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ABSTRACT

Reparameterized diffusion models (RDMs) have recently matched autoregressive
methods in protein generation, motivating their use for challenging tasks such as
designing membrane proteins, which possess interleaved soluble and transmem-
brane (TM) regions. We introduce the Membrane Diffusion Language Model
(MemDLM), a fine-tuned RDM-based protein language model that enables con-
trollable membrane protein sequence design. MemDLM-generated sequences
recapitulate the TM residue density and structural features of natural membrane
proteins, achieving comparable biological plausibility and outperforming state-of-
the-art diffusion baselines in motif scaffolding tasks by producing lower perplexity,
higher BLOSUM-62 scores, and improved pLDDT confidence. To enhance con-
trollability, we develop Per-Token Guidance (PET), a novel classifier-guided
sampling strategy that selectively solubilizes residues while preserving conserved
TM domains, yielding sequences with reduced TM density but intact functional
cores. Importantly, MemDLM designs validated in TOXCAT β-lactamase growth
assays demonstrate successful TM insertion, distinguishing high-quality gener-
ated sequences from poor ones. Together, our framework establishes the first
experimentally-validated diffusion-based model for rational membrane protein
generation, integrating de novo design, motif scaffolding, and targeted property
optimization.

1 INTRODUCTION

Membrane proteins play a crucial role in biological systems, regulating molecular transport, signal
transduction, and cellular communication (Jelokhani-Niaraki, 2022). Their capacity to bind specific
ligands or undergo conformational changes renders them essential targets for drug development and
therapeutics for various diseases (Sanganna Gari et al., 2021). Even more interestingly, de novo
design and engineering of membrane proteins offers a powerful therapeutic modality by enabling the
creation of highly-specific and stable proteins that can precisely modulate cell signaling pathways,
transport processes, and immune responses, making them ideal for targeting diseases such as cancer
and neurological disorders (Jelokhani-Niaraki, 2022). Current methods for designing new protein
sequences or scaffolds rely on pre-trained structure prediction networks (Wang et al., 2022; Yin et al.,
2007; Elazar et al., 2022), which remains a particularly challenging prerequisite for membrane protein
targets. The scarcity of high-resolution structures hinders the training of high-fidelity deep learning
structure prediction models for membrane proteins: only ∼1% of the current PDB structures are
annotated as membrane proteins. Further, energy functions underlying physics-based computational
models are suboptimal because they often require iterative optimizations to design analogs of
membrane proteins (Vorobieva et al., 2021). As a result, current methods in de novo membrane
protein design are limited to simple helical barrel or beta-barrel folds with low sequence complexity.

While deep learning-based topology predictors (e.g., DeepLoc, AllesTM) aid in identifying helix
regions and subcellular localization, they primarily analyze existing sequences and do not support
de novo generation for function-specific design (Thumuluri et al., 2022) (Hönigschmid et al., 2020).
Prior computational design efforts have achieved impressive results by designing zinc-transporting
helices, yet they are often limited to fixed scaffolds, small proteins, or require extensive intervention
(Joh et al., 2014). What remains missing is a generative modeling framework that can autonomously
produce membrane protein sequences with controllable structural features, including TM helices,
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Figure 1: MemDLM Schematic. A) RDM-based model training diagram. B) AlphaFold3 visualizations of
unconditional samples. C) Token-level classifier guided diffusion sampling with PET algorithm.

soluble domains, and higher-order topologies, without relying on predetermined scaffolds or manual
adjustments (Goverde et al., 2024).

Discrete diffusion models have recently emerged as powerful tools for generative modeling in
biological sequence spaces, including proteins, peptides, and nucleic acids (Austin et al., 2021;
Sahoo et al., 2024; Wang et al., 2024; Shi et al., 2024; Peng et al., 2025; Tang et al., 2025a;b;
Nisonoff et al., 2025; Rector-Brooks et al., 2025). These models operate by progressively denoising
masked inputs, allowing them to capture long-range dependencies without requiring autoregressive
factorization. However, while discrete diffusion excels at unconstrained generation, guiding these
models toward property-specific objectives still remains an unsolved challenge (Schiff et al., 2025).
Existing classifier-based and classifier-free guidance methods often struggle to enforce token-level
constraints, suffer from noisy gradient estimates, or fail to preserve structural elements essential to
biological function (Nisonoff et al., 2025; Rector-Brooks et al., 2025; Wang et al., 2024). In the
context of membrane protein design, where transmembrane (TM) domains must be preserved even
during optimization, these limitations make existing guidance strategies insufficient.

In this work, we introduce MemDLM, a discrete diffusion protein language model for rational
membrane protein design (Figure 1). At the core of our approach is PEr-Token Guidance (PET), a
novel classifier-guided sampling algorithm that combines attention scores and classifier rewards to
optimize specific sequence tokens during inference. Unlike traditional classifier-guidance methods
(Gruver et al., 2024; Li et al., 2024; Vignac et al., 2022; Dhariwal & Nichol, 2021; Tang et al., 2025a;
Chen et al., 2025; Schiff et al., 2025), PET ensures the retention of targeted tokens, an essential
requirement in membrane protein design, where highly conserved transmembrane (TM) domains are
critical to maintaining structural topology. We demonstrate that MemDLM generates biologically
relevant proteins with structural features resembling membrane proteins (e.g. α-helical bundles) and
show that PET solubilizes natural membrane proteins while retaining key functional TM domains.
Overall, our integrated pipeline serves as a versatile, end-to-end platform for designing and optimizing
membrane protein sequences, with potential applications spanning therapeutics, drug delivery, and
synthetic biology.

Our key contributions are as follows:

• We introduce MemDLM, a discrete diffusion protein language model specifically fine-tuned
for de novo generation of membrane protein sequences with controllable structural features.

• We develop PET, a novel classifier-guided sampling algorithm to optimize specific sequence
tokens during inference, ensuring the retention of targeted amino acid tokens like conserved
TM domains.
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• We demonstrate that MemDLM enables controllable sequence generation through token-
level editing. In practice, we show MemDLM effectively solubilizes existing natural
membrane protein sequences while preserving crucial functional TM regions.

• We motivate MemDLM’s utility in real-world therapeutic design by showing it (i) outper-
forms existing state-of-the-art models by achieving improved sequence-specific computa-
tional benchmarks in de novo generation and sequence scaffolding tasks, and (ii) produces
experimentally-validated membrane protein designs that exhibit favorable growth curves
under antibiotic selection.

2 METHODS

Language Modeling Preliminaries Let x = (x1, x2, . . . , xL) ∈ {0, 1}L×|V| denote a discrete
sequence of length L, where each token is represented as a one-hot vector over the vocabulary
V = {0, 1, . . . , 32}. The vocabulary includes 25 canonical and non-canonical amino acids, along
with several special tokens (Lin et al., 2023). Language modeling aims to estimate the underlying data
distribution x ∼ q(x) using a parameterized probabilistic model pθ(x). Since the true distribution
q(x) is typically intractable, we approximate it using a neural network with parameters θ. In Sup-
plementary A.1, we lay out the foundation for RDM-based protein language models by considering
related modeling paradigms.

2.1 MEMDLM

Modeling MemDLM is built on the Reparameterized Diffusion Model (RDM) framework (Zheng
et al., 2023). We define CAT(x;p) as the categorcial distribution on the discrete sequence x
governed by the vector p ∈ ∆|V|−1, where ∆|V|−1 denotes the (|V| − 1)-dimensional proba-
bility simplex. Given a stationary noise distribution qnoise, we define the unconditional prior as
q(xt) =

∏L
i=1 CAT(xi

t;qnoise). We can then write the forward diffusion process as a transition kernel
defined in closed-form as a convex combination of clean data and noise:

q(xt|xt−1) = αtx0 + (1− αt)qnoise (1)

where αt =
∏t

i=1 βi = 1 − t/T is a linear noise schedule. This transition distribution in Eq. 1
shows that the forward process is ultimately a convex combination of αt, the probability of clean
data x0 remaining unchanged, and 1− αt, the probability of x0 transitioning to the [MASK] token.
By sampling t ∼ U(0, T = 500), we can determine the identity of a token at the given timestep of
the forward process:

xi
t =

{
[MASK] if ui <

t
T , ui ∼ Uniform(0, 1)

xi
0 otherwise

(2)

Importantly, the forward noising process is characterized by an absorbing state: lim
t→T

αt =

lim
t→T

(1− t/T ) = 0, indicating all tokens are guaranteed to be replaced by noise. During inference,

MemDLMθ must denoise a fully masked sequence xT = {[MASK]}Li=1, rendering the absorbing
state a necessary ingredient of the forward noising process. In Section 2.2, we formally outline a
generalized denoising framework from Peng et al. (2025) to obtain samples from masked diffusion
models (e.g., RDMs).

