
PHISH in MESH : Korean Adversarial Phonetic Substitution and
Phonetic-Semantic Feature Integration Defense

Anonymous ACL submission

Abstract001

As malicious users increasingly employ pho-002
netic substitution to evade hate speech detec-003
tion, researchers have investigated such strate-004
gies. However, two key challenges remain.005
First, existing studies have overlooked the Ko-006
rean language, despite its vulnerability to pho-007
netic perturbations due to its phonographic na-008
ture. Second, prior work has primarily focused009
on constructing datasets rather than developing010
architectural defenses. To address these chal-011
lenges, we propose (1) PHonetic-Informed Sub-012
stitution for Hangul (PHISH ) that exploits013
the phonological characteristics of the Korean014
writing system, and (2) Mixed Encoding of015
Semantic-pHonetic features (MESH ) that en-016
hances the detector’s robustness by incorporat-017
ing phonetic information at the architectural018
level. Our experimental results demonstrate the019
effectiveness of our proposed methods on both020
perturbed and unperturbed datasets, suggest-021
ing that they not only improve detection per-022
formance but also reflect realistic adversarial023
behaviors employed by malicious users.024

1 Introduction025

As offensive text detection systems have been ad-026

vanced, malicious users have adopted more so-027

phisticated filtering evasion strategies. In partic-028

ular, they have been trying to replace characters029

or words in hateful texts with alternatives that are030

pronounced similarly. Despite requiring substantial031

linguistic awareness of target languages, malicious032

users frequently adopt phonetic substitution, which033

proves to be an effective method of evading detec-034

tion (Boucher et al., 2022; Le et al., 2023). There-035

fore, researchers have formalized this strategy and036

proposed defense methods against it (Cooper et al.,037

2023; Le et al., 2022).038

However, we identify two key challenges regard-039

ing the target language and the proposed defense040

strategies. First, existing studies on phonetic substi-041

tution attacks have rarely considered Korean. Be-042

cause users of phonographic writing systems can 043

often infer the original word from its phonetically 044

perturbed form, such attacks may be more effec- 045

tive in languages like Korean (Kim, 2011). Never- 046

theless, prior research has largely overlooked pho- 047

netic perturbations in Korean and instead focused 048

on language-agnostic strategies, such as inserting 049

meaningless words (Yu et al., 2024). 050

Second, most of the currently proposed defense 051

methods primarily focus on constructing perturbed 052

datasets, while less focused on augmenting ad- 053

ditional feature representations. Specifically, pro- 054

posed defense methods often rely on fine-tuning 055

methods using datasets specialized for each at- 056

tack strategy (Lee et al., 2025). However, those 057

approaches not only incur additional annotation 058

costs but also raise concerns about overfitting to 059

particular attack patterns. 060

To tackle these challenges, we propose (1) 061

a PHonetic-Informed Substitution for Hangul, 062

PHISH, and (2) sequntial or direct Mixed Encod- 063

ing of Semantic-pHonetic features (seq-MESH, dir- 064

MESH). PHISH substitutes one or two Korean unit 065

letters per syllable with phonetically similar coun- 066

terparts using the International Phonetic Alphabet 067

(IPA) and the Korean standard pronunciation rules. 068

Unlike prior strategies, PHISH does not use any 069

characters or special symbols from other languages; 070

instead, it leverages only the Korean character set. 071

seq-MESH and dir-MESH aim to enhance the ro- 072

bustness of detectors against phonetic perturbation 073

by augmenting phonetic information. Specifically, 074

our methods adopt cross-attention mechanism to 075

incorporate semantic and phonetic information. 076

To examine the effectiveness of both our pro- 077

posed attack and defense methods, we conducted 078

experiments on two Korean hate speech datasets: 079

K-HATERS (Park et al., 2023) and KoLD (Jeong 080

et al., 2022). Specifically, we quantified perfor- 081

mance degradation of baseline detectors under our 082

phonetic substitution attack. Also, we evaluated 083
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detectors equipped with our defense methods on084

