
Published as a conference paper at ICLR 2023

THE LAZY NEURON PHENOMENON: ON EMERGENCE
OF ACTIVATION SPARSITY IN TRANSFORMERS

Zonglin Li∗, Chong You∗, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat,
Sashank J. Reddi, Ke Ye, Felix Chern, Felix Yu, Ruiqi Guo, and Sanjiv Kumar
Google Research, New York City, USA
{lizonglin,cyou,bsrinadh,daliangli,ankitsrawat}@google.com
{sashank,kkye,fchern,felixyu,guorq,sanjivk}@google.com

ABSTRACT

This paper studies a curious phenomenon that machine learning model with Trans-
former architectures have sparse activation maps. By activation map we refer
to the intermediate output of the multi-layer perceptrons (MLPs) after a ReLU
activation function, and by “sparse” we mean that on average very few entries
(e.g., 3.0% for T5-Base and 6.3% for ViT-B16) are nonzero for each input to
MLP. Moreover, larger Transformers with more layers and wider MLP hidden
dimensions are sparser as measured by the percentage of nonzero entries. Through
extensive experiments we demonstrate that the emergence of sparsity is a prevalent
phenomenon that occurs for both natural language processing and vision tasks,
on both training and evaluation data, for Transformers of various configurations,
at layers of all depth levels. We discuss how sparsity immediately implies a way
to significantly reduce the FLOP count and improve efficiency for Transformers.
Moreover, we demonstrate perhaps surprisingly that enforcing an even sparser
activation via Top-k thresholding with a small k brings a collection of desired
properties, namely less sensitivity to noisy training data, more robustness to input
corruptions, and better calibration for their prediction confidence.

1 INTRODUCTION

The great success of modern machine learning for tasks in computer vision, natural language
processing, game playing and beyond is driven primarily by the computational model known as deep
neural networks (DNNs) (LeCun et al., 2015). With inspirations drawn from biological intelligent
systems, DNNs are massive systems of distributed computational nodes (a.k.a. neurons) with learned
inter-connections, which possess the capacity of accomplishing complex real-world tasks.

Although originally motivated from biological brains, there are differences at very fundamental levels
on how DNNs work compared to biological neural networks. One of such differences is in the sparsity
of neural activities. Evidence from neuroscience suggests that neural activity in biological brains is
sparse, namely, only a small percentage of all neurons fire at each time (Ahmed et al., 2020; Barth &
Poulet, 2012; Kerr et al., 2005; Poo & Isaacson, 2009). Sparse firing suggests that despite having
billions of neurons, only a small fraction of the brain participates in computation at each time, which
may explain why brains can sustain at a very low energy cost. In contrast, learning and inference with
DNNs rely primarily on dense computations where all neurons are involved for any input. In fact,
modern computational hardware for deep neural networks, such as GPUs and TPUs, are designed
to facilitate massive scale dense computations. Even with such dedicated hardware, DNNs are still
notoriously resource-demanding to train and deploy. Aside from computation efficiency, DNNs also
lag far behind biological brains in terms of robustness to input perturbation, error correction for
erroneous training labels, confidence calibration for the predictions, etc.

1.1 AN INTRIGUING OBSERVATION: ACTIVATIONS ARE SPARSE IN TRAINED TRANSFORMERS

This paper provides an extensive study on a surprising observation that despite performing dense com-
putations, DNNs produce very sparse activation in its intermediate layers once trained.Specifically,

∗Equal contribution

1

Published as a conference paper at ICLR 2023

(a) T5 Encoder (b) T5 Decoder

Figure 1: Percentage of nonzero entries (y-axis, log scale) in the activation map as a function of
number of training steps (x-axis) for a T5-Base model trained with the span corruption objective on
the C4 dataset. Left: layers (from shallow to deep) of the encoder. Right: layers of the decoder.

we study Transformer (Vaswani et al., 2017), a DNN model architecture that has become a workhorse
for modern applications. Transformers are constructed by interleaving a self-attention module and a
multi-layer perceptrons (MLPs) of depth 2, and the focus of this paper is on the activation map of
the first MLP layer. Figure 1 shows the sparsity of the activation maps, measured by the percentage
of nonzeros, in all MLP layers of a T5-Base model (Raffel et al., 2020) computed on the training
set of C4. We see that the percentage of nonzero entries is around 50% at initialization, which is
expected: randomly initialized weights produce roughly equal numbers of positive and negative
entries in the pre-activation map, resulting in about 50 % non-zeros after the ReLU. However, at the
end of training the percentage of nonzero entries reduces drastically: the average value across all
encoder-decoder layers is 2.7% with the largest one being 12.0% and the smallest one being only
1.1%. The emergence of sparse activation in Transformers bears a similarity to the sparsity of neural
activities in biological brains, revealing an interesting connection between artificial and biological
networks. Moreover, unlike classical sparse methods where such a connection is established via
explicit sparse regularization (Olshausen & Field, 1996), the sparsity observed in Transformers is
emergent without any explicit design.

1.2 PREVALENCE, BENEFITS, AND CAUSES OF SPARSITY

This paper studies the aforementioned phenomenon of sparse activation in trained Transformers, with
a focus on the following two questions. First, is the phenomenon shown in Figure 1 a corner case or
does it occur broadly? Second, why should we care about the sparsity in DNNs, other than the appeal
of its similarity to biological brains? Our main results along these two lines are summarized below.

1. Sparsity is a prevalent phenomenon. We show in Section 2 that the emergence of sparse
activation reported in Figure 1 is not an isolated and cherry-picked case. Rather, sparsity is
prevalent, and occurs broadly in Transformer models: it emerges in all layers of a Transformer,
for Transformers trained on both vision and natural language data, for Transformers of various
configurations, and for activation maps computed on both train and test data, etc. Moreover,
through controlled experiments on the width and depth of Transformers, we reveal that larger
models are sparser, as measured by percentage of nonzero entries. We also show in the Appendix B
that sparsity emerges with many other architectures and with different optimizers.

2. Sparsity improves efficiency. Sparsity of activation map in trained Transformers implies that
a large proportion of the computation during inference is spent on multiplying values by zero.
Hence, FLOPs can be drastically reduced by avoiding all such computations, which we discuss in
Section 3.1. Motivated by this observation, and to obtain reduced FLOPs not only after training
but throughout training, we introduce Top-k Transformer in Section 3.2, a simple modification
of Transformers where a Top-k thresholding is applied to the activation maps1. We show that
Top-k Transformers with a reasonable sized k has on par performance with vanilla Transformers.
To demonstrate the computation benefits of Top-k Transformers, we provide proof-of-concept
results on wall time reduction for the task of unbatched decoding on TPUv4 with a large Top-k T5.
Meanwhile, we emphasise that this result is far from fully realizing the benefit of sparse activation,
due to a lack of hardware support for sparse computation.
1The approach is previously adopted in ConvNets for improving model robustness (Ahmad & Scheinkman,

2019), and more recently in Gupta et al. (2021) for improving memory efficiency of Transformers.

2

Published as a conference paper at ICLR 2023

3. Sparsity improves robustness and calibration. We further show in Section 3.3 that enforcing
explicit sparsity via Top-k Transformers improves model performance in terms of less sensitivity
to noisy training data, less sensitivity to input corruptions, and better confidence calibration.

In addition, we provide a study on the causes of sparsity in the Appendix D, showing that sparsity
is likely not an artifact of the training data, and may be attributed to the training dynamics in the
optimization process.

1.3 EXPERIMENTAL SETUP

We study the sparsity in activation maps of Transformers with two commonly used Transformer
models, namely Text-to-Text Transfer Transformer (i.e., T5) and Vision Transformer (i.e., ViT).

• T5 is an encoder-decoder model for natural language processing tasks (Raffel et al., 2020). We
train T5 on the Colossal Clean Crawled Corpus (C4) using the span corruption task.

• ViT is an encoder model for vision tasks (Dosovitskiy et al., 2021). Unless specified otherwise, we
train ViT on ImageNet-21k (Deng et al., 2009), an image classification dataset with 14M images
and 21k classes. For certain cases we also use ImageNet-1k which is a subset of ImageNet-21k
with 1.3M images and 1k classes.

We measure the sparsity level (computed on training set unless specified otherwise) at the intermediate
output of the two-layer MLPs in a Transformer . Recall that an MLP performs the following mapping

f(x;K,V)
.
=

dff∑
i=1

(
σ(〈ki,x〉) · vi

)
, or equivalently, f(x;K,V)

.
= V σ(K>x), (1)

where x ∈ IRdmodel is the input, K = [k1, . . . ,kdff] ∈ IRdmodel×dff and V = [v1, . . . ,vdff] ∈
IRdmodel×dff are learnable layer parameters, and σ() is a nonlinear activation function. We use ReLU
as the activation function σ() for both T5 and ViT2. A two-layer MLP may be regarded as having
dff neurons in the hidden layer, where the i-th neuron performs the computation σ(〈ki,x〉) · vi,
and the final layer output is the sum of the output of all neurons. Each neuron is called activated
if σ(〈ki,x〉) is strictly positive. Hence, the sparsity of neuron activation can be measured by the
number of nonzero entries in the feature map

a
.
= σ(K>x) ∈ IRdff . (2)

Both T5 and ViT come with several configurations for dmodel, dff, number of layers, etc. Unless
specified otherwise, we will use the Base models (i.e., T5-Base and ViT-B/16) which have dmodel =
768, dff = 3072, and 12 layers (for ViT) and 12 encoder layers +12 decoder layers (for T5). Our
experiment with T5 and ViT uses the T5X (Roberts et al., 2022) and the Scenic codebase (Dehghani
et al., 2022), respectively. More training details of T5 and ViT are provided in Appendix A.

2 PREVALENCE OF SPARSITY IN LEARNED TRANSFORMERS

This section shows thorough experiments on commonly used Transformers that sparsity in activation
maps is a prevalent phenomenon. We also show through some controlled experiments that deeper and
wider Transformers tend to be sparser measured by percentage of nonzero entries in activation maps.

2.1 SPARSITY IS A UBIQUITOUS PHENOMENON

We start by providing experimental evidence that the emergence of sparse activation in trained
Transformers is a ubiquitous phenomenon. To this end, we plot the percentage of nonzero entries
of activation maps in different Transformers, and present the results in Figure 2. These results
demonstrate the following.

• Sparsity emerges for both Vision and NLP tasks. Figure 2a shows the percentage of nonzero entries
of trained T5 and ViT models evaluated on their respective training datasets. We see that both
encoder and decoder of T5, as well as the ViT, all exhibit sparsity.

2ViT uses GeLU as its activation function (Dosovitskiy et al., 2021). Here we switch to ReLU as it allows us
to more easily measure the sparsity level using the number of nonzero entries with a very small performance
drop (e.g., 47.78% with GeLU vs 47.58% with ReLU for Top-1 evaluation accuracy on ImageNet-21K).

3

Published as a conference paper at ICLR 2023

(a) T5 vs ViT (b) Train vs evaluation data (c) Different training data size

(d) Varying configuration (ViT) (e) Varying config. (T5 Encoder) (f) Varying config. (T5 Decoder)

Figure 2: Percentage of nonzero entries across different layers of trained Transformers (a) for both
language data with T5 and vision data with ViT, (b) on both train and evaluation data, (c) for ViT
trained on ImageNet of 21k vs 1k classes, (d) on ViT of varying configurations, and (e, f) on T5 of
varying configurations. Note that the y-axis is in log scale. Sparsity emerges in all cases.