Loss Function Following the proof in Wang et al. (2024) (Appendix Section A), the RDM frame-
work simplifies the ELBO (Eq. 12) by breaking down the KL-divergence term to yield a simplified
training objective:

LRDM = −Eq(x0) KL [q(xt−1 | xt,x0) ∥ pθ(xt−1 | xt)]

= Eq(x0)

[
λt

L∑
i=1

bi(t) · log pθ(xi
0 | xt)

]
(3)
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where λt := T − (t − 1) represents a linear, time-dependent coefficient and bi(t) := 1xi
t ̸=xi

0
. In

practice, LRDM can easily be computed using the cross-entropy loss between logits and sequence
labels. In Supplementary B.2, we detail the specific architectural and training schemes used to
construct MemDLM.

2.2 PATH-PLANNING SAMPLING

To generate realistic membrane-like protein sequences from a trained MemDLM, we adopt the Path-
Planning (P2) paradigm introduced by (Peng et al., 2025), a novel sampling framework for masked
discrete diffusion language models. Notably, P2 breaks the assumption of uniform unmasking
probabilities and enhances generative quality compared to stochastic sampling from a Gumbel-
Softmax distribution or greedy decoding of softmax logits. We follow the self-planner variant of P2,
where the denoiser itself provides a planning signal used to identify and resample low-value tokens.
Here and in Algorithm 2, we outline the key steps of self-planning in P2 but direct the reader to (Peng
et al., 2025) for a complete background.

Initial Token Sampling Beginning with a fully masked sequence xt = {[MASK]}Li=0, MemDLM
predicts denoised logits zt−1 ∈ RL×|V| via zt−1 = pθ(xt) at each timestep. Candidate tokens are
sampled from the logits using Gumbel-softmax decoding with temperature parameter τ :

xi
t−1 = argmax

v

(
log softmax

(
zi,vt−1

τ
+ gi,v

))
, gi ∼ Gumbel(0, 1) (4)

Self-Planning An important requirement of self-planning is resampling low-value tokens using the
predictions of the denoising model. Accordingly, we use MemDLM’s log probabilities to compute
sit = log pθ(x

i
t), a per-position score, andRt = x\Mt−1 , the set of unmasked positions \M eligible for

remasking. We select the top-K tokens fromRt with the lowest log-probability scores sit and remask
them. Specifically, we dynamically compute K = ⌊(1−κt) · |Rt|⌋ as a fixed proportion of unmasked
positions controlled by the monotonic scheduling function κt = κ (i/N), where i ∈ {1, 2, . . . , N}
and κ : [0, 1]→ [0, 1]. This update forces the token predictions MemDLM was not confident about
(low sit) to be remasked.

Token Resampling We sample new tokens at the remasked positions by copying the most recent
denoised tokens from the previous timestep xt−1 into the current sequence xt at positions that were
masked but are no longer among the K lowest-scoring tokens. This step progressively commits
high-confidence tokens while leaving low-confidence regions available for further refinement in future
steps, a key advantage over ancestral and greedy sampling schemes. By following the self-planning
scheme of P2, no additional model training or overhead is required, providing a lightweight inference
mechanism for membrane protein design tasks.

2.3 PER-TOKEN CLASSIFIER GUIDED SAMPLING

While generating arbitrary membrane proteins is valuable, it is insufficient for downstream applica-
tions, as unconditional samples are unlikely to exhibit the functional properties required for their
use as therapeutic modalities (Jelokhani-Niaraki, 2022). Classifier-guided sampling has recently
introduced controllability to deep generative models by following a gradient signal from a pre-trained
classifier model (Gruver et al., 2024), (Li et al., 2024), (Vignac et al., 2022), (Dhariwal & Nichol,
2021), (Tang et al., 2025a), (Chen et al., 2025). Although these methods bias the model’s sampling
trajectory towards the desired class label, there is no guarantee that specific sequence tokens are
preserved during inference. Most similar to our work is LaMBO-2 (Gruver et al., 2024), a classifier-
guidance mechanism for discrete diffusion models. In Supplementary A.2, we present a rigorous
dissection of the method to motivate the need for a classifier-guidance strategy that can preserve an
initial sequence scaffold.

To this end, we introduce Per-Token Guidance (PET), a novel classifier-guided sampling algorithm
that selects and replaces specific sequence tokens with optimized analogues, moving the overall
sequence towards the desired property (Figure 1C, Algorithm 3). In the case of membrane protein
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design, PET can readily be used to replace noncritical TM residues with soluble analogues to guarantee
overall sequence solubility while maintaining biologically conserved TM domains. Solubilizing
membrane proteins without disrupting these critical TM residues is essential for ensuring functional
foldability and membrane localization, as TM residues often mediate key structural and biophysical
interactions. Below, we carefully outline our PET algorithm and refer the reader to Supplementary
A.2 for a background on discrete classifier guidance.

Setup Given a sequence consisting of only amino acid tokens, x = {xi ∈ Canonical}Li=1, PET first
identifies a dynamic subset of editable positions E ⊆ {1, . . . , L} using existing residue annotations
or a trained per-token solubility classifier vϕ : RB×L×D −→ RB×L. This classifier operates over
the hidden states h derived from the ESM-2-650M protein language model (Lin et al., 2023) and is
trained on fully unmasked sequences. See Section B.3 for full training details regarding vϕ.

Determining Editable Residues PET first constructs a set of conserved, non-editable token indices
C based on solubility annotations or predictions:

1. If soluble residue annotations S ⊆ {1, 2, . . . , L} are provided (e.g. experimentally-derived
labels for known membrane protein sequences), initialize C = S.

2. If no annotations are provided, initialize C = {i ∈ {1, . . . , L} | vϕ(ht)i ≥ 0.5}. Inherently, it
is assumed that some vϕ(ht)i < 0.5.

Next, PET identifies additional tokens to add to the conserved, non-editable set C. Specifically, we
consider tokens with low-editability – i.e., residues predicted to be insoluble, which we use as a proxy
for transmembrane (TM)-like character. It is critical to preserve the most conserved TM regions
during optimization in order to maintain the biological plausibility of the generated membrane protein.
To that end, PET guides the selection of these residues using LaMBO-2’s (Supplementary Section
A.2) definition of a token’s saliency si(h), a score that quantifies the importance of token i relative
to the classifier vϕ (Gruver et al., 2024). Given a sequence’s latent representation, we construct a
saliency map s = (s1, s2, . . . , sL) ∈ RL:

s(h) := max


(

D∑
d=1

|∇hvϕ(h)d|

)1/τ

, ϵ

 , ŝi :=
si −min s

max s−min s+ δ
(5)

using temperature τ = 2.0 and a gradient noise floor ϵ = e−4 to stabilize gradient noise. Although
LaMBO-2 normalizes the saliency map to a probability distribution Pedit(xt) = s/

∑
i si (Gruver

et al., 2024), PET opts for min-max scaling (Eq. 5) to prevent vanishing probabilities when L is large.
If vϕ is well-trained, high values of s should correlate with structurally critical (i.e., low-editability)
TM-like residues. To finalize the set of conserved tokens, PET selects the top-K most salient tokens
from the remaining non-soluble residues, where:

C = C ∪ top-K
(
ŝ,K = max

{
1, 1

10 · (L− |C|)
})

, E = {1, . . . , L} \ C (6)

Together, these token selection strategies define E , the set of editable token indices. This set excludes
soluble and highly salient residues to preserve membrane protein character (TM-like residues) while
optimizing for sequence solubility.

Neighborhood Construction. For each editable token i ∈ E , PET constructs a context-aware
neighborhood N (i) based on attention scores. Let A ∈ RL×L be the attention matrix extracted from
the final Transformer layer of pθ. The neighborhood N (i) is formed using top-p nucleus sampling
over the normalized attention weights Norm(Ai,: /τ), excluding special tokens and the self-position
i; we set τ = 1/log L to ensure neighborhood selection is neither overly diffuse in long sequences
nor overly narrow in short sequences. Thus, the final neighborhood contains all tokens j such that
the cumulative attention probability

∑
j′∈N (i) Aij′ exceeds the threshold p = 0.9. The construction

of an attention-informed neighborhood is necessary to propagate long-range residue information to
avoid blindly modifying individual tokens.
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Context-Aware Saliency PET then refines a token’s raw saliency score si with contributions from
the token’s attention-weighted neighborhoodN (i). The context-aware saliency score s̃i is defined as:

s̃i := ŝi + γ
∑

j∈N (i)

Aij∑
j′∈N (i) Aij′

· ŝj (7)

where γ = 0.5 controls the influence of the neighborhood saliency. Overall, the context-aware
saliency blends both the intrinsic importance of the token xi with the contributions of tokens it
attends to most strongly, creating a holistic representation of an individual residue’s contribution to
sequence-level solubility.