both the original and perturbed test sets, comparing085

their performance to the corresponding base mod-086

els. Thus, this paper has following contributions:087

• We introduce a phonetic substitution attack088

method, PHISH , which leverages the char-089

acteristics of the Korean language and suc-090

cessfully misleads prior detectors.091

• Also, we propose defense methods, sequential092

or direct MESH , which enhance the robust-093

ness of detectors by guiding them to incorpo-094

rate semantic and phonetic information.095

2 Attack method096

Korean malicious users often circumvent filtering097

systems by making slight modifications to their098

toxic sentences. Specifically, they commonly con-099

duct phonetic substitution: replacing offensive let-100

ters or words with phonetically similar alternatives.101

As Korean is a phonographic language with shal-102

low orthographic depth, phonetically substituted103

toxic texts remain intelligible to human readers104

but can easily confuse detection systems that rely105

on semantic representations (Ellis et al., 2004). In106

the Korean writing system, Hangul, each character107

fundamentally represents a single syllable. Here,108

a Hangul syllable character is structured by com-109

bining individual components, called jamo, into a110

syllable block. Such a syllable block must contain111

at least one initial consonant (onset) and a vowel112

(nucleus), while a final consonant (coda) may or113

may not be present. For example, a Hangul syllable114

block ‘김 [kim]’ consists of three jamos, onset ‘ㄱ115

[k]’, nucleus ‘ㅣ [i]’, and coda ‘ㅁ [m].’116

Based on this structural property, we propose117

a PHonetic-Informed Substitution for Hangul118

(PHISH) that perturbs Korean text to mislead de-119

tection systems. PHISH replaces a subset of jamos120

within each syllable with phonetically similar alter-121

natives, using the International Phonetic Alphabet122

(IPA) and the Korean standard pronunciation rule.123

In particular, PHISH uses two degrees of attack ac-124

cording to the number of substituted jamos within a125

syllable: single-jamo attack, where only one jamo126

is substituted, and dual-jamo attack, where two127

jamos are substituted. During the attack, PHISH128

employs a look-up table D to match phonetically129

similar jamos. Section 2.1 details PHISH algorithm130

and Section 2.2 illustrates how we defined the pre-131

defined look-up table D.132

Algorithm 1 PHISH Algorithm

Input: Text T = {T0, · · · , Tn},
Perturbation ratio r ∈ [0, 1],
Attack mode m ∈ {Single, Dual}

Output: Perturbed text T

1: ID, IS ← Vulnerable Search(T )
2: Shuffle ID and IS
3: nV ← Total length of ID and IS
4: nA ← 0 ▷ # of perturbed syllables

5: while nA
nV

< r and ID ̸= ∅ do
6: Pop a target index i from ID
7: Ti ← Syllable Attack(Ti, nattk)
8: nA ← nA + 1
9: end while

10: while nA
nV

< r and IS ̸= ∅ do
11: Pop a target index i from IS
12: Ti ← Syllable Attack(Ti, nattk)
13: nA ← nA + 1
14: end while
15: return T

2.1 The PHISH algorithm 133

Algorithm 1 shows the pseudocode of the PHISH. 134

The algorithm takes three inputs: an input text T , 135

which is a sequence of syllables Ti, a perturbation 136

ratio r, and the degree of attack m. Here, the de- 137

grees m of ‘single’ and ‘dual’ refer to single and 138

dual-jamo attacks, respetively. 139

PHISH consists of two main phases: (1) Index 140

searching and (2) Substitution. In index searching, 141

PHISH identifies the target indices to be perturbed 142

(Line 1) before conducting substitution. Since some 143

Korean syllables do not allow any perturbation be- 144

cause their jamos do not have any phonetically sim- 145

ilar alternatives, the algorithm first identifies the 146

vulnerable indices of T that allow our adversarial 147

attack. Specifically, if a syllable contains more than 148

one replaceable jamo, its index is added to ID; oth- 149

erwise, if it contains only one, the index is added to 150

IS . To search this index, PHISH calls ‘vulnerable 151

search’ illustrated in Algorithm 2 (Section 2.1.1). 152

After determining the target indices, the substitu- 153

tion phase starts (Lines 5 to 14). In this phase, the 154

algorithm perturbs syllables corresponding to target 155

indices one by one until the ratio of attacked sylla- 156

bles reaches the given ratio r or no more vulnerable 157

indices are left. For the substitution, PHISH uses 158
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Algorithm 2 Vulnerable Search Algorithm