• Sparsity emerges on both training and evaluation data. Figure 2b shows the percentage of nonzero
entries in a trained T5 model measured on both the training data and the evaluation data. We see
that the property of sparsity generalizes very well to evaluation data as the curves for training and
evaluation data align very closely with each other.

• Sparsity emerges on datasets of varying scale. Figure 2c shows the percentage of nonzero entries
in ViT trained on both ImageNet-21k and ImageNet-1k, where the former is a superset of the later
with approximately 10× more images and 21× more classes. We see that the scale of data does
not affect much of the sparsity level.

• Sparsity emerges on Transformers of varying configurations. Figure 2d shows the percentage
of nonzero entries for ViT of varying configurations in model size. Figure 2e and 2f show
the percentage of nonzero entries for encoder and decoder, respectively, of T5 with varying
configurations in model size. We see that sparsity persists for all cases.

• Sparsity emerges across all layers of a Transformer. Finally, all plots in Figure 2 show that sparsity
emerges in all layers of a Transformer. Moreover, in all cases the first few and last few layers tend
to be denser than intermediate layers.

Figure 3: Percentage of times that each
neuron in the first MLP layer of a
trained T5 is activated on C4 dataset.

The presence of sparsity in activation maps does not rule
out the possibility that a small percentage of the neurons
are always activated for all inputs, whereas the rest of the
neurons are never activated. To illustrate that this is not the
case, we experiment with a pretrained T5 base model3 to
plot the percentage of layer inputs for which each of the
dff neurons is activated when evaluated on 800 examples
taken from C4 dataset with span corruption task. Note that
there are 800× 512 = 409600 samples as MLP activation
is computed per token. The results are presented in Figure 3
with x-axis being indices of neurons in the first encoder layer
of T5 sorted in descending order according to percentage
of layer inputs on which they are activated. It can be seen
that while a few neurons are activated for around 50% of the
time, the vast majority of neurons (around 93.5%) are activated less than 10% of the time. Moreover,

3
https://github.com/google-research/t5x/blob/main/docs/models.md#t5-checkpoints

4

https://github.com/google-research/t5x/blob/main/docs/models.md#t5-checkpoints

Published as a conference paper at ICLR 2023

(a) Sparsity vs. depth (b) Sparsity (percentage) vs. width (c) Sparsity (count) vs. width

Figure 4: Activation sparsity across different encoder layers of trained T5 Transformers of (a) varying
depth and (b, c) varying width (i.e., dff). Since with varying width the dimension of activation maps
also changes, we evaluate sparsity both in term of the percentage (as in (b)) and the count (as in (c))
of nonzeros. Deeper and wider models are sparser in terms of percentage of activated neurons.

there are no dead neurons that are never activated, and the least activated neuron is activated for
around 0.001% of the time, and 99% of neurons are activated over 1% of the time. Finally, while the
results here are for neurons in the first MLP layer of a pretrained T5 base encoder, all other MLP
layers show qualitatively similar behavior.

2.2 THE LARGER, THE SPARSER

We next examine the effect of model size on the sparsity level of activation maps. Note that Figure 2e
and Figure 2f provide evidence with T5 of varying configuration that larger models tend to be sparser.
Here we perform controlled experiments to examine the effect of model depth, measured by the
number of Transformer layers, as well as the effect of model width, measured by the dimension of
activation map of MLPs (i.e., dff), separately. Towards that, we take a standard T5 model and vary
the depth and width, respectively while keeping the rest of the configuration fixed, and examine their
sparsity level after training. The results are presented in Figure 4 for the encoder, whereas we omit
the results for the decoder as they are qualitatively the same as those for encoder.

It can be seen from Figure 4a that deeper Transformers are arguably sparser. For example, many of
the middle layers of the 32-layer model have less than 1% nonzero entries while all shallower models
have more than 1% nonzero entries across all layers. For comparing networks of different widths, we
measure the sparsity with the percentage and the count of nonzero entries in Figure 4b and Figure 4c,
respectively. It can be seen that wider models have a lower percentage of nonzero entries, though a
higher count of nonzero entries.

3 EFFICIENT, ROBUST, AND CALIBRATED: SPARSITY IS ALL YOU NEED?

In this section we show that activation sparsity provides several practical benefits. In Section 3.1 we
discuss how the free sparsity in trained Transformers brings us free computation efficiency in terms of
FLOPs count during inference. In order to obtain sparsity hence FLOPs reduction throughout training,
in Section 3.2 we introduce Top-k Transformers, a simple modification of Transformers where a
top-k thresholding operation is applied to the activation maps in all MLPs. While existing hardware
cannot well support sparse computation and fully realize the benefit of FLOPs reduction, we provide
a proof-of-concept experiment on preliminary benefits of Top-k Transformer. Finally, in Section 3.3
we show that sparsity in activation is a good regularization for Transformers. Namely, enforcing
sparser activation with smaller values of k in Top-k Transformer (without any other hacks, tweaks
and hyperparameter tuning) bestows Transformers several desired properties, namely, robustness of
training with erroneous annotations, less sensitivity to input noise/perturbation, and better confidence
calibration of the predictions.

3.1 EFFICIENCY FOR FREE

Given an embedding dimension dmodel and an MLP intermediate dimension dff, the computational
complexity of a Transformer for an input sequence of lengthN isO(Nd2model+N

2dmodel+Ndmodeldff),
where the first term comes from computing the key, query, and value matrices, the second term
comes from computing the self-attention matrix, and the third term comes from the MLP. For a fixed

5

Published as a conference paper at ICLR 2023

sequence length N , and considering the fact that dff is often much larger than dmodel, it is arguable
that MLP poses the computational bottleneck in large Transformers. In the following, we explain
how sparsity in activation map of MLP can be leveraged to significantly reduce its computational
cost, without affecting the model performance.

Efficiency for the Second MLP Layer. The sparse activation immediately suggests that a lot of
the computation for inference with Transformers is not needed at all. That is, while doing dense
matrix-matrix multiplications, much of it is about multiplying a vector by a value of zero, which can
be avoided to save computation.

Specifically, we consider the second layer of the MLP in (1) which performs the computation
V a, (3)

where a ∈ IRdff is the intermediate activation map of MLP (see (2)) and V ∈ IRdmodel×dff is the
layer parameter. Eq. (3) involves a simple matrix-vector multiplication which has a FLOP count
of 2dmodel × dff. However, if a is sparse with, say s nonzero entries, then the FLOP count for (3)
reduces to 2dmodel × s. Hence,

FLOP in the second MLP layer is reduced by a factor of 1− s
dff

.

Note that s
dff

is exactly the percentage of nonzeros plotted in the y-axis of e.g. Figure 1, which is 2.7%
averaged across all layers. Hence, the computational cost of the second MLP layer can be reduced
by a significant amount. More excitingly, the reduction factor 1− s

dff
is likely to be even bigger for

larger Transformer models (see Figures 4a and 4b), pointing to a greater reduction in computation.

Efficiency for the First MLP Layer. The sparsity in the intermediate activation map of MLP does
not immediately suggest a reduction in computation for the first MLP layer. Nonetheless, it is possible
to significantly reduce the computation in the first MLP layer by leveraging approximate nearest
neighbor search, which we explain next.

Recall from (1) that the computation in the first MLP layer is given by

σ(K>x), (4)
withK = [k1, . . . ,kdff] ∈ IRdmodel×dff being the layer parameter and x being the layer input. If the
output is sparse with k nonzero entries, then the calculation in (4) may be formulated as finding k
points from the set {ki}dff

i=1 that are “closest” to the input x measured by values of inner product.
Such a problem is well-known as the nearest neighbor search (NNS) problem or the maximum inner
product search problem. While naive solution of the NNS problem has linear complexity in dff, there
exists approximate algorithms (Guo et al., 2020; Johnson et al., 2019; Shrivastava & Li, 2014) that
are of sublinear complexity, and using them in Transformers means that

FLOP in the first MLP layer may be reduced to have sublinear complexity in dff.

There are of course the questions of whether such approximate NNS algorithms could hurt Trans-
former performance, which we leave for future study.

3.2 SPARSITY IN TRAINING VIA TOP-k TRANSFORMERS

The benefit of efficiency from sparsity in Section 3.1 comes with caveats. First, while the activation
maps are sparse on average, there is the possibility that some of the activation maps for certain inputs
are denser hence cannot benefit from sparse computation. Second, sparsity occurs only in trained
Transformers while the computation is dense during and particularly at the beginning of training.

Here we present Top-k Transformer, a simple modification to Transformer architecture that allows
us to control sparsity level for all model inputs, and throughout training. Top-k Transformer is built
upon a regular Transformer with the only modification being the MLP layers, where at the output
of the activation function σ() (see (1)) we add a Top-k thresholding operator. That is, the MLPs of
Top-k Transformers perform the following computation

f(x;K,V) = V · Topk

(
σ(KTx)

)
, (5)

where Topk(·) performs a thresholding that all entries other than those of the largest k values are set to
zero with k being a hyper-parameter subject to design choices. Note that Top-k Transformer reduces
to a regular Transformer if we set k = dff. By using a small value of k, the benefit of efficiency in
terms of reduction in FLOP as discussed in Section 3.1 applies to Transformer training as well.

6

Published as a conference paper at ICLR 2023

(a) T5 (b) ViT

Figure 5: Training and evaluation accuracy of Top-k T5 for three different sizes: base, large and 3B
(left) and Top-k ViT (right) with varying k. Top-k Transformer is on par with regular Transformer
for a large enough k. e.g. for T5 3B with k = 128, and ViT with k = 256, the drop is around 0.3%.

The immediate question for Top-k Transformer is whether it offers training sparsity at the cost of a
reduced performance. Here we conduct experiments with Top-k T5 and Top-k ViT, and evaluate their
performance measured by prediction accuracy for C4 span corruption and ImageNet-21k classification
tasks, respectively. The results are provided in Figure 5. We see that with the Top-k T5-{Base,
Large, 3B} (resp., Top-k ViT) Transformer, taking k to be 128 (resp., 256) is sufficient for closely
matching the test performance of the vanilla T5-{Base, Large, 3B} (resp., ViT). Note that this is
achieved without any other hyper-parameter tuning for the Top-k Transformers upon those used for
a regular Transformer, and other hyper-parameter choices may further improve the performance of
Top-k Transformers.

Figure 6: Latency reduction for un-
batched greedy decoding in decoder of
Top-k Transformers on TPUv4.

We now provide experimental results with Top-k Transform-
ers on wall-time benefits from FLOPs reduction discussed
in Section 3.1. In particular, we evaluate the inference time
latency reduction of Top-k Transformer. In our experiment,
we add a Top-k thresholding to T5X (Roberts et al., 2022)4.
We gain efficiency in the second MLP layer by an implemen-
tation that avoids all multiplication by zero as described in
Section 3.1. The decoder per-token wall time for unbatched
greedy decoding during inference on a single TPUv4 chip
is presented in Figure 6. We observe that larger models
have more wall time reduction, due to the fact that they have
larger dff hence more FLOPs reduction. In particular, for
T5-11B we observe around 10% wall time reduction with
k ≤ 128, though this amount becomes smaller with a larger
k = 256.

Finally, we emphasize that the sparsity in Top-k Transformers is unstructured and data-dependent,
which is not well supported on existing computation hardwares such as TPUs and GPUs. Hence, the
results in Figure 6 are for proof-of-concept purposes, and are far from fully realizing the benefit of
FLOPs reduction via sparsity. We leave a study of better implementation of sparse computation for
obtaining higher wall time reduction to future work.

