholding (edge density $\rho = E/n^2 \ll 1$). We employ a sparse max-flow implementation
 226 (Push–Relabel style with standard heuristics).

227 **(a) Graph Construction.** Construct directed graph $G = (V, E)$. Nodes $V = \{1, \dots, n\}$ representing
 228 steps (node 1: Question, node n : Answer); Edges $(i, j) \in E$ with capacity A_{ij} when $A_{ij} > \tau$
 229 (threshold $\tau = 0.05$). Thresholding prunes weak edges, yielding sparser, quasilinear backbones that
 230 accelerate flow computation while preserving salient reasoning channels.

231 **(b) Step Importance.** For source $s = 1$ and target $t = n$: Compute max-flow F in G using Ford–
 232 Fulkerson algorithm. For each node $k \in V \setminus \{s, t\}$, $\Delta F_k = F - F_{-k}$, where F_{-k} is the max-flow in
 233 subgraph G_{-k} (node k removed). The value ΔF_k quantifies how crucial step k is for reaching the
 234 conclusion.

235 **(c) Robustness Evaluation.** Let \mathcal{K}_{top} be the top-25% most important steps. The reasoning quality
 236 metric $Q \in [0, 1]$ is computed as:
 237

$$Q = 1 - \frac{\sum_{k \in \mathcal{K}_{\text{top}}} \Delta F_k}{\sum_{j=0}^{n-1} \Delta F_j}, \quad (4)$$

241 The reasoning reward $r_{\text{maxflow}} = Q$ if correct, else -1 . Higher Q indicates more balanced reasoning.
 242

243 **Time Complexity.** The theoretical worst-case complexity for max-flow is $\mathcal{O}(V^2 E)$ using Dinic’s
 244 algorithm. For dense attention graphs where $E = \Theta(n^2)$, this yields $\mathcal{O}(n^4)$. However, our two-stage
 245 optimization (optimized Dinic + residual network reuse) achieves **7.41 \times speedup**, with empirical
 246 complexity between $\mathcal{O}(n^2 \log n)$ and $\mathcal{O}(n^{2.5})$. The overall time complexity is:

$$247 \mathcal{O}(B H n^2 T_{\text{avg}}) + \mathcal{O}(n^{2.5}), \quad (5)$$

248 with detailed analysis in Appendix F.

249 **2. The Longest Common Subsequence Reward** The LCS reward requires at least one correct
 250 completion as reference. Given sampled reasoning completions $\mathcal{R} = \{r_1, \dots, r_n\}$ for a question,
 251 let $r_{\text{acc}}(r_i)$ denote the correctness reward for reasoning completion r_i . For each pair (r_i, r_j) , we
 252 extract their reasoning steps and compute the longest common subsequence (LCS) of reasoning
 253 labels, denoted $\text{LCS}(r_i, r_j)$.

254 Let L_{lcs} be the total length of the matched steps in the LCS and L_i be the total length of steps in r_i .
 255

256 To prevent *length hacking* (i.e., artificially increasing the token count of each reasoning step to
 257 inflate scores), for each matched step k in the LCS with lengths $\ell_{i,k}$ and $\ell_{j,k}$, we introduce a length
 258 suppression factor, defined as $\text{ratio}_k = \frac{\ell_{j,k}}{2\ell_{i,k}}$ if $\ell_{i,k} > \ell_{j,k}$ and $\text{ratio}_k = 1 - \frac{\ell_{i,k}}{2\ell_{j,k}}$ otherwise.
 259 Subsequently, the length of the weighted LCS is defined as $L_{\text{lcs}} = \sum_{k \in \text{LCS}(r_i, r_j)} \text{ratio}_k \cdot \ell_{i,k}$. We
 260 define the pairwise LCS score as:
 261

$$262 \text{Score}_{\text{lcs}}(r_i, r_j) = \begin{cases} \frac{L_{\text{lcs}}}{L_i}, & \text{if both } r_i \text{ and } r_j \text{ are correct,} \\ -\frac{L_{\text{lcs}}}{L_i}, & \text{if both } r_i \text{ and } r_j \text{ are incorrect,} \\ 1 - \frac{L_{\text{lcs}}}{L_i}, & \text{if } r_i \text{ is correct, } r_j \text{ is incorrect,} \\ -1 + \frac{L_{\text{lcs}}}{L_i}, & \text{if } r_i \text{ is incorrect, } r_j \text{ is correct.} \end{cases} \quad (6)$$

263 Here, a higher LCS ratio is rewarded when compared with correct completions (encouraging
 264 consensus on high-quality reasoning), while a lower LCS ratio is rewarded when compared with incorrect

270 completions (encouraging diversity from incorrect reasoning). The length suppression factor ratio_k
 271 penalizes unnecessarily long steps and encourages concise reasoning.
 272

273 Finally, the overall LCS reasoning reward for c_i is averaged over all other completions:

$$274 \quad r_{\text{lcs}}(c_i) = \frac{1}{n-1} \sum_{j \neq i} \text{Score}_{\text{lcs}}(c_i, c_j). \quad (7)$$

277 **Time Complexity.** For sequences of lengths L_1 and L_2 , the code fills a DP table and backtracks,
 278 costing $\mathcal{O}(L_1 L_2)$ time; the weight pass over LCS matches is $\mathcal{O}(\min\{L_1, L_2\})$ and does not change
 279 the overall bound. Space usage is $\mathcal{O}(L_1 L_2)$ for the DP table (plus a negligible $\mathcal{O}(\min\{L_1, L_2\})$ set
 280 of indices), thus $\mathcal{O}(L_1 L_2)$ overall.
 281

284 4.4 VALIDATING ATTENTION-REASONING CORRESPONDENCE

285 To validate that our step-to-step attention matrices truly capture reasoning dependencies, we conduct
 286 experiments on the **Entailment Trees dataset** (Dalvi et al., 2022), which provides gold-standard
 287 reasoning dependency annotations (premise \rightarrow intermediate \rightarrow conclusion) for ARC (AI2 Reasoning
 288 Challenge) science exam questions. We convert examples into structured format and extract ground-
 289 truth dependencies as binary adjacency matrices. We compare the **Structured** group (feeding
 290 structured reasoning into DeepSeek-R1-Distill-Qwen-7B and measuring alignment between step-
 291 wise attention and gold dependencies) against a **Shuffled** group (randomly shuffling step order while
 292 keeping question/answer positions fixed, thus destroying reasoning structure). For each example, we
 293 compute the alignment score as the proportion of gold dependencies where attention weight exceeds
 294 the average attention, and calculate the win rate as the percentage of examples where the Structured
 295 group outperforms the Shuffled group.

296 As shown in Table 1, we evaluate on two reasoning scenarios from ARC questions: **Task 1 (no dis-**
 297 **distractor)** contains only necessary reasoning steps, while **Task 2 (with distractor)** includes irrelevant
 298 information to test robustness. Across both tasks, the Structured group achieves significantly higher
 299 alignment with human annotations (71.27% vs 28.48% for Task 1; 72.27% vs 24.87% for Task 2)
 300 and overwhelming win rates (97.15% and 95.29%), demonstrating that attention matrices do capture
 301 meaningful reasoning dependencies rather than spurious correlations.

302 Table 1: Attention-dependency alignment on Entailment Trees dataset. The experimental group uses
 303 structured reasoning with preserved order, while the control group uses randomly shuffled steps.
 304

Task 1 no distractor	Avg Alignment	Win Rate	Task 2 with distractor	Avg Alignment	Win Rate
Shuffled Group	28.48%	5.50%	Shuffled Group	24.87%	4.71%
Structured Group	71.27%	97.15%	Structured Group	72.27%	95.29%

310 5 EXPERIMENTS

311 In this section, we evaluate the effectiveness of the proposed structured reasoning by comparing
 312 with GRPO and other models based on the same finetuned model.

315 5.1 COMPARED EFFICIENCY, STABILITY AND EXPLAINABILITY.

317 For structured reasoning tuning data, we use the S1 dataset (Muennighoff et al., 2025), which contains
 318 1,000 high-quality problems, covering science, technology, engineering and mathematics (STEM)
 319 and related domains. we select 500 high quality structured reasoning samples. In the second stage,
 320 we structured reasoning reinforcement learning on the DeepScaleR-Preview-Dataset (Luo et al.,
 321 2025b), a mathematics dataset containing 40K question-answer pairs drawn from AIME, AMC,
 322 Omni-Math (Gao et al., 2024a), and STILL (Song et al., 2025a).

323 **Efficiency Task.** We evaluate the effectiveness of our proposed methods by reporting Pass@1
 accuracy (mean \pm standard deviation) across nine benchmarks: the math (AIME 2024, AIME

324 2025, AMC, MATH500 (Hendrycks et al., 2021b), Minerva, Olympiad-Bench (He et al., 2024)),
 325 reading-comprehension (DROP), law (LSAT-AR (Zhong et al., 2023)) and massive multitask (MLU-
 326 ALL-VALID (Hendrycks et al., 2021a).) using standardized evaluation protocols. For AIME24,
 327 AIME25 and AMC23, we perform evaluations in 10 seeds each, while other are evaluated in 3 seeds
 328 each. For the training of our method, the maximum response length is limited to 4k tokens, while we
 329 report 0.5k, 1k, 2k, 4k and 8k maximum token length evaluation result for efficiency display. **The**
 330 **max-length constraint is enforced as a hard decoding cap during generation, which terminates when**
 331 **reaching the specified token limit or an end-of-sequence token, whichever comes first.** Additionally,
 332 we compare other 1.5B models against our MaxFlow structured reasoning version across Math
 333 problems (Appendix A.6). We also performed detailed component ablation studies (Appendix B) and
 334 comparisons between LCS and MaxFlow (Appendix C).

335
 336 Table 2: Benchmark Results (Pass@1 Accuracy) under different maximum response lengths. All
 337 results are reported as mean. Avg. score calculates the average across all nine benchmarks. DS is
 338 short for DeepSeek-R1. Comparison with baseline models and methods for fine-tuning 1.5B models.
 339 The shaded models are trained by [otherworks](#). All other results are either evaluated on existing
 340 models or on models we trained using different approaches. Methods all fine-tune DeepSeek-R1-
 341 Distill-Qwen-1.5B on the same DeepScaleR dataset.

Model	AIME'24	AIME'25	AMC	MATH500	Minerva	Olympiad	DROP	LSAT-AR	MMLU-ALL	Avg.
1K Maximum Response Length										
FastCuRL	0.00	2.22	15.83	25.73	9.19	7.56	20.80	22.75	40.54	16.07
DeepScaleR	0.00	1.11	16.67	35.00	13.11	9.48	23.50	19.71	41.15	17.75
DS-Distill-Qwen-1.5B	1.11	1.11	15.83	27.20	12.01	8.10	23.25	24.49	44.05	17.46
GRPO	0.00	0.00	25.00	45.20	13.73	12.94	34.50	22.17	40.67	21.58
Ours(LCS)	1.67	1.11	22.50	53.40	20.04	18.04	32.20	23.15	44.50	24.28
Ours(MaxFlow)	2.22	1.11	23.33	44.67	14.95	14.42	34.65	22.32	42.04	22.19
2K Maximum Response Length										
FastCuRL	1.67	3.33	27.50	54.90	17.10	19.41	28.71	22.75	45.35	24.52
DeepScaleR	7.78	5.56	36.67	65.20	24.63	27.36	28.70	22.90	45.13	29.33
DS-Distill-Qwen-1.5B	3.33	1.11	36.67	52.33	20.96	19.95	25.29	21.45	46.72	25.31
GRPO	6.67	6.67	45.83	68.07	24.39	30.52	38.99	24.04	45.44	32.33
Ours(LCS)	6.67	8.33	53.75	72.20	27.02	32.67	33.85	22.45	47.15	33.79
Ours(MaxFlow)	6.67	6.67	46.00	69.13	26.39	31.86	39.41	22.30	46.72	32.78
4K Maximum Response Length										
FastCuRL	14.44	15.56	50.00	76.60	29.29	36.84	33.76	23.04	48.51	36.45
DeepScaleR	22.22	24.44	63.33	77.13	32.11	40.04	30.33	24.06	48.55	40.25
DS-Distill-Qwen-1.5B	14.44	8.89	47.50	71.73	29.41	33.58	25.98	25.07	47.51	33.79
GRPO	17.78	16.67	58.33	77.13	29.90	40.40	42.00	24.49	46.81	39.28
Ours(LCS)	20.67	18.33	65.00	78.20	30.51	41.70	35.25	25.15	49.65	40.50
Ours(MaxFlow)	27.78	24.44	60.83	76.73	29.90	41.90	40.10	24.59	48.81	41.68
8K Maximum Response Length										
FastCuRL	18.89	17.78	58.33	78.40	30.50	42.15	33.00	23.50	49.51	39.12
DeepScaleR	36.67	26.67	77.50	87.80	33.56	56.22	33.73	32.17	48.92	48.14
DS-Distill-Qwen-1.5B	23.33	18.33	66.25	80.33	31.00	44.49	30.52	26.26	50.60	41.23
GRPO	23.33	21.11	69.17	83.20	31.37	48.89	42.23	24.20	45.98	43.28
Ours(LCS)	23.33	20.00	72.50	82.20	30.51	48.59	40.80	28.50	51.25	44.19
Ours(MaxFlow)	36.67	27.78	77.83	85.33	34.22	54.81	42.53	31.26	49.60	48.89

361
 362 **Stability Task.** To assess model stability, we conduct experiments across LSAT-AR, MATH500, and
 363 Olympiad-Bench datasets (3 seeds each) under varying sampling temperatures (0.1 to 1.0). Using a
 364 fixed 8k token maximum response length, we measure accuracy variance to quantify how robust our
 365 methods are to different temperature settings, with lower variance indicating better stability.