Mixture Distribution Let log pθ(x
i
t) be the log-probability distribution across the vocabulary for

a singular token by the language model at timestep t, and let π(xi
t) be a prior token distribution in

log-space. To update a token, PET defines a mixture distribution log P (xi
t) for each editable position

i ∈ E :

log P (xi
t) = (1− wi) · log pθ(x

i
t) + wi · π(xi

t) (8)

By construction, P (xi
t) remains a valid probability distribution, as it is a convex combination of two

normalized distributions. The mixture weight wi can be computed as:

wi = σ(α · s̃i) (9)

with σ(·) denoting the sigmoid function and α = 5.0 controlling the sharpness of the transition. Eq. 8
ensures that an updated token’s distribution is biased towards the prior when s̃i is large since si → 1
when vθ(h

i
t)→ 0. Biologically, this corresponds to a residue with high TM-like character that is thus

conserved and should remain fixed. Conversely, when s̃i is small, PET favors the model’s default
prediction, allowing more flexibility in low-saliency (non-critical) positions.

Prior Distribution In order to consutrct the mixture distribution, we define a temporal prior
π(xi

t) := log pθ(x
i
t−1) in PET sampling that leverages the denoising model’s log probabilities from

a previous diffusion timestep. This formulation maintains the likelihood of the original sequence
while encouraging updates from the mixture weighting in Eq. 8.

Token Sampling and Preservation. A new token x̂i is sampled from P (xi) for each position
i ∈ E . By design, PET will not update positions j /∈ E , resulting in an optimized sequence that
preserves soluble and conserved TM regions while refining low-saliency, TM positions. To produce
optimized amino acid tokens, we sample from a categorical distribution parameterized by the updated
token probabilities at each position, x̂i ∼ CAT(log P (xi)).

2.4 TOXCAT-β-LACTAMASE GROWTH ASSAY

The TOXCAT-β-lactamase assay was used to evaluate membrane insertion and TM association of
MemDLM-generated sequences (Russ & Engelman, 1999; Lis & Blumenthal, 2006). Candidate de-
signs were cloned between an N-terminal ToxR transcriptional activator and a C-terminal periplasmic
β-lactamase in the pMAL_dstβL vector, and transformed into E. coli Cloni cells. Single colonies
were used to inoculate LB cultures with spectinomycin (50 µg/mL), diluted to OD600 = 0.05, and
normalized to 1.95 × 105 cells per well in 96-well plates. The cells were subjected to different selec-
tive pressures: carbenicillin (300 µg/mL) to report on membrane insertion, or combined carbenicillin
(100 µg/mL) and chloramphenicol (100–120 µg/mL) to report on TM-mediated oligomerization.
Plates were incubated at 37◦C with continuous shaking in a BioTek Synergy H1 plate reader, and
growth was monitored by OD600 every 10 minutes for 24 hours. Successful insertion positions
β-lactamase in the periplasm to hydrolyze carbenicillin, while oligomerization activates the ctx
promoter via ToxR dimerization, conferring chloramphenicol resistance.
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3 EXPERIMENTS

3.1 De Novo GENERATION

Setup Unconditional generation of natural membrane protein sequences expands the landscape
of rational protein design. To this end, we use MemDLM to de novo generate 1,098 membrane
protein sequences, setting the sequence length based on the distribution of the test set. We opted to
use the test set’s length distribution as the basis for our experiments to yield a realistic evaluation of
sequence plausability and membrane character. We benchmarked MemDLM against the Diffusion
Protein Language Model (DPLM, (Wang et al., 2024)) and ProGen2 Nijkamp et al. (2023) to validate
MemDLM’s generative quality relative to SOTA models (Supplementary Section B.4). To generate
sequences, we use ancestral sampling for ProGen2 to align with its autoregressive training regime and
P2 Self-Planning for MemDLM and DPLM. Finally, given the limited availability of experimentally-
verified membrane structures, we focused on sequence-based metrics (Supplementary Section B.5).
Notably, we computed the TM Residue Density of the generated sequences by predicting TM and
soluble residue regions with DeepTMHMM (Hallgren et al., 2022).

It is also worth noting that ProGen2 presents several limitations in this setting. First, its autoregressive
design restricts it to ancestral sampling, preventing the model from performing sequence infilling
tasks. Second, because ProGen2 relies on a byte-pair encoding (BPE) tokenizer, it cannot guarantee
exact sequence lengths during generation. Finally, a substantial fraction of ProGen2 outputs (366
of 1,098 sequences) were excluded from evaluation because they contained non-canonical tokens
such as numbers or unnatural amino acids. For these reasons, we restrict our use of ProGen2 to
unconditional sequence generation tasks.

Table 1: Computational validation of generated and experimentally-validated membrane protein sequences. The
performance of MemDLM is compared against SOTA discrete protein generative models, including ProGen2
and DPLM. TMRD denotes TM Residue Density

PLDDT (↑) TMRD PPL (↓) ENTROPY (↑)

Test Set 76.637±10.676 0.294±0.219 5.707±3.435 3.918±0.253

ProGen2 54.998±19.235 0.048±0.153 126.646±1415.166 2.622±1.290

DPLM 62.318±20.669 0.310±0.264 6.323±10.317 3.179±0.812

MemDLM 67.410±14.828 0.311±0.250 6.344±3.278 3.743±0.326

The results show that MemDLM generates sequences with a solubility profile (TM Residue Density)
that closely matches that of experimentally-verified membrane proteins, indicating that MemDLM has
successfully learned their underlying distribution. Further, MemDLM-generated sequences are more
likely to fold into biologically plausible structures compared to DPLM and ProGen2, evidenced by
MemDLM’s higher pLDDT scores. Although DPLM and MemDLM achieve similar ESM-2-650M
Pseudo Perplexities, DPLM’s low Shannon entropy metric suggests that DPLM generates more
repetitive amino acid sequences. Overall, these results suggest that MemDLM has more effectively
captured the underlying distribution of membrane protein sequences through an RDM-based training
strategy (Supplementary A1). As a final validation, we visualize MemDLM-generated sequences with
AlphaFold3 (Supplementary D) and confirm the presence of hallmark membrane protein structures,
including α-helical bundles and distinct TM and soluble regions (Zhang et al., 2015).

3.2 EXPERIMENTAL VALIDATION

Setup To fully validate MemDLM’s de novo generative capabilities, we selected three generated
sequences considered to be single-pass membrane proteins ("GoodTM") from the top-100 and two
from the bottom-22 ("PoorTM") set of MemDLM-generated sequences for experimental validation
in Escherichia coli (E. coli) using TOXCAT-β-lactamase bacterial growth assays (Lis & Blumenthal,
2006), which employ a dual-reporter system for evaluating membrane insertion and oligomerization
of single-pass peptides and proteins (Russ & Engelman, 1999; Lis & Blumenthal, 2006; Ottemann
& Mekalanos, 1995; Armstrong & Senes, 2016; Elazar et al., 2016) (Supplementary Sections B.6,
C.3). In these constructs, the design of interest is inserted between an N-terminal ToxR cytoplasmic
domain and a C-terminal periplasmic β-lactamase. E. coli survival under different antibiotic selection
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pressures then provides a direct functional readout: survival in carbenicillin indicates successful
membrane insertion, which positions the β-lactamase in the periplasm to degrade the antibiotic, while
growth in carbenicillin and chloramphenicol demonstrates TM-mediated oligomerization, where
multimerization of the ToxR transcription factors activates the downstream ctx promoter that confers
resistance to chloramphenicol.

Figure 2: Growth curves of MemDLM-generated TM se-
quences under carbenicillin (300 µg/mL).

Results Figure 2 shows the TOXCAT
growth curves for poor and high-quality
MemDLM sequences alongside the posi-
tive insertion controls GpA and CLS (Sup-
plementary Figure A5). Under carbeni-
cillin selection (300 µg/mL), GpA, CLS,
GoodTM4, GoodTM5, and GoodTM8
all achieved similar growth kinetics and
reached the midpoint of log-phase growth
at ∼4 hours, demonstrating similar mem-
brane insertion efficiencies. PoorTM4
showed no growth in carbenicillin, much
like our negative controls (Supplemen-
tary Figure A6), indicating that the se-
quence is not membrane-inserting. How-
ever, PoorTM2, which contains six charged
residues within the predicted TM span, also
grew in carbenicillin but with a noticeable delay, suggesting weaker membrane insertion propensity.
The survival of GoodTM designs under carbenicillin selection demonstrates that MemDLM can
generate de novo TM-inserting sequences and that filtering generated sequences with computational
metrics effectively ranks TM-like sequences. The poor survivability of PoorTM2 and PoorTM4, both
ranked among the bottom 22 sequences by MemDLM, compared to the GoodTM designs further
supports MemDLM’s ability to distinguish TM-like sequences.