3.3 BONUS! IMPROVED ROBUSTNESS AND CALIBRATION

Despite not being explicitly designed for such purposes, inducing sparse activation via Top-k Trans-
former has the benefits of improving model robustness5 and confidence calibration. We demonstrate
this using the image classification task with the ImageNet-1k dataset, and present the results in
Table 1. All results for Top-k ViT are obtained without any model and training hyper-parameter
tuning upon those for ViT. Contexts and details are presented below. More results are presented in
Appendix C.

4We use the implementation of jax.lax.approx_max_k (Chern et al., 2022) with a recall target of 0.95.
5This is previously demonstrated in Ahmad & Scheinkman (2019) for ConvNets.

7

Published as a conference paper at ICLR 2023

Table 1: Evaluation of Top-128 ViT for ImageNet-1k classification in terms of 1) natural accuracy
with ImageNet-1k evaluation set, 2) robust accuracy with {40%, 80%} corrupted training labels, 3)
robust accuracy under input perturbation with additive {Gaussian, Impulse, Shot} noise on evaluation
images, and 4) calibration error on evaluation data measured by ECE. Top-128 ViT is on par with ViT
for natural accuracy while is significantly better for model robustness and calibration.

Methods Natural
Accuracy

Accuracy w/
Train Label Noise

Accuracy under
Input Perturbation

Expected Calibration
Error (ECE)

40% 80% Gaussian Impulse Shot

ViT 74.85% 59.44% 25.35% 39.54% 37.37% 38.56% 8.42%

Top-128 ViT 74.83% 62.13% 30.80% 42.29% 40.07% 40.68% 7.48%

Robustness to Label Noise. An important challenge for DNNs is that they are highly susceptible to
label noise, the problem where a certain percentage of training labels are corrupted or erroneously
generated. This may be attributed to the fact that DNNs are often over-parameterized, hence too
“capable” that they tend to overfit, or “memorize” the noisy labels without generalizing to test data.
While many dedicated techniques exist (see e.g., Algan & Ulusoy (2021); Song et al. (2022) for a
review), here we show that a simple Top-k Transformer can effectively address the label noise issue.

We conduct experiments using the ImageNet-1k dataset for which we replace p% of the labels in the
training set with a random label drawn uniformly from the set of all possible labels. The evaluation
performance under p ∈ {40%, 80%} label noise is presented in Table 1. It shows that Top-k offers a
consistent performance gain with label noise.

Confidence Calibration. Aside from label noise, another symptom of over-parameterization of
DNNs is that they tend to be overly confident in their predictions. In the context of classification
problems, they tend to assign a high (i.e., close to 1) probability to the class of its prediction, while
it is more desirable that they produce a probability that is commensurate with its confidence level
(Guo et al., 2017). A commonly used metric for confidence calibration is the expected calibration
error (ECE) (Naeini et al., 2015), which is the discrepancy between the probability to the class of a
model’s prediction and the probability that its prediction is actually correct.

Here we measure the calibration of Top-k ViT via ECE and report the results in Table 1. It shows
that Top-k with k = 128 enables the Transformer to be more calibrated when compared to a vanilla
Transformer. Furthermore, results reported in Appendix C show that ECE monotonically decreases
as k is decreased from 128 to 32.

Robustness to Input Perturbation. Another important challenge with DNNs is that their outputs
tend to be sensitive to naturally occurring image corruptions, which limits their application to mission
critical tasks (Bhojanapalli et al., 2021). Here we evaluate the robustness of Top-k ViT to three
types of additive noises, namely Gaussian noise, impulse noise, and shot noise. For that purpose, we
train Top-k ViT on standard ImageNet-1k training data and report their classification accuracy on
ImageNet-C (Hendrycks & Dietterich, 2019), a benchmark that contains algorithmically generated
Gaussian, impulse, and shot noise (among many others types) applied to the ImageNet-1k test dataset.
For each noise type, there are five severity levels. We report the averaged performance over all
severity levels of each corruption type in Table 1 for k = 128, and in Appendix C for a few other
values of k. We see that robust accuracy is the highest with k = 64, while taking k = 128 or k = 32
also provides benefits compared to the vanilla Transformer.

4 RELATED WORK

Prior efforts on introducing sparsity in deep neural networks abound, though often with diverse
motivations and objectives. Here we provide a brief overview of several popular lines of work.

Sparsity for Efficiency. Sparsity in either model weights or activation maps is often used for
improving training and inference efficiency (see e.g. Hoefler et al. (2021) for a review). For activation
sparsity in particular, sparsity for efficiency is explored perhaps first in ConvNets (Georgiadis, 2019;
Kurtz et al., 2020; Rhu et al., 2018) before subsequently becoming a key design component in many
of the largest Transformer based language and vision models (Du et al., 2022; Fedus et al., 2022a;b;
Rajbhandari et al., 2022). The Top-k thresholding that we use in Top-k Transformer has also been

8

Published as a conference paper at ICLR 2023

previously used in Gupta et al. (2021) to improve memory efficiency of Transformers. However, it
has been unclear a priori whether sparsity hurts model performance, hence the practice often relies
on wishful design, trial-and-error, and post-hot justification (Baykal et al., 2022). Our discovery that
Transformers naturally produce sparse activation maps, and that larger models are even sparser, may
provide principled perspectives towards efficiently training future large models.

Sparsity for Robustness. Many works find that smaller and sparser networks obtained by model
compression are more robust to adversarial perturbation (Chen et al., 2022; Guo et al., 2018; Jordao
& Pedrini, 2021) and label noise (Xue et al., 2022). Another line of work that uses sparsity for
robustness leverages the property that practical data corruption is often sparse (Ghosh et al., 2017; Liu
et al., 2022; You et al., 2020). None of the work mentioned above is based on sparsity in activation
maps. More closely related to ours is the work of Ahmad & Scheinkman (2019) where sparsity in
activation map of convolutional DNNs is shown to improve robustness to input perturbation, and
Muthukumar & Sulam (2022) that leverages sparse activation to derive robust generalization error
bounds.

Sparsity for Explainability. Work on leveraging sparsity for interpreting deep learning models long
exist but often in a post-hoc fashion for examining the semantic meanings encoded by a neuron of a
trained model (Dalvi et al., 2019). For Transformers, evidence suggests that the learned knowledge is
encoded mainly in its MLPs with individual neurons expressing specific factual knowledge (Dai et al.,
2022). Moreover, enforcing neuron activation sparsity in MLPs helps to improve the percentage of
neurons that are interpretable (Elhage et al., 2022). Hence, our discovery may point to new directions
towards developing more interpretable DNNs (Cuadros et al., 2022; Sajjad et al., 2021).

Sparsity for Data Modeling. Following the seminal work of Olshausen & Field (1996), there are a
lot of interests in sparsity as an effective modeling of natural signals (Mairal et al., 2014). With the
close resemblance of the computational structure of ReLU networks and sparse encoding algorithms
(Gregor & LeCun, 2010), it became natural to study a DNN as a multi-layer sparse modeling of
the data (Papyan et al., 2018). Along with substantial theoretical understanding of such a modeling
are obtained (Papyan et al., 2017; Sulam et al., 2018), there are also experimental results on their
practical benefits (Sun et al., 2018) though less often on modern large-scale data.

Sparsity for Theory of Over-parameterized Models. Because of its simplicity and well-develped
theory in classical machine learning (Candès & Wakin, 2008; Vidal et al., 2015; Wright & Ma,
2022), sparse modeling is often used to provide theoretical understanding of modern large and over-
parameterized models. This include works on implicit regularization (Chou et al., 2021; Nacson et al.,
2022; Vaskevicius et al., 2019; Woodworth et al., 2020; Zhao et al., 2019), nonconvex optimization
(Buhai et al., 2020; Sulam et al., 2022), noise interpolators (Chinot et al., 2022; Donhauser et al.,
2022; Koehler et al., 2021), etc. However, the aforementioned work uses sparsity as a testbed or toy
model to gain insights, without implication of existence of sparsity in DNNs.

5 DISCUSSION

This work demonstrates the natural emergence of sparse activation in commonly used Transformer
models (Section 2). The notion of sparsity pertains to the law of parsimony, a.k.a. Occam’s razor,
where among all possible explanations of observed data, the simplest ones are preferred. It is a
fundamental scientific principle broadly used in various scientific and engineering subjects (Domingos,
1999; Epstein, 1984), including classical machine learning (Tibshirani, 1996). Hence, our discovery
may be suggesting that the law of parsimony is playing a role in Transformers even though they
are not explicitly designed so, resonating with recent view on the role of sparsity for intelligence
systems (LeCun, 2022; Ma et al., 2022; Roberts, 2021; Vasudevan et al., 2021). More importantly, we
back such a perspective by providing evidence of improved robustness and calibration via enforcing
sparsity using Top-k thresholding (Section 3), which indicates that sparsity is indeed a pertinent prior
for good generalization. We hope that our work may motivate future effort on introducing sparsity in
deep learning models in a more principled way for obtaining more efficient, robust, and calibrated
models. Finally, while our motivation of studying sparse activation in Transformers comes (partly)
from study of biological brains, establishing such a connection may reciprocally benefits efforts on
applying artificial intelligence to the study of biology and neuroscience (Richards et al., 2022).

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

We would like to acknowledge helpful discussions with René Vidal and Jeremias Sulam from Johns
Hopkins University, with Weijie Su from UPenn, with Yuxiang Wang from UC Santa Barbara, with
Atlas Wang from UT Austin, with Nishanth Dikkala, Nikhil Vyas, Preston McAfee and Mukund
Sundararajan from Google, with Subutai Ahmad from Numenta, with Wei Hu, Salar Fattahi, and
Jianhao Ma from University of Michigan, with Tuo Zhao from Georgia Tech. We particularly thank
Donhauser Konstantin from ETH Zurich for interesting discussion on hypothesis for emergence of
sparsity.

REFERENCES

Subutai Ahmad and Luiz Scheinkman. How can we be so dense? the benefits of using highly sparse
representations. arXiv preprint arXiv:1903.11257, 2019.

Mohsin S Ahmed, James B Priestley, Angel Castro, Fabio Stefanini, Ana Sofia Solis Canales, Eliza-
beth M Balough, Erin Lavoie, Luca Mazzucato, Stefano Fusi, and Attila Losonczy. Hippocampal
network reorganization underlies the formation of a temporal association memory. Neuron, 107(2):
283–291, 2020.

Görkem Algan and Ilkay Ulusoy. Image classification with deep learning in the presence of noisy
labels: A survey. Knowledge-Based Systems, 215:106771, 2021.

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell, and Julian McAuley.
Rezero is all you need: Fast convergence at large depth. In Uncertainty in Artificial Intelligence,
pp. 1352–1361. PMLR, 2021.

Alison L Barth and James FA Poulet. Experimental evidence for sparse firing in the neocortex. Trends
in neurosciences, 35(6):345–355, 2012.

Cenk Baykal, Nishanth Dikkala, Rina Panigrahy, Cyrus Rashtchian, and Xin Wang. A theoretical
view on sparsely activated networks. arXiv preprint arXiv:2208.04461, 2022.

Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, and
Andreas Veit. Understanding robustness of transformers for image classification. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 10231–10241, 2021.

Rares-Darius Buhai, Yoni Halpern, Yoon Kim, Andrej Risteski, and David Sontag. Empirical study of
the benefits of overparameterization in learning latent variable models. In International Conference
on Machine Learning, pp. 1211–1219. PMLR, 2020.