366 **Explainability Task.** We design an experiment (Interference Injection and Selective Removal,
 367 **IISR**) (A.13) to assess our ability to analyze reasoning step importance. Since existing datasets
 368 rarely provide direct importance annotations for reasoning steps, and LLM-based scoring is noisy, we
 369 inject obviously irrelevant reasoning steps into existing chains. While we cannot confirm the relative
 370 importance of original steps, we can be certain about the irrelevance of injected ones. We compare
 371 our max-flow algorithm (4.3), top-p/top-k backtracking (A.10), average step perplexity (A.10), and
 372 random selection based on their Error Filtering Efficiency (A.11) when removing 1-11 steps from
 373 mixed reasoning chains. The experiment uses 70 correctly structured reasoning examples from
 374 S1k, covering STEM and related domains, selected for their longer trace lengths and more uniform
 375 reasoning steps. We define four types of interference steps: (1) **Redundant** - statements like “Let’s
 376 summarize what we’ve done so far, our previous work is correct” that add no value to reasoning; (2)
 377 **Distracted** - comments indicating distraction such as “This reminds me of another problem”; (3)
 378 **Harmful** - randomly injected reasoning steps from other problems; and (4) **Confused** - copies of
 379 current reasoning steps randomly injected at incorrect positions in the reasoning chain.

378 Table 3: Comparison with baseline models and methods for fine-tuning 7B models. Methods in the
 379 bottom section all fine-tune DeepSeek-R1-Distill-Qwen-7B on the same DeepScaleR dataset.
 380

Model	AIME'24	AIME'25	AMC	MATH500	Minerva	Olympiad	DROP	LSAT-AR	MMLU-ALL	Avg.
1K Maximum Response Length										
Light-R1	3.33	3.33	25.00	38.33	17.65	11.95	43.27	23.04	54.50	24.49
DS-Distill-Qwen-7B	5.56	4.44	16.67	35.00	19.00	11.01	43.44	21.74	59.20	24.01
GRPO	8.89	6.67	27.50	50.73	23.65	16.69	49.75	22.03	56.76	29.19
Ours(LCS)	13.33	8.78	35.00	62.20	29.80	24.50	50.15	28.80	60.65	35.06
Ours(MaxFlow)	11.11	10.13	30.00	57.67	27.21	20.94	50.33	25.80	58.96	32.32
2K Maximum Response Length										
Light-R1	22.22	14.11	43.33	67.67	35.66	32.20	45.72	29.42	62.42	39.19
DS-Distill-Qwen-7B	15.56	13.33	38.33	65.33	32.60	28.89	45.46	31.09	63.44	37.11
GRPO	22.22	18.89	56.67	77.27	35.42	38.96	51.82	28.78	60.25	43.36
Ours(LCS)	28.89	25.44	63.50	80.40	38.90	42.75	52.90	31.10	62.20	47.34
Ours(MaxFlow)	26.67	22.22	60.83	77.53	37.63	38.87	51.65	31.13	61.02	45.28
4K Maximum Response Length										
Light-R1	38.89	35.56	72.50	80.47	39.34	48.25	45.72	34.35	63.49	50.95
DS-Distill-Qwen-7B	35.56	38.89	62.50	81.20	39.46	45.68	45.74	37.61	64.58	50.14
GRPO	42.22	35.56	70.00	84.40	39.09	50.07	51.79	37.83	61.45	52.49
Ours(LCS)	40.00	32.22	75.83	85.60	40.15	51.25	53.20	40.25	63.15	53.52
Ours(MaxFlow)	43.89	38.89	80.83	87.53	40.56	52.99	52.86	44.49	61.70	55.97
8K Maximum Response Length										
Light-R1	44.44	45.56	80.83	89.47	38.24	59.56	46.00	50.00	64.50	57.62
DS-Distill-Qwen-7B	41.11	42.22	83.50	91.33	40.69	59.26	46.07	52.32	65.97	58.05
GRPO	48.89	40.00	85.50	90.27	40.26	59.70	51.78	46.74	61.79	58.33
Ours(LCS)	46.67	38.89	82.50	88.80	39.85	58.45	52.45	48.90	62.35	57.65
Ours(MaxFlow)	53.78	41.00	91.25	92.67	41.54	61.78	53.03	52.74	62.77	61.17

397
 398 Table 4: Comparison of model performance variance and stability under temperature changes from
 399 0.1 to 1.0. Results on MATH500, OlympiadBench, and LSAT-AR benchmarks demonstrate model
 400 robustness across different temperature settings. Methods in the bottom section fine-tune both
 401 DeepSeek-R1-Distill-Qwen-1.5B and 7B models using the same DeepScaleR dataset.

1.5B Models	Performance			7B Models	Performance		
	MATH500	OlympiadBench	LSAT-AR		MATH500	OlympiadBench	LSAT-AR
DS-Distill-Qwen-1.5B	78.00±2.94	42.50±2.74	26.38±0.64	DS-Distill-Qwen-7B	91.33±1.42	59.26±1.44	52.32±2.69
FastCuRL	80.66±1.09	45.26±0.80	26.36±0.94	Light-R1	89.47±1.12	59.56±0.57	50.00±3.37
GRPO	82.51±0.79	48.07±0.65	28.98±0.50	GRPO	90.27±0.92	59.70±0.70	46.74±2.39
Ours(LCS)	83.74±0.48	50.15±0.48	29.87±0.58	Ours(LCS)	90.85±0.61	59.72±0.62	49.58±2.24
Ours(MaxFlow)	85.08±0.53	54.28±0.29	31.35±0.47	Ours(MaxFlow)	92.67±0.48	61.78±0.50	52.74±2.08

402
 403
 404
 405
 406
 407
 408
 409 **Models.** Our experiments are conducted on two base models: DeepSeek-R1-Distill-Qwen-1.5B
 410 and DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI et al., 2025b). For both model sizes, we train
 411 for 500 steps and derive three variants through different reinforcement learning approaches. **GRPO**
 412 represents models trained using the GRPO algorithm to optimize the reasoning process. **Max-Flow**
 413 denotes models trained with our proposed maximum flow reward, which evaluates the balance of step
 414 contributions in the reasoning response (4.3). **LCS** refers to models trained using a reward based on
 415 reasoning process similarity to select optimal reasoning sequences (4.3). The structured reasoning
 416 example can be found in A.12. The experiment comparison can be found in A.4.4.

417 **Baselines.** We compare our proposed methods with several state-of-the-art baselines: (1) DeepSeek-
 418 R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI et al., 2025b); (2) FastCuRL-
 419 1.5B-Preview (Song et al., 2025b), which employs curriculum learning for reasoning; (3) DeepScaleR-
 420 1.5B (Luo et al., 2025b), which incorporates entropy regularization in GRPO; (4) GRPO (Shao et al.,
 421 2024a), which uses guided reinforcement learning for reasoning optimization; and (5) Light-R1-7B,
 422 a larger model variant. All these models, including ours, are initialized from DeepSeek-R1-Distill-
 423 1.5B/7B and subsequently fine-tuned via reinforcement learning to enhance reasoning capabilities.

424 **Training Details.** We train all methods (GRPO, Max-Flow reward, LCS reward) on DeepSeek-R1-
 425 Distill-Qwen-1.5B and 7B backbones. Models are initialized with a brief structured tuning pass on the
 426 500 Structured Reasoning set (2 epochs, learning rate 1×10^{-5} , cosine schedule without floor, weight
 427 decay 1×10^{-4} , micro-batch 1 on a single A100); this stage is uniform across methods. Structure-
 428 aware optimization then uses the DeepScaleR-Preview-Dataset in bfloat16 with FlashAttention2;
 429 inference runs under vLLM (70% GPU memory, max sequence length 4096). Per-device batch size 6,
 430 gradient accumulation 4 (effective batch 24), gradient checkpointing enabled. Learning rate sweep:
 431 $\{1 \times 10^{-6}, 2 \times 10^{-6}\}$; 2×10^{-6} works better for 1.5B, 1×10^{-6} for 7B. Cosine scheduler with 0.1×
 432 floor; weight decay 1×10^{-4} . Each training sample yields 6 completions at temperature 0.6 (same

for evaluation). All reward settings include a Format Score (weight 1.0). The Max-Flow reward carries weight 2.0; its graph is built by thresholding step-step attention at $\tau = 0.05$ then running a capacity-scaling max flow. The LCS structural reward is length-normalized to match Format Score scale. GRPO uses $\beta = 1 \times 10^{-3}$. When a KL constraint is enabled, we set $\delta = 1 \times 10^{-4}$ (average $K \simeq 2 \times 10^{-5}$) and $\beta_{KL} = 10^3$, giving effective penalty $\beta_{KL}\delta \approx 0.1$ upon violation. No dynamic sampling or sample-inflating heuristics are used (fixed 6 candidates per prompt). Validation occurs at fixed intervals; we report the best checkpoint on held-out metrics. Structural reward computation adds only modest overhead versus the base forward and decoding costs (Appendix A.4.2).

Efficiency Performance. As shown in Tables 2, 3, and A.6, we evaluate all models across six mathematics-focused benchmark datasets and three out-of-domain datasets (reading, legal, and massive multitask) to demonstrate the effectiveness of MaxFlow and LCS. From Table 2, we observe that our proposed structure-aware optimization methods consistently outperform other baselines for 1.5B models. Notably, MaxFlow with 4k training length achieves significant average improvement over GRPO and surpasses DeepScaleR-1.5B-Preview, which was trained with maximum 24k length and evaluated with 32k length (Table A.6). Similarly for 7B models, Table 3 shows that the LCS method performs excellently under 4k maximum length, while MaxFlow outperforms by a large margin across the entire length range. Besides, Figure 7 shows LCS generate more correct responses in the 256-1024 token range and fewer than exceed 8192 tokens, indicating more efficient reasoning.

Table 5: Comparison of Error Filtering Efficiency (EFE) percentage when removing 3, 5, 7, and 9 steps from responses. Perplexity uses step-level lowest perplexity ordering for removal, while both top-k and MaxFlow are based on our proposed step attention matrix method.

Method	DeepSeek-R1-Distill-1.5B				DeepSeek-R1-Distill-7B			
	3 steps	5 steps	7 steps	9 steps	3 steps	5 steps	7 steps	9 steps
Random	54.97	54.98	55.39	53.57	56.60	56.12	55.56	55.25
Perplexity	56.65	59.52	62.91	68.07	57.87	61.40	65.36	65.13
Ours(Top-k)	59.36	67.39	69.84	76.29	59.63	64.22	68.65	75.38
Ours(Max-Flow)	69.22	72.71	75.36	76.67	65.16	73.55	74.34	75.16

Structured Reasoning Models Produce More Stable Outputs. As shown in Table 4, we observe contrasting behaviors between baseline and structured reasoning models across temperature variations. Baseline DeepSeek-R1-Distill models exhibit significant temperature sensitivity, with performance improving substantially as temperature increases from 0.1 to 0.9. For example, the 1.5B baseline shows accuracy gains from 77.47 to 82.33 on MATH500 when temperature rises. This suggests that baseline models rely heavily on sampling diversity to achieve better performance. In contrast, our MaxFlow method maintains consistent performance across all temperature settings, achieving the lowest variance: ± 0.53 on MATH500 and ± 0.29 on OlympiadBench for the 1.5B model. This temperature robustness indicates that structured reasoning frameworks produce inherently stable outputs without requiring specific sampling parameters, making them more reliable.

Structured Analysis Helps Identify Redundant Reasoning Steps. Through IISR experiments, we found that as more reasoning steps were removed, our proposed methods based on step-matrix (See Section 4.3) (top-k, top-p, and max-flow) significantly outperformed random removal Figure A.11. The specific example can be found in Appendix A.13. Additionally, in our comparison with perplexity-based algorithms 6, we found that removing steps with the lowest PPL (PPL Bottom) performed similarly (though slightly worse) to our methods when dealing with redundant but harmless information, as such information typically has low information content and low perplexity. Interestingly, for logically confused interference, removing steps with the highest PPL (PPL Top) performed slightly better, as steps appearing in inappropriate positions caused significantly increased perplexity. This shows that PPL reflects information quantity and cannot distinguish reasoning from disruptive content. Table 5 Our step-matrix-based methods outperformed PPL-based approaches.

5.2 WHAT ARE THE GAINS FROM STRUCTURED REASONING MODELS?

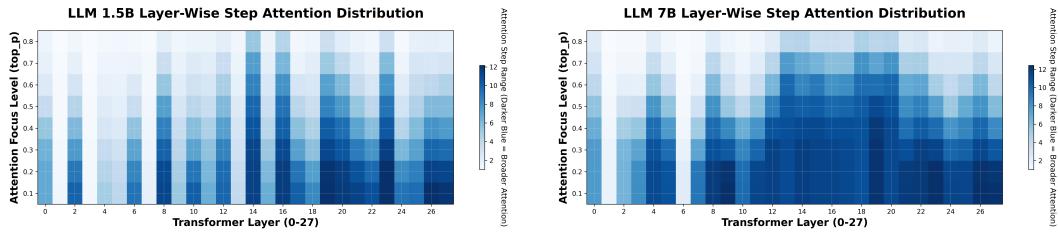
Benefit from Training-Free Structured Reasoning. For large LLMs, leveraging their robust instruction-following capabilities and inherent reasoning abilities, we can effectively guide them

486 towards structured reasoning without additional training. Table 6 summarizes the average token
 487 lengths and accuracies across several benchmarks, including MATH500, GPQA-Diamond, MMLU-
 488 ALL-VALID, AMC23, and AIME24. Notably, the structured reasoning model achieves similar or
 489 higher accuracy with much shorter answers, e.g., on MATH500, the average reasoning token length
 490 drops from 2945 (Base) to 1577 (Structured Guidance), while accuracy remains above 92% (See
 491 Appendix A.14 for the fill in the middle prompting strategy).

492
 493 Table 6: Token Length and Accuracy Analysis of DeepSeek-R1 671B Using Training-Free Structured
 494 Guidance. Results shown across Mathematical and General Benchmarks under same settings.

Model	MATH500 Acc./Len.	GPQA Acc./Len.	MMLU Acc./Len.	AMC23 Acc./Len.
Base	92.9%/2945	70.3%/6537	88.8%/989	100%/1716
Structured Guidance	93.0%/1577 -46.5%	71.1%/4028 -38.4%	89.6%/512 -48.2%	100%/2053 +19.6%

500 **Cross-Scale Emergence of Broad Mid-to-Late Step-Span Attention.** According to 70 samples
 501 from 1.5B and 7B models with our step attention matrix thresholded at 0.1, we found that layer 0
 502 attends to an average of 6.82 reasoning steps, while layer 1 attends to only 1.41. This produces a
 503 repeating **broad-versus-local** alternation through approximately layers 0–13, suggesting an early
 504 division of labor between (i) layers that aggregate multi-step context and (ii) layers that perform local
 505 refinement anchored to the immediately preceding step. Beginning around layer 14, all subsequent
 506 layers attend to >8 steps (peaking at 12.06), marking a transition to a stable broad-span integration
 507 regime that more faithfully ranks step importance (Figure 3). The same qualitative pattern appears in
 508 both 1.5B and 7B models: early oscillatory specialization → mid/late sustained global integration.
 509 The 7B model shows a smoother (less jagged) broadening trajectory, whereas the 1.5B model
 510 preserves sharper alternating contrasts before converging. These consistent cross-scale dynamics
 511 imply (1) the broad-span mid–late blocks encode globally consolidating reasoning signals, and (2)
 512 pruning or distillation strategies could target redundant narrow-focus early layers or alternating pairs
 513 while preserving (or selectively enhancing) the globally integrative mid–late region.