3.3 MOTIF SCAFFOLDING

Setup As a natural extension of de novo design, we scaffolded around TM and soluble motifs
of experimentally-annotated membrane proteins. We take the entire test set, comprising 1,098
experimentally-verified membrane protein sequences with annotated TM and soluble motifs, and
mask out all residues except those in the TM or soluble motif(s). We use these partially masked
sequences as input to the models to assay their capability to generate scaffolds conditioned on known
TM or soluble motifs. We focused on these domains due to their distinct hydrophilic and hydrophobic
regions that govern the folding and thus function of the overall protein. Like unconditional generation,
our evaluations focus on comparing MemDLM’s performance against SOTA discrete diffusion protein
models, namely EvoDiff (Alamdari et al., 2023).

Results Our results (Table 2, Supplementary Figures A2, A3) show that MemDLM scaffolds
functional motifs with greater confidence while preserving biologically critical regions compared to
SOTA discrete diffusion models.

Table 2: Reconstruction quality comparison of models scaffolding around TM and soluble motifs of 1,098
experimental membrane protein sequences that represent the MemDLM model test set.

MOTIF PLDDT (↑) PPL (↓) BLOSUM (↑) ENTROPY (↑)

Test Set
Insol 76.637±10.676 5.707±3.435 – 3.918±0.253

Sol 76.637±10.676 5.707±3.435 – 3.918±0.253

EvoDiff
Insol 64.058±19.229 9.841±4.091 2.176±1.587 3.841±0.268

Sol 64.036±19.145 4.632±3.271 -0.188±1.134 3.841±0.268

MemDLM
Insol 62.762±21.212 8.748±14.777 2.964±1.559 3.876±0.341

Sol 70.112±16.912 3.242±2.362 0.512±1.556 3.803±0.321
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Specifically, we find that MemDLM performs strongly when infilling soluble motifs. Compared to
EvoDiff, MemDLM-infilled soluble regions achieve higher pLDDT scores, suggesting that MemDLM
sequences are more likely to fold into structurally plausible configurations. In addition, MemDLM
attains lower pseudo-perplexity than both EvoDiff and the test set, indicating that the model recovers
soluble residues with greater confidence. Finally, MemDLM-generated scaffolds also achieve higher
BLOSUM-62 scores relative to EvoDiff, reflecting that the recovered sequences are more biologically
conserved and closer to natural protein distributions.

3.4 TOKEN-LEVEL DISCRETE DIFFUSION GUIDANCE

Setup Solubilizing membrane proteins is an important therapeutic design task to improve the
efficacy of drug delivery systems. Consequently, we apply our PET algorithm to optimize specific
insoluble amino acid tokens during inference. We take the 1,098 experimentally-verified membrane
protein sequences in the MemDLM test set and mask out the annotated TM residues. We input these
partially masked sequences into MemDLM and use the PET algorithm to derive soluble analogs of
the original membrane proteins while preserving the initial sequence scaffold.

Results Our results (Table 3, Supplementary Figure A4) demonstrate that sequences infilled with
MemDLM and PET achieve a lower TM Residue Density compared to the original membrane protein
while still preserving critical TM amino acid tokens.

Table 3: Computational validation of 1,098 membrane proteins solubilized from the test set using MemDLM
with PET sampling. TMRD denotes the TM Residue Density Metric.

PLDDT (↑) TMRD (↓) PPL (↓) BLOSUM (↑) ENTROPY (↑)

Test Set 76.637±10.676 0.294±0.219 5.707±3.435 – 3.918±0.253

MemDLM 62.979±17.906 0.181±0.192 8.472±4.879 0.495±2.346 3.870±0.268

At the same time, our sequences achieve a BLOSUM-62 score that closely matches the score
obtained when MemDLM unconditionally infills the soluble domain (Table 2). This shows that
applying PET with MemDLM not only solubilizes the protein but also favors biologically conserved
amino acids, similar to what is observed during unconditional soluble motif scaffolding. Moreover,
MemDLM-solubilized sequences maintain pseudo perplexity and entropy values similar to those
of unconditionally generated samples, indicating that overall naturalness is preserved under the
solubilization scheme. Supplementary Figure D further illustrates this with AlphaFold3 visualizations
of original proteins and their solubilized counterparts, where a distinct loop extends from the main
α-helical core, likely corresponding to an extracellular soluble domain. Taken together, these results
validate PET as an effective algorithm for token-level discrete diffusion guidance, successfully
steering MemDLM to solubilize membrane proteins while preserving the likelihood of the original
sequence.

4 DISCUSSION

In this work, we introduce MemDLM, the first classifier-guided discrete diffusion language model for
de novo membrane protein design. By leveraging masked diffusion, MemDLM captures long-range
dependencies essential to membrane protein structure and function – an area where structure-based
models often fall short due to their reliance on fixed templates and limited generative flexibility.
Our Per-Token Guidance (PET) framework enables targeted solubilization of membrane proteins
while preserving key TM scaffolds. MemDLM also outperforms existing models in scaffolding
functional motifs, maintaining biological relevance, and recovering native-like sequences. Looking
ahead, we aim to extend MemDLM to generate diverse membrane topologies, including β-barrel
and higher-order states (Qing et al., 2020; Mravic et al., 2024), and continue experimental validation
of its designs. By evaluating both the structural fidelity and functional effects of PET-optimized
sequences, we will further demonstrate MemDLM’s utility in rational membrane protein engineering
and therapeutic development.
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REPRODUCIBILITY STATEMENT

We have taken extensive steps to ensure the reproducibility of our work. The MemDLM dataset was
curated from publicly available membrane protein structural databases (PDBTM, OPM, mpstruc, and
MemProtMD) following strict resolution and redundancy criteria, with final train/validation/test splits
clearly documented (Supplementary Section A.1). All model architectures (EvoFlow backbone for
MemDLM, solubility classifier, and baselines including DPLM, ProGen2, and EvoDiff) are described
in detail, including hyperparameters, optimization schemes, and training schedules (Supplementary
Section B.2). Computational benchmarks rely on standard metrics such as pLDDT, pseudo-perplexity,
Shannon entropy, BLOSUM-62, and TM residue density (Tables 2 and 3) with code provided for
metric calculation. Experimental protocols, including cloning, plasmid construction, and TOXCAT–β-
lactamase growth assays, are described step by step with plasmid maps, sequences, and antibiotic
selection conditions (Figure 2, Supplementary Figures A5–A7). We will release all code, data
splits, pretrained model checkpoints, and experimental constructs upon publication to enable full
reproducibility.

ETHICS STATEMENT

This work is focused on the development of generative models for membrane protein design, with
potential applications in therapeutics, drug delivery, and synthetic biology. All computational
experiments rely exclusively on publicly available protein sequence and structural databases, and no
personally identifiable, clinical, or sensitive human subject data were used. Experimental validation
was performed in E. coli using standard laboratory assays (TOXCAT–β-lactamase; Figure 2, Table 6),
which do not raise ethical concerns regarding animal or human research. Potential risks of misuse,
such as the creation of harmful proteins, are mitigated by the focus on therapeutic protein design
and by releasing datasets and code under responsible-use licenses. We believe the societal benefits
of improved protein design tools for medicine and biotechnology outweigh potential risks, and we
encourage the community to adopt similar safeguards when extending this work.
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A EXTENDED BACKGROUND

A.1 LANGUAGE MODELING

Masked Language Models Masked Language Models (MLMs) employ Transformer-based archi-
tectures to learn bi-directional sequence context, distant token relationships, and predict the identity
of corrupted (masked) amino acid tokens. The model is trained under a sequence-recovery training
objective:

LMLM = −
∑
i∈M

log pθ(x
i|x\M) (10)

where the set of masked positions M is a fraction of the sequence tokens. MLMs are strong
representation-learners and excel at understanding both protein and natural languages. However,
training these models to reconstruct only a minor fraction of tokens (15-40%) across a sequence
makes complete de novo sequence generation difficult. (Devlin, 2018) (Lin et al., 2023) (Vincoff
et al., 2025).

Autoregression AR language models apply the chain rule to obtain a sequential factorization.
These models are trained to maximize the log-likelihood of the data:

Eq(x)log pθ(x) = Eq(x)

L∑
i=1

log pθ(xi|x1:L) (11)

New samples can be drawn ancestrally in L steps (x1 ∼ pθ(x
1), . . . , xL ∼ pθ(x

L|x1:L−1) ) following
a strictly left-to-right unidirectional protocol. These models are a viable choice for natural language
modeling schemes where a linear relationship between past and present values is inherently assumed.
However, in biological contexts, such as protein sequences, AR models are limited by their inability
to capture non-linear and long-range dependencies. For example, multi-pass membrane proteins
consist of interleaved TM and soluble regions that are spatially and functionally coupled but may be
separated by long sequence distances.