Emmanuel J Candès and Michael B Wakin. An introduction to compressive sampling. IEEE signal
processing magazine, 25(2):21–30, 2008.

Tianlong Chen, Zhenyu Zhang, Santosh Balachandra, Haoyu Ma, Zehao Wang, Zhangyang Wang,
et al. Sparsity winning twice: Better robust generalization from more efficient training. In
International Conference on Learning Representations, 2022.

Felix Chern, Blake Hechtman, Andy Davis, Ruiqi Guo, David Majnemer, and Sanjiv Kumar. Tpu-knn:
K nearest neighbor search at peak flop/s. arXiv preprint arXiv:2206.14286, 2022.

Geoffrey Chinot, Matthias Löffler, and Sara van de Geer. On the robustness of minimum norm
interpolators and regularized empirical risk minimizers. The Annals of Statistics, 50(4):2306–2333,
2022.

Hung-Hsu Chou, Johannes Maly, and Holger Rauhut. More is less: Inducing sparsity via overparam-
eterization. arXiv preprint arXiv:2112.11027, 2021.

Xavier Suau Cuadros, Luca Zappella, and Nicholas Apostoloff. Self-conditioning pre-trained
language models. In International Conference on Machine Learning, pp. 4455–4473. PMLR,
2022.

10

Published as a conference paper at ICLR 2023

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons
in pretrained transformers. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 8493–8502, 2022.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Anthony Bau, and James Glass. What
is one grain of sand in the desert? analyzing individual neurons in deep nlp models. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pp. 6309–6317, 2019.

Mostafa Dehghani, Alexey Gritsenko, Anurag Arnab, Matthias Minderer, and Yi Tay. Scenic: A jax
library for computer vision research and beyond. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 21393–21398, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Pedro Domingos. The role of occam’s razor in knowledge discovery. Data mining and knowledge
discovery, 3(4):409–425, 1999.

Konstantin Donhauser, Nicolo Ruggeri, Stefan Stojanovic, and Fanny Yang. Fast rates for noisy
interpolation require rethinking the effects of inductive bias. arXiv preprint arXiv:2203.03597,
2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547–5569.
PMLR, 2022.

Nelson Elhage, Tristan Hume, Catherine Olsson, Neel Nanda, Tom Henighan, Scott Johnston, Sheer
ElShowk, Nicholas Joseph, Nova DasSarma, Ben Mann, Danny Hernandez, Amanda Askell,
Kamal Ndousse, Jones, , Dawn Drain, Anna Chen, Yuntao Bai, Deep Ganguli, Liane Lovitt, Zac
Hatfield-Dodds, Jackson Kernion, Tom Conerly, Shauna Kravec, Stanislav Fort, Saurav Kadavath,
Josh Jacobson, Eli Tran-Johnson, Jared Kaplan, Jack Clark, Tom Brown, Sam McCandlish,
Dario Amodei, and Christopher Olah. Softmax linear units. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/solu/index.html.

Robert Epstein. The principle of parsimony and some applications in psychology. The Journal of
Mind and Behavior, pp. 119–130, 1984.

William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in deep learning. arXiv
preprint arXiv:2209.01667, 2022a.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022b.

Georgios Georgiadis. Accelerating convolutional neural networks via activation map compression.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7085–7095, 2019.

Aritra Ghosh, Himanshu Kumar, and PS Sastry. Robust loss functions under label noise for deep
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31,
2017.

11

Published as a conference paper at ICLR 2023

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings of
the 27th international conference on international conference on machine learning, pp. 399–406,
2010.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321–1330. PMLR, 2017.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Kumar.
Accelerating large-scale inference with anisotropic vector quantization. In International Conference
on Machine Learning, pp. 3887–3896. PMLR, 2020.

Yiwen Guo, Chao Zhang, Changshui Zhang, and Yurong Chen. Sparse dnns with improved adversarial
robustness. Advances in neural information processing systems, 31, 2018.

Ankit Gupta, Guy Dar, Shaya Goodman, David Ciprut, and Jonathan Berant. Memory-efficient
transformers via top-k attention. In Proceedings of the Second Workshop on Simple and Efficient
Natural Language Processing, pp. 39–52, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations, 2019.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. J. Mach.
Learn. Res., 22(241):1–124, 2021.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering, 2020. URL https://arxiv.org/abs/2007.0128.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

Artur Jordao and Hélio Pedrini. On the effect of pruning on adversarial robustness. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 1–11, 2021.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6769–6781, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-main.550. URL https://www.aclweb.org/anthology/
2020.emnlp-main.550.

Jason ND Kerr, David Greenberg, and Fritjof Helmchen. Imaging input and output of neocortical
networks in vivo. Proceedings of the National Academy of Sciences, 102(39):14063–14068, 2005.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Frederic Koehler, Lijia Zhou, Danica J Sutherland, and Nathan Srebro. Uniform convergence
of interpolators: Gaussian width, norm bounds and benign overfitting. In Advances in Neural
Information Processing Systems, 2021.

12

https://arxiv.org/abs/2007.0128
https://www.aclweb.org/anthology/2020.emnlp-main.550
https://www.aclweb.org/anthology/2020.emnlp-main.550

Published as a conference paper at ICLR 2023

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr, Michael Goin, William
Leiserson, Sage Moore, Nir Shavit, and Dan Alistarh. Inducing and exploiting activation sparsity
for fast inference on deep neural networks. In International Conference on Machine Learning, pp.
5533–5543. PMLR, 2020.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. 2022.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Zonglin Li, Ruiqi Guo, and Sanjiv Kumar. Decoupled context processing for context augmented
language modeling. arXiv preprint arXiv:2210.05758, 2022.

Sheng Liu, Zhihui Zhu, Qing Qu, and Chong You. Robust training under label noise by over-
parameterization. 2022.

Yi Ma, Doris Tsao, and Heung-Yeung Shum. On the principles of parsimony and self-consistency for
the emergence of intelligence. Frontiers of Information Technology & Electronic Engineering, pp.
1–26, 2022.

Julien Mairal, Francis Bach, Jean Ponce, et al. Sparse modeling for image and vision processing.
Foundations and Trends R© in Computer Graphics and Vision, 8(2-3):85–283, 2014.

Ramchandran Muthukumar and Jeremias Sulam. Adversarial robustness of sparse local lipschitz
predictors. arXiv preprint arXiv:2202.13216, 2022.

Mor Shpigel Nacson, Kavya Ravichandran, Nathan Srebro, and Daniel Soudry. Implicit bias of the
step size in linear diagonal neural networks. In International Conference on Machine Learning, pp.
16270–16295. PMLR, 2022.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated prob-
abilities using bayesian binning. In Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381(6583):607–609, 1996.

Vardan Papyan, Yaniv Romano, and Michael Elad. Convolutional neural networks analyzed via
convolutional sparse coding. The Journal of Machine Learning Research, 18(1):2887–2938, 2017.

Vardan Papyan, Yaniv Romano, Jeremias Sulam, and Michael Elad. Theoretical foundations of deep
learning via sparse representations: A multilayer sparse model and its connection to convolutional
neural networks. IEEE Signal Processing Magazine, 35(4):72–89, 2018.

Cindy Poo and Jeffry S Isaacson. Odor representations in olfactory cortex:“sparse” coding, global
inhibition, and oscillations. Neuron, 62(6):850–861, 2009.

Haozhi Qi, Chong You, Xiaolong Wang, Yi Ma, and Jitendra Malik. Deep isometric learning for
visual recognition. In International Conference on Machine Learning, pp. 7824–7835. PMLR,
2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

13

Published as a conference paper at ICLR 2023

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale. arXiv preprint arXiv:2201.05596, 2022.

Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff Pool, Youngeun Kwon, and Stephen W
Keckler. Compressing dma engine: Leveraging activation sparsity for training deep neural networks.
In 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp.
78–91. IEEE, 2018.

Blake Richards, Doris Tsao, and Anthony Zador. The application of artificial intelligence to biology
and neuroscience. Cell, 185(15):2640–2643, 2022.

Adam Roberts, Hyung Won Chung, Anselm Levskaya, Gaurav Mishra, James Bradbury, Daniel
Andor, Sharan Narang, Brian Lester, Colin Gaffney, Afroz Mohiuddin, Curtis Hawthorne, Aitor
Lewkowycz, Alex Salcianu, Marc van Zee, Jacob Austin, Sebastian Goodman, Livio Baldini
Soares, Haitang Hu, Sasha Tsvyashchenko, Aakanksha Chowdhery, Jasmijn Bastings, Jannis
Bulian, Xavier Garcia, Jianmo Ni, Andrew Chen, Kathleen Kenealy, Jonathan H. Clark, Stephan
Lee, Dan Garrette, James Lee-Thorp, Colin Raffel, Noam Shazeer, Marvin Ritter, Maarten Bosma,
Alexandre Passos, Jeremy Maitin-Shepard, Noah Fiedel, Mark Omernick, Brennan Saeta, Ryan
Sepassi, Alexander Spiridonov, Joshua Newlan, and Andrea Gesmundo. Scaling up models and
data with t5x and seqio. arXiv preprint arXiv:2203.17189, 2022. URL https://arxiv.
org/abs/2203.17189.

Daniel A. Roberts. Why is ai hard and physics simple?, 2021.

Hassan Sajjad, Nadir Durrani, and Fahim Dalvi. Neuron-level interpretation of deep nlp models: A
survey. arXiv preprint arXiv:2108.13138, 2021.

Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum inner product
search (mips). Advances in neural information processing systems, 27, 2014.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy
labels with deep neural networks: A survey. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

Jeremias Sulam, Vardan Papyan, Yaniv Romano, and Michael Elad. Multilayer convolutional sparse
modeling: Pursuit and dictionary learning. IEEE Transactions on Signal Processing, 66(15):
4090–4104, 2018.

Jeremias Sulam, Chong You, and Zhihui Zhu. Recovery and generalization in over-realized dictionary
learning. Journal of Machine Learning Research, 23(135):1–23, 2022.

Xiaoxia Sun, Nasser M Nasrabadi, and Trac D Tran. Supervised deep sparse coding networks. In
2018 25th IEEE International Conference on Image Processing (ICIP), pp. 346–350. IEEE, 2018.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer:
An all-mlp architecture for vision. Advances in Neural Information Processing Systems, 34:
24261–24272, 2021.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
deeper with image transformers. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 32–42, 2021.

Tomas Vaskevicius, Varun Kanade, and Patrick Rebeschini. Implicit regularization for optimal sparse
recovery. Advances in Neural Information Processing Systems, 32, 2019.

Rama K Vasudevan, Maxim Ziatdinov, Lukas Vlcek, and Sergei V Kalinin. Off-the-shelf deep
learning is not enough, and requires parsimony, bayesianity, and causality. npj Computational
Materials, 7(1):1–6, 2021.

14

https://arxiv.org/abs/2203.17189
https://arxiv.org/abs/2203.17189

Published as a conference paper at ICLR 2023

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Rene Vidal, Yi Ma, and Shankar Sastry. Generalized principal component analysis. Interdisciplinary
Applied Mathematics, 43:22–23, 2015.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
Conference on Learning Theory, pp. 3635–3673. PMLR, 2020.

John Wright and Yi Ma. High-Dimensional Data Analysis with Low-Dimensional Models: Principles,
Computation, and Applications. Cambridge University Press, 2022.

Yihao Xue, Kyle Whitecross, and Baharan Mirzasoleiman. Superior generalization of smaller models
in the presence of significant label noise. arXiv preprint arXiv:2208.08003, 2022.

