
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STRUCTURED REASONING FOR LLMS: A UNIFIED
FRAMEWORK FOR EFFICIENCY AND EXPLAINABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent Large Language Models (LLMs) have made remarkable progress, but they
still struggle with complex reasoning tasks such as logical deduction and planning.
This is partly because they rely primarily on token-level probability relationships,
which limits their ability to reason effectively. In this paper, inspired by cognitive
science and neurosymbolic AI, we introduce Structured Reasoning, which aimes
at enhancing the reasoning capabilities of LLMs from the step level. To this end,
we first collect high-frequency, domain-agnostic reasoning step tags and construct
a structured reasoning dataset with those tags. Then, we treat a reasoning process
as a directed acyclic graph, where the vertices represent steps and the edges
indicate the direction of reasoning. In this context, an efficient reasoning process
corresponds to, or can be characterized by, a sparse reasoning graph. To construct
reasoning graphs, we introduce structured tags for reliable step extraction from
LLM outputs. For single-graph optimization, we propose the MaxFlow reward,
which rewards graphs with balanced node contributions and fewer redundant steps.
The quality of a sparse reasoning graph can be reflected by the total flow from
all steps to the final answer. For multi-graph comparison, we propose the LCS
reward, which selects reliable reasoning paths by identifying optimal common
subsequences (consecutive steps) shared across multiple generated responses (se-
quences). Experiments with DeepSeek-R1-Distill-Qwen-1.5B and 7B models show
that our method consistently outperforms GRPO and other carefully tuned baselines
across various context lengths (0.5k–8k). Structured Reasoning shows particular
strength in efficiency (better performance with fewer steps) and stability (consis-
tently generating high-quality outputs across a temperature range of 0.1 to 1.0).
Methods and examples is currently available on our website: Structured-Reasoning.

1 INTRODUCTION

Large Language Models (LLMs) such as DeepSeek-R1 (DeepSeek-AI et al., 2025a), OpenAI-
o1 (OpenAI, 2024), and QwQ (QwQ, 2025) have rapidly advanced the state of natural language
processing, knowledge access, and automated decision support. Despite their impressive language
capabilities and broad applicability, the existing reasoning patterns suffer from several limitations:
(i) redundant and verbose content, (ii) unstable performance, and (iii) poor interpretability of
internal reasoning logic. These challenges hinder LLMs’ safety, controllability, and trustworthiness
in practical applications.

We posit that advancing trustworthy reasoning in LLMs requires a transition to explicitly struc-
tured, auditable processes. Structured reasoning, inspired by cognitive science and dual-process
theories (Bronkhorst et al., 2022; Forstmann et al., 2016; Evans, 2018; Miller & Cohen, 2001), breaks
down problem solving into clear steps with specific purposes (like restating the problem and checking
the answer). Making these steps explicit and central to the process helps in several ways: (i) keeps
the reasoning focused and on-track, (ii) allows us to evaluate each step properly, (iii) makes it easier
to understand how different layers of the model handle these steps.

This paper proposes a novel approach to enhance LLMs with structured reasoning capabilities,
inspired by cognitive science theories and recent advances in neurosymbolic artificial intelligence.
Specifically, we introduce mechanisms that explicitly encode structured knowledge representations
and reasoning processes in LLMs. Then, we treat reasoning processes as directed graphs, where

1

https://anonymous.4open.science/w/structured-reasoning

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Structured Reasoning Example

Reasoning Steps:

<assumption>

Output: (3, !
"
)

Please use the following tags at the beginning of each sentence
in your reasoning: <rephrase>, <inference>...
Convert the point (0, 3) in rectangular coordinates to polar
coordinates. Enter your answer in thr form (𝑟, 𝜃), where 𝑟 > 0
and 0 ≤ 𝜃 < 2𝜋.

The given point is (0, 3). So, 𝑥 = 0 and 𝑦 = 3.

Wait, if 𝑥 is 0, then 𝜃 would be
!
" or

#!
" . But since 𝑦 is positive, 𝜃 should

be in the first quadrant. However, 𝑥 is zero, which is on the y-axis.

Since 𝑥 is 0 and 𝑦 is positive, the point is on the positive y-axis. In polar
coordinates, that corresponds to 𝜃 = !

", 𝑟 = (0" + 3") = 9 = 3.

So, the polar coordinates should be (3, !"). Let me confirm using the formulas.

Therefore, the polar coordinates are (3, !
"
).

If 𝑟 = 3 and 𝜃 = !
", then converting back: 𝑥 = 3𝑐𝑜𝑠 !" = 0 , 𝑦 =

3𝑠𝑖𝑛 !" = 3. That matches the original point.

To convert the rectangular coordinates (0, 3) to polar coordinates (𝑟, 𝜃),
I need to use the conversion formulas.

<specialize>

<contradiction>

<case_analysis>

<verify>

<reverse>

<summarize>

Figure 1: Structured reasoning improves efficiency, stability, and interpretability. Left: an example of
our structured reasoning process. Right: across general tasks, combining structured data tuning with
structure-aware optimization outperforms GRPO and other baselines in (i) efficiency (fewer, denser
steps), (ii) stability (robust across temperatures), and (iii) interpretability (clear step dependencies).

the vertices represent steps and the edges indicate the direction of reasoning, leveraging both the
flexibility of neural networks and the interpretability and precision of symbolic reasoning.

Our framework first transforms unstructured data into structured format by incorporating explicit
reasoning step tags that clearly indicate each step of the reasoning process. These structured
annotations enable adaptive fine-tuning that helps models develop systematic reasoning patterns.
Additionally, we implement a layer-wise dependency tracing procedure using step-to-step attention
matrices, enabling detailed analysis of reasoning relationships within the LLM’s computation process.

To further enhance reasoning efficiency, we extend Group Relative Policy Optimization (GRPO) Shao
et al. (2024b) with two structure-aware algorithms: (1) MAX-Flow: Constructs sparse reasoning
graphs by analyzing step-to-step attention matrices and measures the quality of the graph based on
each step’s contribution to the final answer, (2) Longest Common Subsequence (LCS): Improves
reasoning quality by identifying optimal common subsequences across multiple generated responses
and leveraging these consistent steps as reliable reasoning paths. Our contributions are as follows:

• We propose a novel Structured Reasoning approach that achieves more concise reasoning
and stable performance, demonstrating significant improvements in efficiency (better per-
formance at shorter lengths), stability (consistent quality across temperatures 0.1-1.0), and
interpretability across various scenarios on DeepSeek-R1-Distill-Qwen models.

• We develop a method to automatically extract common reasoning patterns and convert
unstructured reasoning into structured formats, creating a dataset that helps transform
free-form reasoning steps into well-organized structured reasoning chains.

• We propose an attention-based layer-wise analysis framework that constructs step-to-step
attention maps across model layers, providing enhanced interpretability of reasoning steps
and revealing that middle layers play a crucial role in integrating broader reasoning context.

• We enhance GRPO with two complementary algorithms: 1) MAX-Flow, which constructs
sparse reasoning graphs by analyzing step-to-step attention matrices and measures each
step’s contribution to the final answer, and 2) LCS, which improves reasoning quality
by identifying optimal common subsequences across multiple generated responses and
leveraging these consistent steps as reliable reasoning paths.

2 RELATED WORK

Reinforcement Learning Helps Efficiency Improvement Recent approaches use RL to improve
reasoning efficiency, from basic length penalties (Team et al., 2025; Li et al., 2025; Arora & Zanette,
2025) to more sophisticated methods. L1 (Aggarwal & Welleck, 2025) embeds length constraints
in training instructions, while O1-Pruner (Luo et al., 2025a) balances brevity and accuracy against

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Data Collection

Original Query

Unstructured LLM Reasoning

Label Extraction

1. Inference 2. Differentiate

3. Step 4. Conclusion

Filtering & Merging

Q: Convert the point $(0,3)$...?

R: Okay, so I need to convert ...
I remember that to find r ...
So, the coordinates are: \box{(3,
\frac{\pi}{2})}.

1 3

Final Structured Output

2Inference

1

<Question>...(0,3)→polar?...</Question>
...

<Verify>... (3 cos π/2, 3 sin π/2) =
(0,3) ...</Verify>

...
<Answer>... (3, π/2) ...</Answer>

Input to LLM

Structured Input

Attention Matrix Extraction

Calculate Step Attention Matrix

LLM

2Step Dependency Computation

Attention Matrix

Step-to-Step Attention Matrix

<Question>...</Question> ...
<Verify>...</Verify> ...

Show that the middle layers integrate broader
reasoning context.

Structured Reinforcement Learning3

LCS Algorithm

Max-Flow Algorithm

response1 better

Correct
Consensus

Wrong
Uniformity

Common
Subsequence

(2) LCS Reward

(1) Graph Construction (2) Step Importance

(3) Robustness Evaluation

Q

2

1

3

A

Structured-Awared Optimization

(the balance of critical
step flows)

set source(Q) and target(A)
compute max-flow 𝐹
remove k, compute 𝐹!"

calculate k’ s importance

2

Q

2

1

3

A

Q
1

3

A

(1) LCS Sequence

Question Inference

Rephrase

Verify
Decompose

Conclusion

Layer 1 Local Layer 14 Global

head

Answer

Figure 2: Illustration of our three-stage pipeline for enhancing LLMs with Structured Reasoning. (1)
Data Collection: Extract structured reasoning labels from unstructured LLM responses, producing
outputs with structured tags. (2) Step Dependency Computation: Compute step attention matrices to
construct reasoning directed graph. (3) Structure-Awared Opitmization: Apply Max-Flow algorithm
for providing a significantly more accurate understanding of reasoning step dependencies and LCS
algorithm for improving reasoning quality by identifying optimal common subsequences across
multiple generated responses and leveraging these consistent steps as reliable reasoning paths.

reference benchmarks. DAST (Shen et al., 2025b) introduces adaptive reasoning through token-
length budget, allocating resources based on problem complexity. THINKPRUNE (Hou et al., 2025)
employs a length-aware reward with tightening constraints, while Think When You Need (Yang et al.,
2025) uses comparative rewards to guide models toward concise yet effective solutions.

Efficient CoT According to Perplexity Several works optimize reasoning chains using perplexity-
based methods (Jelinek et al., 2005), including stepwise refinement (Cui et al., 2025b), token
pruning (Xia et al., 2025), attack detection (Alon & Kamfonas, 2023) and step elimination strate-
gies (Liu et al., 2024). Furthermore, (Zhang et al., 2025) proposes exploration based on entropy
for multistep reasoning. Our research reveals that perplexity metrics inadequately assess the impor-
tance of reasoning steps, demonstrating that our MAX-Flow algorithm outperforms perplexity-based
approaches in evaluating the importance of reasoning steps.

Language Model Reasoning (for Math) Since OpenAI-O1 (Jaech et al., 2024), followed by O3 (Ope-
nAI, 2025) and DeepSeek-R1 (DeepSeek-AI, 2025), researchers have proposed increasingly sophisti-
cated RL algorithms, including Dr.GRPO (Liu et al., 2025b), LCPO (Aggarwal & Welleck, 2025),
REINFORCE++ (Hu, 2025), DAPO (Yu et al., 2025), DPO-VP (Tu et al., 2025), VinePPO (Kazemne-
jad et al., 2024), CPPO (Lin et al., 2025), VAPO (Yue et al., 2025), and GRO (Cai, 2025). Empirical
investigations have explored data scaling (Shen et al., 2025a), curriculum strategies (Wen et al., 2025;
Roux et al., 2025), and reward engineering (Gao et al., 2024b; Cui et al., 2025a; Ma et al., 2023).
Recent evaluations (Hochlehnert et al., 2025) show many reported improvements fail against properly
optimized baselines. Our methods evaluate across multiple seeds to ensure reproducibility.

3 MOTIVATION: REASONING AS FLOW ON STRUCTURED GRAPHS

We propose to view the reasoning process as a single-source single-sink flow diffusion process
from the question step to the answer step, as illustrated in Figure 2. This perspective transforms
the challenge of optimizing redundant reasoning steps and improving efficiency into a problem of
optimizing reasoning graph structure.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Single Reasoning Graph Perspective. For reasoning steps that are redundant, repetitive, or mean-
ingless, both the answer step and intermediate conclusion steps tend to ignore them, resulting in
weaker connections for these step nodes to the final answer (sink). Conversely, consider an ideal
case of a strictly step-by-step dependent CoT reasoning process: each new intermediate inference
step strongly depends on the previous step. In such cases, removing any single reasoning step would
interrupt the flow, making each step’s contribution approximately equal. A high-quality reasoning
process should thus exhibit balanced step contributions, where no single step dominates the flow,
indicating a robust, non-redundant reasoning chain.