522 Figure 3: Analysis of attention step range: 1.5B (Left) and 7B (Right). Darker means broader.
 523

524 **Analysis of Model Reasoning Patterns.** We identify a domain-invariant backbone: assumption
 525 → (decompose | formalize) → verify → consequence → summarize, while variability
 526 concentrates in domain-shaped verify loops (e.g., contradiction cycles in Number Theory,
 527 associative loops in Clinical, evaluative verify→consequence chains in Business Ethics, early
 528 grounding in Geometry). Algebra shows a canonical assumption→decompose→formalize
 529 setup, whereas Geometry’s early direct formalization yields the leanest loop density and Business
 530 Ethics exhibits a high hypothesis suppression ratio with intensified evaluative chains. Loop density
 531 rises and the verify position shifts rightward in longer traces, signaling deferred iterative refinement.
 532 Full transition frequencies, loop densities, and positional distributions appear in Appendix A.5.

533 6 CONCLUSION

536 In this paper, we reformulate structured reasoning as a graph optimization problem where reasoning
 537 flows from question → steps → answer. Our approach introduces structured step annotations for
 538 reliable graph construction in small LLMs, MaxFlow reward for pruning redundant steps, LCS reward
 539 for reinforcing high-quality sub-paths. Experiments on DeepSeek-R1-Distill models demonstrate
 that MaxFlow provides significant performance gains with superior stability across context lengths.

540 REFERENCES
541

542 Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
543 reinforcement learning. *arXiv preprint arXiv:2503.04697*, 2025.

544 Gabriel Alon and Michael Kamfonas. Detecting language model attacks with perplexity, 2023. URL
545 <https://arxiv.org/abs/2308.14132>.

546 Daman Arora and Andrea Zanette. Training language models to reason efficiently. *arXiv preprint*
547 *arXiv:2502.04463*, 2025.

548 Hugo Bronkhorst, Gerrit Roorda, Cor Suhre, and Martin Goedhart. Students' use of formalisations
549 for improved logical reasoning. *Research in Mathematics Education*, 2022.

550 Xin Cai. One framework to rule them all: Unifying rl-based and rl-free methods in rlhf. *arXiv*
551 *preprint arXiv:2503.19523*, 2025.

552 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
553 Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. *arXiv preprint*
554 *arXiv:2502.01456*, 2025a.

555 Yingqian Cui, Pengfei He, Jingying Zeng, Hui Liu, Xianfeng Tang, Zhenwei Dai, Yan Han, Chen
556 Luo, Jing Huang, Zhen Li, Suhang Wang, Yue Xing, Jiliang Tang, and Qi He. Stepwise perplexity-
557 guided refinement for efficient chain-of-thought reasoning in large language models, 2025b. URL
558 <https://arxiv.org/abs/2502.13260>.

559 Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan Xie, Hannah Smith, Leighanna Pi-
560 patanangkura, and Peter Clark. Explaining answers with entailment trees, 2022. URL <https://arxiv.org/abs/2104.08661>.

561 DeepSeek-AI. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement
562 Learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

563 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
564 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
565 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
566 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
567 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
568 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
569 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
570 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
571 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
572 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
573 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
574 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
575 Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
576 Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
577 Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanja Zhao, Wen Liu, Wenfeng
578 Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
579 Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
580 Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
581 Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
582 Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
583 Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
584 Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
585 He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
586 Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
587 Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
588 Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
589 Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
590 Zhang. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning,
591 January 2025a. URL <http://arxiv.org/abs/2501.12948>. arXiv:2501.12948 [cs].

594 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 595 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 596 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 597 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 598 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 599 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 600 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 601 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
 602 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
 603 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
 604 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
 605 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
 606 Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye, Shiyu Wang,
 607 Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
 608 Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
 609 Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
 610 Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
 611 Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
 612 Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
 613 Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
 614 Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
 615 Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
 616 He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
 617 Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
 618 Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
 619 Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
 620 Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
 621 Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025b.
 622 URL <https://arxiv.org/abs/2501.12948>.

623 Jonathan St BT Evans. Dual-process theories. In *The Routledge international handbook of thinking
 and reasoning*, pp. 157–174. Routledge, 2018.

624 L. R. Ford and D. R. Fulkerson. Maximal flow through a network. *Canadian Journal of Mathematics*,
 625 8:399–404, 1956. doi: 10.4153/CJM-1956-045-5.

626 Birte U Forstmann, Roger Ratcliff, and Eric-Jan Wagenmakers. Sequential sampling models in
 627 cognitive neuroscience. *Annual review of psychology*, 67:641–666, 2016.

628 Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
 629 Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran Quan,
 631 Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang. Omnimath:
 632 A universal olympiad level mathematic benchmark for large language models, 2024a. URL
 633 <https://arxiv.org/abs/2410.07985>.

634 Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang,
 635 and Yi Wu. On designing effective rl reward at training time for llm reasoning. *arXiv preprint
 636 arXiv:2410.15115*, 2024b.

637 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
 638 Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiad-
 639 bench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal
 640 scientific problems, 2024.

641 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 642 Steinhardt. Measuring massive multitask language understanding, 2021a. URL <https://arxiv.org/abs/2009.03300>.

643 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 644 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*,
 645 2021b.

648 Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udandarao, Samuel Albanie, Ameya Prabhu, and
 649 Matthias Bethge. A sober look at progress in language model reasoning: Pitfalls and paths to
 650 reproducibility, 2025. URL <https://arxiv.org/abs/2504.07086>.

651

652 Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
 653 Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. *arXiv preprint*
 654 *arXiv:2504.01296*, 2025.

655

656 Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. *arXiv*
 657 *preprint arXiv:2501.03262*, 2025.

658

659 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 660 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 661 *arXiv:2412.16720*, 2024.

662

663 F. Jelinek, R. L. Mercer, L. R. Bahl, and J. K. Baker. Perplexity—a measure of the difficulty of speech
 664 recognition tasks. *The Journal of the Acoustical Society of America*, 62(S1):S63–S63, 08 2005.

665

666 Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
 667 Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning through
 668 refined credit assignment. *arXiv preprint arXiv:2410.01679*, 2024.

669

670 Chen Li, Nazhou Liu, and Kai Yang. Adaptive group policy optimization: Towards stable training
 671 and token-efficient reasoning. *arXiv preprint arXiv:2503.15952*, 2025.

672

673 Zhihang Lin, Mingbao Lin, Yuan Xie, and Rongrong Ji. Cppo: Accelerating the training of group
 674 relative policy optimization-based reasoning models. *arXiv preprint arXiv:2503.22342*, 2025.

675

676 Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Jiayang, Yue Zhang, Xipeng Qiu, and Zheng Zhang.
 677 Can language models learn to skip steps?, 2024. URL <https://arxiv.org/abs/2411.01855>.

678

679 Zichen Liu, Changyu Chen, Wenjun Li, Tianyu Pang, Chao Du, and Min Lin. There may not be
 680 aha moment in rl-zero-like training — a pilot study. <https://oatllm.notion.site/oat-zero>, 2025a. Notion Blog.

681

682 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
 683 Min Lin. Understanding rl-zero-like training: A critical perspective, 2025b. URL <https://arxiv.org/abs/2503.20783>.

684

685 Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
 686 and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning.
 687 *arXiv preprint arXiv:2501.12570*, 2025a.

688

689 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin
 690 Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-
 691 preview with a 1.5b model by scaling rl. <https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005b>, 2025b. Notion Blog.

692

693 Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
 694 Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
 695 large language models. *arXiv preprint arXiv:2310.12931*, 2023.

696

697 Earl K Miller and Jonathan D Cohen. An integrative theory of prefrontal cortex function. *Annual*
 698 *review of neuroscience*, 24(1):167–202, 2001.

699

700 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 701 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.

702

703 OpenAI. OpenAI o1, 2024. URL <https://openai.com/o1>.

702 OpenAI. OpenAI o3-mini System Card, January 2025. URL <https://cdn.openai.com/o3-mini-system-card-feb10.pdf>.

703

704

705 QwQ. QwQ-32B: Embracing the Power of Reinforcement Learning | Qwen, 2025. URL <https://qwenlm.github.io/blog/qwq-32b/>.

706

707 Nicolas Le Roux, Marc G Bellemare, Jonathan Lebensold, Arnaud Bergeron, Joshua Greaves, Alex Fréchette, Carolyne Pelletier, Eric Thibodeau-Laufer, Sándor Toth, and Sam Work. Tapered off-policy reinforce: Stable and efficient reinforcement learning for llms. *arXiv preprint arXiv:2503.14286*, 2025.

708

709

710

711

712 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models, 2024a. URL <https://arxiv.org/abs/2402.03300>.

713

714

715

716 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024b.

717

718

719

720 Wei Shen, Guanlin Liu, Zheng Wu, Ruofei Zhu, Qingping Yang, Chao Xin, Yu Yue, and Lin Yan. Exploring data scaling trends and effects in reinforcement learning from human feedback. *arXiv preprint arXiv:2503.22230*, 2025a.

721

722

723 Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai Wang, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning models. *arXiv preprint arXiv:2503.04472*, 2025b.

724

725

726

727 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Ji-Rong Wen, Yang Lu, and Xu Miu. R1-searcher: Stimulating the search capability of llm from zero via reinforcement learning. 2025a. URL <https://github.com/SsmallSong/R1-searcher>.

728

729

730 Mingyang Song, Mao Zheng, Zheng Li, Wenjie Yang, Xuan Luo, Yue Pan, and Feng Zhang. Fastcurl: Curriculum reinforcement learning with progressive context extension for efficient training r1-like reasoning models, 2025b. URL <https://arxiv.org/abs/2503.17287>.

731

732

733

734 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms. *arXiv preprint arXiv:2501.12599*, 2025.

735

736

737 Songjun Tu, Jiahao Lin, Xiangyu Tian, Qichao Zhang, Linjing Li, Yuqian Fu, Nan Xu, Wei He, Xiangyuan Lan, Dongmei Jiang, et al. Enhancing llm reasoning with iterative dpo: A comprehensive empirical investigation. *arXiv preprint arXiv:2503.12854*, 2025.

738

739

740

741 Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu Tang, Xiaowei Lv, et al. Light-r1: Curriculum sft, dpo and rl for long cot from scratch and beyond. *arXiv preprint arXiv:2503.10460*, 2025.

742

743

744

745 Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable chain-of-thought compression in llms, 2025. URL <https://arxiv.org/abs/2502.12067>.

746

747

748 Junjie Yang, Ke Lin, and Xing Yu. Think when you need: Self-adaptive chain-of-thought learning. *arXiv preprint arXiv:2504.03234*, 2025.

749

750

751

752

753

754 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. *arXiv preprint arXiv:2503.14476*, 2025.

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

756 Jinghan Zhang, Xiting Wang, Fengran Mo, Yeyang Zhou, Wanfu Gao, and Kunpeng Liu. Entropy-
757 based exploration conduction for multi-step reasoning, 2025. URL <https://arxiv.org/abs/2503.15848>.
758

759 Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied, Weizhu
760 Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation models,
761 2023. URL <https://arxiv.org/abs/2304.06364>.
762

763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A APPENDIX
811812 A.1 THE USE OF LARGE LANGUAGE MODELS (LLMs)
813814
815 As Large Language Models (LLMs) have evolved into reliable research assistance tools, we maintain
816 transparency about their usage in this work. In accordance with the submission guidelines, we
817 explicitly declare our LLM utilization in the following scenarios.818 First, we employed LLMs for grammar and style enhancement, specifically for proofreading and
819 improving the linguistic quality of the manuscript. All suggestions were manually reviewed and
820 verified by the authors to ensure accuracy and appropriateness.821 Second, LLMs were utilized to assist in the layout and organization of paper figures, helping optimize
822 the arrangement and presentation of visual elements. The actual content and design decisions
823 remained entirely under the authors' control, with LLMs providing suggestions for effective visual
824 organization and structural composition.825 We emphasize that all LLM-generated content underwent thorough human verification and refinement.
826 The core research ideas, methodology, experiments, and conclusions were independently developed
827 by the authors. LLMs served purely as assistive tools under careful human supervision to ensure the
828 work's reliability and originality.830
831 A.2 ETHICS STATEMENT
832833 We affirm our full compliance with the ICLR Code of Ethics throughout this research. Our work
834 primarily focuses on visualization techniques and does not involve human subjects, sensitive personal
835 data, or potentially harmful applications. The visualizations and methodologies presented in this
836 paper are designed to be general-purpose tools that promote transparency and understanding in data
837 analysis.838 We acknowledge that any visualization tool could potentially be misused for misrepresenting data.
839 To address this concern, we have implemented clear documentation of all visualization parameters,
840 explicitly stated the limitations and appropriate use cases, and designed our tools with built-in
841 safeguards against common forms of visual manipulation.842 We declare no conflicts of interest, and our research was conducted independently without external
843 commercial influence.844
845 A.3 REPRODUCIBILITY STATEMENT
846847 We are committed to ensuring the reproducibility of our research findings. Our com-
848 plete set of interactive visualizations is currently available at our anonymous website
849 <https://anonymous.4open.science/w/structured-reasoning/>. These visualizations demonstrate all the
850 key findings discussed in the paper.851 While our source code and data are not yet publicly available due to the double-blind review
852 process, we are preparing comprehensive releases that will include the complete implementation
853 code, processing scripts and documentation, sample datasets used in our experiments, along with
854 configuration files and parameters.855 Section 3 of our paper provides detailed technical specifications and methodology, with additional
856 implementation details available in Appendix A.857
858 A.4 TRAINING DETAILS AND RUNTIME ANALYSIS
859860 We summarize the complexity of the two structural rewards: MAX-Flow and LCS, together with the
861 scalability heuristics actually used.