Zitong Yang, Yaodong Yu, Chong You, Jacob Steinhardt, and Yi Ma. Rethinking bias-variance
trade-off for generalization of neural networks. In International Conference on Machine Learning,
pp. 10767–10777. PMLR, 2020.

Chong You, Zhihui Zhu, Qing Qu, and Yi Ma. Robust recovery via implicit bias of discrepant learning
rates for double over-parameterization. Advances in Neural Information Processing Systems, 33:
17733–17744, 2020.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021.

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without
normalization. In International Conference on Learning Representations, 2019.

Peng Zhao, Yun Yang, and Qiao-Chu He. Implicit regularization via hadamard product over-
parametrization in high-dimensional linear regression. arXiv preprint arXiv:1903.09367, 2019.

15

Published as a conference paper at ICLR 2023

Appendices
The appendices are organized as follows. In Section A we provide the implementation details for
experiments conducted in this paper. In Section B we demonstrate the emergence of sparse activation
in other architectures and with other optimizers than those used in Section 2. In Section C we provide
additional experiments upon those in Section 3 to demonstrate the benefits of sparsity. In Section D
we explore the potential causes of sparsity, with a focus on the effect of training data. In Section E we
present a derivation to show that during early training, the final MLP layer’s intermediate activation
tends to get sparse. Finally in Section F we present insights on the emergence of activation sparsity
from experiments on 2-layer MLP models.

A IMPLEMENTATION DETAILS

A.1 T5

For most of the experiments, except the Top-k transformer, we used vanilla T5 architecture (Raffel
et al., 2020). We trained model with Adafactor optimizer, an inverse square root learning rate schedule,
and no dropout. For the first 10,000 steps we also use a fixed learning rate of 0.01 as warm-up. The
training task is span corruption without any mixture, and unless specified otherwise, we train the
model for 100,000 steps with batch size of 256 to save compute and time, as the sparsity or accuracy
trend is already clear by then. We used 512 tokens on the encoder side and 114 tokens on the decoder
side.

A.2 VIT

Following Dosovitskiy et al. (2021), we train ViT using ADAM (Kingma & Ba, 2015) as the optimizer
with β1 = 0.9, β2 = 0.999. Other training details such as weight decay, dropout rate, and learning
rate all follow the description in (Dosovitskiy et al., 2021, Section B.1) except that we train for 180
epochs (as opposed to 300) on ImageNet-1k.

A.3 T5 / VIT CONFIGURATIONS

For the reader’s convenience, we summarize the configuration of varying T5 / ViT models used in
our paper in Table A.1.

Table A.1: Configuration of T5 and ViT that are used in the experiments. dmodel and dff are defined in
Section 1.3. # Layers is the number of encoder + decoder layers for T5 and encoder layers for ViT.

T5 ViT
Small Base Large 3B 11B Base Large Huge

dmodel 512 768 1024 1024 1024 768 1024 1280

dff 2048 3072 4096 16384 65536 3072 4096 5120

Layers 6 + 6 12 + 12 24 + 24 24 + 24 24 + 24 12 24 32

Parameters 60M 220M 770M 2,800M 11,000M 86M 307M 632M

B ADDITIONAL RESULTS ON PREVALENCE OF SPARSITY

B.1 SPARSITY AND NETWORK ARCHITECTURE

We evaluate the sparsity level of activation map in several commonly used network architectures
beyond T5 and ViT. This includes BERT which is also a Transformer based architecture, as well as
non-Transformer based architectures such as MLP-Mixer and ConvNets. We also examine whether
residual connection accounts for the emergence of sparsity.

16

Published as a conference paper at ICLR 2023

(a) BERT Base (b) BERT Large (c) Pre-activations: Layer 1 (d) Pre-activations: Layer 12

Figure B.2: Plots a, b: Percentage of nonzero entries in activation maps of BERT Base and Large
models (Devlin et al., 2019) trained on Wikipedia dataset. We observe high levels of sparsity (<10%)
similar to other Transformer models. Plots c, d: Histograms of pre-activation values for layers 1 and
12 of a Bert Base model. We notice that while at initialization the activations are distributed with
mean 0, the mean quickly shifts negative as the training progresses, resulting in high levels of sparse
activation values.

(a) GeLU Activation (b) Sigmoid Activation (c) Tanh Activation

Figure B.3: Layer 1 Preactivation histograms for BERT Base models with different activation
functions. We observe similar behavior as ReLU with GeLU and Sigmoid activations. However Tanh
activation has different distribution of preactivation values. The network doesn’t show sparsity and
the accuracy is also worse in comparison to ReLU/GeLU.

Figure B.1: Percentage of nonzero
entries in activation maps of
MLP-Mixer trained on ImageNet-
21k. Results for token-mixing and
channel-mixing MLPs are plotted
in separate curves.

BERT. We evaluate the sparsity level of BERT models (Devlin
et al., 2019). We specifically consider BERT Base (12 layers)
and BERT Large (24 layers) Transformer models, with ReLU
activation in the MLP layers. We follow the same training
receipe as Devlin et al. (2019) and pre-train these models on
Wikipedia and Books dataset using Masked Language Mod-
elling (MLM) objective. We train for 450000 steps with a batch
size of 1024 using AdamW optimizer with 1e− 4 learning rate.

In Figure B.2 we plot the sparsity levels of both BERT models
for all the intermediate MLP layers (plots a and b). We observe
that both these models exhibit high levels of sparsity (< 10%)
as other Transformer models. We further visualize the pre-
activation values of the MLP layers as histograms in plots c and
d. We observe that while they have mean 0 at initialization, the
mean quickly becomes negative as training progresses, resulting
in high sparsity levels. Finally, in Figure B.3 we provide a visualization of pre-activation of values
with several popular activation functions, including GeLU, Sigmoid, and Tanh. We observe a similar
distribution of preactivation values as ReLU with GeLU and Sigmoid activations. However Tanh
activation has a different distribution of preactivation values. With Tanh activation, the network does
not show sparsity and the accuracy is significantly worse in comparison to ReLU/GeLU.

MLP-Mixer. We evaluate the sparsity level of the MLP-Mixer (Tolstikhin et al., 2021), an all-MLP
architecture constructed from cascading token-mixing and channel-mixing MLPs. Specifically, we
use Mixer-B16 as the architecture, ADAM with β1 = 0.9, β2 = 0.999 as the optimizer, and train
on ImageNet-21k for 300 epochs. While Tolstikhin et al. (2021) sweeps over a product set of
hyper-parameters, here for simplicity we use a fixed set of hyper-parameters with weight decay of
0.03, gradient norm clipping at 1.0, base learning rate of 0.003, RandAugment magnitude of 10, no
mixup, no stochastic depth, and no dropout.

Figure B.1 shows the sparsity level at the intermediate layer of both token mixing and channel mixing
MLPs of Mixer-B16. We also plot the sparsity level of ViT (i.e., the plot in Figure 2a) to Figure B.1

17

Published as a conference paper at ICLR 2023

(a) ResNet-18 (b) ResNet-50

Figure B.4: Percentage of nonzero entries in activation maps of ResNet-18 and ResNet-50 trained
on ImageNet-1k. Results for the two (resp., three) layers in each residual block (resp., bottleneck
residual block) of ResNet-18 (resp., ResNet-50) are plotted in separate curves.

(a) 1st Layers (b) 2nd Layers

Figure B.5: Effect of batch normalization (BN) on sparsity level across layers of ResNet-18. Because
ResNets cannot be effectively train without BN, we reduce the learning rate (LR) by a factor of 10,
and multiply the residual branch by a trainable scalar initialized at 0.

for a comparison. It can be seen that the first four layers of channel mixing MLP and ViT have almost
identical sparsity levels, while the rest of the layers (other than the last one) of channel mixing MLP
are denser than the corresponding layer of ViT. On the other hand, the token mixing MLPs produce
dense activation maps with more than 50% nonzero entries, probably because the dimension of the
activation maps (384) is too small.

Convolutional Neural Network (ConvNet). Sparsity in activation maps has been studied for Con-
vNets such as the AlexNet (Krizhevsky et al., 2017) at least as early as in the work of Rhu et al.
(2018). There are also follow-up work (Georgiadis, 2019; Kurtz et al., 2020) on how enforcing sparse
activation maps can help to gain computation efficiency. For completeness, we evaluate and present
results for the sparsity level of residual networks (ResNets) (He et al., 2016), which is one of the
most commonly used ConvNets, trained on ImageNet-1k. In particular, we focus on ResNet-18
and ResNet-50 which are constructed from stacking 8 standard residual blocks and 16 “bottleneck”
residual blocks, respectively, where each block has two and three convolutional and ReLU layers,
respectively. We examine the sparsity of activation maps after each of the ReLU layers in each
residual block.

The results for ResNet-18 and ResNet-50 are reported in Figure B.4a and Figure B.4b, respectively.
Here, the x-axis is the index of the residual block, and the sparsity of different layers in the residual
blocks are plotted with separated curves in each figure. It can be observed that

• Layers near the network output tend to produce sparser activation maps than layers near the network
input. This is aligned with the observation with ViT trained on ImageNet-1k (see Figure 2b).

• For each residual block, the intermediate layers (i.e., the 1st layer for ResNet-18 and the 1st & 2nd
layers for ResNet-50) produce sparser activation maps than the output layer (i.e., 2nd layer for
ResNet-18 and 3rd layer for ResNet-50).

In addition, all residual blocks are divided into four stages that have different output feature map sizes.
For ResNet-50, the four stages are composed of blocks 0 - 2, 3 - 6, 7 - 12, and 13 - 15. Figure B.4b

18

Published as a conference paper at ICLR 2023

(a) 1st Layers (b) 2nd Layers

Figure B.6: Effect of network width ∈ {64, 128, 256} on sparsity level across layers of ResNet-18.

shows that there are patterns on how sparsity level varies within each stage and across the boundary
of the stages.

• For the 1st layers, percentage of nonzeros decreases within each stage, and jumps up from the last
layer of each stage to the first layer of next stage.

• For the 2nd layers, percentage of nonzeros decreases quickly at the beginning of each stage then
becomes stable.

• For the 3rd layers, percentage of nonzeros tend to increase slightly within each stage, and jumps
down from the last layer of each stage to the first layer of next stage.

Such observations may help to understand the role of each stage in ResNets.

Comparing the percentage of nonzero entries in ResNets (shown in Figure B.4a and Figure B.4b)
and for Transformers (shown in Figure 2b), both of which are trained on ImageNet-1k, we see that
ResNets produce much denser activation maps with more than 10% nonzero entries in all layers. One
possible explanation is that ResNet uses batch normalization (BN) before each activation function,
while Transformer’s MLP does not have BN before the activation function. To understand the effect
of BN on sparsity, we conduct an experiment with BN in ResNet removed. Because ResNet cannot
be effectively trained without BN, we decrease the learning rate from standard ResNet training by a
factor of 10. Moreover, we add a learnable scalar multiplier that is initialized as 0 to all the residual
branches, following the study in Bachlechner et al. (2021); Qi et al. (2020). The results for comparing
with standard ResNet are reported in Figure B.5, where to separate the effect of using a smaller
learning rate, we also compare with the method of training a regular ResNet but with a small learning
rate compared to standard training. The two subfigures of Figure B.5 show the effect of width on
sparsity of the first and second layers in each residual block, respectively. It can be observed that,
removing BN does not significantly change the sparsity level, except for small set of layers.