Input: Look-up table D, Text T
Output: Double-indices list ID,

Single-indices list IS

1: for each syllable sybl in T do
2: c← 0 ▷ # of substitutable jamos
3: for each jamo j in sybl do
4: if D[j] ̸= ∅ then ▷ Alternatives exist
5: c← c+ 1
6: end if
7: end for

8: if c ≥ 2 then
9: Add the index of sybl into ID

10: else if c = 1 then
11: Add the index of sybl into IS
12: end if
13: end for
14: return ID and IS

syllable attack algorithm, which is illustrated in159

Section 2.1.2. After the substitution phase is done,160

PHISH returns the perturbed text T .161

2.1.1 Vulnerable Search Algorithm162

Algorithm 2 shows the search algorithm for identi-163

fying target indices of a given text T . When T is in-164

putted, the algorithm checks whether each syllable165

sybl in T allows perturbation. In detail, the algo-166

rithm iterates over each syllable in T , and checks167

whether each jamo composing each syllable has al-168

ternatives by referring to a predefined look-up table169

(Lines 2 to 7). When a syllable has substitutable170

jamo, the index of syllable is appended to ID or171

IS according to the number of substitutable jamos172

(Lines 8 to 12). After the iteration, the algorithm173

returns the two indices list, ID and IS .174

2.1.2 Syllable Attack Algorithm175

Algorithm 3 illustrates the process of attack syl-176

lables. The algorithm requires a syllable to be at-177

tacked and the degree of attack. After deciding the178

number of jamos to be substituted (Lines 2 to 3), we179

decompose the inputted syllable sybl into a list of180

jamos (Line 5). Then, the decomposed list is shuf-181

fled to substitute jamos with a random order. After,182

the algorithm substitutes each jamo with its pho-183

netically similar alternatives by using the look-up184

table D until the number of substituted jamos nstt185

reaches the predefined threshold nattk (Lines 7 to186

Algorithm 3 Syllable Attack Algorithm

Input: Look-up table D, Syllable sybl,
Degree of attack m ∈ {Single, Dual}

Output: Perturbed syllable sybl

1: Initialize # of substitutable jamos nsttd as 0
2: if m = Single then nattk ← 1
3: else if m = Dual then nattk ← 2
4: end if
5: Decompose sybl into a list of jamos J .
6: Shuffle list J .

7: for each jamo j in J do
8: if D[j] ̸= ∅ then
9: Substitute j with random jamo in D[j]

10: nsttd ← nsttd + 1
11: end if
12: if nsttd = nattk then
13: break
14: end if
15: end for
16: Recompose sybl with substituted jamos J
17: return sybl

14). After the substitution, the algorithm returns the 187

perturbed syllable, composed of substituted jamos. 188

2.2 Look-up Table for Alternatives 189

Our proposed adversarial attack, PHISH, requires 190

a predefined look-up table D that maps a jamo to 191

a set of phonetically similar jamos. As previously 192

mentioned, a Korean syllable consists of an initial 193

consonant, a medial vowel, and an optional final 194

consonant. Thus, we applied different procedures 195

for each component of syllables when constructing 196

the look-up table. Appendix A illustrates the table. 197

To classify initial consonants, we used their base 198

IPA symbols as the guiding principle. In Korean, 199

some initial consonants share the same place and 200

manner of articulation. We grouped initial conso- 201

nants sharing similar articulatory features or the 202

base phone. For example, ‘ㅂ [p]’ and ‘ㅍ [ph]’ 203

are variants of the base phone [p]’. While their 204

differences arise from laryngeal settings, such dis- 205

tinctions contribute less to phonetic similarity than 206

their articulation place and manner. Accordingly, 207

we defined five sets for the initial consonants re- 208

garding their base phone. 209

When defining the table for final consonants, 210

we used the Korean standard pronunciation rule 211

as the principle. Unlike initial consonants, which 212
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Figure 1: Architectures of base models and our methods. (a) shows the architecture of base detectors using the
self-attention mechanism; (b) shows the architecture of seq-MESH detectors using stacked self and cross-attention
layers; (c) shows the architecture of dir-MESH detectors using cross-attention instead of self-attention.