864
865

A.4.1 NOTATION

866
867
868

B batch size; H attention heads; n average reasoning steps; T_{avg} tokens per step; $L = nT_{\text{avg}}$ total reasoning length; d_h head dim; τ sparsification threshold; E retained edges after thresholding; C_{max} maximum edge capacity; m number of answer candidates; L_{ans} average candidate length.

869

870

A.4.2 SCALING HEURISTICS

871
872
873
874
875

Layer selection: extract step attention only from a small subset (e.g., 23–27 layers), cutting proportional overhead. Adaptive threshold: choose τ as a running quantile to stabilize E as context length grows, avoiding quadratic blow-up. Capacity bucketing (8–12 bit) bounds $\log C_{\text{max}}$ and shortens scaling phases. Structural token filtering shrinks LCS input length before any quadratic DP.

876

877

Table 7: Observed MAX-Flow reward overhead (single evaluation).

878
879
880
881
882

Model	Max Len	Avg Steps	Peak Mem (MB)	Latency (ms)
1.5B	2048	6.23	69.10	258
7B	2048	6.18	177.59	395
7B	4096	11.05	373.89	1321

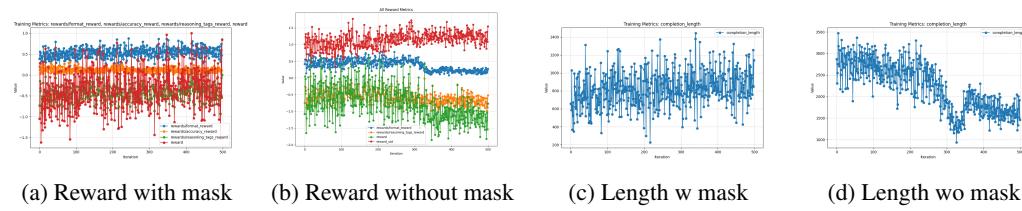
883

884

A.4.3 PRACTICAL SUMMARY

885
886
887
888

Overhead is dominated by sparse max-flow with $E \ll n^2$; LCS becomes the main cost only when doing full pairwise alignment with large m ; layer restriction, adaptive edge sparsity, and structural token filtering preserve tractability for long contexts (e.g., 128K) without quadratic memory growth.

889
890
891
892
893
894

895

896

Figure 4: Impact of Truncated Completion Masking on Training Stability

897

898

A.4.4 EXPERIMENTAL DETAILS

899
900
901
902
903

Table 8: Training Details. To ensure consistency in counting training steps, we standardized the batch size to 128. This means that two steps with a batch size of 64 are considered equivalent to one step with a batch size of 128.

904
905
906
907
908

Model	Training Steps	Training Stages	Number of GPUs Used in Each Stage
Ours	RL(~ 23)	2	1, 4
FastCuRL	RL(~ 860)	4	8, 8, 8, 8
DeepScaleR	RL($\sim 1,750$)	3	8, 16, 32

909

910

Truncation Robustness.

911
912
913
914

Our observations reveal that truncated long outputs can induce notable gradient fluctuations and result in unstable training processes (Figure 4). To mitigate this issue, we mask the truncated completions to disregard their reward values and gradient updates. This approach effectively stabilizes optimization by omitting samples surpassing a predefined length limit.

915

916

917

Tag Randomization for Robustness

Inspired by DeepSeek-R1’s reasoning completions, we introduce randomization in the order of reasoning tags in the prompt during training. Specifically, for each question, we retain the top 5 tags

918 and randomly sample 0–5 additional tags from the remaining set, shuffling their order in the prompt.
 919 This approach reduces overfitting to fixed reasoning patterns and encourages the model to generalize
 920 reasoning strategies.
 921

922 A.5 DOMAIN-SPECIFIC REASONING PATTERNS 923

924 **Data & Extraction.** We sample 1,000 MaxFlow reasoning traces across five domains: Algebra,
 925 Number Theory, Geometry, Clinical Knowledge, and Business Ethics. Each trace is segmented into
 926 induced step tags (e.g., `assumption`, `decompose`, `formalize`, `verify`, `case_analysis`,
 927 `association`, `consequence`, `summarize`). We construct a directed multigraph over step
 928 types; edges count adjacent transitions. Edges with global frequency < 0.5% are pruned for clarity
 929 (full graph retained for reproducibility).
 930

931 **Metrics.** (1) Average step count. (2) Top tri-gram pattern (local procedural schema). (3) Verify-
 932 centered loop density: proportion of transitions incident to `verify` that participate in a back-
 933 reference to any earlier non-terminal step within a 6-step sliding window. (4) Hypothesis suppression
 934 ratio: $1 - \frac{\text{freq}(\text{assumption} \rightarrow \text{decompose})}{\text{freq}(\text{assumption} \rightarrow *)}$. (5) Positional distribution: normalized relative index of each
 935 tag (Fig. 8).
 936

937 **Cross-Domain Findings.** A stable backbone (`assumption`→`decompose`/`formalize`→
 938 `verify`→`consequence`→`summarize`) appears in all domains, but modulation oc-
 939 curs in early structural translation and verification refinement: (1) **Algebra**: canonical
 940 `assumption`→`decompose`→`formalize` pipeline before consolidation. (2) **Number The-
 941 ory**: elevated `case_analysis`→`contradiction` and `verify`↔`contradiction` loops
 942 (proof refinement). (3) **Geometry**: suppressed `decompose`; early `assumption`→`formalize`
 943 grounding (equational or coordinate forms). (4) **Clinical**: associative diagnostic path
 944 `assumption`→`association`→`case_analysis`; verification loops link symptom clusters
 945 to differential hypotheses. (5) **Business Ethics**: sparse `assumption`→`decompose` (limited hy-
 946 pothesis branching), intensified evaluative `verify`→`consequence` chains and `verify`-centric
 947 loops.
 948

949 **Loop Dynamics.** Loop density around `verify` increases with total step length (upper quartile
 950 traces show a right-shifted `verify` positional distribution), consistent with iterative late-stage
 951 refinement rather than premature validation. Number Theory and Business Ethics show the highest
 952 `verify`-loop densities (contradiction vs. evaluative implication), while Geometry exhibits the leanest
 953 loops due to early formal grounding reducing re-check cycles.
 954

955 Table 9: Domain-specific structural statistics (loop density / suppression values illustrative; replace
 956 with empirical measurements).
 957

Domain	Avg. Steps	Top Tri-gram	Verify Loop Density
Algebra	12.3	<code>assumption</code> → <code>decompose</code> → <code>formalize</code>	0.41
Number Theory	11.8	<code>case_analysis</code> → <code>contradiction</code> → <code>verify</code>	0.57
Geometry	10.5	<code>assumption</code> → <code>formalize</code> → <code>verify</code>	0.38
Clinical	14.2	<code>assumption</code> → <code>association</code> → <code>case_analysis</code>	0.49
Business Ethics	13.6	<code>verify</code> → <code>consequence</code> → <code>summarize</code>	0.53

963 **Implications.** The coexistence of a transferable backbone and domain-conditioned verification
 964 loops suggests: (i) pruning strategies can target high-density `verify` cycles (e.g., contradiction
 965 refinement) without harming structural progression; (ii) low hypothesis branching domains (Busi-
 966 ness Ethics) may benefit from explicit hypothesis expansion prompts; (iii) early formal grounding
 967 (Geometry) reduces downstream verification overhead—an avenue for curriculum design.
 968

969 A.6 DETAILED MODEL COMPARISON AND REWARD ANALYSIS 970

971 Table 11 presents a comprehensive comparison of three Small Structure Reasoning (SR) methods
 972 across various mathematical benchmarks. SR-FLOW demonstrates superior performance, achieving
 973

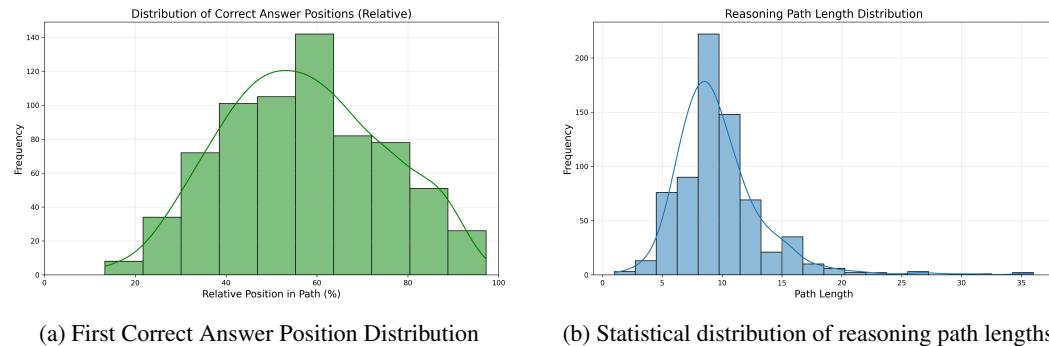
972 Table 10: Benchmark Results (Pass@1 Accuracy). All results are reported as mean \pm standard
 973 deviation. Avg. score calculates the average across all six benchmarks, while Large Avg. focuses on
 974 the more stable MATH500, Minerva, and Olympiad benchmarks. Top-3 models in each category are
 975 highlighted with increasing gray intensity.

Model	AIME'24	AIME'25	AMC'23	MATH500	Minerva	Olympiad	Avg.	Large Avg.
Based on: Qwen2.5-Math-1.5B (RL)								
Math	11.3 \pm 3.6	5.7 \pm 2.7	44.0 \pm 4.9	51.7 \pm 5.5	11.3 \pm 2.2	26.0 \pm 0.6	25.0 \pm 3.3	29.7 \pm 2.8
Oat-Zero	16.0 \pm 3.2	6.7 \pm 3.4	52.5 \pm 2.9	73.5 \pm 1.7	26.3 \pm 0.8	37.2 \pm 1.3	32.0 \pm 2.2	45.7 \pm 1.3
Math	12.0 \pm 1.7	11.7 \pm 5.7	54.8 \pm 5.3	74.7 \pm 0.5	26.7 \pm 1.8	37.9 \pm 0.2	36.3 \pm 2.5	46.4 \pm 0.8
Based on: Deepseek-R1-Distill-Qwen-1.5B (RL)								
R1-Distill	28.7 \pm 4.8	22.3 \pm 5.2	71.5 \pm 3.9	84.9 \pm 0.3	30.5 \pm 1.0	52.4 \pm 0.4	48.4 \pm 2.6	55.9 \pm 0.6
L1-Exact	24.4 \pm 3.3	22.3 \pm 4.2	70.5 \pm 3.7	86.6 \pm 0.8	31.5 \pm 1.7	52.5 \pm 1.3	47.9 \pm 2.5	56.9 \pm 1.3
L1-Max	27.7 \pm 4.2	21.0 \pm 5.0	73.2 \pm 6.0	84.7 \pm 0.1	33.3 \pm 0.9	52.3 \pm 0.6	48.7 \pm 2.8	56.8 \pm 0.5
Open-RS1	28.9 \pm 6.0	21.3 \pm 4.2	75.0 \pm 3.3	85.1 \pm 0.8	30.4 \pm 0.2	53.2 \pm 1.9	49.0 \pm 2.7	56.2 \pm 1.0
Open-RS2	31.3 \pm 7.7	22.7 \pm 5.6	73.0 \pm 5.7	84.1 \pm 0.2	29.2 \pm 1.1	53.7 \pm 0.6	49.0 \pm 3.5	55.7 \pm 0.6
Open-RS3	29.7 \pm 4.6	24.7 \pm 6.5	69.2 \pm 5.5	84.2 \pm 1.1	28.6 \pm 2.3	51.8 \pm 0.8	48.0 \pm 3.5	54.9 \pm 1.4
STILL-3	34.7 \pm 5.5	24.0 \pm 6.4	72.5 \pm 5.4	86.6 \pm 1.9	30.0 \pm 0.6	53.9 \pm 1.5	50.3 \pm 3.6	56.8 \pm 1.3
II-Thought	32.0 \pm 5.9	24.0 \pm 4.1	79.5 \pm 5.1	86.6 \pm 0.6	31.7 \pm 0.6	54.9 \pm 0.4	51.5 \pm 2.8	57.7 \pm 0.5
FastCuRL	36.3 \pm 4.3	27.0 \pm 3.7	78.8 \pm 4.1	87.9 \pm 1.2	30.8 \pm 1.4	56.5 \pm 0.6	52.9 \pm 2.6	58.4 \pm 1.1
DeepScaleR	37.0 \pm 6.6	30.3 \pm 4.3	76.2 \pm 4.6	87.8 \pm 1.0	31.0 \pm 1.5	55.5 \pm 1.1	53.0 \pm 3.2	58.1 \pm 1.2
Ours Based on: Deepseek-R1-Distill-Qwen-1.5B (RL)								
MAX-FLOW	36.7 \pm 8.9	27.0 \pm 8.2	77.8 \pm 6.6	85.3 \pm 1.6	34.2 \pm 2.9	54.9 \pm 1.9	52.6 \pm 5.0	58.1 \pm 2.1

992 the highest average accuracy (58.1%) while requiring fewer reasoning steps. SR-LCS offers the
 993 most token-efficient approach, using approximately 20% fewer tokens while maintaining competitive
 994 accuracy. Highlighted cells indicate top performances for each benchmark and method, showing that
 995 different reasoning approaches excel in different problem domains.