Denoising Diffusion Models Diffusion models are a class of generative models defined by
Markov processes (Ho et al., 2020) (Sohl-Dickstein et al., 2015). The forward diffusion steps
q(x1:T |x0) =

∏T
t=1 q(xt|xt−1) progressively corrupt an initial data sample x0 ∼ q(x0) into a noisy

prior xT ∼ qnoise across T timesteps. The noise distribution qnoise typically corresponds to an
isotropic Gaussian, N (0, I), in continuous latent spaces, or a uniform categorical distribution over
the vocabulary, Cat(|V|), in the discrete case. During inference, the learned backward process
pθ(x0:T ) = p(xt)

∏T
t=1 pθ(xt−1|xt) gradually denoises the corrupted data sample to obtain samples

from the true data distribution. Diffusion models are trained to maximize the evidence lower bound
(ELBO):

Eq(x0) [log pθ(x0)] ≥ Eq(x0:T )

[
log

pθ(x0:T )

q(x1:T | x0)

]

= Eq(x0)

log pθ(x0 | x1) + const.−
T∑

t=2

KL (q(xt−1 | xt,x0) ∥ pθ(xt−1 | xt))︸ ︷︷ ︸
Ft


(12)

New data samples can be drawn by sampling from qnoise(xT ) and iteratively applying the learned
denoising process pθ(xt−1) = pθ(xt−1|xt). Various authors ((Sahoo et al., 2024), (Zheng et al.,
2023)) have made simplifying assumptions about the reverse process to derive a computationally
inexpensive loss function that reduces to a weighted negative log-likelihood, akin to a weighted form
of Eq. 10.
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A.2 CLASSIFIER-GUIDED SAMPLING

Preliminaries Given a property y, guided diffusion aims to maximize q(y|x) by sampling from the
joint distribution x ∼ q(x0, y). Therefore, the reverse transition can be conditioned on the property
value y and prior sequence samples. Using Bayes theorem, the conditional joint distribution can be
decomposed:

q(xt−1|xt, y) =
q(y|xt−1, xt)

q(y|xt)
(13)

In practice, the true distribution of q(y|xt) is unknown and can be learned with a neural network
pϕ(y|xt). To yield a tractable marginal reverse transition from Eq. 13, we can substitute the true
distribution q(·) with our learned neural networks:

pθ,ϕ(xt−1|xt, y) =
pθ(y|xt−1, xt)

pϕ(y|xt)
(14)

The normalization term in the denominator pϕ(y|xt) can be safely dropped since the model’s param-
eters learn the normalized distribution. We can update the parameters θ, ϕ at each iteration in the
direction given by the gradient

∇xt−1
log pθ,ϕ(xt−1|xt, y) = ∇xt−1

log pϕ(y|xt−1) +∇xt−1
log pθ(xt−1|xt) (15)

With this formulation, we can steer the denoising trajectory of the unconditional diffusion model to
maximize the target attribute y using gradients from an external classifier (Dhariwal & Nichol, 2021).
Unlike classifier-free guidance, classifier-guidance prevents expensive retraining of existing denoising
network on high-quality, task-specific labeled data and opens avenues for flexible, plug-and-play
conditioning for various downstream applications.

Discrete Classifier Guidance While classifier guidance is well-formulated for diffusion models
that operate over continuous data in Euclidean space (Dhariwal & Nichol, 2021), applying it to
discrete spaces requires additional approximation. One common approach treats discrete tokens as
continuous relaxations on the probability simplex and uses a first-order Taylor expansion around
xt to approximate log pϕ(y|xt−1) by making ∇xt(·) a valid operator. However, this approximation
can be inaccurate when the local linearization poorly captures the classifier’s behavior over discrete
transitions, especially in regions with sharp decision boundaries. To remedy this, several methods
((Li et al., 2024), (Vignac et al., 2022)) have been proposed to circumvent the lack of continuous
representations in discrete gradient guidance; most relevant to our work is LaMBO-2 introduced by
(Gruver et al., 2024).

LaMBO-2 To realize classifier-guidance for discrete sequences, LaMBO-2 first conducts sequence
optimization using a Langevin process over a property-informed latent space. We begin with the
discrete Langevin dynamics used in score-based models:

x′
t = xt − η∇x log pθ(y | xt) +

√
2ητϵ, ϵ ∼ N (0, I), (16)

and generalize this update to the continuous latent space h′
t ∈ R1×D guided by a differentiable

surrogate of the discrete generative model. The batch size dimension B is set to 1 for simplicity. The
latent update step is defined as:

h′
t ←− h′

t − η∇h′
t
[λKL(pθ(xt|h′

t) || pθ(xt|ht))− σ(vθ(h
′
t)d)] +

√
2ητϵ, ϵ ∼ N (0, I) (17)

with step size η, temperature τ , and regularization strength λ, where the sigmoid operator σ(·) can
be applied to produce a sequence-level binary class probability from the classifier’s unnormalized
logit. The explore-exploit loss LEE := λ[KL(pθ(xt|h′

t) || pθ(xt|ht)]− σ(vθ(h
′
t)d) guides the latent

representation towards high values of the property with the gradient ∇hσ(vθ(h)), while the KL
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term ensures the transition distribution maximizes the original sequence likelihood. Given a discrete
sequence xt and its corresponding latent representation ht, one can take N Langevin steps of Eq. 17
to realize optimized sequence latent representations before using the language-modeling head of the
denoising network to project continuous embeddings to the discrete logit space ((Gruver et al., 2024),
Appendix B.2). However, this construction does not guarantee the retention of specific tokens during
inference because even if gradients are suppressed for particular positions, the subsequent projection
through the language modeling head back into discrete logits does not ensure that the tokens with
minimal gradient updates will be preserved.

B EXTENDED METHODS

B.1 DATASET CURATION

MemDLM Bioassembly structures from X-ray scattering or electron microscopy with better than
3.5 Å resolution, annotated by PDBTM1, mpstruc2, OPM3, or MemProtMD4, were used to curate
membrane protein sequences for fine-tuning. De novo designed membrane proteins were added
manually to the database. The proteins were culled at 100% sequence identity and 30% sequence
identity to result in a non-redundant set and a sequence-diverse set, respectively. Integral membrane
residues, defined as residues with at least one atom within the bilayer, were parsed from the resulting
bioassembly structures using the membrane boundaries predicted by PPM 3.0 (Lomize et al., 2021).
From the dataset of integral membrane residues, only structures with at least one TM chain spanning
the entire membrane bilayer were included in the dataset. Additionally, chains without integral
membrane residues were removed from the structure. All peripheral membrane proteins, defined as
proteins with no TM chain, were filtered out. The TM protein sequences at the two sequence identity
cut-offs and the Python script that parses the sequences from the PPM predictions are included in
the SI. After these steps, 9,329 sequences with corresponding per-residue annotations remained. To
augment this set of sequences, we obtained 2,579 unique PDB IDs from the Orientations of Proteins
in Membranes (OPM) database with the provided "subunits" file (Lomize et al., 2006). PDB IDs were
converted to corresponding protein sequences and per-residue labels (TM or soluble) were assigned
using the subunits file. The final set of 11,908 TM sequences were then split using the MMSeqs2
easy clustering module with a minimum sequence identity of 80% and a coverage threshold of 50%.
The resulting clusters were split to an 80-10-10 ratio into the training set (9,802 sequences, 82.31%),
the validation set (1,008 sequences, 8.47%), and the testing set (1,098 sequences, 9.22%).

PET Sampling Classifier We leveraged the same train/test/val set of 11,908 membrane sequences
from the MemDLM dataset to develop a binary classifier that predicts the solubility of each amino
acid within a protein sequence. Each sequence was annotated on a per-residue basis, with TM (class
1) and soluble (class 0) labels assigned according to the sequence’s uppercase and lowercase residues,
respectively.

B.2 MODELING MEMDLM

Model Architecture EvoFlow is a protein language model consisting of 33 Transformer-encoder
layers and a language modeling head that is capable of de novo generating protein sequences.
More formally, it can denoise a protein sequence consisting of all [MASK] tokens, making
it a natural choice for a discrete diffusion-based protein language model. We use the pre-
trained EvoFlow protein language model checkpoint (https://huggingface.co/fredzzp/
EvoFlow-650M-context-3070) as the basis of our neural network pθ since EvoFlow was
trained under the RDM framework (forward process as defined by Eq. 1 and loss computation
defined by Eq. 3). The Diffusion Protein Language Model (DPLM) was also trained under the RDM
framework by (Wang et al., 2024) and is thereby an alternative choice for pθ. However, we opt for
EvoFlow over DPLM as the architecture for pθ as DPLM is restricted by its shorter context length of
1,024 tokens, compared to EvoFlow’s extended context length of 3,070 tokens.