Multi-Graph Comparison Perspective. When comparing multiple reasoning graphs that reach the
correct answers, we can optimize by identifying common attention edges. Under an ideal assumption,
if one reasoning graph’s path is a subset of another’s, it appears more concise in reasoning logic.
Furthermore, if two graphs have identical reasoning paths, we generally consider the process with
shorter corresponding reasoning steps to be more efficient. This motivates our LCS-based reward that
encourages alignment with correct completions with length suppression.

4 METHOD

4.1 STRUCTURED REASONING DATA COLLECTION

Due to the free-form nature of reasoning passages, small LLMs struggle to reliably parse them into
discrete reasoning steps. To address this, we design a pipeline to construct structured reasoning data
with explicit step labels.

Given a question set Q0 and a teacher model T (DeepSeek-R1), for each q ∈ Q0 we obtain raw
reasoning rraw and answer a, then elicit a linear label chain l = (l1 → · · · → lm) via a self-
summarization prompt A.8. We keep frequent labels, merge synonyms, and remove domain-specific
ones to form the core set. Let P be the set of the labels.

To synthesize aligned structured traces over the questions Q, we sample labels π ∈ P for each q and
prompt T to generate a labeled reasoning r, producing the raw structured set Draw = {(q, π, r, a)}.
We apply a filtering function F (q, π, r, a) to verify answer correctness and reasoning difficulty. The
final corpus is:

Dstruct = {(q, π, r, a) ∈ Draw | F (q, π, r, a) = 0}. (1)
This produces a tiny but high-quality dataset suitable for structured tuning. We tuned models to
produce structured reasoning under a designed prompt template that enforces explicit reasoning
labels. For each Question-Reasoning-Answer triplet (q, r, a) in the dataset Dstruct, the question q is
combined with our structured reasoning prompt I , which guides the model to use specific reasoning
labels at the start of each sentence. The model learns to generate the structured reasoning r and the
answera. The structured model, θstruct, is trained as follows:

θstruct =
∏

(q,r,a∈Dstruct)

P (r, a | q, I), (2)

where I denotes our structured prompt and Dstruct is the set of selected high-quality samples.

4.2 LAYER-WISE STEP-DEPENDENT TRACING

Step-to-Step Attention Matrix. Given a layer attention tensor A ∈ RH×Lseq×Lseq (H heads,
sequence length Lseq), we compute the normalized step attention matrix A ∈ Rn×n for n reasoning
steps. For steps i, j with token ranges [sstart

i , send
i] and [sstart

j , send
j] respectively:

Aij =
1

HTi

H∑
h=1

∑
a∈Ti

max
b∈Tj

Ah,a,b, (3)

where Tk = [sstart
k , send

k] denotes the token range of step k.

We denote the token range of step k by Tk = [sstart
k , send

k]. The time complexity of this procedure
is O(B × H × n2 × Tavg), where Tavg is the average number of tokens per step. In practice, the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

inner max is computed with vectorized reductions, and per-layer intermediate buffers are released
immediately, keeping memory footprint low.

4.3 REINFORCEMENT LEARNING FOR IMPROVED STRUCTURED REASONING

We assume that a better reasoning process should have fewer unnecessary connections between steps.

1. Max-Flow Reward We assess step importance via a max-flow/min-cut based reward (Ford
& Fulkerson, 1956). Let the induced reasoning graph have V = n nodes and E retained edges
after thresholding (edge density ρ = E/n2 ≪ 1). We employ a sparse max-flow implementation
(Push–Relabel style with standard heuristics).

(a) Graph Construction. Construct directed graph G = (V,E). Nodes V = {1, ..., n} representing
steps (node 1: Question, node n: Answer); Edges (i, j) ∈ E with capacity Aij when Aij > τ
(threshold τ = 0.05). Thresholding prunes weak edges, yielding sparser, quasilinear backbones that
accelerate flow computation while preserving salient reasoning channels.

(b) Step Importance. For source s = 1 and target t = n: Compute max-flow F in G using Ford-
Fulkerson algorithm. For each node k ∈ V \ {s, t}, ∆Fk = F − F−k, where F−k is the max-flow in
subgraph G−k (node k removed). The value ∆Fk quantifies how crucial step k is for reaching the
conclusion.

(c) Robustness Evaluation. Let Ktop be the top-25% most important steps. The reasoning quality
metric Q ∈ [0, 1] is computed as:

Q = 1−
∑

k∈Ktop
∆Fk∑n−1

j=0 ∆Fj

, (4)

The resoning reward rmaxflow = Q if correct, else − 1. Higher Q indicates more balanced reasoning.

Time Complexity. The theoretical worst-case complexity for max-flow is O(V 2E) using Dinic’s
algorithm. For dense attention graphs where E = Θ(n2), this yields O(n4). However, our two-stage
optimization (optimized Dinic + residual network reuse) achieves 7.41× speedup, with empirical
complexity between O(n2 log n) and O(n2.5). The overall time complexity is:

O(BHn2Tavg) +O(n2.5), (5)

with detailed analysis in Appendix F.

2. The Longest Common Subsequence Reward The LCS reward requires at least one correct
completion as reference. Given sampled reasoning completions R = {r1, . . . , rn} for a question,
let racc(ri) denote the correctness reward for reasoning completion ri. For each pair (ri, rj), we
extract their reasoning steps and compute the longest common subsequence (LCS) of reasoning
labels, denoted LCS(ri, rj).

Let Llcs be the total length of the matched steps in the LCS and Li be the total length of steps in ri.

To prevent length hacking (i.e., artificially increasing the token count of each reasoning step to
inflate scores), for each matched step k in the LCS with lengths ℓi,k and ℓj,k, we introduce a length
suppression factor, defined as ratiok =

ℓj,k
2ℓi,k

if ℓi,k > ℓj,k and ratiok = 1 − ℓi,k
2ℓj,k

otherwise.
Subsequently, the length of the weighted LCS is defined as Llcs =

∑
k∈LCS(ri,rj)

ratiok · ℓi,k. We
define the pairwise LCS score as:

Scorelcs(ri, rj) =


Llcs

Li
, if both ri and rj are correct,

−Llcs

Li
, if both ri and rj are incorrect,

1− Llcs

Li
, if ri is correct, rj is incorrect,

−1 + Llcs

Li
, if ri is incorrect, rj is correct.

(6)

Here, a higher LCS ratio is rewarded when compared with correct completions (encouraging consen-
sus on high-quality reasoning), while a lower LCS ratio is rewarded when compared with incorrect

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

completions (encouraging diversity from incorrect reasoning). The length suppression factor ratiok
penalizes unnecessarily long steps and encourages concise reasoning.

Finally, the overall LCS reasoning reward for ci is averaged over all other completions:

rlcs(ci) =
1

n− 1

∑
j ̸=i

Scorelcs(ci, cj). (7)

Time Complexity. For sequences of lengths L1 and L2, the code fills a DP table and backtracks,
costing O(L1L2) time; the weight pass over LCS matches is O(min{L1, L2}) and does not change
the overall bound. Space usage is O(L1L2) for the DP table (plus a negligible O(min{L1, L2}) set
of indices), thus O(L1L2) overall.

4.4 VALIDATING ATTENTION-REASONING CORRESPONDENCE

To validate that our step-to-step attention matrices truly capture reasoning dependencies, we conduct
experiments on the Entailment Trees dataset (Dalvi et al., 2022), which provides gold-standard
reasoning dependency annotations (premise→ intermediate→ conclusion) for ARC (AI2 Reasoning
Challenge) science exam questions. We convert examples into structured format and extract ground-
truth dependencies as binary adjacency matrices. We compare the Structured group (feeding
structured reasoning into DeepSeek-R1-Distill-Qwen-7B and measuring alignment between step-
wise attention and gold dependencies) against a Shuffled group (randomly shuffling step order while
keeping question/answer positions fixed, thus destroying reasoning structure). For each example, we
compute the alignment score as the proportion of gold dependencies where attention weight exceeds
the average attention, and calculate the win rate as the percentage of examples where the Structured
group outperforms the Shuffled group.

As shown in Table 1, we evaluate on two reasoning scenarios from ARC questions: Task 1 (no dis-
tractor) contains only necessary reasoning steps, while Task 2 (with distractor) includes irrelevant
information to test robustness. Across both tasks, the Structured group achieves significantly higher
alignment with human annotations (71.27% vs 28.48% for Task 1; 72.27% vs 24.87% for Task 2)
and overwhelming win rates (97.15% and 95.29%), demonstrating that attention matrices do capture
meaningful reasoning dependencies rather than spurious correlations.

Table 1: Attention-dependency alignment on Entailment Trees dataset. The experimental group uses
structured reasoning with preserved order, while the control group uses randomly shuffled steps.

Task 1 no distractor Avg Alignment Win Rate Task 2 with distractor Avg Alignment Win Rate
Shuffled Group 28.48% 5.50% Shuffled Group 24.87% 4.71%
Structured Group 71.27% 97.15% Structured Group 72.27% 95.29%

5 EXPERIMENTS

In this section, we evaluate the effectiveness of the proposed structured reasoning by comparining
with GRPO and other models based on the same finetuned model.

5.1 COMPARED EFFICIENCY, STABILITY AND EXPLAINABILITY.

For structured reasoning tuning data, we use the S1 dataset (Muennighoff et al., 2025), which contains
1,000 high-quality problems, covering science, technology, engineering and mathematics (STEM)
and related domains. we select 500 high quality structured reasoning samples. In the second stage,
we structured reasoning reinforcement learning on the DeepScaleR-Preview-Dataset (Luo et al.,
2025b), a mathematics dataset containing 40K question-answer pairs drawn from AIME, AMC,
Omni-Math (Gao et al., 2024a), and STILL (Song et al., 2025a).

Efficiency Task. We evaluate the effectiveness of our proposed methods by reporting Pass@1
accuracy (mean ± standard deviation) across nine benchmarks: the math (AIME 2024, AIME

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2025, AMC, MATH500 (Hendrycks et al., 2021b), Minerva, Olympiad-Bench (He et al., 2024)),
reading-comprehension (DROP), law (LSAT-AR (Zhong et al., 2023)) and massive multitask (MLU-
ALL-VALID (Hendrycks et al., 2021a).) using standardized evaluation protocols. For AIME24,
AIME25 and AMC23, we perform evaluations in 10 seeds each, while other are evaluated in 3 seeds
each. For the training of our method, the maximum response length is limited to 4k tokens, while we
report 0.5k, 1k, 2k, 4k and 8k maximum token length evaluation result for efficiency display. The
max-length constraint is enforced as a hard decoding cap during generation, which terminates when
reaching the specified token limit or an end-of-sequence token, whichever comes first. Additionally,
we compare other 1.5B models against our MaxFlow structured reasoning version across Math
problems (Appendix A.6). We also performed detailed component ablation studies (Appendix B) and
comparisons between LCS and MaxFlow (Appendix C).

Table 2: Benchmark Results (Pass@1 Accuracy) under different maximum response lengths. All
results are reported as mean. Avg. score calculates the average across all nine benchmarks. DS is
short for DeepSeek-R1. Comparison with baseline models and methods for fine-tuning 1.5B models.
The shaded models are trained by otherworks. All other results are either evaluated on existing
models or on models we trained using different approaches. Methods all fine-tune DeepSeek-R1-
Distill-Qwen-1.5B on the same DeepScaleR dataset.