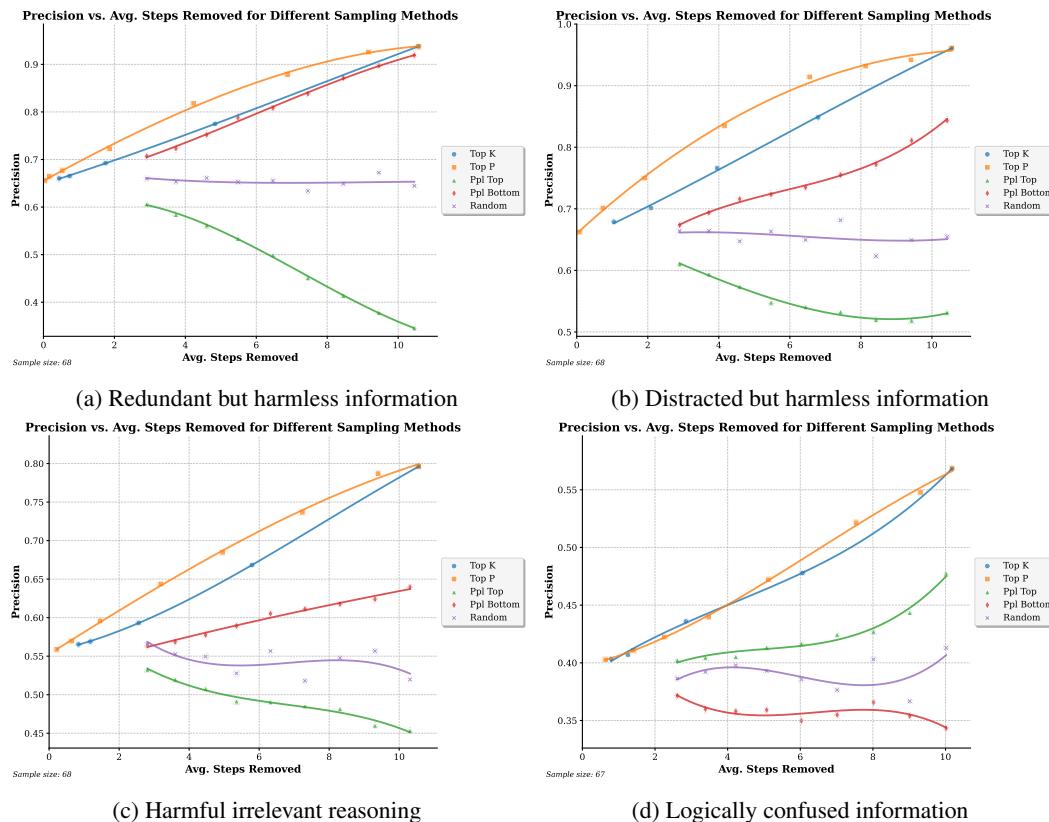
997 Table 11: Comparative analysis of GRPO training from 0 to 500 global steps under four reward
 998 designs: accuracy (ACC), max-flow (FLOW), longest common subsequence (LCS), and their 1:1 joint
 999 combination (JOINT). We report Pass@1 accuracy (%) across benchmarks plus average reasoning
 1000 steps and tokens per sample. (JOINT rows omit standard deviations: single run or variance not
 1001 reported.) The table demonstrates the evolution of various metrics during GRPO training from 0
 1002 to 500 global steps under three reward functions: ACC, FLOW, LCS and JOINT. The metrics are
 1003 tracked throughout the training process to show how different reward mechanisms influence the
 1004 performance of the model.

Method	Accuracy (%)							Steps	Tokens
	AIME24	AIME25	AMC23	MATH500	Minerva	Olympiad	Large Avg.		
GRPO	32.7 \pm 8.7	25.3 \pm 8.0	75.8 \pm 6.7	85.6 \pm 1.6	31.3 \pm 2.8	53.3 \pm 1.9	56.7 \pm 2.1	9.57	1873
	36.7 \pm 8.9	26.7 \pm 8.2	72.0 \pm 7.1	85.5 \pm 1.6	31.1 \pm 2.8	53.3 \pm 1.9	56.6 \pm 2.1	9.94	1796
	30.0 \pm 8.5	21.3 \pm 7.6	74.0 \pm 7.0	84.7 \pm 1.6	32.4 \pm 2.8	52.9 \pm 1.9	56.7 \pm 2.1	10.41	1808
	24.0 \pm 7.8	22.5 \pm 7.7	74.0 \pm 7.0	83.7 \pm 1.7	33.0 \pm 2.9	52.2 \pm 1.9	56.3 \pm 2.2	10.81	1859
	30.3 \pm 8.7	24.2 \pm 7.8	73.5 \pm 6.6	84.2 \pm 1.6	31.7 \pm 2.8	50.8 \pm 1.9	55.6 \pm 2.1	11.03	1828
	36.7 \pm 7.7	19.5 \pm 7.2	70.6 \pm 7.4	83.7 \pm 1.7	31.1 \pm 2.8	50.9 \pm 1.9	55.2 \pm 2.1	10.85	1854
MAX-FLOW	32.7 \pm 8.7	25.3 \pm 8.0	75.8 \pm 6.7	85.6 \pm 1.6	31.3 \pm 2.8	53.3 \pm 1.9	56.7 \pm 2.1	9.57	1873
	33.0 \pm 8.5	26.0 \pm 8.1	76.5 \pm 6.8	84.9 \pm 1.6	31.3 \pm 2.8	53.6 \pm 1.9	56.6 \pm 2.1	9.63	1820
	34.7 \pm 8.3	26.3 \pm 7.8	76.8 \pm 6.8	85.6 \pm 1.6	34.1 \pm 2.9	53.5 \pm 1.9	57.7 \pm 2.1	9.52	1779
	36.7 \pm 8.9	27.0 \pm 8.2	77.8 \pm 6.6	85.3 \pm 1.6	34.2 \pm 2.9	54.8 \pm 1.9	58.1 \pm 2.1	9.24	1830
	33.5 \pm 8.2	25.7 \pm 7.6	75.3 \pm 6.9	85.0 \pm 1.6	33.2 \pm 2.9	53.7 \pm 1.9	57.3 \pm 2.1	8.78	1804
	30.3 \pm 8.7	24.2 \pm 7.8	74.0 \pm 7.0	84.7 \pm 1.6	32.3 \pm 2.8	54.3 \pm 1.9	57.1 \pm 2.1	7.84	1798
LCS	32.7 \pm 8.7	25.3 \pm 8.0	75.8 \pm 6.7	85.6 \pm 1.6	31.3 \pm 2.8	53.3 \pm 1.9	56.7 \pm 2.1	9.57	1873
	34.0 \pm 8.7	24.7 \pm 7.9	75.0 \pm 6.9	84.9 \pm 1.6	32.0 \pm 2.8	54.1 \pm 1.9	57.0 \pm 2.1	9.61	1780
	33.3 \pm 8.7	22.5 \pm 7.8	74.0 \pm 7.0	84.4 \pm 1.6	30.9 \pm 2.8	51.8 \pm 1.9	55.7 \pm 2.1	10.36	1668
	30.3 \pm 8.5	23.3 \pm 7.8	74.0 \pm 7.0	83.3 \pm 1.7	29.9 \pm 2.8	51.6 \pm 1.9	54.9 \pm 2.1	10.91	1614
	33.7 \pm 8.7	23.7 \pm 7.9	75.0 \pm 6.9	84.9 \pm 1.6	31.8 \pm 2.8	50.6 \pm 1.9	55.8 \pm 2.1	11.75	1509
	31.0 \pm 8.5	23.3 \pm 7.7	74.8 \pm 7.1	84.8 \pm 1.6	30.5 \pm 2.8	52.7 \pm 1.9	56.0 \pm 2.1	11.56	1504
FLOW+LCS 1:1	33.20 \pm 8.6	25.15 \pm 7.9	75.65 \pm 6.8	85.45 \pm 1.6	31.80 \pm 2.8	53.55 \pm 1.9	56.93 \pm 1.9	9.72	1978
	33.75 \pm 8.6	25.60 \pm 8.0	75.90 \pm 6.8	84.75 \pm 1.6	31.45 \pm 2.8	54.10 \pm 1.9	57.43 \pm 1.9	10.38	1821
	33.85 \pm 8.6	24.65 \pm 7.9	75.25 \pm 6.8	85.20 \pm 1.6	32.35 \pm 2.8	52.90 \pm 1.9	57.17 \pm 1.9	9.53	1815
	33.65 \pm 8.6	25.40 \pm 8.0	76.15 \pm 6.7	84.15 \pm 1.6	32.20 \pm 2.8	53.45 \pm 1.9	57.27 \pm 1.9	9.91	1762
	33.45 \pm 8.6	24.85 \pm 7.9	75.35 \pm 6.8	85.10 \pm 1.6	32.65 \pm 2.8	52.40 \pm 1.9	57.03 \pm 1.9	10.67	1718
	30.80 \pm 8.4	23.90 \pm 7.8	74.65 \pm 6.9	84.90 \pm 1.6	31.25 \pm 2.8	53.75 \pm 1.9	57.20 \pm 2.0	9.65	1638

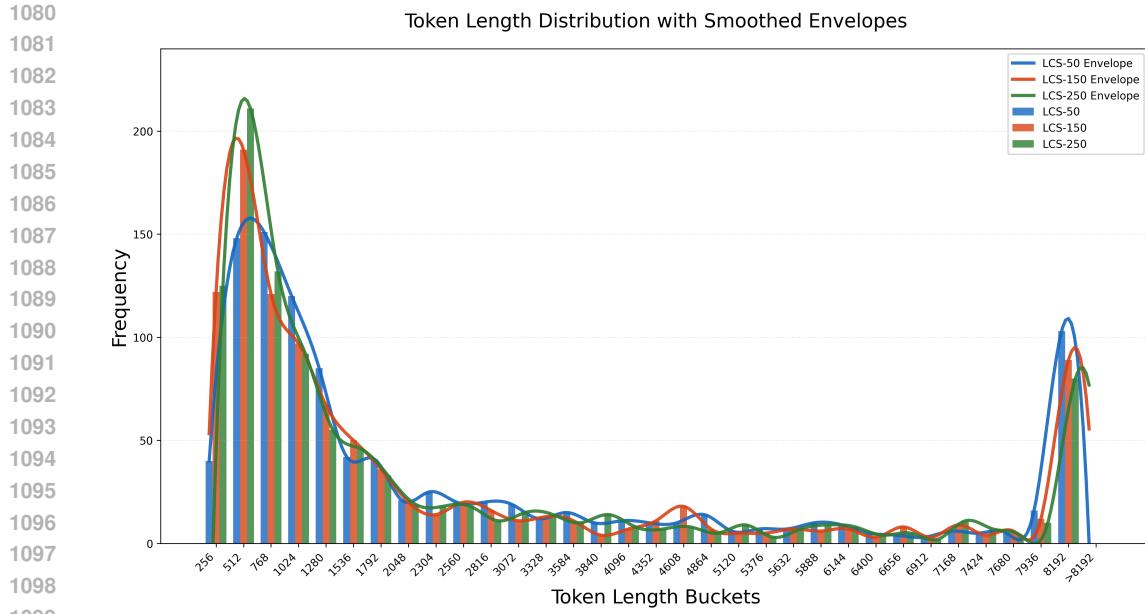
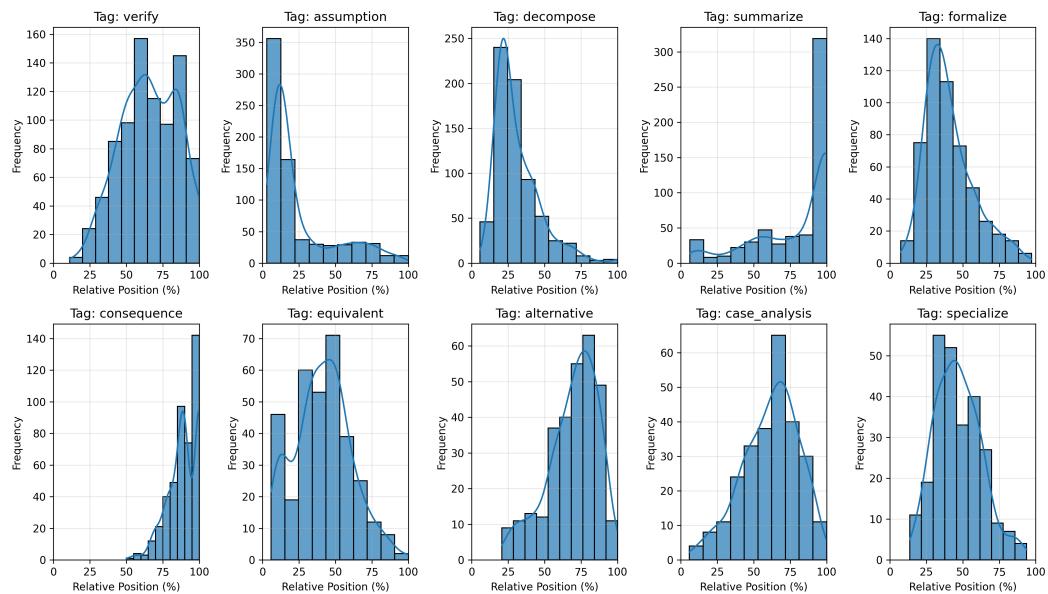
1026 A.7 PART OF FIGURES AND TABLES
10271028 For better layout and presentation, we have placed some figures and tables in a unified location in the
1029 Appendix.
1030

(a) First Correct Answer Position Distribution

(b) Statistical distribution of reasoning path lengths

1044 Figure 5: Analysis of Model Reasoning Patterns: Distribution of First Correct Answers (Left)
1045 and Reasoning Path Lengths (Right).
10461076 Figure 6: IISR Results: Error Filtering Efficiency (Precision) of different algorithms when removing
1077 1-11 steps under four types of information interference.
1078

1079



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147

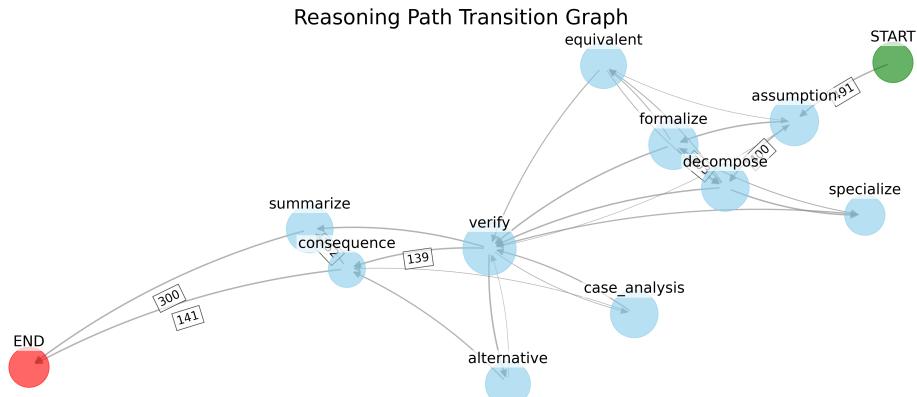


Figure 9: Illustration of Reasoning Path Transition Graph.