are pronounced distinctly from others, some final213

consonants are pronounced identically according214

to the Korean standard pronunciation rule. As this215

phonological property is aligned with the motiva-216

tion of PHISH, we directly used this rule to define217

the table for final consonants. Following this pro-218

cedure, we defined six jamo sets corresponding to219

one of the six standard pronunciations.220

To classify the medial vowels, we grouped221

monophthongs and diphthongs that share the same222

base phone. Specifically, there are 11 Korean223

diphthongs that are derived from monophthongs224

by combining them with glides such as ‘/w/’ or225

‘/j/.’ Since diphthongs and their corresponding226

base vowels are pronounced in a similar way, we227

grouped them into the same substitution sets. Ac-228

cordingly, we defined seven sets of vowels.229

3 The MESH Defense Methods230

We hypothesized that augmenting the phonetic in-231

formation can enhance the robustness of detectors232

regarding two aspects against phonetic substitu-233

tion attacks: (1) providing supplementary features,234

and (2) mitigating information loss. First, the aug-235

mented phonetic information allows prior detec-236

tors, which rely on semantic-level representations,237

to leverage alternative linguistic cues during their238

detection. Since semantics of perturbed texts can239

significantly deviate from that of original text, such240

phonetic cues can help to address such deviation.241

Second, augmenting phonetic features can miti- 242

gate the information loss caused by perturbations. 243

As perturbation increases the likelihood of un- 244

known tokens during the tokenization process of 245

detectors, it can severely disrupt the semantic struc- 246

ture of the text (Yu et al., 2024). This disruption 247

can interfere with the detectors’ semantic under- 248

standing of the text. As phonetic information can 249

provide a hint for reconstructing the unknown word, 250

we believe that augmenting phonetic information 251

can recover such information loss. 252

To combine phonetic information to detectors, 253

we propose sequential or direct Mixed Encoding of 254

Semantic-pHonetic features (in short, seq-MESH 255

or dir-MESH) that use additional or alternative 256

cross-attention layers. Figure 1 compares prior de- 257

tectors and our proposed methods. Previously, de- 258

tectors use self-attention layers to process or cap- 259

ture the semantic meaning of the input text, as 260

shown in Figure 1 (a). Meanwhile, seq-MESH and 261

dir-MESH combine the input text and its phoneme 262

sequence using cross-attention layers, as shown in 263

Figure 1 (b) and (c). Here, to generate phoneme 264

sequences, we used a widely adopted open-source 265

Korean phonemizer1. 266

3.1 Sequential MESH 267

While seq-MESH follows the same overall archi- 268

tecture of previous detectors, it differs by incorpo- 269

1https://github.com/Kyubyong/g2pK
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rating an additional cross-attention layer in every270