Model AIME’24 AIME’25 AMC MATH500 Minerva Olympiad DROP LSAT-AR MMLU-ALL Avg.
1K Maximum Response Length
FastCuRL 0.00 2.22 15.83 25.73 9.19 7.56 20.80 22.75 40.54 16.07
DeepScaleR 0.00 1.11 16.67 35.00 13.11 9.48 23.50 19.71 41.15 17.75
DS-Distill-Qwen-1.5B 1.11 1.11 15.83 27.20 12.01 8.10 23.25 24.49 44.05 17.46
GRPO 0.00 0.00 25.00 45.20 13.73 12.94 34.50 22.17 40.67 21.58
Ours(LCS) 1.67 1.11 22.50 53.40 20.04 18.04 32.20 23.15 44.50 24.28
Ours(MaxFlow) 2.22 1.11 23.33 44.67 14.95 14.42 34.65 22.32 42.04 22.19
2K Maximum Response Length
FastCuRL 1.67 3.33 27.50 54.90 17.10 19.41 28.71 22.75 45.35 24.52
DeepScaleR 7.78 5.56 36.67 65.20 24.63 27.36 28.70 22.90 45.13 29.33
DS-Distill-Qwen-1.5B 3.33 1.11 36.67 52.33 20.96 19.95 25.29 21.45 46.72 25.31
GRPO 6.67 6.67 45.83 68.07 24.39 30.52 38.99 24.04 45.44 32.33
Ours(LCS) 6.67 8.33 53.75 72.20 27.02 32.67 33.85 22.45 47.15 33.79
Ours(MaxFlow) 6.67 6.67 46.00 69.13 26.39 31.86 39.41 22.30 46.72 32.78
4K Maximum Response Length
FastCuRL 14.44 15.56 50.00 76.60 29.29 36.84 33.76 23.04 48.51 36.45
DeepScaleR 22.22 24.44 63.33 77.13 32.11 40.04 30.33 24.06 48.55 40.25
DS-Distill-Qwen-1.5B 14.44 8.89 47.50 71.73 29.41 33.58 25.98 25.07 47.51 33.79
GRPO 17.78 16.67 58.33 77.13 29.90 40.40 42.00 24.49 46.81 39.28
Ours(LCS) 20.67 18.33 65.00 78.20 30.51 41.70 35.25 25.15 49.65 40.50
Ours(MaxFlow) 27.78 24.44 60.83 76.73 29.90 41.90 40.10 24.59 48.81 41.68
8K Maximum Response Length
FastCuRL 18.89 17.78 58.33 78.40 30.50 42.15 33.00 23.50 49.51 39.12
DeepScaleR 36.67 26.67 77.50 87.80 33.56 56.22 33.73 32.17 48.92 48.14
DS-Distill-Qwen-1.5B 23.33 18.33 66.25 80.33 31.00 44.49 30.52 26.26 50.60 41.23
GRPO 23.33 21.11 69.17 83.20 31.37 48.89 42.23 24.20 45.98 43.28
Ours(LCS) 23.33 20.00 72.50 82.20 30.51 48.59 40.80 28.50 51.25 44.19
Ours(MaxFlow) 36.67 27.78 77.83 85.33 34.22 54.81 42.53 31.26 49.60 48.89

Stability Task. To assess model stability, we conduct experiments across LSAT-AR, MATH500, and
Olympiad-Bench datasets (3 seeds each) under varying sampling temperatures (0.1 to 1.0). Using a
fixed 8k token maximum response length, we measure accuracy variance to quantify how robust our
methods are to different temperature settings, with lower variance indicating better stability.

Explainablity Task. We design an experiment (Interference Injection and Selective Removal,
IISR) (A.13) to assess our ability to analyze reasoning step importance. Since existing datasets
rarely provide direct importance annotations for reasoning steps, and LLM-based scoring is noisy, we
inject obviously irrelevant reasoning steps into existing chains. While we cannot confirm the relative
importance of original steps, we can be certain about the irrelevance of injected ones. We compare
our max-flow algorithm (4.3), top-p/top-k backtracking (A.10), average step perplexity (A.10), and
random selection based on their Error Filtering Efficiency (A.11) when removing 1-11 steps from
mixed reasoning chains. The experiment uses 70 correctly structured reasoning examples from
S1k, covering STEM and related domains, selected for their longer trace lengths and more uniform
reasoning steps. We define four types of interference steps: (1) Redundant - statements like “Let’s
summarize what we’ve done so far, our previous work is correct” that add no value to reasoning; (2)
Distracted - comments indicating distraction such as “This reminds me of another problem”; (3)
Harmful - randomly injected reasoning steps from other problems; and (4) Confused - copies of
current reasoning steps randomly injected at incorrect positions in the reasoning chain.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Comparison with baseline models and methods for fine-tuning 7B models. Methods in the
bottom section all fine-tune DeepSeek-R1-Distill-Qwen-7B on the same DeepScaleR dataset.

Model AIME’24 AIME’25 AMC MATH500 Minerva Olympiad DROP LSAT-AR MMLU-ALL Avg.
1K Maximum Response Length
Light-R1 3.33 3.33 25.00 38.33 17.65 11.95 43.27 23.04 54.50 24.49
DS-Distill-Qwen-7B 5.56 4.44 16.67 35.00 19.00 11.01 43.44 21.74 59.20 24.01
GRPO 8.89 6.67 27.50 50.73 23.65 16.69 49.75 22.03 56.76 29.19
Ours(LCS) 13.33 8.78 35.00 62.20 29.80 24.50 50.15 28.80 60.65 35.06
Ours(MaxFlow) 11.11 10.13 30.00 57.67 27.21 20.94 50.33 25.80 58.96 32.32
2K Maximum Response Length
Light-R1 22.22 14.11 43.33 67.67 35.66 32.20 45.72 29.42 62.42 39.19
DS-Distill-Qwen-7B 15.56 13.33 38.33 65.33 32.60 28.89 45.46 31.09 63.44 37.11
GRPO 22.22 18.89 56.67 77.27 35.42 38.96 51.82 28.78 60.25 43.36
Ours(LCS) 28.89 25.44 63.50 80.40 38.90 42.75 52.90 31.10 62.20 47.34
Ours(MaxFlow) 26.67 22.22 60.83 77.53 37.63 38.87 51.65 31.13 61.02 45.28
4K Maximum Response Length
Light-R1 38.89 35.56 72.50 80.47 39.34 48.25 45.72 34.35 63.49 50.95
DS-Distill-Qwen-7B 35.56 38.89 62.50 81.20 39.46 45.68 45.74 37.61 64.58 50.14
GRPO 42.22 35.56 70.00 84.40 39.09 50.07 51.79 37.83 61.45 52.49
Ours(LCS) 40.00 32.22 75.83 85.60 40.15 51.25 53.20 40.25 63.15 53.52
Ours(MaxFlow) 43.89 38.89 80.83 87.53 40.56 52.99 52.86 44.49 61.70 55.97
8K Maximum Response Length
Light-R1 44.44 45.56 80.83 89.47 38.24 59.56 46.00 50.00 64.50 57.62
DS-Distill-Qwen-7B 41.11 42.22 83.50 91.33 40.69 59.26 46.07 52.32 65.97 58.05
GRPO 48.89 40.00 85.50 90.27 40.26 59.70 51.78 46.74 61.79 58.33
Ours(LCS) 46.67 38.89 82.50 88.80 39.85 58.45 52.45 48.90 62.35 57.65
Ours(MaxFlow) 53.78 41.00 91.25 92.67 41.54 61.78 53.03 52.74 62.77 61.17

Table 4: Comparison of model performance variance and stability under temperature changes from
0.1 to 1.0. Results on MATH500, OlympiadBench, and LSAT-AR benchmarks demonstrate model
robustness across different temperature settings. Methods in the bottom section fine-tune both
DeepSeek-R1-Distill-Qwen-1.5B and 7B models using the same DeepScaleR dataset.

1.5B Models Performance 7B Models Performance
MATH500 OlympiadBench LSAT-AR MATH500 OlympiadBench LSAT-AR

DS-Distill-Qwen-1.5B 78.00±2.94 42.50±2.74 26.38±0.64 DS-Distill-Qwen-7B 91.33±1.42 59.26±1.44 52.32±2.69
FastCuRL 80.66±1.09 45.26±0.80 26.36±0.94 Light-R1 89.47±1.12 59.56±0.57 50.00±3.37
GRPO 82.51±0.79 48.07±0.65 28.98±0.50 GRPO 90.27±0.92 59.70±0.70 46.74±2.39
Ours(LCS) 83.74±0.48 50.15±0.48 29.87±0.58 Ours(LCS) 90.85±0.61 59.72±0.62 49.58±2.24
Ours(MaxFlow) 85.08±0.53 54.28±0.29 31.35±0.47 Ours(MaxFlow) 92.67±0.48 61.78±0.50 52.74±2.08

Models. Our experiments are conducted on two base models: DeepSeek-R1-Distill-Qwen-1.5B
and DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI et al., 2025b). For both model sizes, we train
for 500 steps and derive three variants through different reinforcement learning approaches. GRPO
represents models trained using the GRPO algorithm to optimize the reasoning process. Max-Flow
denotes models trained with our proposed maximum flow reward, which evaluates the balance of step
contributions in the reasoning response (4.3). LCS refers to models trained using a reward based on
reasoning process similarity to select optimal reasoning sequences (4.3). The structured reasoning
example can be found in A.12. The experiment comparison can be found in A.4.4.

Baselines. We compare our proposed methods with several state-of-the-art baselines: (1) DeepSeek-
R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI et al., 2025b); (2) FastCuRL-
1.5B-Preview (Song et al., 2025b), which employs curriculum learning for reasoning; (3) DeepScaleR-
1.5B (Luo et al., 2025b), which incorporates entropy regularization in GRPO; (4) GRPO (Shao et al.,
2024a), which uses guided reinforcement learning for reasoning optimization; and (5) Light-R1-7B,
a larger model variant. All these models, including ours, are initialized from DeepSeek-R1-Distill-
1.5B/7B and subsequently fine-tuned via reinforcement learning to enhance reasoning capabilities.

Training Details. We train all methods (GRPO, Max-Flow reward, LCS reward) on DeepSeek-R1-
Distill-Qwen-1.5B and 7B backbones. Models are initialized with a brief structured tuning pass on the
500 Structured Reasoning set (2 epochs, learning rate 1×10−5, cosine schedule without floor, weight
decay 1× 10−4, micro-batch 1 on a single A100); this stage is uniform across methods. Structure-
aware optimization then uses the DeepScaleR-Preview-Dataset in bfloat16 with FlashAttention2;
inference runs under vLLM (70% GPU memory, max sequence length 4096). Per-device batch size 6,
gradient accumulation 4 (effective batch 24), gradient checkpointing enabled. Learning rate sweep:
{1× 10−6, 2× 10−6}; 2× 10−6 works better for 1.5B, 1× 10−6 for 7B. Cosine scheduler with 0.1×
floor; weight decay 1× 10−4. Each training sample yields 6 completions at temperature 0.6 (same

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

for evaluation). All reward settings include a Format Score (weight 1.0). The Max-Flow reward
carries weight 2.0; its graph is built by thresholding step–step attention at τ = 0.05 then running a
capacity-scaling max flow. The LCS structural reward is length-normalized to match Format Score
scale. GRPO uses β = 1× 10−3. When a KL constraint is enabled, we set δ = 1× 10−4 (average
K ≃ 2 × 10−5) and βKL = 103, giving effective penalty βKLδ ≈ 0.1 upon violation. No dynamic
sampling or sample-inflating heuristics are used (fixed 6 candidates per prompt). Validation occurs at
fixed intervals; we report the best checkpoint on held-out metrics. Structural reward computation
adds only modest overhead versus the base forward and decoding costs (Appendix A.4.2).

Efficiency Performance. As shown in Tables 2, 3, and A.6, we evaluate all models across six
mathematics-focused benchmark datasets and three out-of-domain datasets (reading, legal, and
massive multitask) to demonstrate the effectiveness of MaxFlow and LCS. From Table 2, we observe
that our proposed structure-aware optimization methods consistently outperform other baselines for
1.5B models. Notably, MaxFlow with 4k training length achieves significant average improvement
over GRPO and surpasses DeepScaleR-1.5B-Preview, which was trained with maximum 24k length
and evaluated with 32k length (Table A.6). Similarly for 7B models, Table 3 shows that the LCS
method performs excellently under 4k maximum length, while MaxFlow outperforms by a large
margin across the entire length range. Besides, Figure 7 shows LCS generate more correct responses
in the 256-1024 token range and fewer that exceed 8192 tokens, indicating more efficient reasoning.

Table 5: Comparison of Error Filtering Efficiency (EFE) percentage when removing 3, 5, 7, and 9
steps from responses. Perplexity uses step-level lowest perplexity ordering for removal, while both
top-k and MaxFlow are based on our proposed step attention matrix method.

Method DeepSeek-R1-Distill-1.5B DeepSeek-R1-Distill-7B

3 steps 5 steps 7 steps 9 steps 3 steps 5 steps 7 steps 9 steps
Random 54.97 54.98 55.39 53.57 56.60 56.12 55.56 55.25
Perplexity 56.65 59.52 62.91 68.07 57.87 61.40 65.36 65.13
Ours(Top-k) 59.36 67.39 69.84 76.29 59.63 64.22 68.65 75.38
Ours(Max-Flow) 69.22 72.71 75.36 76.67 65.16 73.55 74.34 75.16

Structured Reasoning Models Produce More Stable Outputs. As shown in Table 4, we observe
contrasting behaviors between baseline and structured reasoning models across temperature variations.
Baseline DeepSeek-R1-Distill models exhibit significant temperature sensitivity, with performance
improving substantially as temperature increases from 0.1 to 0.9. For example, the 1.5B baseline
shows accuracy gains from 77.47 to 82.33 on MATH500 when temperature rises. This suggests
that baseline models rely heavily on sampling diversity to achieve better performance. In contrast,
our MaxFlow method maintains consistent performance across all temperature settings, achieving
the lowest variance: ±0.53 on MATH500 and ±0.29 on OlympiadBench for the 1.5B model. This
temperature robustness indicates that structured reasoning frameworks produce inherently stable
outputs without requiring specific sampling parameters, making them more reliable.