1148
1149
1150
1151

Table 12: Early Stopping Detection Parameters and Sample Statistics

1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162

A.8 FULL PROMPTS

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180

Free Tag Chain Extraction

Goal: Convert the raw reasoning into a linear sequence of abstract step labels (tags).
 Rules: 1. Split the reasoning into semantic steps. 2. For each step invent ONE tag (a single word; use lowercase letters or underscores only; no spaces, punctuation, or digits if avoidable). 3. If two or more consecutive steps would receive the same tag, merge them into one. 4. Output ONLY one line: TAGS: tag1->tag2->tag3->...->tagK (No other text.)
 Input question: {QUESTION}
 Input raw reasoning: {REASONING}
 Output: TAGS: ...

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Mathematical Problem Solving Template

Please use the following tags at the beginning of each sentence in your reasoning:
 <rephrase>, <inference>, <analogy>, <equivalent>, <association>, <reverse>, <summarize>, <verify>, <complete>, <decompose>, <counterexample>, <assumption>, <constraint>, <case_analysis>, <contradiction>, <abstraction>, <formalize>, <generalize>, <specialize>, <critique>, <alternative>, <consequence>, <intuition>.
 {Question}
 Please reason step by step, and put your final answer within boxed{ }.

1188 Table 13: Comparing Trigger Counts and Distances to First Correct Answer Across Methods.
1189

Trigger Type	Settings	Avg. Trigger Count ↓	Avg. Distance to First Correct Answer (tokens) ↓
Top tags	"verify", "summarize", etc.	2.02	78.01
Token chunks	128-token intervals	3.93	131.05
Keywords	"but", "wait", "however", etc.	2.69	139.97

1193

1194

1195 **Multiple Choice Problem Template**

1196

1197 Please use the following tags at the beginning of each sentence in your reasoning:
 1198 <rephrase>, <inference>, <analogy>, <equivalent>, <association>, <reverse>, <summa-
 1199 <rephrase>, <inference>, <analogy>, <equivalent>, <association>, <reverse>, <summa-
 1200 <rephrase>, <inference>, <analogy>, <equivalent>, <association>, <reverse>, <summa-
 1201 <rephrase>, <inference>, <analogy>, <equivalent>, <association>, <reverse>, <summa-
 1202 <rephrase>, <inference>, <analogy>, <equivalent>, <association>, <reverse>, <summa-
 1203 <rephrase>, <inference>, <analogy>, <equivalent>, <association>, <reverse>, <summa-
 1204 <rephrase>, <inference>, <analogy>, <equivalent>, <association>, <reverse>, <summa-
 1205 <rephrase>, <inference>, <analogy>, <equivalent>, <association>, <reverse>, <summa-
 1206 <rephrase>, <inference>, <analogy>, <equivalent>, <association>, <reverse>, <summa-
 1207 <rephrase>, <inference>, <analogy>, <equivalent>, <association>, <reverse>, <summa-
 1208 <rephrase>, <inference>, <analogy>, <equivalent>, <association>, <reverse>, <summa-

{Question}

A) {A}

B) {B}

C) {C}

D) {D}

1206 Please reason step by step, and answer the following multiple choice question. The last line
 1207 of your response should be of the following format: 'Answer: \$LETTER' (without quotes)
 1208 where LETTER is one of ABCD.

1209

1210

A.9 IMPROVED COMPATIBILITY WITH TEST-TIME SCALING AND EARLY STOPPING.

1212

1213

1214 For Test-time Scaling, existing work extends model outputs by injecting prompt tokens at thought-
 1215 stopping points. Our method simplifies this by guiding outputs through the most likely next tag
 1216 at stopping points. For early stopping, our tag-based approach outperforms traditional methods.
 1217 In our experiment with 705 correct MATH500 reasoning completions (Table 12), we compared
 1218 interval-based (128-token), keyword-based ("but", "wait", "however", etc.), and tag-based ("verify",
 1219 "summarize", etc.) detection strategies. As Table 13 shows, our structured approach reduces average
 Probe-In-Middle interventions to just 2.02 while maintaining closest proximity to correct answers
 (78.01 tokens).

1220

1221

A.10 OTHER STEP IMPORTANCE EVALUATION ALGORITHM IMPLEMENTATION

1222

1223

1224 **Top-P and Top-K Selection.** Based on the step matrix computed from different layers (See Sec-
 1225 tion 4.3), we implement backtracking selection methods:

$$1226 \text{SelectSteps}(A, k, p) = \{s_i\}_{i=0}^m, \quad (8)$$

1227

1228

1229 where $A \in \mathbb{R}^{n \times n}$ is the step attention matrix, and we select steps starting from the last step s_{n-1} by
 1230 either: Top-K: For each step s_i , select up to k preceding steps with highest attention scores. Top-P:
 Select preceding steps with cumulative normalized attention exceeding threshold p .

1231

1232

1233 The algorithm traverses backward from the final step, adding important preceding steps to a visited
 set based on attention weights, ensuring all critical reasoning dependencies are captured. **Average
 Perplexity.** For each step, we compute token-level perplexity:

$$1234 \text{Perplexity}(t_i) = \frac{1}{P(t_i|x, t_1, \dots, t_{i-1})}, \quad (9)$$

1235

1236

1237

1238

1239

1240 where $P(t_i|x, t_1, \dots, t_{i-1})$ is the probability of token t_i given the prompt x and all preceding tokens,
 1241 derived from the softmax of logits:

$$1242 P(t_i|x, t_1, \dots, t_{i-1}) = \frac{\exp(\text{logits}_i)}{\sum_j \exp(\text{logits}_j)}. \quad (10)$$

1242 The average perplexity for a step s containing tokens $\{t_1, t_2, \dots, t_m\}$ is:
 1243

$$1244 \quad 1245 \quad \text{AvgPerplexity}(s) = \exp \left(-\frac{1}{m} \sum_{i=1}^m \log P(t_i|x, t_1, \dots, t_{i-1}) \right). \quad (11)$$

1246 **Random Selection.** A baseline approach where steps are selected randomly without leveraging
 1247 attention patterns or perplexity metrics.
 1248

1251 **A.11 ERROR FILTERING EFFICIENCY (EFE) EVALUATION FORMULA**
 1252

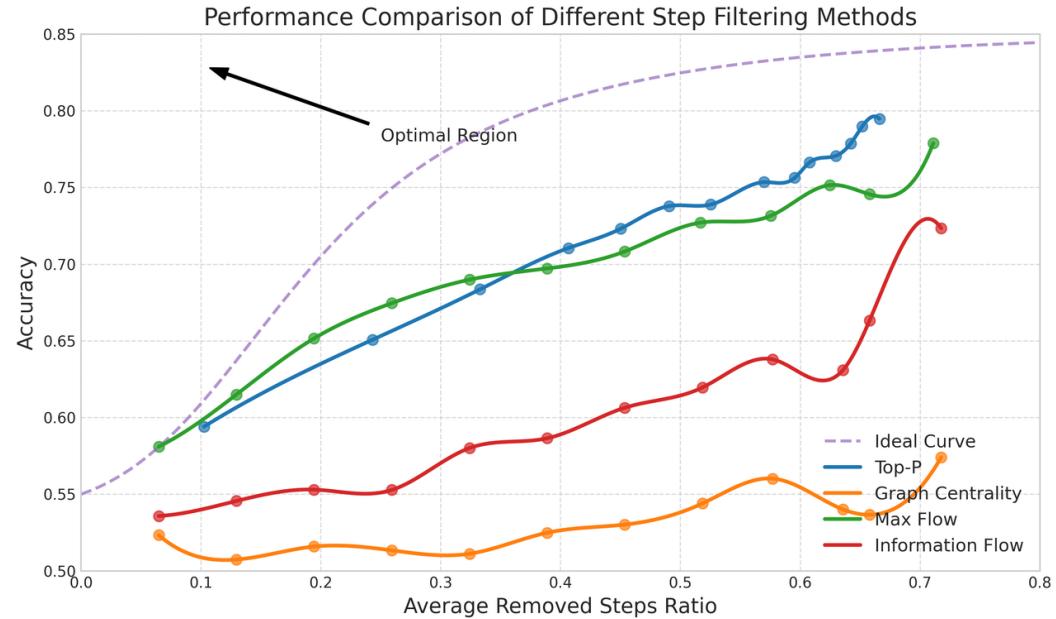


Figure 10: Comparison of Algorithms for Error Filtering Efficiency Averaged Across Four Tasks.

1275 For the IISR experiment, where we randomly inject N interference steps into an M -step reasoning
 1276 process, the Error Filtering Efficiency is calculated as:
 1277

$$1280 \quad 1281 \quad \text{EFE} = 1 - \frac{|\text{RetainedIrrelevantSteps}|}{|\text{IrrelevantSteps}|}, \quad (12)$$

1282 where $|\text{IrrelevantSteps}|$ is the total number of interference steps injected (N),
 1283 $|\text{RetainedIrrelevantSteps}|$ is the number of interference steps that were incorrectly retained
 1284 after filtering.

1285 EFE measures the algorithm's ability to identify and remove irrelevant steps, with a value of 1.0
 1286 indicating perfect filtering (all interference steps removed) and 0.0 indicating no filtering capability.
 1287

1288 As shown in Figure 6, we first compared Top K, Top P, Ppl Top (where higher perplexity indicates
 1289 higher step importance), Ppl Bottom (the opposite), and Random. We evaluated the Error Filtering
 1290 Efficiency under four different interference injection methods. The results show that Ppl-based
 1291 methods exhibit unstable performance across different tasks.
 1292

1293 As illustrated in Figure A.11, we further compared the better performing methods: Top-P, Max-Flow,
 1294 and Information-Flow. We found that the Max Flow method demonstrates a superior ability in
 1295 evaluating reasoning steps, particularly when removing a small number of steps.

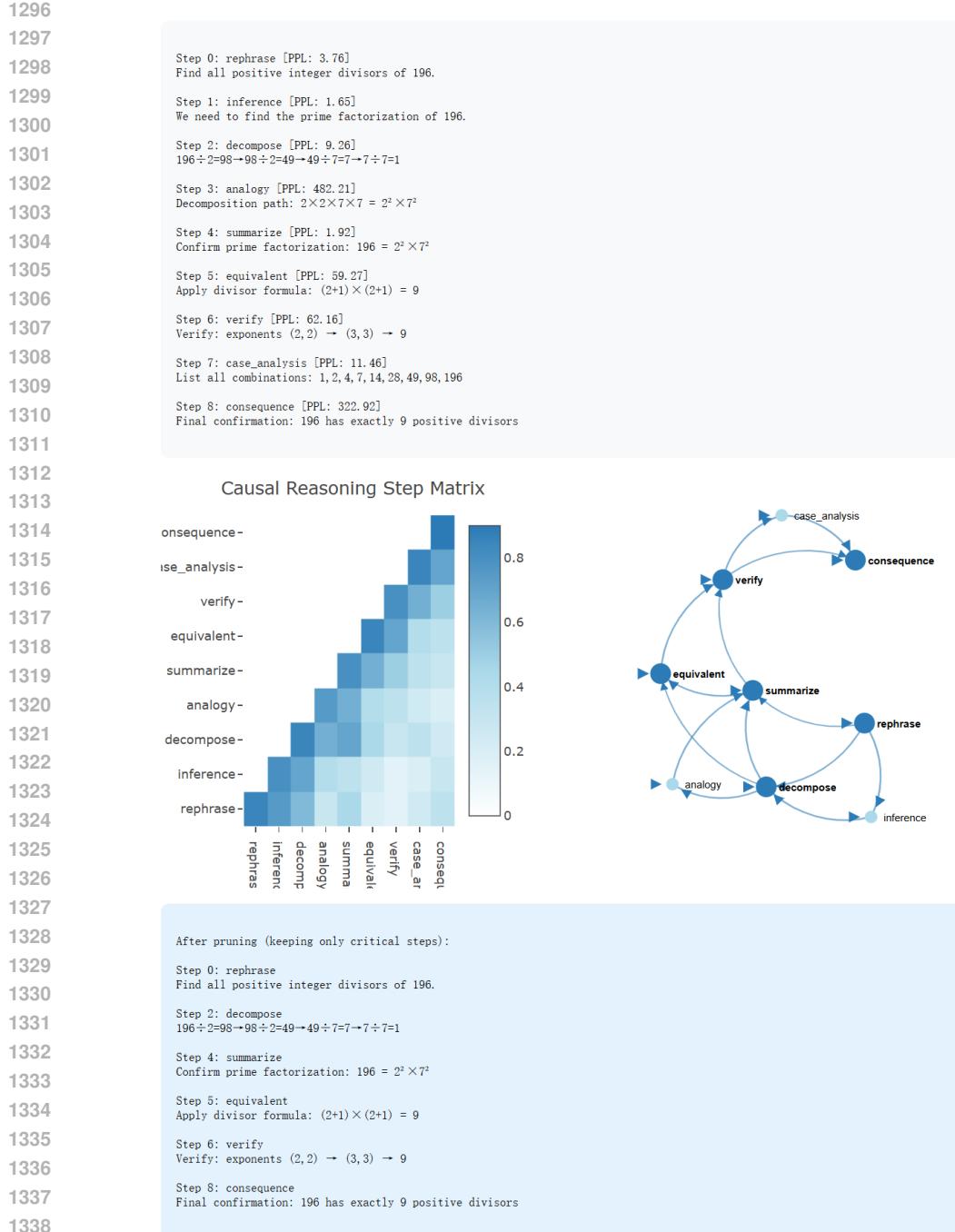


Figure 11: Using Max-flow Method for Filtering Steps during IISR Experiment.