Training To achieve membrane protein-specific generation, we fine-tuned EvoFlow by selectively
updating a subset of the encoder’s attention layers. Specifically, the final N = 3 Transformer encoder
layers {LM−N+1, . . . ,LM} are partially unfrozen, where M = 33 is the total number of encoder
layers. Within each layer, we enable gradient updates to only the key, query, and value projection
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matrices (WK , WQ, and WV ) of the self-attention mechanism and keep all other weights frozen. With
this training recipe, we bias the pre-existing EvoFlow latent space with physicochemical features of
membrane proteins without overfitting on the new sequences. MemDLM was trained to minimize the
objective in Eq. 3 on a 4xA6000 NVIDIA DGX server with 200 GB of shared VRAM for 3K steps
using the AdamW optimizer (betas=(β1 = 0.99, β2 = 0.98), weight decay λ = 0.01), a learning rate
(LR) of 4 × 10−5 with a cosine schedule (150 linearly-scheduled warmup steps, LR minimum =
1× 10−5).

B.3 PER-TOKEN SOLUBILITY CLASSIFIER

Let vϕ : RB×L×D → RB×L be a neural network trained to predict per-token solubility scores
from continuous latent representations ht. The model is trained using clean protein sequences
x with corresponding binary per-residue solubility labels y ∈ {0, 1}L (0 = insoluble, 1 =
soluble). Each input sequence is first embedded using the pretrained ESM-2-650M protein
language model checkpoint (https://huggingface.co/facebook/esm2_t33_650M_
UR50D) (Lin et al., 2023). The resulting contextualized token embeddings are passed through a
lightweight classifier vϕ with the following architecture: (i) trainable 2-layer Transformer encoder
Transformerϕ; (ii) LayerNorm and dropout (p = 0.5); and (iii) a trainable 2-layer projection head
MLPϕ outputs a scalar logit for each token position. All parameters in ESM-2 are frozen, and only
the transformer encoder and MLP layers are updated during training. The classifier is optimized
using a per-token binary cross-entropy loss with logits:

LBCE(ϕ) = − [y · log σ(z) + (1− y) · log(1− σ(z))] (18)

where σ(z) is the sigmoid activation function and z = vϕ(h) is a vector of per-token logit predictions.
The loss is computed without reduction to allow for masking padded positions and is averaged over
all valid tokens in the batch. vϕ is trained on a 1xA6000 NVIDIA DGX server with 50 GB of shared
VRAM for 50K steps using the AdamW optimizer (betas=(β1 = 0.99, β2 = 0.98), weight decay
λ = 0.01), a learning rate (LR) of 3e−5 with a cosine schedule (5000 warmup steps, LR minimum =
1e−5). The PET classifier was trained using the same train, test, and validation sequence splits as
MemDLM pre-training.

B.4 BENCHMARKING MODELS

We fine-tune ProGen2 (Nijkamp et al., 2023) and Diffusion Protein Language Model (DPLM) (Wang
et al., 2024) on the same train, test, and validation split of membrane protein sequences used to train
MemDLM. We use these SOTA models along with EvoDiff as the basis for comparing MemDLM’s
performance on membrane protein design tasks.

B.4.1 PROGEN2

The ProGen2 protein language consists of 27 Transformer layers and was trained under the au-
toregressive formulation (Supplementary Section A.1) to de novo generate protein sequences
(Nijkamp et al., 2023). We fine-tune the pre-trained ProGen2-base 764M model checkpoint
(https://huggingface.co/hugohrban/progen2-base) to achieve membrane protein-
specific generation. Specifically, we unfreeze the final N = 2 Transformer layers and enable updates
to only self-attention module and fine-tune the model for 5,000 steps. We use 2xH100 NVIDIA
GPUs with 192 GB of shared VRAM, the Adam optimizer (betas=(β1 = 0.9, β2 = 0.999), λ = 0.1,
moving averages for the first and second moment estimators set to zero), and a learning rate of 2e−4

set to decay by a factor of 5, as detailed in Section 3.3 of (Nijkamp et al., 2023).

B.4.2 DPLM

DPLM is an RDM-based discrete diffusion protein language model consisting of 33 Transformer
layers that can de novo generate protein sequences, scaffold over functional motifs, and produce
protein sequence embeddings (Wang et al., 2024). We fine-tune the pre-trained DPLM 650M model
checkpoint (https://huggingface.co/airkingbd/dplm_650m) on the RDM training
objective (Eq. 3) to achieve membrane protein-specific generation. Specifically, we use 2xH100
NVIDIA GPUs with 192 GB of shared VRAM for 5K steps using the AdamW optimizer (betas=(β1 =
0.9, β2 = 0.98), weight decay λ = 0.01), a learning rate (LR) of 4× 10−5 with a cosine schedule
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(150 linearly-scheduled warmup steps, LR minimum = 1× 10−5) as detailed in the provided DPLM
source code (https://github.com/bytedance/dplm).

B.4.3 EVODIFF

We elect to use EvoDiff under the Order-Agnostic Autoregressive Diffusion sampling framework
(EvoDiff-OADM) over EvoDiff trained under the Discrete Denoising Diffusion Probabilistic Model
(Austin et al., 2021) (EvoDiff-D3PM) as EvoDiff-OADM was trained to denoise sequences consisting
of masked tokens and EvoDiff-D3PM was trained to denoise starting from a sequence of uniform
amino acids. We use the provided pre-trained EvoFlow-OADM-640M checkpoint and sampling code
(https://github.com/microsoft/evodiff) for EvoDiff benchmarking.

B.5 COMPUTATIONAL METRICS

Sequence generation quality was computationally verified using the following metrics:

Pseudo Perplexity The model’s generation quality was assessed using the ESM-2 (Lin et al.,
2023) pseudo-perplexity metric. Typically, a lower pseudo-perplexity value indicates higher confi-
dence. Specifically, the pseudo-perplexity is computed as the exponential of the negative pseudo-
loglikelihood of a sequence. This metric yields a deterministic value for each sequence but necessitates
L forward passes for computation, where L represents the input sequence length. It is formally defined
as PPL(x) = exp[− 1

L

∑L
i=1 log p(xi | x\i)].

pLDDT The structural confidence of generated sequences was assessed using predicted Local
Distance Difference Test (pLDDT) scores from ESMFold v1 with chunk size of 128 (Lin et al.,
2023), a protein language model-based tool to predict protein structures from amino acid sequences
alone. Higher pLDDT indicates ESMFold is more confident in the produced structure, suggesting the
initial input sequence is biologically plausible.

Shannon Entropy To measure the diversity and uncertainty of the model’s token predictions, we
compute the average Shannon entropy across the sequence. Let p(xi) denote the model’s probability
distribution over the vocabulary V at position i. Higher entropy values indicate greater diversity in
the model’s predictions, while lower values suggest more repetitive distributions. The entropy is
defined as: Entropy(x) = − 1

L

∑L
i=1

∑
v∈V p(xi = v) · log p(xi = v).

BLOSUM62 Substituion Score The average BLOSUM62 score is a quantitative approach to
determining whether an amino acid substitution is conservative or nonconservative. This value
becomes an important computational metric for protein sequence infilling tasks (both unconditional
and PET-based solubilization) to determine if the model is introducing non-conserved residue changes.
For each aligned position between a generated sequence x̂ and reference sequence x, we extract
the substitution score B(x̂i, xi) from the BLOSUM62 matrix (Henikoff & Henikoff, 1992). Higher
scores indicate greater biochemical similarity to the native sequence, while lower scores suggest
more divergent or potentially deleterious substitutions. The final score is computed as the mean over
all aligned residues BLOSUM(x̂,x) = 1

L

∑L
i=1 B(x̂i, xi).

TM Residue Density To estimate the membrane-localizing potential of generated sequences,
we used DeepTMHMM v1.0 tool (https://services.healthtech.dtu.dk/services/
DeepTMHMM-1.0/) (Hallgren et al., 2022) to produce per-residue topology annotations. Each
residue is classified into one of six categories: signal peptide (S), inside cell/cytosol (I), alpha
membrane (M), beta membrane (B), periplasm (P), or outside cell/lumen (O). For our analysis,
we consider residues labeled as alpha membrane (M) to be “soluble” in the membrane context,
and all other classes, including beta membrane (B), to be “insoluble.” We explicitly exclude B-
labeled residues from the soluble category due to the structural and biophysical differences between
beta-barrel and alpha-helical transmembrane domains, the latter being dominant in our training set.
Using these annotations, we define the TM Residue Density of a sequence as the number of residues
predicted to lie within alpha membrane ("M" predictions) regions divided by the sequence length as a
normalization factor.
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B.6 WET-LAB EXPERIMENTS

B.6.1 CLONING AND PLASMID CONSTRUCTION

DNA sequences of our MemDLM-designed and control peptides were cloned into the pMAL_dstβL
vector (Addgene plasmid #73805) between the genes encoding for ToxR and β-lactamase using
blunt-end ligation. The resulting constructs were initially transformed into E. coli XL-10 Gold cells.
Transformants were selected on Luria Broth (LB) agar plates containing spectinomycin and sequences
were verified by Sanger sequencing. Confirmed plasmids were subsequently transformed into E. coli
Cloni cells for the assay.