Structured Analysis Helps Identify Redundant Reasoning Steps. Through IISR experiments,
we found that as more reasoning steps were removed, our proposed methods based on step-matrix
(See Section 4.3) (top-k, top-p, and max-flow) significantly outperformed random removal Fig-
ure A.11. The specific example can be found in Appendix A.13. Additionally, in our comparison
with perplexity-based algorithms 6, we found that removing steps with the lowest PPL (PPL Bot-
tom) performed similarly (though slightly worse) to our methods when dealing with redundant but
harmless information, as such information typically has low information content and low perplexity.
Interestingly, for logically confused interference, removing steps with the highest PPL (PPL Top)
performed slightly better, as steps appearing in inappropriate positions caused significantly increased
perplexity. This shows that PPL reflects information quantity and cannot distinguish reasoning from
disruptive content. Table 5 Our step-matrix-based methods outperformed PPL-based approaches.

5.2 WHAT ARE THE GAINS FROM STRUCTURED REASONING MODELS?

Benifit from Training-Free Structured Rasoning. For large LLMs, leveraging their robust
instruction-following capabilities and inherent reasoning abilities, we can effectively guide them

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

towards structured reasoning without additional training. Table 6 summarizes the average token
lengths and accuracies across several benchmarks, including MATH500, GPQA-Diamond, MMLU-
ALL-VALID, AMC23, and AIME24. Notably, the structured reasoning model achieves similar or
higher accuracy with much shorter answers, e.g., on MATH500, the average reasoning token length
drops from 2945 (Base) to 1577 (Structured Guidance), while accuracy remains above 92% (See
Appendix A.14 for the fill in the middle prompting strategy).

Table 6: Token Length and Accuracy Analysis of DeepSeek-R1 671B Using Training-Free Structured
Guidance. Results shown across Mathematical and General Benchmarks under same settings.

Model MATH500 Acc./Len. GPQA Acc./Len. MMLU Acc./Len. AMC23 Acc./Len.

Base 92.9%/2945 70.3%/6537 88.8%/989 100%/1716
Structured Guidance 93.0%/1577-46.5% 71.1%/4028-38.4% 89.6%/512-48.2% 100%/2053+19.6%

Cross-Scale Emergence of Broad Mid-to-Late Step-Span Attention. According to 70 samples
from 1.5B and 7B models with our step attention matrix thresholded at 0.1, we found that layer 0
attends to an average of 6.82 reasoning steps, while layer 1 attends to only 1.41. This produces a
repeating broad-versus-local alternation through approximately layers 0–13, suggesting an early
division of labor between (i) layers that aggregate multi-step context and (ii) layers that perform local
refinement anchored to the immediately preceding step. Beginning around layer 14, all subsequent
layers attend to >8 steps (peaking at 12.06), marking a transition to a stable broad-span integration
regime that more faithfully ranks step importance (Figure 3). The same qualitative pattern appears in
both 1.5B and 7B models: early oscillatory specialization → mid/late sustained global integration.
The 7B model shows a smoother (less jagged) broadening trajectory, whereas the 1.5B model
preserves sharper alternating contrasts before converging. These consistent cross-scale dynamics
imply (1) the broad-span mid–late blocks encode globally consolidating reasoning signals, and (2)
pruning or distillation strategies could target redundant narrow-focus early layers or alternating pairs
while preserving (or selectively enhancing) the globally integrative mid–late region.

Figure 3: Analysis of attention step range: 1.5B (Left) and 7B (Right). Darker means broader.

Analysis of Model Reasoning Patterns. We identify a domain-invariant backbone: assumption
→ (decompose | formalize)→ verify→ consequence→ summarize, while variabil-
ity concentrates in domain-shaped verify loops (e.g., contradiction cycles in Number Theory,
associative loops in Clinical, evaluative verify→consequence chains in Business Ethics, early
grounding in Geometry). Algebra shows a canonical assumption→decompose→formalize
setup, whereas Geometry’s early direct formalization yields the leanest loop density and Business
Ethics exhibits a high hypothesis suppression ratio with intensified evaluative chains. Loop density
rises and the verify position shifts rightward in longer traces, signaling deferred iterative refinement.
Full transition frequencies, loop densities, and positional distributions appear in Appendix A.5.

6 CONCLUSION

In this paper, we reformulate structured reasoning as a graph optimization problem where reasoning
flows from question → steps → answer. Our approach introduces structured step annotations for
reliable graph construction in small LLMs, MaxFlow reward for pruning redundant steps, LCS reward
for reinforcing high-quality sub-paths. Experiments on DeepSeek-R1-Distill models demonstrate
that MaxFlow provides significant performance gains with superior stability across context lengths.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Gabriel Alon and Michael Kamfonas. Detecting language model attacks with perplexity, 2023. URL
https://arxiv.org/abs/2308.14132.

Daman Arora and Andrea Zanette. Training language models to reason efficiently. arXiv preprint
arXiv:2502.04463, 2025.

Hugo Bronkhorst, Gerrit Roorda, Cor Suhre, and Martin Goedhart. Students’ use of formalisations
for improved logical reasoning. Research in Mathematics Education, 2022.

Xin Cai. One framework to rule them all: Unifying rl-based and rl-free methods in rlhf. arXiv
preprint arXiv:2503.19523, 2025.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025a.

Yingqian Cui, Pengfei He, Jingying Zeng, Hui Liu, Xianfeng Tang, Zhenwei Dai, Yan Han, Chen
Luo, Jing Huang, Zhen Li, Suhang Wang, Yue Xing, Jiliang Tang, and Qi He. Stepwise perplexity-
guided refinement for efficient chain-of-thought reasoning in large language models, 2025b. URL
https://arxiv.org/abs/2502.13260.

Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan Xie, Hannah Smith, Leighanna Pi-
patanangkura, and Peter Clark. Explaining answers with entailment trees, 2022. URL https:
//arxiv.org/abs/2104.08661.

DeepSeek-AI. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement
Learning, 2025. URL https://arxiv.org/abs/2501.12948.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning,
January 2025a. URL http://arxiv.org/abs/2501.12948. arXiv:2501.12948 [cs].

11

https://arxiv.org/abs/2308.14132
https://arxiv.org/abs/2502.13260
https://arxiv.org/abs/2104.08661
https://arxiv.org/abs/2104.08661
https://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025b.
URL https://arxiv.org/abs/2501.12948.

Jonathan St BT Evans. Dual-process theories. In The Routledge international handbook of thinking
and reasoning, pp. 157–174. Routledge, 2018.

L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics,
8:399–404, 1956. doi: 10.4153/CJM-1956-045-5.

Birte U Forstmann, Roger Ratcliff, and Eric-Jan Wagenmakers. Sequential sampling models in
cognitive neuroscience. Annual review of psychology, 67:641–666, 2016.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran Quan,
Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang. Omni-
math: A universal olympiad level mathematic benchmark for large language models, 2024a. URL
https://arxiv.org/abs/2410.07985.

Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang,
and Yi Wu. On designing effective rl reward at training time for llm reasoning. arXiv preprint
arXiv:2410.15115, 2024b.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiad-
bench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal
scientific problems, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021a. URL https://
arxiv.org/abs/2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021b.

12

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udandarao, Samuel Albanie, Ameya Prabhu, and
Matthias Bethge. A sober look at progress in language model reasoning: Pitfalls and paths to
reproducibility, 2025. URL https://arxiv.org/abs/2504.07086.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. arXiv
preprint arXiv:2501.03262, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

F. Jelinek, R. L. Mercer, L. R. Bahl, and J. K. Baker. Perplexity—a measure of the difficulty of speech
recognition tasks. The Journal of the Acoustical Society of America, 62(S1):S63–S63, 08 2005.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning through
refined credit assignment. arXiv preprint arXiv:2410.01679, 2024.

Chen Li, Nazhou Liu, and Kai Yang. Adaptive group policy optimization: Towards stable training
and token-efficient reasoning. arXiv preprint arXiv:2503.15952, 2025.

Zhihang Lin, Mingbao Lin, Yuan Xie, and Rongrong Ji. Cppo: Accelerating the training of group
relative policy optimization-based reasoning models. arXiv preprint arXiv:2503.22342, 2025.

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Jiayang, Yue Zhang, Xipeng Qiu, and Zheng Zhang.
Can language models learn to skip steps?, 2024. URL https://arxiv.org/abs/2411.
01855.

Zichen Liu, Changyu Chen, Wenjun Li, Tianyu Pang, Chao Du, and Min Lin. There may not be
aha moment in r1-zero-like training — a pilot study. https://oatllm.notion.site/
oat-zero, 2025a. Notion Blog.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding r1-zero-like training: A critical perspective, 2025b. URL https:
//arxiv.org/abs/2503.20783.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025a.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin
Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-
preview with a 1.5b model by scaling rl. https://pretty-radio-b75.notion.site/
DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2,
2025b. Notion Blog.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. arXiv preprint arXiv:2310.12931, 2023.

Earl K Miller and Jonathan D Cohen. An integrative theory of prefrontal cortex function. Annual
review of neuroscience, 24(1):167–202, 2001.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

OpenAI. OpenAI o1, 2024. URL https://openai.com/o1.

13

https://arxiv.org/abs/2504.07086
https://arxiv.org/abs/2411.01855
https://arxiv.org/abs/2411.01855
https://oatllm.notion.site/oat-zero
https://oatllm.notion.site/oat-zero
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://arxiv.org/abs/2501.19393
https://openai.com/o1

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

OpenAI. OpenAI o3-mini System Card, January 2025. URL https://cdn.openai.com/
o3-mini-system-card-feb10.pdf.

QwQ. QwQ-32B: Embracing the Power of Reinforcement Learning | Qwen, 2025. URL https:
//qwenlm.github.io/blog/qwq-32b/.

Nicolas Le Roux, Marc G Bellemare, Jonathan Lebensold, Arnaud Bergeron, Joshua Greaves,
Alex Fréchette, Carolyne Pelletier, Eric Thibodeau-Laufer, Sándor Toth, and Sam Work. Ta-
pered off-policy reinforce: Stable and efficient reinforcement learning for llms. arXiv preprint
arXiv:2503.14286, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024a. URL https://arxiv.org/abs/
2402.03300.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024b.

Wei Shen, Guanlin Liu, Zheng Wu, Ruofei Zhu, Qingping Yang, Chao Xin, Yu Yue, and Lin Yan.
Exploring data scaling trends and effects in reinforcement learning from human feedback. arXiv
preprint arXiv:2503.22230, 2025a.

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
Wang, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning models. arXiv
preprint arXiv:2503.04472, 2025b.

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Ji-Rong Wen,
Yang Lu, and Xu Miu. R1-searcher: Stimulating the search capability of llm from zero via rein-
forcement learning. 2025a. URL https://github.com/SsmallSong/R1-searcher.

Mingyang Song, Mao Zheng, Zheng Li, Wenjie Yang, Xuan Luo, Yue Pan, and Feng Zhang. Fastcurl:
Curriculum reinforcement learning with progressive context extension for efficient training r1-like
reasoning models, 2025b. URL https://arxiv.org/abs/2503.17287.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Songjun Tu, Jiahao Lin, Xiangyu Tian, Qichao Zhang, Linjing Li, Yuqian Fu, Nan Xu, Wei He, Xi-
angyuan Lan, Dongmei Jiang, et al. Enhancing llm reasoning with iterative dpo: A comprehensive
empirical investigation. arXiv preprint arXiv:2503.12854, 2025.

Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu
Tang, Xiaowei Lv, et al. Light-r1: Curriculum sft, dpo and rl for long cot from scratch and beyond.
arXiv preprint arXiv:2503.10460, 2025.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Control-
lable chain-of-thought compression in llms, 2025. URL https://arxiv.org/abs/2502.
12067.

Junjie Yang, Ke Lin, and Xing Yu. Think when you need: Self-adaptive chain-of-thought learning.
arXiv preprint arXiv:2504.03234, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
arXiv preprint arXiv:2503.14476, 2025.

Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, et al. Vapo: Efficient and
reliable reinforcement learning for advanced reasoning tasks. arXiv preprint arXiv:2504.05118,
2025.

14

https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://github.com/SsmallSong/R1-searcher
https://arxiv.org/abs/2503.17287
https://arxiv.org/abs/2502.12067
https://arxiv.org/abs/2502.12067

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Jinghan Zhang, Xiting Wang, Fengran Mo, Yeyang Zhou, Wanfu Gao, and Kunpeng Liu. Entropy-
based exploration conduction for multi-step reasoning, 2025. URL https://arxiv.org/
abs/2503.15848.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied, Weizhu
Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation models,
2023. URL https://arxiv.org/abs/2304.06364.

15

https://arxiv.org/abs/2503.15848
https://arxiv.org/abs/2503.15848
https://arxiv.org/abs/2304.06364

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

As Large Language Models (LLMs) have evolved into reliable research assistance tools, we maintain
transparency about their usage in this work. In accordance with the submission guidelines, we
explicitly declare our LLM utilization in the following scenarios.

First, we employed LLMs for grammar and style enhancement, specifically for proofreading and
improving the linguistic quality of the manuscript. All suggestions were manually reviewed and
verified by the authors to ensure accuracy and appropriateness.

Second, LLMs were utilized to assist in the layout and organization of paper figures, helping optimize
the arrangement and presentation of visual elements. The actual content and design decisions
remained entirely under the authors’ control, with LLMs providing suggestions for effective visual
organization and structural composition.

We emphasize that all LLM-generated content underwent thorough human verification and refinement.
The core research ideas, methodology, experiments, and conclusions were independently developed
by the authors. LLMs served purely as assistive tools under careful human supervision to ensure the
work’s reliability and originality.

A.2 ETHICS STATEMENT

We affirm our full compliance with the ICLR Code of Ethics throughout this research. Our work
primarily focuses on visualization techniques and does not involve human subjects, sensitive personal
data, or potentially harmful applications. The visualizations and methodologies presented in this
paper are designed to be general-purpose tools that promote transparency and understanding in data
analysis.

We acknowledge that any visualization tool could potentially be misused for misrepresenting data.
To address this concern, we have implemented clear documentation of all visualization parameters,
explicitly stated the limitations and appropriate use cases, and designed our tools with built-in
safeguards against common forms of visual manipulation.

We declare no conflicts of interest, and our research was conducted independently without external
commercial influence.

A.3 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research findings. Our com-
plete set of interactive visualizations is currently available at our anonymous website
https://anonymous.4open.science/w/structured-reasoning/. These visualizations demonstrate all the
key findings discussed in the paper.

While our source code and data are not yet publicly available due to the double-blind review
process, we are preparing comprehensive releases that will include the complete implementation
code, processing scripts and documentation, sample datasets used in our experiments, along with
configuration files and parameters.

Section 3 of our paper provides detailed technical specifications and methodology, with additional
implementation details available in Appendix A.

A.4 TRAINING DETAILS AND RUNTIME ANALYSIS

We summarize the complexity of the two structural rewards: MAX-Flow and LCS, together with the
scalability heuristics actually used.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.4.1 NOTATION

B batch size; H attention heads; n average reasoning steps; Tavg tokens per step; L = nTavg total
reasoning length; dh head dim; τ sparsification threshold; E retained edges after thresholding; Cmax

maximum edge capacity; m number of answer candidates; Lans average candidate length.

A.4.2 SCALING HEURISTICS

Layer selection: extract step attention only from a small subset (e.g., 23–27 layers), cutting propor-
tional overhead. Adaptive threshold: choose τ as a running quantile to stabilize E as context length
grows, avoiding quadratic blow-up. Capacity bucketing (8–12 bit) bounds logCmax and shortens
scaling phases. Structural token filtering shrinks LCS input length before any quadratic DP.

Table 7: Observed MAX-Flow reward overhead (single evaluation).

Model Max Len Avg Steps Peak Mem (MB) Latency (ms)

1.5B 2048 6.23 69.10 258
7B 2048 6.18 177.59 395
7B 4096 11.05 373.89 1321

A.4.3 PRACTICAL SUMMARY

Overhead is dominated by sparse max-flow with E ≪ n2; LCS becomes the main cost only when
doing full pairwise alignment with large m; layer restriction, adaptive edge sparsity, and structural
token filtering preserve tractability for long contexts (e.g., 128K) without quadratic memory growth.

(a) Reward with mask (b) Reward without mask (c) Length w mask (d) Length wo mask

Figure 4: Impact of Truncated Completion Masking on Training Stability

A.4.4 EXPERIMENTAL DETAILS

Table 8: Training Details. To ensure consistency in counting training steps, we standardized the batch
size to 128. This means that two steps with a batch size of 64 are considered equivalent to one step
with a batch size of 128.

Model Training Steps Training Stages Number of GPUs Used in Each Stage
Ours RL(∼ 23) 2 1, 4
FastCuRL RL(∼ 860) 4 8, 8, 8, 8
DeepScaleR RL(∼ 1,750) 3 8, 16, 32

Truncation Robustness.

Our observations reveal that truncated long outputs can induce notable gradient fluctuations and result
in unstable training processes (Figure 4). To mitigate this issue, we mask the truncated completions to
disregard their reward values and gradient updates. This approach effectively stabilizes optimization
by omitting samples surpassing a predefined length limit.

Tag Randomization for Robustness

Inspired by DeepSeek-R1’s reasoning completions, we introduce randomization in the order of
reasoning tags in the prompt during training. Specifically, for each question, we retain the top 5 tags

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

and randomly sample 0–5 additional tags from the remaining set, shuffling their order in the prompt.
This approach reduces overfitting to fixed reasoning patterns and encourages the model to generalize
reasoning strategies.

A.5 DOMAIN-SPECIFIC REASONING PATTERNS

Data & Extraction. We sample 1,000 MaxFlow reasoning traces across five domains: Algebra,
Number Theory, Geometry, Clinical Knowledge, and Business Ethics. Each trace is segmented into
induced step tags (e.g., assumption, decompose, formalize, verify, case_analysis,
association, consequence, summarize). We construct a directed multigraph over step
types; edges count adjacent transitions. Edges with global frequency < 0.5% are pruned for clarity
(full graph retained for reproducibility).

Metrics. (1) Average step count. (2) Top tri-gram pattern (local procedural schema). (3) Verify-
centered loop density: proportion of transitions incident to verify that participate in a back-
reference to any earlier non-terminal step within a 6-step sliding window. (4) Hypothesis suppression
ratio: 1− freq(assumption→decompose)

freq(assumption→∗) . (5) Positional distribution: normalized relative index of each
tag (Fig. 8).

Cross-Domain Findings. A stable backbone (assumption→decompose/formalize→
verify→consequence→summarize) appears in all domains, but modulation oc-
curs in early structural translation and verification refinement: (1) Algebra: canonical
assumption→decompose→formalize pipeline before consolidation. (2) Number The-
ory: elevated case_analysis→ contradiction and verify↔ contradiction loops
(proof refinement). (3) Geometry: suppressed decompose; early assumption→formalize
grounding (equational or coordinate forms). (4) Clinical: associative diagnostic path
assumption→association→case_analysis; verification loops link symptom clusters
to differential hypotheses. (5) Business Ethics: sparse assumption→decompose (limited hy-
pothesis branching), intensified evaluative verify→consequence chains and verify-centric
loops.

Loop Dynamics. Loop density around verify increases with total step length (upper quartile
traces show a right-shifted verify positional distribution), consistent with iterative late-stage
refinement rather than premature validation. Number Theory and Business Ethics show the highest
verify-loop densities (contradiction vs. evaluative implication), while Geometry exhibits the leanest
loops due to early formal grounding reducing re-check cycles.

Table 9: Domain-specific structural statistics (loop density / suppression values illustrative; replace
with empirical measurements).

Domain Avg. Steps Top Tri-gram Verify Loop Density

Algebra 12.3 assumption→decompose→formalize 0.41
Number Theory 11.8 case_analysis→contradiction→verify 0.57
Geometry 10.5 assumption→formalize→verify 0.38
Clinical 14.2 assumption→association→case_analysis 0.49
Business Ethics 13.6 verify→consequence→summarize 0.53

Implications. The coexistence of a transferable backbone and domain-conditioned verification
loops suggests: (i) pruning strategies can target high-density verify cycles (e.g., contradiction
refinement) without harming structural progression; (ii) low hypothesis branching domains (Busi-
ness Ethics) may benefit from explicit hypothesis expansion prompts; (iii) early formal grounding
(Geometry) reduces downstream verification overhead—an avenue for curriculum design.

A.6 DETAILED MODEL COMPARISON AND REWARD ANALYSIS

Table 11 presents a comprehensive comparison of three Small Structure Reasoning (SR) methods
across various mathematical benchmarks. SR-FLOW demonstrates superior performance, achieving

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 10: Benchmark Results (Pass@1 Accuracy). All results are reported as mean ± standard
deviation. Avg. score calculates the average across all six benchmarks, while Large Avg. focuses on
the more stable MATH500, Minerva, and Olympiad benchmarks. Top-3 models in each category are
highlighted with increasing gray intensity.

Model AIME’24 AIME’25 AMC’23 MATH500 Minerva Olympiad Avg. Large Avg.
Based on: Qwen2.5-Math-1.5B (RL)
Math 11.3±3.6 5.7±2.7 44.0±4.9 51.7±5.5 11.3±2.2 26.0±0.6 25.0±3.3 29.7±2.8
Oat-Zero 16.0±3.2 6.7±3.4 52.5±2.9 73.5±1.7 26.3±0.8 37.2±1.3 32.0±2.2 45.7±1.3
Math 12.0±1.7 11.7±5.7 54.8±5.3 74.7±0.5 26.7±1.8 37.9±0.2 36.3±2.5 46.4±0.8
Based on: Deepseek-R1-Distill-Qwen-1.5B (RL)
R1-Distill 28.7±4.8 22.3±5.2 71.5±3.9 84.9±0.3 30.5±1.0 52.4±0.4 48.4±2.6 55.9±0.6
L1-Exact 24.4±3.3 22.3±4.2 70.5±3.7 86.6±0.8 31.5±1.7 52.5±1.3 47.9±2.5 56.9±1.3
L1-Max 27.7±4.2 21.0±5.0 73.2±6.0 84.7±0.1 33.3±0.9 52.3±0.6 48.7±2.8 56.8±0.5
Open-RS1 28.9±6.0 21.3±4.2 75.0±3.3 85.1±0.8 30.4±0.2 53.2±1.9 49.0±2.7 56.2±1.0
Open-RS2 31.3±7.7 22.7±5.6 73.0±5.7 84.1±0.2 29.2±1.1 53.7±0.6 49.0±3.5 55.7±0.6
Open-RS3 29.7±4.6 24.7±6.5 69.2±5.5 84.2±1.1 28.6±2.3 51.8±0.8 48.0±3.5 54.9±1.4
STILL-3 34.7±5.5 24.0±6.4 72.5±5.4 86.6±1.9 30.0±0.6 53.9±1.5 50.3±3.6 56.8±1.3
II-Thought 32.0±5.9 24.0±4.1 79.5±5.1 86.6±0.6 31.7±0.6 54.9±0.4 51.5±2.8 57.7±0.5
FastCuRL 36.3±4.3 27.0±3.7 78.8±4.1 87.9±1.2 30.8±1.4 56.5±0.6 52.9±2.6 58.4±1.1
DeepScaleR 37.0±6.6 30.3±4.3 76.2±4.6 87.8±1.0 31.0±1.5 55.5±1.1 53.0±3.2 58.1±1.2
Ours Based on: Deepseek-R1-Distill-Qwen-1.5B (RL)
MAX-FLOW 36.7±8.9 27.0±8.2 77.8±6.6 85.3±1.6 34.2±2.9 54.9±1.9 52.6±5.0 58.1±2.1

the highest average accuracy (58.1%) while requiring fewer reasoning steps. SR-LCS offers the
most token-efficient approach, using approximately 20% fewer tokens while maintaining competitive
accuracy. Highlighted cells indicate top performances for each benchmark and method, showing that
different reasoning approaches excel in different problem domains.

Table 11: Comparative analysis of GRPO training from 0 to 500 global steps under four reward
designs: accuracy (ACC), max-flow (FLOW), longest common subsequence (LCS), and their 1:1 joint
combination (JOINT). We report Pass@1 accuracy (%) across benchmarks plus average reasoning
steps and tokens per sample. (JOINT rows omit standard deviations: single run or variance not
reported.) The table demonstrates the evolution of various metrics during GRPO training from 0
to 500 global steps under three reward functions: ACC, FLOW, LCS and JOINT. The metrics are
tracked throughout the training process to show how different reward mechanisms influence the
performance of the model.