A.12 STRUCTURE REASONING PROCESS DEMONSTRATION

Input Prompt:

1346
 1347 Please use the following tags at the beginning of each sentence in your reason-
 1348 ing: <rephrase>, <inference>, <analogy>, <equivalent>, <association>, <reverse>,
 1349 <summarize>, <verify>, <complete>, <decompose>, <counterexample>, <assump-
 1349 tion>, <constraint>, <case_analysis>, <contradiction>, <abstraction>, <formalize>,

1350 <generalize>, <specialize>, <critique>, <alternative>, <consequence>, <intuition>
 1351
 1352 Convert the point $(0, 3)$ in rectangular coordinates to polar coordinates. Enter your
 1353 answer in the form (r, θ) , where $r > 0$ and $0 \leq \theta < 2\pi$.
 1354 Please reason step by step, and put your final answer within \square .
 1355

1356 **<summarize>** The task is to convert the rectangular coordinates $(0, 3)$ to polar coordinates (r, θ)
 1357 with $r > 0$ and $0 \leq \theta < 2\pi$.
 1358

1359 **<assumption>** In rectangular (Cartesian) coordinates, a point is represented as (x, y) . To convert
 1360 to polar coordinates (r, θ) , we need to find:
 1361 • r : distance from origin
 1362 • θ : angle with positive x-axis
 1363

1364 **<formalize>** Conversion formulas:
 1365

1366
$$r = \sqrt{x^2 + y^2}$$

 1367
$$\theta = \arctan(y/x) \quad (\text{when } x \neq 0)$$

 1368

1369 **<decompose>** Given point $(0, 3)$:
 1370

1371 • $x = 0$
 1372 • $y = 3$
 1373

1374 **<specialize>** Calculate r :
 1375
$$r = \sqrt{0^2 + 3^2} = 3$$

 1376

1377 **<reverse>** For θ : $\arctan(3/0)$ is undefined. Observation:
 1378

1379 • $x = 0$ and $y > 0 \Rightarrow$ point lies on positive y-axis

1380 **<case_analysis>** Special case when $x = 0$:
 1381

1382
$$\theta = \begin{cases} \pi/2 & \text{if } y > 0 \\ 3\pi/2 & \text{if } y < 0 \end{cases}$$

 1383

1384

1385 **<verify>** Check θ range: $\pi/2 \in [0, 2\pi)$ is valid.
 1386

1387 **<complete>** Final polar coordinates:
 1388
$$\left(3, \frac{\pi}{2}\right)$$

 1389

1390

1391 **Output:**
 1392

1393 The polar coordinates are $\left(3, \frac{\pi}{2}\right)$.
 1394

1395

1396 **Input Prompt:**

1397 Please use the following tags at the beginning of each sentence in your reasoning:
 1398 **<rephrase>**, **<inference>**, **<analogy>**, **<equivalent>**, **<association>**, **<reverse>**,
 1399 **<summarize>**, **<verify>**, **<complete>**, **<decompose>**, **<counterexample>**, **<assumption>**,
 1400 **<constraint>**, **<case_analysis>**, **<contradiction>**, **<abstraction>**, **<formalize>**,
 1401 **<generalize>**, **<specialize>**, **<critique>**, **<alternative>**, **<consequence>**, **<intuition>**
 1402

1403 What is $\sqrt{53}$ in simplest radical form?
 1403

1403 Please reason step by step, and put your final answer within \square .

1404
 1405 **<assumption>** To find the simplest radical form of $\sqrt{53}$, I need to check if 53 has any perfect
 1406 square factors.
 1407 **<decompose>** First, let's factorize 53 to see its prime components. Since 53 is a prime number,
 1408 its only factors are 1 and 53.
 1409 **<verify>** Since 53 is prime, there are no smaller factors other than 1 and itself. Therefore, $\sqrt{53}$
 1410 cannot be simplified further because there are no perfect squares greater than 1 that divide 53.
 1411
 1412 **<conclusion>** Thus, the simplest radical form of $\sqrt{53}$ is $\sqrt{53}$ itself.
 1413

1414 **Output:**
 1415

1416 The simplest radical form is $\boxed{\sqrt{53}}$.
 1417

1418 A.13 EXAMPLE DEMONSTRATION OF INTERFERENCE INJECTION AND SELECTIVE REMOVAL
 1419 (**IISR**)
 1420

1421 Table 14: Steps retained by different filtering methods
 1422

1424 Method	Retained Steps
1425 Top-P (p=0.7)	[1, 3, 5, 10, 11]
1426 Maximum Flow	[1, 3, 5, 7, 10, 11]
1427 Graph Centrality	[3, 4, 6, 8, 9, 10, 11]
1428 Information Flow	[1, 2, 3, 4, 5, 6, 7, 8, 10, 11]

1430 • Steps marked in red: [2, 4, 6, 9]
 1431 • Interference types:
 1432 – Irrelevant pauses (Step 2)
 1433 – Off-topic reasoning (Steps 4)
 1434 – Disordered repetition (Steps 6)
 1435 – Redundant Reasoning (Step 9)
 1436

1437 **Input Prompt:**
 1438

1439 Please use the following tags at the beginning of each sentence in your reasoning:
 1440 **<rephrase>**, **<inference>**, **<analogy>**, **<equivalent>**, **<association>**, **<reverse>**,
 1441 **<summarize>**, **<verify>**, **<complete>**, **<decompose>**, **<counterexample>**, **<assumption>**,
 1442 **<constraint>**, **<case_analysis>**, **<contradiction>**, **<abstraction>**, **<formalize>**,
 1443 **<generalize>**, **<specialize>**, **<critique>**, **<alternative>**, **<consequence>**, **<intuition>**

1444 What is the smallest positive perfect cube that can be written as the sum of three?
 1445

1446 Please reason step by step, and put your final answer within \square .
 1447

1448 **<rephrase>** The problem is to find the smallest positive perfect cube expressible as the sum of
 1449 three consecutive integers.
 1450

1451 **<inference>** *[Interference Step] Pausing to consider the implications of the next step.*

1452 **<inference>** First, recall that perfect cubes are numbers like 1, 8, 27. The sum of three consecutive
 1453 integers can be represented as $3n$.
 1454

1455 **<inference>** *[Off-topic Interference] Gravity cancels out, so mass and distances are the key variables...*

1456 **<analogy>** Let the integers be $(n - 1, n, n + 1)$, then sum is $3n$. The smallest cube divisible by
 1457 3 is 27.

1458 *<inference> [Disordered Reasoning] Smaller cubes fail: $1 = 1^3$ gives non-integer $n = \frac{1}{3}$, $8 = 2^3$ gives*

1459 *n* = $\frac{8}{3}$.

1460 *<verify>* Check 27: $8 + 9 + 10 = 27$. Is there a smaller cube? No, since 1 and 8 aren't divisible

1461 by 3.

1462 *<assumption>* Alternative representation: $(n, n + 1, n + 2)$ sums to $3(n + 1)$. Still requires

1463 divisibility by 3.

1464 *<reverse> [Redundant Reasoning] Alternatively, maybe the three consecutive integers could be...*

1465 *<consequence>* Smaller cubes fail: $1 = 1^3$ gives non-integer $n = \frac{1}{3}$, $8 = 2^3$ gives $n = \frac{8}{3}$.

1466 *<summarize>* Therefore, the smallest positive perfect cube meeting the criteria is:

27

A.14 STRUCTURED REASONING THROUGH FILL IN THE MIDDLE API

The full message template is structured the same as the prompt in Appendix A.8.

The API call is implemented as:

```

1477 messages = [
1478     {"role": "user", "content": full_message},
1479     {
1480         "role": "assistant",
1481         "reasoning_content": "<rephrase>\nOkay, I will organize my thoughts
1482         process in a hierarchical manner.\n</rephrase>\n<",
1483         "content": "",
1484         "prefix": True
1485     }
1486 ]
1487 response = await self.client.chat.completions.create(
1488     model=model,
1489     messages=messages
1490 )

```

In particular, we initialize the reasoning process by injecting a *<rephrase>* tag and a metacognitive statement. This approach is effective in guiding DeepSeek-R1 to perform structured reasoning in a zero-shot setting, leading to more stable and organized reasoning patterns without additional training.

B DETAILED ABLATION STUDY

To better understand the contribution of the component, we conducted 9 controlled experiments to systematically evaluate the individual and combined contributions of each proposed component.

B.1 EXPERIMENTAL DESIGN

We organized our ablation experiments into two categories. The first category evaluates isolated components to measure their individual effectiveness: Structured Tags applies structured reasoning format with standard GRPO; LCS (free-form) applies LCS reward on free-form reasoning by extracting steps via `\n\n` separation; MaxFlow (free-form) applies MaxFlow reward on free-form reasoning with the same step extraction method; Filtered Data GRPO trains standard GRPO only on our filtered questions Q without any structural modifications; and Dr.GRPO implements the length-normalized GRPO variant proposed by Liu et al. (2025a) on free-form reasoning.

The second category evaluates combined approaches to understand synergistic effects: Tags + GRPO combines structured reasoning with standard GRPO; Tags + LCS combines structured reasoning with LCS reward (our proposed method); Tags + MaxFlow combines structured reasoning with MaxFlow reward (our proposed method); and Tags + Step-Level MaxFlow extends Tags + MaxFlow

1512 Table 15: Complete ablation study showing performance improvements (percentage points) over
 1513 DS-Distill-Qwen-7B baseline across different maximum response lengths. Bold indicates best
 1514 performance in each column.

1515

Method	1K	2K	4K	8K	Average
DS-Distill-Qwen-7B (Baseline)	0.00	0.00	0.00	0.00	0.00
<i>Isolated Component Training</i>					
+ Structured Tags	+4.14	+4.64	+0.65	+0.36	+2.45
+ LCS (free-form)	+6.23	+4.00	+1.00	+0.89	+3.03
+ MaxFlow (free-form)	+3.39	+1.25	-0.64	-1.09	+0.73
+ Filtered Data GRPO	+0.28	+0.11	+0.06	-0.38	+0.02
+ Dr.GRPO	+4.22	+4.97	+1.31	+1.37	+2.97
<i>Combined Component Training</i>					
Tags + GRPO	+5.18	+6.25	+2.35	+0.28	+3.52
Tags + LCS (Ours)	+10.79	+10.23	+3.38	-0.40	+6.00
Tags + MaxFlow (Ours)	+8.45	+8.17	+5.83	+3.12	+6.39
Tags + Step-Level MaxFlow (Ours)	+7.10	+8.13	+3.14	+1.68	+5.01

1524

1525

1526 by applying step-level reward weighting, where each reasoning step receives importance weights
 1527 normalized from MaxFlow scores (Appendix D).

1528 All experiments use identical base models (Qwen-7B), training data, and hyperparameters. We
 1529 evaluate across four maximum response length settings (1K, 2K, 4K, 8K tokens) on 9 benchmark
 1530 datasets, reporting average performance improvements over the baseline DS-Distill-Qwen-7B model.

1531

1532 B.2 COMPLETE ABLATION RESULTS

1533

1534 Table 15 presents comprehensive results across all ablation experiments. Among isolated components,
 1535 structured tags alone provide +2.45% average improvement. The LCS reward on free-form reasoning
 1536 achieves +3.03% average gain, showing modest effectiveness when applied to unstructured outputs.
 1537 However, MaxFlow on free-form reasoning yields only +0.73% average improvement and shows
 1538 negative performance at longer contexts (-0.64% at 4K, -1.09% at 8K), indicating that graph-based
 1539 reward computation requires accurate step boundaries that free-form reasoning cannot reliably provide.
 1540 The Dr.GRPO baseline achieves +2.97% average improvement, providing a strong comparison point
 1541 for addressing GRPO’s length bias.

1542 The combined approaches demonstrate that components work better together. Tags + GRPO achieves
 1543 +3.52% average, improving upon isolated structured tags (+2.45%) by an additional +1.07%. Our Tags
 1544 + LCS method achieves +6.00% average improvement, performing best at shorter contexts (+10.79%
 1545 at 1K, +10.23% at 2K). Our Tags + MaxFlow method achieves the highest overall performance at
 1546 +6.39% average, with strongest gains at longer contexts (+5.83% at 4K, +3.12% at 8K). The step-level
 1547 weighting variant (Tags + Step-Level MaxFlow) achieves +5.01% average, suggesting that assigning
 1548 rewards to individual steps adds complexity without improving overall effectiveness.

1549

1550

1551 B.3 INCREMENTAL CONTRIBUTION ANALYSIS
 1552 To quantify the synergistic effects between structured reasoning and rewards, Table 16 decomposes
 1553 the performance gains showing the incremental contribution of each reward method when added on
 1554 top of the Structured Tags baseline.

1555

1556

1557 The incremental analysis reveals that MaxFlow provides the largest additional gain (+3.95% average)
 1558 when combined with structured reasoning, substantially outperforming its free-form variant which
 1559 contributed only +0.73%. Similarly, LCS contributes +3.55% incremental gain on structured reasoning
 1560 compared to +3.03% on free-form reasoning. This demonstrates that structured reasoning tags
 1561 enable more effective reward shaping by providing accurate step boundaries for graph construction
 1562 and sequence alignment.

1563

1564

1565

1566 Table 16: Incremental performance gains when adding reward methods to Structured Tags baseline
 1567 (+2.45% average). Values show additional improvement beyond structured reasoning alone.

Added Component	1K	2K	4K	8K	Avg
Structured Tags (base)	+4.14	+4.64	+0.65	+0.36	+2.45
+ GRPO	+1.04	+1.61	+1.70	-0.08	+1.07
+ LCS	+6.65	+5.59	+2.73	-0.76	+3.55
+ MaxFlow	+4.31	+3.53	+5.18	+2.76	+3.95
+ Step-Level MaxFlow	+2.96	+3.49	+2.49	+1.32	+2.56

B.4 TRAINING-FREE STRUCTURED REASONING GUIDANCE

To evaluate whether structured reasoning guidance benefits small models without additional training, we conducted experiments across three model sizes (1.5B, 7B, 14B) at different context lengths.

1582 Table 17: Performance Comparison with and without Training Free Guidance across Different Model
 1583 Sizes. AI: AIME, AMC: AMC'23, LSAT: LSAT-AR, M500: MATH500, Min.: Minerva, Oly.:
 1584 OlyBench, Avg: Average.