Meanwhile, the trend that larger models are sparser for Transformers (see Section 2.2) holds for
ResNets as well, as seen in Figure B.6. Here, we vary the width of ResNet-18 by multiplying the
number of output channels of each convolutional layer by a factor of 1 (for width = 64), 2 (for width
= 128), and 4 (for width = 256). The two subfigures show the effect of width on sparsity of the first
and second layers in each residual block, respectively. In both cases, wider models have smaller
percentage of nonzero entries across all layers, except for the very last layer (i.e., the 2nd layer in
block #7 shown in Figure B.6b).

Sparsity and Residual Learning. We provide a study on the effect of residual connections on
activation sparsity. Each Transformer block contains two types of residual connections: the one that
is in parallel with the attention blocks, and the one that is in parallel with the MLP blocks. We focus
on the residual connection parallel to the MLP blocks. We perform two different studies.

• Effect of shortcut connection. Towards that, we train two T5-Large models, one using the vanilla
Transformer block and the other with residual connection removed for the Transformer block on
encoder layer 6 (i.e., the 7th encoder layer, as we count from 0). There is a 1.6% evaluation
accuracy drop with the latter model compared to the former model.
The percentage of nonzero entries of these two Transformers are presented in Figure B.7 for the
encoder layers and in Figure B.8 for the decoder layers. It can be seen that in encoder layer
6 for which the residual connection is removed, the sparsity has a very different trend during

19

Published as a conference paper at ICLR 2023

training compared to the corresponding layer of the vanilla Transformer. Moreover, the sparsity
level at all other layers also changes, though to a much smaller extend.

• Effect of initialization scale of the residual branch. Many works have found that having the
residual branch initialized at a smaller scale helps with stabilizing and accelerating the training
of residual (convolutional) networks (Goyal et al., 2017; Zhang et al., 2019) and Transformers
(Touvron et al., 2021). Here for simplicity we consider the idea from Bachlechner et al. (2021); Qi
et al. (2020) where a trainable scalar multiplier that is initialized at zero is applied to the residual
branch (a.k.a., ReZero).

We consider ViT trained on ImageNet-21k with ReZero added to the MLP modules. We find that
this increases the training accuracy from 46.15% to 46.85% but reduces the validation accuracy
from 47.58% to 46.75%. We plot the sparsity level of ViT with ReZero and compare it with the
vanilla ViT in Figure B.9. It can be seen that ReZero reduces the percentage of nonzeros in layers
near the network output.

0 20000 40000 60000 80000 100000
steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

%
 n

on
 ze

ro
s

encoder layer 0
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

%
 n

on
 ze

ro
s

encoder layer 1
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.0

0.1

0.2

0.3

0.4

0.5

%
 n

on
 ze

ro
s

encoder layer 2
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.0

0.1

0.2

0.3

0.4

%
 n

on
 ze

ro
s

encoder layer 3
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.0

0.1

0.2

0.3

0.4

%
 n

on
 ze

ro
s

encoder layer 4
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.0

0.1

0.2

0.3

0.4

%
 n

on
 ze

ro
s

encoder layer 5
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

%
 n

on
 ze

ro
s

encoder layer 6
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

%
 n

on
 ze

ro
s

encoder layer 7
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

%
 n

on
 ze

ro
s

encoder layer 8
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

%
 n

on
 ze

ro
s

encoder layer 9
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

%
 n

on
 ze

ro
s

encoder layer 10
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

%
 n

on
 ze

ro
s

encoder layer 11
Vanilla T5
MLP residual removed on encoder layer 6

Figure B.7: Percentage of nonzero entries in activation maps in vanilla T5-Large and in a T5-Large
with the residual connection parallel to MLP removed in the 7th encoder layer (i.e., encoder
layer 6). Different subplots correspond to different encoder layers (see Figure B.8 for results on
decoder layers). The encoder layer 6, which has its residual connection removed, shows a
significant difference in both sparsity and the trend of sparsity during training. Sparsity level in other
layers changes from vanilla T5-Large as well, though to a smaller extent.

20

Published as a conference paper at ICLR 2023

0 20000 40000 60000 80000 100000
steps

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

%
 n

on
 ze

ro
s

decoder layer 12
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

%
 n

on
 ze

ro
s

decoder layer 13
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

%
 n

on
 ze

ro
s

decoder layer 14
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.025

0.050

0.075

0.100

0.125

0.150

0.175

%
 n

on
 ze

ro
s

decoder layer 15
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.025

0.050

0.075

0.100

0.125

0.150

0.175

%
 n

on
 ze

ro
s

decoder layer 16
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.025

0.050

0.075

0.100

0.125

0.150

0.175

%
 n

on
 ze

ro
s

decoder layer 17
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

%
 n

on
 ze

ro
s

decoder layer 18
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

%
 n

on
 ze

ro
s

decoder layer 19
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

%
 n

on
 ze

ro
s

decoder layer 20
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

%
 n

on
 ze

ro
s

decoder layer 21
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.04

0.06

0.08

0.10

0.12

0.14

0.16

%
 n

on
 ze

ro
s

decoder layer 22
Vanilla T5
MLP residual removed on encoder layer 6

0 20000 40000 60000 80000 100000
steps

0.04

0.06

0.08

0.10

0.12

0.14

0.16
%

 n
on

 ze
ro

s
decoder layer 23
Vanilla T5
MLP residual removed on encoder layer 6

Figure B.8: Same setup as Figure B.7, but showing the results for the last 12 layers of the decoder.

Figure B.9: Effect of initialization scale of the residual branch. We add a scalar multiplier that is
initialized at 0 on the residual branch (a.k.a., ReZero Bachlechner et al. (2021)) of the MLP modules
of a ViT, and train the model on ImageNet-21k. The percentage of nonzero entries is compared with
those obtained with a regular ViT.

21

Published as a conference paper at ICLR 2023

(a) 1st Layers (b) 2nd Layers

Figure B.10: Effect of optimizer on sparsity level across layers of ResNet-18.

(a) 1st Layers (b) 2nd Layers (c) 3rd Layers

Figure B.11: Effect of optimizer on sparsity level across layers of ResNet-50.

B.2 SPARSITY AND OPTIMIZER

Transformers are usually trained using ADAM or its variants as the optimizer (Kingma & Ba, 2015).
It may be curious to ask whether the emergence of sparsity is specific to such optimizers and whether
other optimizers, such as stochastic gradient descent (SGD), also leads to sparse activation maps.
However, we find that SGD cannot effectively train Transformer architectures such as T5 and ViT.
Hence, we study the effect of optimizer on activation sparsity by looking at ResNet trained on
ImageNet-1k following the setup in Section B.1, since both SGD and ADAM can effectively train
the network. To train ResNet with ADAM, we use the same hyper-parameters as those used in SGD,
with the only difference being that the optimizer is ADAM with β1 = 0.9, β2 = 0.999. To make the
comparison with SGD fair, we tune the base learning rate for ADAM and select 3e− 3, which is the
one that gives the highest training accuracy among the set of {1e− 4, 3e− 4, 1e− 3, 3e− 3, 1e− 2}.
The training accuracy obtained by ADAM with base learning rate 3e− 3 is similar to that obtained
by SGD, namely, 67.8% by ADAM vs 69.3% by SGD with ResNet-18, and 75.0% by ADAM vs
78.5% by SGD with ResNet-50.

The results for ResNet-18 and ResNet-50 are presented in Figure B.10 and Figure B.11, respectively.
For ResNet-18, we see that ADAM leads to a smaller percentage of nonzero entries particularly
towards the output of the network for the first layers of each residual block. In contrast, ADAM and
SGD have very similar sparsity level at the second layers of each residual block. Similar observation
holds for ResNet-50, where the percentage of nonzero entries is smaller with ADAM for the first
and second layers of each residual block, while for the third layer the sparsity level does not change
much.

B.3 SPARSITY IN FINETUNING

In this section we show that activation sparsity not only occurs after model pretraining but persists
after further finetuning on downstream tasks. Here we take a T5 that has been pretrained on C4 as
described in Section 1.3, and finetune the model on a open domain Natural Question (Kwiatkowski
et al., 2019) QA task. We follow the set up in Li et al. (2022), where the retrieved passages are
independently encoded by the encoder, and then passed to the decoder via cross attention. The
decoder takes the question as the prefix and produces the answer. The decoder is a standard auto-

22

Published as a conference paper at ICLR 2023

(a) Encoder (b) Decoder

Figure B.12: Percentage of nonzero entries across different layers of trained T5 after pretraining vs
after finetuning on a question answering task. Left: Results on encoder layers. Right: Results on
decoder layers.

regressive setup, despite passing the question as a prefix. We used the same Wikipedia passages
retrieved by FiD (Izacard & Grave, 2020) which uses DPR (Karpukhin et al., 2020) as retriever. For
this experiment, we used 20 passages for each question. When calculating the sparsity level, we
ignored the activation produced from paddings, for both encoder and decoder. The sparsity level of
different encoder and decoder layers after finetuning is reported in Figure B.12 and is compared to
those before the finetuning. It can be seen that finetuning does not drastically change the sparsity
level.

C ADDITIONAL RESULTS ON BENEFITS OF SPARSITY

C.1 TOP-k DOES NOT SIGNIFICANTLY AFFECT TRAINING CONVERGENCE

Figure C.1: Learning curves for results re-
ported in Figure 5b. ViT and Top-k ViT have
similar convergence rate.

One may argue that the convergence of Top-k Trans-
former can be slower than that of a vanilla Trans-
former because, with fewer neurons being activated,
the amount of parameters that have nonzero gradi-
ent associated with each training sample is smaller.
Here we plot the training curves for ViT as well as
Top-k ViT with k ∈ {64, 128, 256} on ImageNet-
21K (this is the same setup as the experiments in
Figure 5b), and report the results in Figure C.1. It
can be observed that taking Top-k does not signifi-
cantly reduce convergence speed, particularly when
k is relatively large (e.g., k = 256).

C.2 BENEFITS OF SPARSITY
PERSISTS WITH `1-NORM INDUCED SPARSITY

While Top-k thresholding is used in Section 3.3 to
demonstrate the benefit of sparsity, we show that other means of obtaining sparsity, such as an explicit
`1 norm regularization, also provides such benefits.

We experiment with ViT for ImageNet-1k classification under the same setup as in Section 3.3. Here
instead of the Top-k ViT, we train a regular ViT but with an additional loss term, which is the sum of
the `1 norm of all activation maps of ViT across all layers. We refer to the method as L1-ViT. We vary
the weight λ on the `1 loss in the set λ ∈ {0.1, 0.5, 1.0} to control the strength of the regularization,
and denote the corresponding methods as L1-ViT-{0.1, 0.5, 1.0}.
The sparsity level, natural accuracy, robust accuracy under input perturbation, and ECE of L1-ViT are
reported in Table C.1. We see that with λ = 0.1 or 0.5, the averaged percentage of nonzero entries
do not change much, but already demonstrates performance gain in terms of accuracy under input
perturbation and calibration without hurting the natural accuracy. Using a λ = 1.0 drastically reduces

23

Published as a conference paper at ICLR 2023

(a) Gaussian Noise (b) Impulse Noise (c) Shot Noise

Figure C.3: Performance of Top-k ViT on corrupted ImageNet-1k test data with Gaussian noise
(left), impulse noise (middle), and shot noise (right), each under five severity levels. Top-k improves
robustness for all noise types and on all corruption levels with a suitable choice of k.