Method Accuracy (%) Steps Tokens
AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Large Avg. Avg. Avg.

GRPO 32.7±8.7 25.3±8.0 75.8±6.7 85.6±1.6 31.3±2.8 53.3±1.9 56.7±2.1 9.57 1873
36.7±8.9 26.7±8.2 72.0±7.1 85.5±1.6 31.1±2.8 53.3±1.9 56.6±2.1 9.94 1796
30.0±8.5 21.3±7.6 74.0±7.0 84.7±1.6 32.4±2.8 52.9±1.9 56.7±2.1 10.41 1808
24.0±7.8 22.5±7.7 74.0±7.0 83.7±1.7 33.0±2.9 52.2±1.9 56.3±2.2 10.81 1859
30.3±8.7 24.2±7.8 73.5±6.6 84.2±1.6 31.7±2.8 50.8±1.9 55.6±2.1 11.03 1828
36.7±7.7 19.5±7.2 70.6±7.4 83.7±1.7 31.1±2.8 50.9±1.9 55.2±2.1 10.85 1854

MAX-FLOW 32.7±8.7 25.3±8.0 75.8±6.7 85.6±1.6 31.3±2.8 53.3±1.9 56.7±2.1 9.57 1873
33.0±8.5 26.0±8.1 76.5±6.8 84.9±1.6 31.3±2.8 53.6±1.9 56.6±2.1 9.63 1820
34.7±8.3 26.3±7.8 76.8±6.8 85.6±1.6 34.1±2.9 53.5±1.9 57.7±2.1 9.52 1779
36.7±8.9 27.0±8.2 77.8±6.6 85.3±1.6 34.2±2.9 54.8±1.9 58.1±2.1 9.24 1830
33.5±8.2 25.7±7.6 75.3±6.9 85.0±1.6 33.2±2.9 53.7±1.9 57.3±2.1 8.78 1804
30.3±8.7 24.2±7.8 74.0±7.0 84.7±1.6 32.3±2.8 54.3±1.9 57.1±2.1 7.84 1798

LCS 32.7±8.7 25.3±8.0 75.8±6.7 85.6±1.6 31.3±2.8 53.3±1.9 56.7±2.1 9.57 1873
34.0±8.7 24.7±7.9 75.0±6.9 84.9±1.6 32.0±2.8 54.1±1.9 57.0±2.1 9.61 1780
33.3±8.7 22.5±7.8 74.0±7.0 84.4±1.6 30.9±2.8 51.8±1.9 55.7±2.1 10.36 1668
30.3±8.5 23.3±7.8 74.0±7.0 83.3±1.7 29.9±2.8 51.6±1.9 54.9±2.1 10.91 1614
33.7±8.7 23.7±7.9 75.0±6.9 84.9±1.6 31.8±2.8 50.6±1.9 55.8±2.1 11.75 1509
31.0±8.5 23.3±7.7 74.8±7.1 84.8±1.6 30.5±2.8 52.7±1.9 56.0±2.1 11.56 1504

FLOW+LCS 1:1 33.20±8.6 25.15±7.9 75.65±6.8 85.45±1.6 31.80±2.8 53.55±1.9 56.93±1.9 9.72 1978
33.75±8.6 25.60±8.0 75.90±6.8 84.75±1.6 31.45±2.8 54.10±1.9 57.43±1.9 10.38 1821
33.85±8.6 24.65±7.9 75.25±6.8 85.20±1.6 32.35±2.8 52.90±1.9 57.17±1.9 9.53 1815
33.65±8.6 25.40±8.0 76.15±6.7 84.15±1.6 32.20±2.8 53.45±1.9 57.27±1.9 9.91 1762
33.45±8.6 24.85±7.9 75.35±6.8 85.10±1.6 32.65±2.8 52.40±1.9 57.03±1.9 10.67 1718
30.80±8.4 23.90±7.8 74.65±6.9 84.90±1.6 31.25±2.8 53.75±1.9 57.20±2.0 9.65 1638

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.7 PART OF FIGURES AND TABLES

For better layout and presentation, we have placed some figures and tables in a unified location in the
Appendix.

(a) First Correct Answer Position Distribution (b) Statistical distribution of reasoning path lengths

Figure 5: Analysis of Model Reasoning Patterns: Distribution of First Correct Answers (Left) and
Reasoning Path Lengths (Right).

0 2 4 6 8 10
Avg. Steps Removed

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

is
io

n

Precision vs. Avg. Steps Removed for Different Sampling Methods

Top K
Top P
Ppl Top
Ppl Bottom
Random

Sample size: 68

(a) Redundant but harmless information

0 2 4 6 8 10
Avg. Steps Removed

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

Precision vs. Avg. Steps Removed for Different Sampling Methods

Top K
Top P
Ppl Top
Ppl Bottom
Random

Sample size: 68

(b) Distracted but harmless information

0 2 4 6 8 10
Avg. Steps Removed

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Pr
ec

is
io

n

Precision vs. Avg. Steps Removed for Different Sampling Methods

Top K
Top P
Ppl Top
Ppl Bottom
Random

Sample size: 68

(c) Harmful irrelevant reasoning

0 2 4 6 8 10
Avg. Steps Removed

0.35

0.40

0.45

0.50

0.55

Pr
ec

is
io

n

Precision vs. Avg. Steps Removed for Different Sampling Methods

Top K
Top P
Ppl Top
Ppl Bottom
Random

Sample size: 67

(d) Logically confused information

Figure 6: IISR Results: Error Filtering Efficiency (Precision) of different algorithms when removing
1-11 steps under four types of information interference.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 7: Token length distribution of LCS models under different training stages. The smoothed
envelopes show how reward training shifts the distribution towards optimal reasoning lengths (512-
1024 tokens) while maintaining performance.

Figure 8: Distribution of the relative positions of each tag within the reasoning process.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 9: Illustration of Reasoning Path Transition Graph.

Table 12: Early Stopping Detection Parameters and Sample Statistics

Metric Value
Number of valid samples 705
Top five frequent tags verify, summarize, equivalent, formalize, consequence
Token interval 128
Top five useful words but, wait, however, check, alternatively

A.8 FULL PROMPTS

Free Tag Chain Extraction

Goal: Convert the raw reasoning into a linear sequence of abstract step labels (tags).
Rules: 1. Split the reasoning into semantic steps. 2. For each step invent ONE tag (a single
word; use lowercase letters or underscores only; no spaces, punctuation, or digits if avoidable).
3. If two or more consecutive steps would receive the same tag, merge them into one. 4.
Output ONLY one line: TAGS: tag1->tag2->tag3->...->tagK (No other text.)
Input question: {QUESTION}
Input raw reasoning: {REASONING}
Output: TAGS: ...

Mathematical Problem Solving Template

Please use the following tags at the beginning of each sentence in your reasoning:
<rephrase>, <inference>, <analogy>, <equivalent>, <association>, <reverse>, <summa-
rize>, <verify>, <complete>, <decompose>, <counterexample>, <assumption>, <constraint>,
<case_analysis>, <contradiction>, <abstraction>, <formalize>, <generalize>, <specialize>,
<critique>, <alternative>, <consequence>, <intuition>.
{Question}
Please reason step by step, and put your final answer within boxed{ }.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 13: Comparing Trigger Counts and Distances to First Correct Answer Across Methods.

Trigger Type Settings Avg. Trigger Count ↓ Avg. Distance to First Correct Answer (tokens) ↓
Top tags "verify", "summarize", etc. 2.02 78.01
Token chunks 128-token intervals 3.93 131.05
Keywords "but", "wait", "however", etc. 2.69 139.97

Multiple Choice Problem Template

Please use the following tags at the beginning of each sentence in your reasoning:
<rephrase>, <inference>, <analogy>, <equivalent>, <association>, <reverse>, <summa-
rize>, <verify>, <complete>, <decompose>, <counterexample>, <assumption>, <constraint>,
<case_analysis>, <contradiction>, <abstraction>, <formalize>, <generalize>, <specialize>,
<critique>, <alternative>, <consequence>, <intuition>.
{Question}
A) {A}
B) {B}
C) {C}
D) {D}
Please reason step by step, and answer the following multiple choice question. The last line
of your response should be of the following format: ’Answer: $LETTER’ (without quotes)
where LETTER is one of ABCD.

A.9 IMPROVED COMPATIBILITY WITH TEST-TIME SCALING AND EARLY STOPPING.

For Test-time Scaling, existing work extends model outputs by injecting prompt tokens at thought-
stopping points. Our method simplifies this by guiding outputs through the most likely next tag
at stopping points. For early stopping, our tag-based approach outperforms traditional methods.
In our experiment with 705 correct MATH500 reasoning completions (Table 12), we compared
interval-based (128-token), keyword-based ("but", "wait", "however", etc.), and tag-based ("verify",
"summarize", etc.) detection strategies. As Table 13 shows, our structured approach reduces average
Probe-In-Middle interventions to just 2.02 while maintaining closest proximity to correct answers
(78.01 tokens).

A.10 OTHER STEP IMPORTANCE EVALUATION ALGORITHM IMPLEMENTATION

Top-P and Top-K Selection. Based on the step matrix computed from different layers (See Sec-
tion 4.3), we implement backtracking selection methods:

SelectSteps(A, k, p) = {si}mi=0, (8)

where A ∈ Rn×n is the step attention matrix, and we select steps starting from the last step sn−1 by
either: Top-K: For each step si, select up to k preceding steps with highest attention scores. Top-P:
Select preceding steps with cumulative normalized attention exceeding threshold p.

The algorithm traverses backward from the final step, adding important preceding steps to a visited
set based on attention weights, ensuring all critical reasoning dependencies are captured. Average
Perplexity. For each step, we compute token-level perplexity:

Perplexity(ti) =
1

P (ti|x, t1, ..., ti−1)
, (9)

where P (ti|x, t1, ..., ti−1) is the probability of token ti given the prompt x and all preceding tokens,
derived from the softmax of logits:

P (ti|x, t1, ..., ti−1) =
exp(logitsi)∑
j exp(logitsj)

. (10)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

The average perplexity for a step s containing tokens {t1, t2, ..., tm} is:

AvgPerplexity(s) = exp

(
− 1

m

m∑
i=1

logP (ti|x, t1, ..., ti−1)

)
. (11)

Random Selection. A baseline approach where steps are selected randomly without leveraging
attention patterns or perplexity metrics.

A.11 ERROR FILTERING EFFICIENCY (EFE) EVALUATION FORMULA

Figure 10: Comparison of Algorithms for Error Filtering Efficiency Averaged Across Four Tasks.

For the IISR experiment, where we randomly inject N interference steps into an M -step reasoning
process, the Error Filtering Efficiency is calculated as:

EFE = 1− |RetainedIrrelevantSteps|
|IrrelevantSteps|

, (12)

where |IrrelevantSteps| is the total number of interference steps injected (N),
|RetainedIrrelevantSteps| is the number of interference steps that were incorrectly retained
after filtering

EFE measures the algorithm’s ability to identify and remove irrelevant steps, with a value of 1.0
indicating perfect filtering (all interference steps removed) and 0.0 indicating no filtering capability.

As shown in Figure 6, we first compared Top K, Top P, Ppl Top (where higher perplexity indicates
higher step importance), Ppl Bottom (the opposite), and Random. We evaluated the Error Filtering
Efficiency under four different interference injection methods. The results show that Ppl-based
methods exhibit unstable performance across different tasks.

As illustrated in Figure A.11, we further compared the better performing methods: Top-P, Max-Flow,
and Information-Flow. We found that the Max Flow method demonstrates a superior ability in
evaluating reasoning steps, particularly when removing a small number of steps.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 11: Using Max-flow Method for Filtering Steps during IISR Experiment.

A.12 STRUCTURE REASONING PROCESS DEMONSTRATION

Input Prompt:

Please use the following tags at the beginning of each sentence in your reason-
ing: <rephrase>, <inference>, <analogy>, <equivalent>, <association>, <reverse>,
<summarize>, <verify>, <complete>, <decompose>, <counterexample>, <assump-
tion>, <constraint>, <case_analysis>, <contradiction>, <abstraction>, <formalize>,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

<generalize>, <specialize>, <critique>, <alternative>, <consequence>, <intuition>

Convert the point (0, 3) in rectangular coordinates to polar coordinates. Enter your
answer in the form (r, θ), where r > 0 and 0 ≤ θ < 2π.