Cell lines:

REAGENT CATALOG INFORMATION

E. Cloni 10G DUOs Chemically Competent Cells Cat. No. 60107-1 (BioSearch Technologies)
XL 10-Gold Ultracompetent Cells Cat. No. 200315 (Agilent)

Table 4: Competent cell reagents used in this study.

Genes inserted into the pMAL_dstβL plasmid vector:

• Human CLS:
– UniProt: UPI000007083D
– Amino acid sequence: PLFIPVAVMVTAFSGLAFIIWLA
– Gene: CCGCTGTTCATCCCGGTTGCAGTTATGGTTACCGCTTTTAGTGGATTG-

GCGTTTATCATCTGGCTGGCT
• GpA-TM Region:

– UniProt: UPI000012B75E
– Amino acid sequence: LIIFGVMAGVIGTILI
– Gene: TTAATTATTTTCGGAGTGATGGCCGGAGTTATCGGCACAATTTTAATC

• ErbB2 TM Region:
– UniProt: P04626-1
– Amino acid sequence: SIISAVVGILLVVVLGVVFGIL
– Gene: TCCATTATCTCCGCTGTCGTAGGAATCTTGTTAGTTGTCGTC-

CTTGGGGTTGTGTTTGGAATTTTA
• Qsox2 TM Region:

– UniProt: Q6ZRP7
– Amino acid sequence: SLCVVLYVASSLFMVMYFF
– Gene: AGTCTTTGCGTCGTACTTTACGTCGCATCTTCACTGTTTATGGTGATG-

TATTTCTTT
• EK3 Water Soluble Helix (Wolny et al., 2017):

– Amino acid sequence: SAEEEKKKAEEEKKKAEEEKKKAE
– Gene: TCCGCAGAGGAAGAAAAGAAAAAAGCTGAAGAAGAAAAGAAAAAG-

GCAGAAGAAGAGAAAAAAAAGGCAGAG
• PoorTM2

– MemDLM amino acid sequence: SSLLFSYQGAKKEEERVFLDNF
– Gene: AGTTCTTTGTTATTCAGCTATCAGGGAGCCAAGAAAGAAGAA-

GAACGTGTGTTTCTGGATAACTTC
• PoorTM4

– MemDLM amino acid sequence: GTHAKDWRVTSWKRYGEIE
– Gene: GGAACACATGCTAAAGATTGGCGTGTGACATCTTGGAAGCGTTACG-

GCGAGATTGAA
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• GoodTM4

– MemDLM amino acid sequence: DLSKWLGIVLLLLLAILALLLIR

– Gene: GATTTAAGCAAATGGCTGGGTATCGTACTGTTACTGTTACTGGC-
TATTTTGGCTTTATTACTGATTCGT

• GoodTM5

– MemDLM amino acid sequence: SLRWLWSLVIGLLLIVAFYLLLR

– Gene: AGCCTGCGTTGGTTGTGGTCTTTAGTGATCGGCTTACTGCT-
TATCGTTGCCTTCTACCTGCTGCTTCGC

• GoodTM8

– MemDLM amino acid sequence: DFLRKAVIVLLVLVIVAGLLVIR

– Gene: GATTTTCTGCGTAAGGCAGTGATTGTATTACTTGTCTTGGTTATTGTG-
GCGGGTCTGCTGGTTATTCGC

B.6.2 TOXCAT-β-LACTAMASE GROWTH ASSAY

Single colonies of plasmid-containing E. coli Cloni cells were used to inoculate 6-mL LB cultures
supplemented with 50 µg/mL spectinomycin. Glycerol stocks were made and used to inoculate new
fresh LB culture tubes with 50 µg/mL spectinomycin. Cultures were incubated for ∼8 h or overnight
at 37◦C with shaking. Optical density at 600 nm (OD600) was measured, and cultures were diluted
with fresh LB + spectinomycin to an OD600 of 0.05. Growth was continued until an OD600 of ∼0.1
was reached.

To ensure consistent inoculation density across assays, the number of cells per well was normalized
to 1.95× 105 cells. This value was calculated using the relationship of 1 OD600 ≈ 8× 108 cells/mL
and adjusted for the measured absorbance at OD600 of each culture. Growth under spectinomycin
confirmed that the pMal_dsTBL plasmid was successfully introduced into E. coli Cloni cells across
all conditions. All cultures grew equally under this condition, demonstrating comparable inoculation
densities and consistent plasmid uptake.

Assays were performed in 96-well plates, with each well containing a final total volume of ∼200
µL LB medium supplemented with the appropriate antibiotics in the following concentrations:
Spectinomycin (50 µg/mL), Carbenicillin (300 µg/mL), Carbenicillin (100 µg/mL) + chloramphenicol
(100 µg/mL), Carbenicillin (100 µg/mL) + chloramphenicol (120 µg/mL). Wells were inoculated
with the calculated volume of diluted culture corresponding to 1.95 × 105 cells. Each antibiotic
reporter was run in triplicate. Plates were incubated at 37◦C in a pre-heated plate reader (BioTek
Synergy H1). Bacterial growth was monitored by measuring absorbance at 600 nm for 24 hours with
measurements taken every 10 minutes under continuous shaking.

C EXTENDED RESULTS

C.1 DENSITY PLOTS

We visualize the density distribution of the various computational metrics to assess membrane protein
sequences. When using P2 Self-Planning to generate sequences, we set τ = 0.7 to have a slight bias
towards deterministic model outputs.

Unconditional Generation We visualize the density distribution of unconditionally generated
membrane proteins from various models.
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Figure A1: De novo-generated and natural membrane protein sequences from various models. A) TM Residue
Density predicted by DeepTMHMM. B) ESM-2-650M Pseudo Perplexity. C) ESMFold-predicted pLDDT
scores. D) Shannon entropy values.

Motif Scaffolding We mask out and infill both the insoluble and soluble regions of natural mem-
brane proteins derived from the model’s test set.

Figure A2: Infilling Insoluble Domain

Figure A3: Infilling Soluble Domain

Solubilization We optimize the solubility of the proteins in the model’s test set by applying our
PET algorithm.
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Figure A4: Solubilizing TM Domains

C.2 PHYSCIOCHEMICAL PROPERTY PREDICTION

As a surrogate task, we assessed if RDM training retains physicochemical information critical to
membrane protein function by predicting per-residue solubility and membrane localization (Table 3).
We use embeddings from three models–vanilla ESM-2-650M, ESM-2-650M fine-tuned on membrane
protein sequences, and MemDLM–as inputs to a per-residue solubility and sequence-level membrane
localization classifiers. We outline the dataset, training details, and evaluation results of these models
in the following.

C.2.1 DATASESTS

Solubility Prediction We leveraged the same set of 11,908 membrane sequences from the
MemDLM training dataset to develop a binary classifier that predicts the solubility of each amino
acid within a protein sequence. Each sequence was annotated on a per-residue basis, with TM (class
1) and soluble (class 0) labels assigned according to the sequence’s uppercase and lowercase residues,
respectively. The same training, testing, and validation data splits used to train MemDLM were also
utilized to train and evaluate this classifier.

Membrane Localization We collected 30,020 protein sequences from DeepLoc 2.0 (Thumuluri
et al., 2022) to build a binary classifier that predicts a protein sequence’s cellular localization. The
authors of the dataset provided a multi-label label for each sequence indicating its localization(s). We
used the authors’ provided data splits, with training sequences having 11 labels and testing sequences
having 8 labels.

C.2.2 MODELS

Solubility Prediction We first predicted TM and soluble residues, a hallmark characteristic of
membrane protein sequences. We utilized embeddings from each pLM’s latent space (ESM-2-150M,
ESM-MLM, and MemDLM) as inputs to train a two-layer perceptron classifier that minimized the
standard binary cross-entropy (BCE) loss to compute the probability that each residue in the sequence
is either soluble (probability < 0.5, class 0) or TM (probability > 0.5, class 1).
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Membrane Localization Prediction Proteins originating from the endomembrane system and
localizing in the plasma membrane differ in conformation and function from those in the cytosol and
other cellular organelles. We predicted the subcellular localization of protein sequences by utilizing
embeddings from each pLM’s latent space (ESM-2-150M, ESM-MLM, and MemDLM) to train a
XGBoost classifier that minimized the standard BCE loss to compute the probability that a protein
sequence localizes in the plasma membrane (probability > 0.5, class 1) or in other regions (probability
< 0.5, class 0).