Table C.1: Evaluation of ViT with a varying weight ∈ {0.1, 0.5, 1.0} on a `1 regularization upon
activation maps for ImageNet-1k classification in terms of 1) averaged percentage of nonzero entries
in activation maps across all layers, 2) natural accuracy (i.e., on ImageNet-1k evaluation set), 3)
robust accuracy under input perturbation with additive {Gaussian, Impulse, Shot} noise, and 4)
calibration error measured by ECE.

Methods Avg. Perc.
of Nonzeros

Natural
Accuracy

Accuracy under
Input Perturbation

Expected Calibration
Error (ECE)

Gaussian Impulse Shot

ViT 5.67% 74.85% 39.54% 37.37% 38.56% 8.42%

L1-ViT-0.1 5.66% 75.02% 40.70% 38.52% 39.56% 8.37%

L1-ViT-0.5 5.76% 74.83% 42.46% 40.64% 40.96% 8.22%

L1-ViT-1.0 1.60% 73.21% 40.26% 38.01% 38.95% 6.34%

the percentage of nonzero entries but it offers a better performance in terms of accuracy under input
perturbation and calibration compared to ViT.

C.3 ADDITIONAL RESULTS FOR CALIBRATION

Figure C.2: Confidence calibration of Top-
k ViT for ImageNet-1k classification.

Under the same setup as in Section 3.3, we report the
calibration of Top-k ViT during training and with vary-
ing values of k, and report the results in Figure C.2.
At the beginning of training the model has a low ECE
because the output probabilities are mostly uniformly
distributed across all classes hence the model is not con-
fident, and that its prediction is purely random hence
wrong with high probability. The model tends to be-
come overly confident as the training progresses, hence
the ECE increases particularly towards the end of train-
ing. What we can observe is that Top-k enables the
Transformer to be more calibrated when compared to a
vanilla Transformer, particularly for small values of k.
The results with k = 128 and its comparison with the
vanilla ViT is also presented in Table 1.

C.4 ADDITIONAL RESULTS FOR ROBUSTNESS TO INPUT PERTURBATION

Under the same setup as in Section 3.3, we report the performance of Top-k ViT with varying value of
k in Figure C.3. We can see that Top-k ViT offers a performance gain over the vanilla ViT, particular
with k = 64 or k = 128 and the severity level is high. The averaged performance over all severity
levels of each corruption type is reported in Table 1.

24

Published as a conference paper at ICLR 2023

(a) Random label (b) Random image (c) Infinite data

Figure D.1: Percentage of nonzero entries in ViT trained on ImageNet-21k (IM-21K) with (a)
random labels where p% labels are replaced by labels drawn from a uniform distribution with
p ∈ {50%, 70%, 100%}, (b) random images where each image is replaced by one where the pixels
are drawn from i.i.d. uniform distribution in [−1, 1], and (c) infinite data where sufficient training
data is generated by drawing random image and random label pairs so that the model is never trained
on the same pair twice.

D SPARSITY FROM TRAINING DYNAMIC?

In this section we study the causes of sparsity in activation maps of trained Transformers. Towards that,
in Section D.1, D.2, and D.3 , we present a set of hypotheses and design corresponding experiments
to validate or disprove them. We discuss the observation from the experiments and draw a tentative
conclusion in Section D.4 on attributing sparsity to the training dynamic, with theoretical evidence.

D.1 SPARSITY FROM LABELS?

Transformers are usually trained via supervised learning (e.g., using the ImageNet dataset for ViT) or
self-supervised learning (e.g., using the span corruption task for T5). In both cases, the training labels
provide a pertinent and meaningful description of the corresponding training data (e.g., image for
ViT and text for T5). Sparsity may arise because the label set provides a structured organization of
the massive training data, hence the training dataset admits a compact representation. This motivates
us to formulate the following hypothesis.

Hypothesis D.1 (Sparsity from labels). Sparsity in trained Transformers arises from the labels for
Transformer training, e.g., human annotations in supervised training or generated labels from data
itself in self-supervised learning.

We use a random label experiment with ViT for image classification to test Hypothesis D.1. Specifi-
cally, we generate a new training dataset by replacing p% of the labels in the ImageNet-21k dataset
with random labels drawn uniformly at random from the set of all possible labels, where p is varied to
examine the effects. With such a dataset, the labels for a certain percentage of images do not provide
a meaningful description for the content of the image. Hence, if Hypothesis D.1 is valid, then the
activation map will become dense.

The sparsity level of ViT trained on the random label datasets is shown in Figure D.1a. It can be seen
that the percentage of activated neurons decreases with an increasing percentage of label noise up to
70%. An even higher label noise level at 100% changes the sparsity level across layers as the shallow
layers (i.e., layers 0 - 4) becomes sparser, while the deep layers (i.e., layers 5 - 11) becomes denser.
Nonetheless, even with 100% label noise, all layers have < 10% activated neurons.

D.2 SPARSITY FROM DATA?

While modern image and text data are often of high-dimensional, their intrinsic degree of freedom
is much smaller, i.e., they are low-dimensional and admit compact representations (Vidal et al.,
2015; Wright & Ma, 2022). Hence, even if the labels do not provide meaningful descriptions of
the data, it may still be possible that Transformers extract low-dimensional structures from data and
produce compact representations in the form of sparse activation maps. This motivates the following
hypothesis.

25

Published as a conference paper at ICLR 2023

Hypothesis D.2 (Sparsity from natural data). Sparsity in trained Transformers arises from natural
training data (e.g., images for ViT and texts for T5).

We use a random image experiment to test Hypothesis D.2. With the ImageNet-21k dataset, we
replace each image with a random image generated by drawing pixel values from an i.i.d. Uniform
distribution in the range of [0, 255], and use these images (instead of the original images in ImageNet-
21k) for model training. Such random images do not contain any low-dimensional structures nor
compact representations.

The percentage of nonzero entries of a ViT trained on random image dataset is shown in Figure D.1b.
It can be seen that the first four layers become sparser while the last few layers become relatively
denser compared to training with natural images in ImageNet-21k. Nonetheless, all layers have
< 10% activated neurons.

D.3 SPARSITY FROM DATA-FITTING?

Modern deep neural networks are often over-parameterized, with sufficient capacity to fit practical
training datasets and obtain close-to-zero training error. There is evidence suggesting that this result
holds true even if the data and label are generated in random (Zhang et al., 2021). Hence, there is
the possibility that sparsity arises because the training data, even if generated in random, is scarce
relative to the scale of modern over-paremeterized models.

Hypothesis D.3 (Sparsity from data-fitting). Sparsity in trained Transformers arises from the fact
that models have more than sufficient capacity to fit training data of practical scale.

To test Hypothesis D.3, we design an infinite data experiment where the amount of training data is
infinitely large so that any practical Transformer becomes under-parameterized relative to the data
and cannot fit the data. The way we generate infinite training data is to sample images with random
pixels as in the random image experiment, and for each image we sample a random label as in the
random label experiment. Moreover, we generate sufficient amount of such training data to make
sure that the model never sees the same data point twice during the training. The number of training
iterations in the infinite data experiment is kept the same as that of the random image and random
label experiments.

The result of this experiment is presented in Figure D.1c. It can be seen that the first four layers
produce sparser activation maps, while middle layers with index 4 - 7 are considerably denser
compared to the baseline with near 10% to 20% nonzero entries.

D.4 DISCUSSION: SPARSITY FROM TRAINING DYNAMIC?

The results of random label, random image, and infinite data experiments in Figure D.1 show that
labels, data, and data-fitting as conjectured in Hypothesis D.1, D.2, and D.3, respectively, all affect
the sparsity level of the activation map. Nonetheless, none of them fully explains the emergence of
sparsity since for all results in Figure D.1, the percentage of nonzero entries is considerably smaller
than at the initialization (i.e., 50%).

Our results point to the possibility that sparsity comes from the training dynamic. Namely, at early
training stage with any training data and a random initialization of network parameters, the descending
direction of the gradient on the Transformer parameters tends to point to a regime where their MLPs
produce sparse activation maps. In the following, we provide theoretical evidence for this argument
by looking at the gradient on the positive activation maps for a DNN with last two layers being a
ReLU followed by a fully connected layer. In particular, we have the follow result.

Theorem D.1. Let f(x;V ,θ) : IRn → IRK be a neural network given by

f(x) = V σ
(
p(x;θ)

)
, (D.1)

where V = [v1, . . . ,vdff] ∈ IRK×dff is network parameter for the last layer drawn from a random
distribution, σ() is the ReLU activation function, and p(x;θ) denotes all other layers with parameter
θ. We write p = p(x;θ) for simplicity.

26

Published as a conference paper at ICLR 2023

• Consider the mean squared error (MSE) loss `MSE(f(x),y)
.
= 1

2‖f(x) − y‖
2
2, where y is an

arbitrary vector independent of V . Assume that V satisfies

E [V] = 0, and E [〈vi,vj〉]
{
= 0, if i 6= j,

> 0, otherwise6.
(D.2)

If there exist an i∗ such that pi∗ > 0, then we have

E
[
∂`MSE(f(x),y)

∂pi∗

]
> 0, (D.3)

where the expectation is taken with respect to randomness in V .

• Consider the cross-entropy (CE) loss `CE(f(x),y) = −〈y, log exp(f(x))
〈exp(f(x)),1〉 〉, where y is an

arbitrary vector that sums up to one and independent of V . Assume that the entries of V are
drawn from independent distributions, the probability of any entry of V being 0 is less than 1, and
E [V] = 0. If there exist an i∗ such that pi∗ > 0, then we have

E
[
∂`CE(f(x),y)

∂pi∗

]
> 0, (D.4)

where the expectation is taken with respect to randomness in V .

The proof of Theorem D.1 is provided in Appendix E. Theorem D.1 states that the gradient of either
the MSE or CE loss with respect to any positive activation pi∗ is positive in expectation. Hence,
any training algorithm based on negative gradient directions tends to reduce the magnitude of such
positive activations, which will lead to a smaller training loss. Here, the expectation is taken with
respect to the randomness in the last layer parameter V . Hence, our result can be considered as an
analysis for DNNs at initialization where weights are often chosen randomly from a fixed distribution.
In particular, the required properties for the distribution of V in Theorem D.1 for both MSE and
CE losses are satisfied by commonly used initialization methods, such as the one in He et al. (2015).
On the other hand, Theorem D.1 does not apply to subsequent training iterations since the label y
is no longer independent of V . However, it can be seen empirically from Figure 1 that the trend
of a decreasing percentage of nonzero entries persists for a certain number of iterations during the
beginning of training until such a percentage reaches a low level and stays relatively stable until the
end of training.

E PROOF OF THEOREM D.1

Proof of Theorem D.1. For an arbitrary loss `(f(x),y), we have
∂`

∂pi∗
=

〈
∂`

∂f
,
∂f

∂pi∗

〉
=

〈
∂`

∂f
,vi∗

〉
. (E.1)

First, Consider ` = `MSE . We have
∂`MSE

∂f
= f(x)− y =

∑
i

σ(pi) · vi − y. (E.2)

Plugging this into (E.1), we obtain

∂`MSE

∂pi∗
=

(∑
i

σ(pi)〈vi,vi∗〉

)
− 〈vi∗ ,y〉

=

∑
i 6=i∗

σ(pi)〈vi,vi∗〉

+ σ(pi∗)〈vi∗ ,vi∗〉 − 〈vi∗ ,y〉

(E.3)

Taking the expectation, and noting the conditions in (D.2), we have

E
[
∂`MSE

∂pi∗

]
= 0 + σ(pi∗)E [〈vi∗ ,vi∗〉] + 0 > 0. (E.4)

This finishes the proof for MSE loss.

6This requirement is generally satisfied unless the probability of vi = 0 is 1.