Please reason step by step, and put your final answer within .

<summarize> The task is to convert the rectangular coordinates (0, 3) to polar coordinates (r, θ)
with r > 0 and 0 ≤ θ < 2π.

<assumption> In rectangular (Cartesian) coordinates, a point is represented as (x, y). To convert
to polar coordinates (r, θ), we need to find:

• r: distance from origin
• θ: angle with positive x-axis

<formalize> Conversion formulas:

r =
√
x2 + y2

θ = arctan(y/x) (when x ̸= 0)

<decompose> Given point (0, 3):

• x = 0

• y = 3

<specialize> Calculate r:
r =

√
02 + 32 = 3

<reverse> For θ: arctan(3/0) is undefined. Observation:

• x = 0 and y > 0⇒ point lies on positive y-axis

<case_analysis> Special case when x = 0:

θ =

{
π/2 if y > 0

3π/2 if y < 0

<verify> Check θ range: π/2 ∈ [0, 2π) is valid.

<complete> Final polar coordinates: (
3,

π

2

)

Output:

The polar coordinates are
(
3,

π

2

)
.

Input Prompt:

Please use the following tags at the beginning of each sentence in your reason-
ing: <rephrase>, <inference>, <analogy>, <equivalent>, <association>, <reverse>,
<summarize>, <verify>, <complete>, <decompose>, <counterexample>, <assump-
tion>, <constraint>, <case_analysis>, <contradiction>, <abstraction>, <formalize>,
<generalize>, <specialize>, <critique>, <alternative>, <consequence>, <intuition>

What is
√
53 in simplest radical form?

Please reason step by step, and put your final answer within .

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

<assumption> To find the simplest radical form of
√
53, I need to check if 53 has any perfect

square factors.

<decompose> First, let’s factorize 53 to see its prime components. Since 53 is a prime number,
its only factors are 1 and 53.

<verify> Since 53 is prime, there are no smaller factors other than 1 and itself. Therefore,
√
53

cannot be simplified further because there are no perfect squares greater than 1 that divide 53.

<conclusion> Thus, the simplest radical form of
√
53 is

√
53 itself.

Output:

The simplest radical form is
√
53 .

A.13 EXAMPLE DEMONSTRATION OF INTERFERENCE INJECTION AND SELECTIVE REMOVAL
(IISR)

Table 14: Steps retained by different filtering methods

Method Retained Steps

Top-P (p=0.7) [1, 3, 5, 10, 11]
Maximum Flow [1, 3, 5, 7, 10, 11]
Graph Centrality [3, 4, 6, 8, 9, 10, 11]
Information Flow [1, 2, 3, 4, 5, 6, 7, 8, 10, 11]

• Steps marked in red: [2, 4, 6, 9]
• Interference types:

– Irrelevant pauses (Step 2)
– Off-topic reasoning (Steps 4)
– Disordered repetition (Steps 6)
– Redundant Reasoning (Step 9)

Input Prompt:

Please use the following tags at the beginning of each sentence in your reason-
ing: <rephrase>, <inference>, <analogy>, <equivalent>, <association>, <reverse>,
<summarize>, <verify>, <complete>, <decompose>, <counterexample>, <assump-
tion>, <constraint>, <case_analysis>, <contradiction>, <abstraction>, <formalize>,
<generalize>, <specialize>, <critique>, <alternative>, <consequence>, <intuition>

What is the smallest positive perfect cube that can be written as the sum of three?

Please reason step by step, and put your final answer within .

<rephrase> The problem is to find the smallest positive perfect cube expressible as the sum of
three consecutive integers.

<inference> [Interference Step] Pausing to consider the implications of the next step.

<inference> First, recall that perfect cubes are numbers like 1, 8, 27. The sum of three consecutive
integers can be represented as 3n.

<inference> [Off-topic Interference] Gravity cancels out, so mass and distances are the key variables...

<analogy> Let the integers be (n− 1, n, n+ 1), then sum is 3n. The smallest cube divisible by
3 is 27.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

<inference> [Disordered Reasoning] Smaller cubes fail: 1 = 13 gives non-integer n = 1
3

, 8 = 23 gives
n = 8

3
.

<verify> Check 27: 8 + 9 + 10 = 27. Is there a smaller cube? No, since 1 and 8 aren’t divisible
by 3.

<assumption> Alternative representation: (n, n + 1, n + 2) sums to 3(n + 1). Still requires
divisibility by 3.

<reverse> [Redundant Reasoning] Alternatively, maybe the three consecutive integers could be...

<consequence> Smaller cubes fail: 1 = 13 gives non-integer n = 1
3 , 8 = 23 gives n = 8

3 .

<summarize> Therefore, the smallest positive perfect cube meeting the criteria is:

27

A.14 STRUCTURED REASONING THROUGH FILL IN THE MIDDLE API

The full message template is structured the same as the prompt in Appendix A.8.

The API call is implemented as:

messages = [
{"role": "user", "content": full_message},
{

"role": "assistant",
"reasoning_content": "<rephrase>\nOkay, I will organize my thoughts
process in a hierarchical manner.\n</rephrase>\n<",
"content": "",
"prefix": True

}
]
response = await self.client.chat.completions.create(

model=model,
messages=messages

)

In particular, we initialize the reasoning process by injecting a <rephrase> tag and a metacognitive
statement. This approach is effective in guiding DeepSeek-R1 to perform structured reasoning in a
zero-shot setting, leading to more stable and organized reasoning patterns without additional training.

B DETAILED ABLATION STUDY

To better understand the contribution of the component, we conducted 9 controlled experiments to
systematically evaluate the individual and combined contributions of each proposed component.

B.1 EXPERIMENTAL DESIGN

We organized our ablation experiments into two categories. The first category evaluates isolated com-
ponents to measure their individual effectiveness: Structured Tags applies structured reasoning format
with standard GRPO; LCS (free-form) applies LCS reward on free-form reasoning by extracting
steps via \n\n separation; MaxFlow (free-form) applies MaxFlow reward on free-form reasoning
with the same step extraction method; Filtered Data GRPO trains standard GRPO only on our filtered
questions Q without any structural modifications; and Dr.GRPO implements the length-normalized
GRPO variant proposed by Liu et al. (2025a) on free-form reasoning.

The second category evaluates combined approaches to understand synergistic effects: Tags + GRPO
combines structured reasoning with standard GRPO; Tags + LCS combines structured reasoning
with LCS reward (our proposed method); Tags + MaxFlow combines structured reasoning with
MaxFlow reward (our proposed method); and Tags + Step-Level MaxFlow extends Tags + MaxFlow

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 15: Complete ablation study showing performance improvements (percentage points) over
DS-Distill-Qwen-7B baseline across different maximum response lengths. Bold indicates best
performance in each column.

Method 1K 2K 4K 8K Average
DS-Distill-Qwen-7B (Baseline) 0.00 0.00 0.00 0.00 0.00

Isolated Component Training
+ Structured Tags +4.14 +4.64 +0.65 +0.36 +2.45
+ LCS (free-form) +6.23 +4.00 +1.00 +0.89 +3.03
+ MaxFlow (free-form) +3.39 +1.25 -0.64 -1.09 +0.73
+ Filtered Data GRPO +0.28 +0.11 +0.06 -0.38 +0.02
+ Dr.GRPO +4.22 +4.97 +1.31 +1.37 +2.97

Combined Component Training
Tags + GRPO +5.18 +6.25 +2.35 +0.28 +3.52
Tags + LCS (Ours) +10.79 +10.23 +3.38 -0.40 +6.00
Tags + MaxFlow (Ours) +8.45 +8.17 +5.83 +3.12 +6.39
Tags + Step-Level MaxFlow (Ours) +7.10 +8.13 +3.14 +1.68 +5.01

by applying step-level reward weighting, where each reasoning step receives importance weights
normalized from MaxFlow scores (Appendix D).

All experiments use identical base models (Qwen-7B), training data, and hyperparameters. We
evaluate across four maximum response length settings (1K, 2K, 4K, 8K tokens) on 9 benchmark
datasets, reporting average performance improvements over the baseline DS-Distill-Qwen-7B model.

B.2 COMPLETE ABLATION RESULTS

Table 15 presents comprehensive results across all ablation experiments. Among isolated components,
structured tags alone provide +2.45% average improvement. The LCS reward on free-form reasoning
achieves +3.03% average gain, showing modest effectiveness when applied to unstructured outputs.
However, MaxFlow on free-form reasoning yields only +0.73% average improvement and shows
negative performance at longer contexts (-0.64% at 4K, -1.09% at 8K), indicating that graph-based
reward computation requires accurate step boundaries that free-form reasoning cannot reliably provide.
The Dr.GRPO baseline achieves +2.97% average improvement, providing a strong comparison point
for addressing GRPO’s length bias.

The combined approaches demonstrate that components work better together. Tags + GRPO achieves
+3.52% average, improving upon isolated structured tags (+2.45%) by an additional +1.07%. Our Tags
+ LCS method achieves +6.00% average improvement, performing best at shorter contexts (+10.79%
at 1K, +10.23% at 2K). Our Tags + MaxFlow method achieves the highest overall performance at
+6.39% average, with strongest gains at longer contexts (+5.83% at 4K, +3.12% at 8K). The step-level
weighting variant (Tags + Step-Level MaxFlow) achieves +5.01% average, suggesting that assigning
rewards to individual steps adds complexity without improving overall effectiveness.

B.3 INCREMENTAL CONTRIBUTION ANALYSIS

To quantify the synergistic effects between structured reasoning and rewards, Table 16 decomposes
the performance gains showing the incremental contribution of each reward method when added on
top of the Structured Tags baseline.

The incremental analysis reveals that MaxFlow provides the largest additional gain (+3.95% average)
when combined with structured reasoning, substantially outperforming its free-form variant which
contributed only +0.73%. Similarly, LCS contributes +3.55% incremental gain on structured reason-
ing compared to +3.03% on free-form reasoning. This demonstrates that structured reasoning tags
enable more effective reward shaping by providing accurate step boundaries for graph construction
and sequence alignment.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 16: Incremental performance gains when adding reward methods to Structured Tags baseline
(+2.45% average). Values show additional improvement beyond structured reasoning alone.

Added Component 1K 2K 4K 8K Avg
Structured Tags (base) +4.14 +4.64 +0.65 +0.36 +2.45

+ GRPO +1.04 +1.61 +1.70 -0.08 +1.07
+ LCS +6.65 +5.59 +2.73 -0.76 +3.55
+ MaxFlow +4.31 +3.53 +5.18 +2.76 +3.95
+ Step-Level MaxFlow +2.96 +3.49 +2.49 +1.32 +2.56

B.4 TRAINING-FREE STRUCTURED REASONING GUIDANCE

To evaluate whether structured reasoning guidance benefits small models without additional training,
we conducted experiments across three model sizes (1.5B, 7B, 14B) at different context lengths.

Table 17: Performance Comparison with and without Training Free Guidance across Different Model
Sizes. AI: AIME, AMC: AMC’23, LSAT: LSAT-AR, M500: MATH500, Min.: Minerva, Oly.:
OlyBench, Avg: Average.

With Guidance Without Guidance
Tokens AI’24 AI’25 AMC LSAT M500 Min. MMLU Oly. Avg AI’24 AI’25 AMC LSAT M500 Min. MMLU Oly. Avg

1.5B Models

1K 0.00 0.00 15.83 19.71 28.33 11.52 43.91 8.79 16.01 1.11 1.11 15.83 24.49 27.20 12.01 44.05 8.10 16.74
2K 3.33 5.56 31.67 21.59 52.00 20.83 47.05 18.62 25.08 3.33 1.11 36.67 21.45 52.33 20.96 46.72 19.95 25.32
4K 13.33 13.33 49.17 22.46 71.73 26.96 47.72 33.43 34.77 14.44 8.89 47.50 25.07 71.73 29.41 47.51 33.58 34.77
8K 23.33 22.22 68.33 26.38 81.40 30.64 47.83 43.60 42.97 23.33 18.33 66.25 26.26 80.33 31.00 50.60 44.49 42.57

7B Models

1K 0.00 3.33 13.33 22.75 34.93 16.67 59.94 10.86 20.23 5.56 4.44 16.67 21.74 35.00 19.00 59.20 11.01 21.58
2K 7.78 14.44 37.50 31.16 64.93 31.25 64.60 28.79 35.06 15.56 13.33 38.33 31.09 65.33 32.60 63.44 28.89 36.07
4K 22.22 22.22 63.33 40.87 80.40 37.01 65.82 47.46 47.42 35.56 38.89 62.50 37.61 81.20 39.46 64.58 45.68 50.69
8K 36.67 31.11 80.83 48.55 89.73 38.11 65.99 58.57 56.20 41.11 42.22 83.50 52.32 91.33 40.69 65.97 59.26 59.55

14B Models

4K 33.33 24.44 65.83 57.10 84.40 42.28 82.78 48.99 54.89 26.67 23.33 62.50 55.22 83.00 39.71 83.87 47.41 52.71
8K 51.17 34.44 82.67 72.61 92.10 43.38 83.02 61.85 65.16 50.00 36.67 82.50 72.17 91.60 43.38 84.85 62.81 65.50

Table 17 reveals that training-free structured reasoning guidance shows limited and inconsistent
benefits. For the 1.5B model, structured guidance provides minimal average improvement: +0.40%
at 8K tokens. For the 7B model, we observe negative impact. Only the 14B model shows consistent
gains: +2.18% at 4K and -0.34% at 8K. Small models lack instruction-following capabilities to utilize
structured formats during inference.