Tokens	With Guidance								Without Guidance									
	AI'24	AI'25	AMC	LSAT	M500	Min.	MMLU	Oly.	Avg	AI'24	AI'25	AMC	LSAT	M500	Min.	MMLU	Oly.	Avg
1.5B Models																		
1K	0.00	0.00	15.83	19.71	28.33	11.52	43.91	8.79	16.01	1.11	1.11	15.83	24.49	27.20	12.01	44.05	8.10	16.74
2K	3.33	5.56	31.67	21.59	52.00	20.83	47.05	18.62	25.08	3.33	1.11	36.67	21.45	52.33	20.96	46.72	19.95	25.32
4K	13.33	13.33	49.17	22.46	71.73	26.96	47.72	33.43	34.77	14.44	8.89	47.50	25.07	71.73	29.41	47.51	33.58	34.77
8K	23.33	22.22	68.33	26.38	81.40	30.64	47.83	43.60	42.97	23.33	18.33	66.25	26.26	80.33	31.00	50.60	44.49	42.57
7B Models																		
1K	0.00	3.33	13.33	22.75	34.93	16.67	59.94	10.86	20.23	5.56	4.44	16.67	21.74	35.00	19.00	59.20	11.01	21.58
2K	7.78	14.44	37.50	31.16	64.93	31.25	64.60	28.79	35.06	15.56	13.33	38.33	31.09	65.33	32.60	63.44	28.89	36.07
4K	22.22	22.22	63.33	40.87	80.40	37.01	65.82	47.46	47.42	35.56	38.89	62.50	37.61	81.20	39.46	64.58	45.68	50.69
8K	36.67	31.11	80.83	48.55	89.73	38.11	65.99	58.57	56.20	41.11	42.22	83.50	52.32	91.33	40.69	65.97	59.26	59.55
14B Models																		
4K	33.33	24.44	65.83	57.10	84.40	42.28	82.78	48.99	54.89	26.67	23.33	62.50	55.22	83.00	39.71	83.87	47.41	52.71
8K	51.17	34.44	82.67	72.61	92.10	43.38	83.02	61.85	65.16	50.00	36.67	82.50	72.17	91.60	43.38	84.85	62.81	65.50

1597 Table 17 reveals that training-free structured reasoning guidance shows **limited and inconsistent**
 1598 **benefits**. For the **1.5B model**, structured guidance provides minimal average improvement: +0.40%
 1599 at 8K tokens. For the **7B model**, we observe negative impact. Only the **14B model** shows consistent
 1600 gains: +2.18% at 4K and -0.34% at 8K. Small models lack instruction-following capabilities to utilize
 1601 structured formats during inference.

C COMPARATIVE ANALYSIS: LCS VS MAXFLOW

Both LCS and MaxFlow demonstrate strong performance when combined with structured reasoning, but exhibit distinct characteristics: LCS excels at shorter contexts (1K-2K) while MaxFlow performs better at longer contexts (4K-8K). Table 18 shows their performance converges at 3K tokens.

Table 18: Performance comparison at 3K tokens (1.5B model) showing convergence point.

Benchmark	LCS	MaxFlow	Δ
AIME'24	11.33	11.67	+0.34
AIME'25	16.33	16.67	+0.34
AMC'23	61.50	61.25	-0.25
DROP	38.35	39.51	+1.16
LSAT-AR	25.65	26.30	+0.65
MATH500	71.10	73.20	+2.10
Minerva	26.15	27.02	+0.87
MMLU-ALL	44.62	44.84	+0.22
OlympiadBench	37.20	38.44	+1.24

To understand why LCS favors shorter contexts while MaxFlow excels at longer ones, we analyze response distribution patterns and reasoning metrics in Tables 19 and 20.

Table 19: Response distribution across token ranges. Numbers shown as Correct/Error. LCS concentrates correct answers in shorter ranges while MaxFlow shows balanced distribution.

Token Range	1.5B LCS	1.5B MaxFlow	7B LCS	7B MaxFlow
0-1K	232/14	149/3	243/5	206/1
1K-2K	93/8	158/6	113/7	133/2
2K-3K	27/7	46/8	39/3	52/2
3K-4K	12/6	22/6	21/5	28/3
4K-5K	14/6	19/3	13/3	23/1
5K-6K	15/4	13/5	4/3	12/2
6K-7K	7/4	10/5	6/5	8/0
7K-8K	9/7	11/5	5/3	7/1
>8K (Truncated)	0/35	0/31	0/22	0/19
Total	409/91	428/72	444/56	469/31

Table 20: Reasoning metrics comparison. LCS produces shorter steps with higher path consistency, while MaxFlow maintains flexibility with longer steps.

Metric	1.5B LCS	1.5B MaxFlow	7B LCS	7B MaxFlow
Avg. Tokens per Step	120.1	235.6	123.1	219.5
Path Similarity (SequenceMatcher)	0.434	0.410	0.452	0.423
Path Similarity (Levenshtein)	0.323	0.290	0.336	0.297
Path Similarity (LCS Ratio)	0.410	0.390	0.427	0.403

LCS operates through cross-path comparison, rewarding paths with higher common subsequence proportions. This drives the model toward shorter, more consistent reasoning steps (120 tokens/step vs 220 for MaxFlow) and concentrates correct answers in the 0-2K range (243 vs 206 for 7B). Higher path consistency (0.452 vs 0.423 SequenceMatcher) indicates more uniform reasoning patterns, explaining superior short-context performance.

MaxFlow computes flow on individual reasoning graphs, rewarding streamlined reasoning without penalizing response length. This produces more balanced answer distribution across token ranges and fewer truncated responses (19 vs 22 for 7B), resulting in better robustness at longer contexts.

D STEP-LEVEL REWARD IMPLEMENTATION

For Tags + Step-Level MaxFlow, we explored modulating token-level advantages using step-level importance weights derived from MaxFlow scores:

$$J_{\text{Step-GRPO}}(\theta) = \mathbb{E} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \min(r_{i,t}(\theta) \cdot w_{i,t} \cdot A_i, \text{clip}(r_{i,t}(\theta), 1 - \varepsilon, 1 + \varepsilon) \cdot w_{i,t} \cdot A_i) - \beta D_{\text{KL}} \right] \quad (13)$$

where $w_{i,t}$ is computed by normalizing step-level MaxFlow rewards to [0.5, 1.5]:

$$w_{i,t} = \begin{cases} 0.5 + \frac{R_k^{\text{MaxFlow}} - \min_j R_j}{\max_j R_j - \min_j R_j} & \text{if token } t \text{ belongs to step } k \\ 1.0 & \text{otherwise (tags, answer)} \end{cases} \quad (14)$$

This approach achieves +5.01% average improvement, lower than sequence-level MaxFlow (+6.39%). Fine-grained step-level credit assignment introduces complexity in determining appropriate weight scales, handling special tokens, and balancing contributions across reasoning stages. How to precisely control per-step rewards remains an open research question.

1674 Table 21: MaxFlow Computation Time and Two-Stage Optimization Speedups. Tests conducted on
 1675 dense directed graphs with varying node counts. Stage 1 (Dinic) provides $5.39\times$ average speedup,
 1676 while Stage 2 (residual reuse) adds $1.38\times$ incremental improvement.

1678 Nodes	1679 Tokens ($n \times 256$)	1679 Baseline (NetworkX, s)	1679 Optimized (Dinic, s)	1679 Final (+Residual, s)	1679 Speedup (Stage 1)	1679 Speedup (Stage 2)	1679 Total Speedup
1680 5	1,280	0.00046	0.00006	0.00004	7.96 \times	1.35 \times	10.76 \times
1681 10	2,560	0.00087	0.00028	0.00019	3.14 \times	1.44 \times	4.53 \times
1682 20	5,120	0.01766	0.00158	0.00112	11.16 \times	1.41 \times	15.76 \times
1683 30	7,680	0.03044	0.02284	0.01639	1.33 \times	1.39 \times	1.86 \times
1684 40	10,240	0.07580	0.00817	0.00613	9.28 \times	1.33 \times	12.36 \times
1685 50	12,800	0.12053	0.03061	0.02299	3.94 \times	1.33 \times	5.24 \times
1686 100	25,600	0.60409	0.15618	0.11848	3.87 \times	1.32 \times	5.10 \times
1687 200	51,200	3.74300	0.89507	0.62537	4.18 \times	1.43 \times	5.99 \times
1688 300	76,800	10.86789	2.09656	1.50382	5.18 \times	1.39 \times	7.23 \times
1689 400	102,400	20.02902	4.40266	3.12438	4.55 \times	1.41 \times	6.41 \times
1690 500	128,000	32.97774	6.96468	4.96045	4.73 \times	1.40 \times	6.22 \times

1692 E IMPLEMENTATION DETAILS

1694 E.1 STRUCTURED DATA COLLECTION

1696 Our structured reasoning data is collected through a four-stage pipeline. We first collect 2,000 correct
 1697 free-form reasoning paths from DeepSeek-R1 on the S1K dataset. A Free Tag Chain Extraction
 1698 prompt converts these raw reasoning traces into abstract step labels, yielding 23 semantically distinct
 1699 tags after removing duplicates and low-frequency labels. We then combine the S1K dataset with
 1700 extracted tags using a Fill-in-the-Middle API (Appendix A.14) to generate structured reasoning
 1701 outputs, answering each question 8 times with randomized tag orderings. Finally, we filter based on
 1702 tag coverage diversity and question difficulty, retaining 500 samples with richest tag usage and lowest
 1703 correctness rates (but with at least one correct solution) as the final training set \mathcal{Q} .

1705 E.2 GRAPH CONSTRUCTION

1707 To construct reasoning graphs from attention patterns, we aggregate token-level attention into step-
 1708 wise attention matrices for each layer using the causal masking formula in Equation (3) of the main
 1709 paper. Based on experiments in Section 4.3, we select layers 23-27 which focus on global reasoning
 1710 patterns and compute their mean to obtain the final step-wise attention matrix \mathbf{A} . We designate
 1711 position (0,0) as source (Question step) and position (-1,-1) as sink (Answer step), with edge weights
 1712 $w_{ij} = A_{ij}$. Edges below threshold 0.05 are pruned to zero while maintaining connectivity to improve
 1713 computational efficiency.

1716 F MAXFLOW COMPLEXITY OPTIMIZATION

1718 F.1 OPTIMIZATION PIPELINE

1720 **Stage 1: Optimized Dinic Algorithm** We implement an efficient Dinic algorithm with level graph
 1721 construction via BFS and blocking flow computation via DFS. Unlike generic max-flow solvers, our
 1722 implementation exploits the structure of causal DAGs by maintaining residual capacities.

1724 **Stage 2: Residual Network Reuse** After computing the original max-flow, we reuse cached
 1725 residual capacities from the original computation, only updating edges incident to the removed node
 1726 Algorithm 1 presents the optimized Dinic implementation, and Algorithm 2 shows the complete
 1727 critical node detection pipeline with residual network reuse.

1728 **Algorithm 1** Optimized Dinic Algorithm for Max-Flow Computation

1729 **Require:** Graph $G = (V, E)$ with capacities $c : E \rightarrow \mathbb{R}^+$, source s , sink t
 1730 **Ensure:** Maximum flow value f_{\max}

1731 1: Initialize residual graph $G_r \leftarrow G$ with $r(u, v) \leftarrow c(u, v)$ for all $(u, v) \in E$
 1732 2: $f_{\max} \leftarrow 0$
 1733 3: **while** $\text{BFS}(G_r, s, t)$ finds augmenting path **do**
 1734 4: Construct level graph L via BFS from s
 1735 5: $\text{level}[s] \leftarrow 0$
 1736 6: **for** each vertex v in BFS order **do**
 1737 7: $\text{level}[v] \leftarrow \text{level}[u] + 1$ where u is predecessor
 1738 8: **end for**
 1739 9: **while** $\text{DFS}(s, t, \infty, L)$ finds blocking flow **do**
 1740 10: Find augmenting path P from s to t using DFS
 1741 11: $\delta \leftarrow \min_{(u,v) \in P} r(u, v)$ {Bottleneck capacity}
 1742 12: **for** each edge $(u, v) \in P$ **do**
 1743 13: $r(u, v) \leftarrow r(u, v) - \delta$ {Update residual capacity}
 1744 14: $r(v, u) \leftarrow r(v, u) + \delta$ {Update reverse edge}
 1745 15: **end for**
 1746 16: $f_{\max} \leftarrow f_{\max} + \delta$
 1747 17: **end while**
 1748 18: **end while**
 1749 19: **return** f_{\max}

1750 **Algorithm 2** Critical Node Detection with Residual Network Reuse

1751 **Require:** Graph $G = (V, E)$, source s , sink t
 1752 **Ensure:** Set of critical nodes \mathcal{C} and their contributions Δ_v

1753 1: $f_{\text{orig}} \leftarrow \text{DINIC}(G, s, t)$ {Stage 1: Compute original max-flow}
 1754 2: $\mathcal{C} \leftarrow \emptyset, \Delta \leftarrow \{\}$
 1755 3: $V' \leftarrow V \setminus \{s, t\}$ {Candidate nodes}
 1756 4: **for** each node $v \in V'$ **do**
 1757 5: {Stage 2: Fast connectivity check}
 1758 6: **if** $\neg \text{BFS-CONNECTED}(G \setminus \{v\}, s, t)$ **then**
 1759 7: $\Delta_v \leftarrow f_{\text{orig}}$ {Node disconnects s from t }
 1760 8: $\mathcal{C} \leftarrow \mathcal{C} \cup \{v\}$
 1761 9: **continue**
 1762 10: **end if**
 1763 11: {Stage 2: Residual network reuse}
 1764 12: Construct G' by removing v : $E' \leftarrow \{(u, w) \in E \mid u \neq v \wedge w \neq v\}$
 1765 13: Initialize residual graph G'_r from cached residual capacities
 1766 14: $f_{\text{new}} \leftarrow \text{DINIC}(G', s, t)$ {Incremental max-flow}
 1767 15: $\Delta_v \leftarrow f_{\text{orig}} - f_{\text{new}}$ {Flow contribution}
 1768 16: **if** $\Delta_v > \epsilon$ **then**
 1769 17: $\{\epsilon = 10^{-9}$ numerical threshold} $\mathcal{C} \leftarrow \mathcal{C} \cup \{v\}$
 1770 18: **end if**
 1771 19: **end for**
 1772 20: **return** \mathcal{C}, Δ

1773 F.2 EMPIRICAL VALIDATION AND COMPLEXITY ANALYSIS

1774 We conducted scaling tests from $n = 5$ to $n = 500$ nodes (corresponding to 128K token context with
 1775 average 256 tokens per reasoning step). Table 21 demonstrates the effectiveness of both optimization
 1776 stages, achieving **7.41 \times total speedup** over the NetworkX baseline.

1777 Our implementation achieves empirical complexity between $\mathcal{O}(n^2 \log n)$ ($R^2=0.9976$) and $\mathcal{O}(n^{2.5})$
 1778 ($R^2=0.9995$). We therefore report the overall complexity as $\mathcal{O}(BHn^2T_{\text{avg}}) + \mathcal{O}(n^{2.5})$, where the
 1781 first term (attention computation) dominates for practical reasoning chain lengths ($n \leq 500$).