Fine-Tuning ESM-2 We fine-tune the ESM-2 pLM ((Lin et al., 2023)) to achieve an encoder that
produces membrane-aware protein sequence embedding used as a baseline comparison for the RDM
training task. We trained a MLM head on top of ESM-2-650M using membrane protein sequences to
force comprehension of membrane protein properties. We chose to randomly mask 40% of amino
acid tokens during training over the standard 15% to more closely resemble the dynamics of diffusion-
based (RDM) training; masking rates above 40% have been seen as detrimental during MLM training
tasks (Wettig et al.). Corrupted sequences were passed into ESM-2-650M to retrieve their output
embeddings. During training, we unfroze the key, query, and value weights in the attention heads
of the final three encoder layers, similar to fine-tuning EvoFlow during MemDLM training. During
ESM-2 fine-tuning, the model performed a masked-prediction task over masked amino acid tokens to
minimize the NLL loss in Eq. equation 10. 2xH100 NVIDIA GPUs, learning rate of 5e-3, the Adam
optimizer, and a batch size of 8 over 10 epochs were used.

C.2.3 RESULTS

We leveraged the trained solubility prediction and membrane localization classifiers to determine
if latent spaces from RDM-based generative models are aligned with relevant membrane protein
properties. Table 5 shows that MemDLM latent embeddings achieve predictive performance that
closely parallels SOTA pLM embeddings, which are designed specifically for delivering precise
representations.

MODEL SOLUBILITY (↑) MEMBRANE
LOCALIZATION (↑)

ESM-2-650M 0.9383 0.6011
Fine-Tuned ESM-2 0.9375 0.6000
MemDLM 0.9375 0.5964

Table 5: Performance comparison (AUROC) of embeddings derived from various models in predicting physico-
chemical properties of MemDLM test set sequences.

In total, these results demonstrate that MemDLM accurately captures the biological features under-
pinning functional membrane proteins despite being trained on a sequence generation task rather than
a masked-prediction task.
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C.3 WET-LAB EXPERIMENTS

C.3.1 TOXCAT ASSAY

Figure A5: Summary of control constructs for the TOXCAT-β-lactamase assay and their expected growth
responses to antibiotics.

Schematic showing gene ToxR-POI-βL, where POI is the peptide of interest and βL is β-lactamase.
Periplasmic β-lactamase and cytoplasmic ToxR proteins are represented by blue and yellow dots,
respectively. Expected growth phenotypes under spectinomycin and carbenicillin +/-chloramphenicol
are indicated for each control. Negative controls ∆ToxR-POI-βL, ∆POI, and EK3 should not survive
in carbenicillin because they lack a TM domain. Positive controls CLS, ErbB2, GpA, and Qsox2 all
have TM domains and should survive in carbenicillin. Further, ErbB2, GpA, and Qsox2 are dimers.
Expression of these controls should also confer resistance to chloramphenicol.

C.3.2 TOXCAT SEQUENCE SELECTION

From 1,000 MemDLM-generated sequences, three sequences from the top 100 predicted performers
("GoodTM") and two sequences from the bottom 22 predicted performers ("PoorTM") were selected
for screening in the TOXCAT assay. The following selection criteria was used:

CATEGORY PLDDT PPL TM RESIDUE DENSITY SEQUENCES SELECTED

GoodTM (Top 100) > 60 < 10 Non-zero 3
PoorTM (Bottom 22) < 60 < 15 Non-zero 2

Table 6: Selection criteria and sequence counts for MemDLM-generated sequences screened in the TOXCAT
assay.

The top-ranked (GoodTM) sequences represent a diverse set of high-scoring designs. GoodTM4
(Sequence DLSKWLGIVLLLLLAILALLLIR, rank 41) contains high transmembrane residue density,
GoodTM5 (Sequence SLRWLWSLVIGLLLIVAFYLLLR, rank 57) contains a Small-X3-Small
motif known to promote TM-TM association (Russ & Engelman, 1999; Li et al., 2004; Russ &
Engelman, 2000), and GoodTM8 (Sequence DFLRKAVIVLLVLVIVAGLLVIR, rank 8) has an
increased abundance of charged residues capping the TM spanning domain. This further demonstrates
that MemDLM generates plausible protein sequences with TM-like character.
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C.3.3 GROWTH CURVES

Control Plasmids Growth curves of E. coli Cloni cells containing control plasmids.

Figure A6: A) Survival in spectinomycin (50 µg/mL) confirmed plasmid uptake for all controls. B) Growth
curves of control plasmids under carbenicillin (300 µg/mL) showed that control plasmids containing TM
sequences survived selective pressure. C) Growth curves of control plasmids under combined carbenicillin (100
µg/mL) and chloramphenicol (80 µg/mL) selection, which tests both transmembrane insertion and association,
show that the dimeric Qsox2, GpA, and ErbB2 controls begin growing in chloramphenicol earlier than the
monomeric CLS control.

MemDLM-Generated Sequences Growth curves for MemDLM’s de novo-generated sequences.
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Figure A7: GpA is used as a positive control for insertion and TM association. CLS is the positive insertion
and negative TM association control. A) Growth curve of E. coli Cloni cells containing de novo MemDLM TM
sequences under spectinomycin (50 µg/mL) confirmed plasmid uptake. B) Growth curves of MemDLM peptides
under carbenicillin (300 µg/mL) show GoodTM4, GoodTM5, and GoodTM8 growing as expected. PoorTM4
did not survive, indicating that it is not membrane inserting. PoorTM2 showed delayed growth, suggesting
that it has lower membrane insertion propensity than the GoodTM constructs. C) Growth curves of MemDLM
plasmids under combined carbenicillin (100 µg/mL) and chloramphenicol (120 µg/mL), used to select for both
transmembrane insertion and transmembrane association, reveal that some of the TM designs may be oligomeric.
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D VISUALIZATIONS

AlphaFold3 visualizations of MemDLM-generated membrane protein sequences. TM Residue
Density (TMRD) scores are derived from DeepTMHMM predictions. Structures and colors are from
AlphaFold3 predictions, and pLDDT scores are from ESMFold.

D.1 De novo GENERATION

Figure A1: De novo-generated protein sequences from MemDLM across different lengths.

D.2 SOLUBILIZATION

Figure A2: Original and solubilized versions of MemDLM test set protein sequences. Grey residues were
annotated as soluble in the given sequence and were thus "fixed" during PET sampling.
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E ALGORITHM PSEUDOCODE

Algorithm 1 MemDLM Training

Require: Protein sequence dataset D, diffusion model pθ, number of diffusion timesteps T
1: while not converged do
2: Sample batch x0 ∼ D
3: Sample timestep t ∼ U(1, T )
4: Corrupt sequence: xt ∼ q(xt | xt−1)

5: Compute RDM loss: LRDM = −λt

∑L
i=1 log pθ(x

i
0 | xt)

6: Take gradient descent step on: ∇θLRDM
7: end while
8: return Trained MemDLM pθ

Algorithm 2 MemDLM Sampling with P2 Self-Planning and Optional Sequence Refinement

Require: Fully masked sequence xT = {[MASK]}Li=1, trained MemDLM pθ, number of denoising
steps T

1: for t ∈ {T, T − 1, . . . , 0} do
2: Compute logits: zt−1 = pθ(xt)

3: Sample candidate tokens: xi
t−1 = argmaxv

(
zi,v
t−1

τ + gi,v
)
, gi,v ∼ Gumbel(0, 1)

4: Compute per-token log-probabilities: sit = log pθ(x
i
t)

5: Identify unmasked positions: Rt = {i | xt−1 ̸= [MASK]}
6: Compute K = ⌊(1− κt) · |Rt|⌋
7: Select top-K lowest scoring tokens fromRt and remask them: xi

t = [MASK] for i ∈
top-K(sit)

8: Copy high-confidence predictions: xi
t−1 ← xi

t for positions previously masked but not in
top-K

9: end for
10: if PET Optimization then
11: Perform Algorithm 3
12: end if
13: return Final decoded sequence x0

Algorithm 3 PET-based MemDLM Sampling

Require: Candidate protein sequence x, trained MemDLM pθ, trained solubility classifier vϕ,
pre-trained encoder Encoderϕ, number of optimization steps N

1: Produce sequence embeddings h = Encoderϕ(x)
2: Compute saliency map s using gradients∇hvϕ(h)
3: Normalize saliency map ŝi ← si
4: Determine editable positions E based on soluble residues and saliency scores
5: for each i ∈ E do
6: Define neighborhood N (i)
7: Compute s̃i = ŝi + γ

∑
j∈N (i) Norm(Aij) · ŝj

8: Construct prior distribution π(xi)
9: Compute guidance distribution: log P (xi) = (1− σ(αs̃i)) · log pθ(x

i) + σ(αs̃i) · π(xi)
10: Sample token x̂i ∼ CAT(log P (xi))
11: Update x[i]← x̂i

12: end for
13: return Optimized sequence x̂
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F USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge the use of large language models (LLMs) to assist in polishing and editing parts of
this manuscript. LLMs were used to refine phrasing, improve clarity, and ensure consistency of style
across sections. All technical content, experiments, analyses, and conclusions were developed by the
authors, with LLM support limited to language refinement and editorial improvements.
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