C COMPARATIVE ANALYSIS: LCS VS MAXFLOW

Both LCS and MaxFlow demonstrate strong performance when combined with structured reasoning,
but exhibit distinct characteristics: LCS excels at shorter contexts (1K-2K) while MaxFlow performs
better at longer contexts (4K-8K). Table 18 shows their performance converges at 3K tokens.

Table 18: Performance comparison at 3K tokens (1.5B model) showing convergence point.

Benchmark LCS MaxFlow ∆

AIME’24 11.33 11.67 +0.34
AIME’25 16.33 16.67 +0.34
AMC’23 61.50 61.25 -0.25
DROP 38.35 39.51 +1.16
LSAT-AR 25.65 26.30 +0.65
MATH500 71.10 73.20 +2.10
Minerva 26.15 27.02 +0.87
MMLU-ALL 44.62 44.84 +0.22
OlympiadBench 37.20 38.44 +1.24

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

To understand why LCS favors shorter contexts while MaxFlow excels at longer ones, we analyze
response distribution patterns and reasoning metrics in Tables 19 and 20.

Table 19: Response distribution across token ranges. Numbers shown as Correct/Error. LCS
concentrates correct answers in shorter ranges while MaxFlow shows balanced distribution.

Token Range 1.5B LCS 1.5B MaxFlow 7B LCS 7B MaxFlow

0-1K 232/14 149/3 243/5 206/1
1K-2K 93/8 158/6 113/7 133/2
2K-3K 27/7 46/8 39/3 52/2
3K-4K 12/6 22/6 21/5 28/3
4K-5K 14/6 19/3 13/3 23/1
5K-6K 15/4 13/5 4/3 12/2
6K-7K 7/4 10/5 6/5 8/0
7K-8K 9/7 11/5 5/3 7/1
>8K (Truncated) 0/35 0/31 0/22 0/19

Total 409/91 428/72 444/56 469/31

Table 20: Reasoning metrics comparison. LCS produces shorter steps with higher path consistency,
while MaxFlow maintains flexibility with longer steps.

Metric 1.5B LCS 1.5B MaxFlow 7B LCS 7B MaxFlow
Avg. Tokens per Step 120.1 235.6 123.1 219.5
Path Similarity (SequenceMatcher) 0.434 0.410 0.452 0.423
Path Similarity (Levenshtein) 0.323 0.290 0.336 0.297
Path Similarity (LCS Ratio) 0.410 0.390 0.427 0.403

LCS operates through cross-path comparison, rewarding paths with higher common subsequence
proportions. This drives the model toward shorter, more consistent reasoning steps (120 tokens/step
vs 220 for MaxFlow) and concentrates correct answers in the 0-2K range (243 vs 206 for 7B). Higher
path consistency (0.452 vs 0.423 SequenceMatcher) indicates more uniform reasoning patterns,
explaining superior short-context performance.

MaxFlow computes flow on individual reasoning graphs, rewarding streamlined reasoning without
penalizing response length. This produces more balanced answer distribution across token ranges
and fewer truncated responses (19 vs 22 for 7B), resulting in better robustness at longer contexts.

D STEP-LEVEL REWARD IMPLEMENTATION

For Tags + Step-Level MaxFlow, we explored modulating token-level advantages using step-level
importance weights derived from MaxFlow scores:

JStep-GRPO(θ) = E

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min(ri,t(θ) · wi,t ·Ai, clip(ri,t(θ), 1− ε, 1 + ε) · wi,t ·Ai)− βDKL


(13)

where wi,t is computed by normalizing step-level MaxFlow rewards to [0.5, 1.5]:

wi,t =

{
0.5 +

RMaxFlow
k −minj Rj

maxj Rj−minj Rj
if token t belongs to step k

1.0 otherwise (tags, answer)
(14)

This approach achieves +5.01% average improvement, lower than sequence-level MaxFlow (+6.39%).
Fine-grained step-level credit assignment introduces complexity in determining appropriate weight
scales, handling special tokens, and balancing contributions across reasoning stages. How to precisely
control per-step rewards remains an open research question.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 21: MaxFlow Computation Time and Two-Stage Optimization Speedups. Tests conducted on
dense directed graphs with varying node counts. Stage 1 (Dinic) provides 5.39× average speedup,
while Stage 2 (residual reuse) adds 1.38× incremental improvement.

Nodes Tokens Baseline Optimized Final Speedup Speedup Total
(n×256) (NetworkX, s) (Dinic, s) (+Residual, s) (Stage 1) (Stage 2) Speedup

5 1,280 0.00046 0.00006 0.00004 7.96× 1.35× 10.76×
10 2,560 0.00087 0.00028 0.00019 3.14× 1.44× 4.53×
20 5,120 0.01766 0.00158 0.00112 11.16× 1.41× 15.76×
30 7,680 0.03044 0.02284 0.01639 1.33× 1.39× 1.86×
40 10,240 0.07580 0.00817 0.00613 9.28× 1.33× 12.36×
50 12,800 0.12053 0.03061 0.02299 3.94× 1.33× 5.24×

100 25,600 0.60409 0.15618 0.11848 3.87× 1.32× 5.10×
200 51,200 3.74300 0.89507 0.62537 4.18× 1.43× 5.99×
300 76,800 10.86789 2.09656 1.50382 5.18× 1.39× 7.23×
400 102,400 20.02902 4.40266 3.12438 4.55× 1.41× 6.41×
500 128,000 32.97774 6.96468 4.96045 4.73× 1.40× 6.22×

E IMPLEMENTATION DETAILS

E.1 STRUCTURED DATA COLLECTION

Our structured reasoning data is collected through a four-stage pipeline. We first collect 2,000 correct
free-form reasoning paths from DeepSeek-R1 on the S1K dataset. A Free Tag Chain Extraction
prompt converts these raw reasoning traces into abstract step labels, yielding 23 semantically distinct
tags after removing duplicates and low-frequency labels. We then combine the S1K dataset with
extracted tags using a Fill-in-the-Middle API (Appendix A.14) to generate structured reasoning
outputs, answering each question 8 times with randomized tag orderings. Finally, we filter based on
tag coverage diversity and question difficulty, retaining 500 samples with richest tag usage and lowest
correctness rates (but with at least one correct solution) as the final training set Q.

E.2 GRAPH CONSTRUCTION

To construct reasoning graphs from attention patterns, we aggregate token-level attention into step-
wise attention matrices for each layer using the causal masking formula in Equation (3) of the main
paper. Based on experiments in Section 4.3, we select layers 23-27 which focus on global reasoning
patterns and compute their mean to obtain the final step-wise attention matrix A. We designate
position (0,0) as source (Question step) and position (-1,-1) as sink (Answer step), with edge weights
wij = Aij . Edges below threshold 0.05 are pruned to zero while maintaining connectivity to improve
computational efficiency.

F MAXFLOW COMPLEXITY OPTIMIZATION

F.1 OPTIMIZATION PIPELINE

Stage 1: Optimized Dinic Algorithm We implement an efficient Dinic algorithm with level graph
construction via BFS and blocking flow computation via DFS. Unlike generic max-flow solvers, our
implementation exploits the structure of causal DAGs by maintaining residual capacities.

Stage 2: Residual Network Reuse After computing the original max-flow, we reuse cached
residual capacities from the original computation, only updating edges incident to the removed node

Algorithm 1 presents the optimized Dinic implementation, and Algorithm 2 shows the complete
critical node detection pipeline with residual network reuse.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Algorithm 1 Optimized Dinic Algorithm for Max-Flow Computation

Require: Graph G = (V,E) with capacities c : E → R+, source s, sink t
Ensure: Maximum flow value fmax

1: Initialize residual graph Gr ← G with r(u, v)← c(u, v) for all (u, v) ∈ E
2: fmax ← 0
3: while BFS(Gr, s, t) finds augmenting path do
4: Construct level graph L via BFS from s
5: level[s]← 0
6: for each vertex v in BFS order do
7: level[v]← level[u] + 1 where u is predecessor
8: end for
9: while DFS(s, t,∞, L) finds blocking flow do

10: Find augmenting path P from s to t using DFS
11: δ ← min(u,v)∈P r(u, v) {Bottleneck capacity}
12: for each edge (u, v) ∈ P do
13: r(u, v)← r(u, v)− δ {Update residual capacity}
14: r(v, u)← r(v, u) + δ {Update reverse edge}
15: end for
16: fmax ← fmax + δ
17: end while
18: end while
19: return fmax

Algorithm 2 Critical Node Detection with Residual Network Reuse

Require: Graph G = (V,E), source s, sink t
Ensure: Set of critical nodes C and their contributions ∆v

1: forig ← DINIC(G, s, t) {Stage 1: Compute original max-flow}
2: C ← ∅, ∆← {}
3: V ′ ← V \ {s, t} {Candidate nodes}
4: for each node v ∈ V ′ do
5: {Stage 2: Fast connectivity check}
6: if ¬BFS-CONNECTED(G \ {v}, s, t) then
7: ∆v ← forig {Node disconnects s from t}
8: C ← C ∪ {v}
9: continue

10: end if
11: {Stage 2: Residual network reuse}
12: Construct G′ by removing v: E′ ← {(u,w) ∈ E | u ̸= v ∧ w ̸= v}
13: Initialize residual graph G′

r from cached residual capacities
14: fnew ← DINIC(G′, s, t) {Incremental max-flow}
15: ∆v ← forig − fnew {Flow contribution}
16: if ∆v > ϵ then

{ϵ = 10−9 numerical threshold} C ← C ∪ {v}
17:18: end if

19: end for
20: return C, ∆

F.2 EMPIRICAL VALIDATION AND COMPLEXITY ANALYSIS

We conducted scaling tests from n = 5 to n = 500 nodes (corresponding to 128K token context with
average 256 tokens per reasoning step). Table 21 demonstrates the effectiveness of both optimization
stages, achieving 7.41× total speedup over the NetworkX baseline.

Our implementation achieves empirical complexity between O(n2 log n) (R2=0.9976) and O(n2.5)
(R2=0.9995). We therefore report the overall complexity as O(BHn2Tavg) + O(n2.5), where the
first term (attention computation) dominates for practical reasoning chain lengths (n ≤ 500).

33

	Introduction
	Related Work
	Motivation: Reasoning as Flow on Structured Graphs
	Method
	Structured Reasoning Data Collection
	Layer-wise Step-Dependent Tracing
	Reinforcement Learning for Improved Structured Reasoning
	Validating Attention-Reasoning Correspondence

	Experiments
	Compared Efficiency, Stability and Explainability.
	What Are the Gains from Structured Reasoning Models?

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Ethics Statement
	Reproducibility Statement
	Training Details and Runtime Analysis
	Notation
	Scaling Heuristics
	Practical Summary
	Experimental Details

	Domain-Specific Reasoning Patterns
	Detailed Model Comparison and Reward Analysis
	Part of Figures and Tables
	Full Prompts
	Improved Compatibility with Test-time Scaling and Early Stopping.
	Other Step Importance Evaluation Algorithm Implementation
	Error Filtering Efficiency (EFE) Evaluation Formula
	Structure Reasoning Process Demonstration
	Example Demonstration of Interference Injection and Selective Removal (IISR)
	Structured reasoning through Fill In the Middle API

	Detailed Ablation Study
	Experimental Design
	Complete Ablation Results
	Incremental Contribution Analysis
	Training-Free Structured Reasoning Guidance

	Comparative Analysis: LCS vs MaxFlow
	Step-Level Reward Implementation
	Implementation Details
	Structured Data Collection
	Graph Construction

	MaxFlow Complexity Optimization
	Optimization Pipeline
	Empirical Validation and Complexity Analysis