27

Published as a conference paper at ICLR 2023

In the rest of the proof we consider ` = `CE . We have
∂`CE

∂f
=

exp(f(x))

〈exp(f(x)), 1〉
− y =

exp(
∑

i σ(pi) · vi)
〈exp(

∑
i σ(pi) · vi), 1〉

− y. (E.5)

Plugging this into (E.1), we obtain
∂`CE

∂pi∗
=
〈exp(

∑
i σ(pi) · vi),vi∗〉

〈exp(
∑

i σ(pi) · vi), 1〉
− 〈vi∗ ,y〉 (E.6)

For the enumerator in the first term on the RHS of the equation above, we have〈
exp

(∑
i

σ(pi) · vi

)
,vi∗

〉
=
∑
m

(
vi∗,m · exp

(∑
i

σ(pi) · vim

))

=
∑
m

vi∗,m · exp (pi∗ · vi∗,m) · exp

∑
i6=i∗

σ(pi) · vi,m

(E.7)

Plugging this into (E.6) and denoting

C(1)
m = exp

∑
i 6=i∗

σ(pi) · vi,m

 ,

we obtain
∂`CE

∂pi∗
=
∑
m

(
vi∗,m · exp (pi∗ · vi∗,m) · C(1)

m

〈exp(
∑

i σ(pi) · vi), 1〉

)
− 〈vi∗ ,y〉 (E.8)

For the denominator in the first term on the RHS of the equation above, we have〈
exp

(∑
i

σ(pi) · vi

)
, 1

〉
=
∑
m′

exp

(∑
i

σ(pi) · vim′
)

=
∑
m′

exp (pi∗ · vi∗,m′) · exp

∑
i6=i∗

σ(pi) · vim′

= exp (pi∗ · vi∗,m) · exp

∑
i6=i∗

σ(pi) · vi,m

+
∑

m′ 6=m

exp (pi∗ · vi∗,m′) · exp

∑
i 6=i∗

σ(pi) · vim′

(E.9)

Plugging this into (E.8) and denoting

C(2)
m = exp

∑
i 6=i∗

σ(pi) · vi,m

 , (E.10)

C(3)
m =

∑
m′ 6=m

exp (pi∗ · vi∗,m′) · exp

∑
i6=i∗

σ(pi) · vim′

 , (E.11)

we obtain
∂`CE

∂pi∗
=
∑
m

(
vi∗,m · exp (pi∗ · vi∗,m) · C(1)

m

exp (pi∗ · vi∗,m) · C(2)
m + C

(3)
m

)
− 〈vi∗ ,y〉. (E.12)

28

Published as a conference paper at ICLR 2023

Taking expectation with respect to V on both sides, and using the assumption that all entries of V are
independent, we have

E
[
∂`CE

∂pi∗

]
=
∑
m

E

[
vi∗,m · exp (pi∗ · vi∗,m) · C(1)

m

exp (pi∗ · vi∗,m) · C(2)
m + C

(3)
m

]
− E [〈vi∗ ,y〉]

=
∑
m

E{vi,l|(i,l)6=(i∗,m)}

[
Evi∗,m

[
vi∗,m · exp (pi∗ · vi∗,m) · C(1)

m

exp (pi∗ · vi∗,m) · C(2)
m + C

(3)
m

]]
− E [〈vi∗ ,y〉] .

(E.13)
In above, Evi∗,m [] means expectation with respect to vi∗,m, and E{vi,l|(i,l)6=(i∗,m)} [] means expecta-

tion with respect to all other entries in V . Note that C(1)
m , C

(2)
m , and C(3)

m are independent of vi∗,m.
By Lemma E.1 and using the assumption that the expectation of V is zero, we have

Evi∗,m

[
vi∗,m · exp (pi∗ · vi∗,m) · C(1)

m

exp (pi∗ · vi∗,m) · C(2)
m + C

(3)
m

]
> 0, (E.14)

and
E [〈vi∗ ,y〉] = 0. (E.15)

Plugging the above two relations into (E.13), we obtain

E
[
∂`CE

∂pi∗

]
> 0. (E.16)

The following lemma is used in the proof above.
Lemma E.1. Let V be a random variable with a probabilistic density function p(v) that satisfies
P (V = 0) 6= 1. Let C1, C2, C3 and p be positive numbers. Then,

E
[
C1V · exp(pv)

C2 exp(pV) + C3

]
>

C1

C2 + C3
E [V] . (E.17)

Proof. We may calculate the expectation by using the probabilistic density function p(v) as

E
[
C1V · exp(pV)
C2 exp(pV) + C3

]
= E

[
C1V

C2 + C3 exp(−pV)

]
=

∫ ∞
−∞

C1v

C2 + C3 exp(−pv)
p(v)dv

.
=

∫ ∞
−∞

g(v) · vp(v)dv.

(E.18)
Since g(v) is monotonically increasing for v ∈ IR, we have g(v) ≥ g(0) for v ≥ 0 and g(v) ≤ g(0)
for v ≤ 0. Hence, ∫ 0

−∞
g(v) · vp(v)dv ≥ g(0)

∫ 0

−∞
vp(v)dv, (E.19)∫ ∞

0

g(v) · vp(v)dv ≥ g(0)
∫ ∞
0

vp(v)dv. (E.20)

Moreover, since P (V = 0) 6= 1, there exists an interval (a, b) such that
∫ b

a
p(v)dv > 0. Without loss

of generality we assume that b > a ≥ 0. Then,∫ b

a

g(v) · vp(v)dv > g(0)

∫ b

a

vp(v)dv. (E.21)

That is, the inequality in (E.20) holds with strict inequality. Hence we have

E
[
C1V · exp(pV)
C2 exp(pV) + C3

]
=

∫ ∞
−∞

g(v) · vp(v)dv > g(0)E [V] =
C1

C2 + C3
E [V] . (E.22)

F INSIGHTS FROM SPARSITY IN MLPS

We study the sparsity of activation maps in two-layer MLPs. By showing that sparsity emerges, the
result here extends the scope of prevalence of activation sparsity from modern DNNs to two-layer

29

Published as a conference paper at ICLR 2023

sgd_5e-2

0.0

0.2

0.4

0.6

0.8

1.0

M
NI

ST

sgd_momentum_1e-3 adam_1e-4

0.0

0.2

0.4

0.6

0.8

1.0

Ra
nd

om
 D

at
a

103 105
0.0

0.2

0.4

0.6

0.8

1.0

In
fin

ite
 D

at
a

103 105 103 105

Sparsity and Over/Under-Fitting in 2-Layer MLPs

hidden layer width

accuracy
non-zero rate

Figure F.1: Training accuracy and percentage of nonzero entries (both on the y-axis) in activation maps
of two-layer MLPs of varying width (on the x-axis, in log scale) after 200 epochs of training. Rows
correspond to different training datasets, and columns correspond to different training algorithms.

MLPs which are one of the simplest neural network architectures. Moreover, by training such two-
layer MLPs with different types of data, we provide additional insights on the causes for emergence
of sparsity.

Datasets. We conduct our experiment with the MNIST dataset, which contains 60,000 grey scale
images of handwritten digits. Similar to the experiment in Section D, we also consider a dataset with
random data, as well as a dataset with infinite data. For the random data, we replace each image of
MNIST with a random one drawn from sampling i.i.d. pixels from uniform distribution, and each
label with a random class amongst 10. Note that the image-label pairs are fixed throughout training.
For the infinite data, the random images and random labels are generated on-the-fly, representing a
random dataset of infinite size.

Models and Training. We train two-layer MLPs with ReLU activation maps with varying width (i.e.,
hidden dimension): 32, 128, 512, 2048, 8192, 32768 and 131072. We use three different optimizers:
SGD, SGD with momentum, and Adam, all for 200 epochs (for the infinite data case, we use the
same number of iterations as that for training on MNIST and random data). We find that 200 epochs
is sufficient for the reported metrics to converge in most of the cases.

Results. We report training accuracy and the percentage of nonzero entries in the intermediate
activation map (i.e., non-zero rate) at the end of the training in Figure F.1. We have the following
observations.

30

Published as a conference paper at ICLR 2023

sgd_1e-1

0.0

0.2

0.4

0.6

0.8

1.0

M
NI

ST

sgd_momentum_1e-2 adam_1e-3

0.0

0.2

0.4

0.6

0.8

1.0

Ra
nd

om
 D

at
a

103 105
0.0

0.2

0.4

0.6

0.8

1.0

In
fin

ite
 D

at
a

103 105 103 105

Sparsity with Increased Learning Rate in 2-Layer MLPs

hidden layer width

accuracy
non-zero rate

Figure F.2: The same as in F.1 except that for each optimizer we use a larger learning rate.

• For random data, we observe a uni-modal shaped curve for sparsity level. Namely, when the model
width is small hence the model cannot well-fit the training data, the percentage of nonzero entries
is small. As the model width increases, where the model is able to fit the training data evidenced
by the fact that the training accuracy increases, we observe that the percentage of nonzero entries
starts to increase. However, as we further increase the model size in the regime where model is
able to perfectly fit the training data, we see that the percentage of nonzeros starts to decrease.

• For infinite data, where the model cannot fit the training data (hence training accuracy is 0.1 which
is the same as result from random guessing), the percentage of nonzero entries is close to 0. This is
aligned with the result of random data experiment with a small model width.

• For MNIST, where the model of varying width in our experiment is able to fit the training data, we
observe that the percentage of nonzero entries decreases. This trend aligns with the random data
experiment with large model width

The evidence above suggest that the sparsity level may be associated with the under- and over-
parameterization of the models. Namely, the percentage of nonzero entries is the highest when the
model size is close to the point that the model can start to fit the training data (i.e., the interpolation
threshold), and is lower in both under and over-parameterized regimes. It may be intriguing to
note that a similar pattern exists for the variance (as in the bias-variance tradeoff) curve of deep
learning models, which as shown in Yang et al. (2020) to exhibit a uni-modal shape as well. Such a
connection may help us understand the interplay between generalization and sparsity of activation in
deep learning models.

31

Published as a conference paper at ICLR 2023

Finally, in Figure F.2 we report the results obtained with optimizers with larger learning rates
compared to those used in Figure F.1. It can be observed that larger learning rate produces sparser
activation maps.

32

	Introduction
	An Intriguing Observation: Activations are Sparse in Trained Transformers
	Prevalence, Benefits, and Causes of Sparsity
	Experimental Setup

	Prevalence of Sparsity in Learned Transformers
	Sparsity is a Ubiquitous Phenomenon
	The Larger, the Sparser

	Efficient, Robust, and Calibrated: Sparsity is All You Need?
	Efficiency for Free
	Sparsity in Training via Top-k Transformers
	Bonus! Improved Robustness and Calibration

	Related Work
	Discussion
	Appendices
	Implementation Details
	T5
	ViT
	T5 / ViT Configurations

	Additional Results On Prevalence of Sparsity
	Sparsity and Network Architecture
	Sparsity and Optimizer
	Sparsity in Finetuning

	Additional Results on Benefits of Sparsity
	Top-k Does not Significantly Affect Training Convergence
	Benefits of Sparsity Persists with 1-Norm Induced Sparsity
	Additional Results for Calibration
	Additional Results for Robustness to Input Perturbation

	Sparsity from Training Dynamic?
	Sparsity from Labels?
	Sparsity from Data?
	Sparsity from Data-fitting?
	Discussion: Sparsity from Training Dynamic?

	Proof of Theorem D.1
	Insights from Sparsity in MLPs