encoder block. This additional layer computes at-271

tention between the semantics of the input text272

and its phoneme sequence. Specifically, we used273

the output of the preceding self-attention output274

as query; and the embedded phoneme sequence275

is used for key and value. As a result, seq-MESH276

can fully leverage and incorporate the two different277

types of features using two attention layers.278

3.2 Direct MESH279

Since self-attention layers specialize in capturing280

and processing the semantics of the text, they may281

propagate the distorted semantics caused by un-282

known tokens in perturbed texts. Specifically, this283

error propagation of self-attention layers can af-284

fect the subsequent layers and mislead the detec-285

tors. To address this, we further propose dir-MESH,286

which replaces the self-attention layers with cross-287

attention layers to incorporate semantic and pho-288

netic information directly, while relaxing the pos-289

sibility of error propagation. Specifically, we use290

the same architecture with seq-MESH except for291

self-attention layers.292

4 Experiment293

4.1 Datasets294

We used two Korean hate speech datasets for our295

experiment: K-HATERS (Park et al., 2023) and296

KoLD (Jeong et al., 2022). Both datasets used on-297

line comments to crawl hate speech and labeled298

them. Specifically, K-HATERS used a Korean on-299

line news platform as the source. They labeled300

hate speech into various sub-categories, regard-301

ing the intensity of hatefulness. Similarly, KoLD302

crawled the same platform and YouTube to con-303

struct the dataset. KoLD used labels different from304

K-HATERS for offensive samples.305

As our study aims to examine the effectiveness306

of phonetic methods on hateful speech, we de-307

cided to focus on coarse labels: offensive or normal.308

Though two datasets provided detailed labels, we309

gathered fine-grained offensive labels into a sin-310

gle category. Since this gathering process produced311

highly imbalanced regarding these two labels, we312

downsampled the datasets. Consequently, we used313

104,112 samples from K-HATERS and 40,429 sam-314

ples from KoLD. These samples are split into train-315

ing, validation, and test sets with a ratio of 8:1:1.316

After collecting datasets for our experiment,317

we collected additional perturbed test sets. Using318

PHISH, we derived different test sets with differ- 319

ent settings, including attack ratios and degrees. 320

Specifically, we conducted attacks under three per- 321

turbation ratios (10, 20, and 30%) and two degrees 322

of attack (single-jamo and dual-jamo). Note that 323

we did not alter training set; all methods are trained 324

on the original data without applying PHISH. 325

4.2 Baselines and MESH variants 326

For baselines, we used three small language models 327

that are commonly used in prior Korean hate speech 328

detection research and adopt the self-attention 329

mechanism: KLUE-BERT, KLUE-RoBERTa (Park 330

et al., 2021b), and KCBERT (Lee, 2020). These 331

three models possess Korean language understand- 332

ing capabilities. Specifically, KLUE-BERT and 333

RoBERTa was pretrained on KLUE dataset (Park 334

et al., 2021b), which is a Korean language under- 335

standing benchmark. Meanwhile, KCBERT was 336

primarily trained on web-based data such as news 337

articles and user comments. So, it tends to exhibit 338

stronger baseline performance in tasks related to 339

hate-speech detection compared to the other two. 340

For implementing detectors equipped with seq- 341

MESH or dir-MESH, we reused the parameters as 342

in Rothe et al. (2020). We set initial parameters of 343

two methods by copying that of the base models, 344

rather than initializing from scratch. Specifically, 345

the self-attention weights of the base models were 346

copied into cross-attention weights of two methods. 347

4.3 Environment of Experiment 348

We used a single RTX A6000 for training and eval- 349

uating the models. We trained each model for five 350

epochs with a learning rate of 10−5 and a batch size 351

of 32. Then, we chose checkpoints with the highest 352

F1 score on the validation set. We repeated each 353

dataset experiment 10 times with different random 354

seeds to ensure reproducibility. 355

5 Result and Discussion 356

In this section, we present our experimental results, 357

which are shown in Tables 1, 2, 3, and 4. Tables 358

display the average and standard deviation of F1 359

scores across the ten experiments. We found three 360

findings of our methods: (1) degradation of perfor- 361

mance under PHISH, (2) robustness of seq-MESH 362

and dir-MESH against the attack scenario, and (3) 363

the alignment between real-world scenarios and 364

our attack and defense methods. 365

First, we quantified the performance degrada- 366

tion of three base models under PHISH using dif- 367
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Attack Ratio 0% 10% 20% 30%
F1 F1 ∆F1 F1 ∆F1 F1 ∆F1

BERT 73.8±0.2 73.6±0.3 -0.2±0.4 71.9±0.3 -1.9±0.4 69.5±0.3 -4.3±0.4
RoBERTa 65.0±2.0 63.5±2.6 -1.5±3.3 58.2±3.3 -6.8±3.9 52.4±4.6 -12.6±5.0
KCBERT 76.2±0.4 75.7±0.3 -0.5±0.5 74.8±0.3 -1.4±0.5 73.4±0.3 -2.8±0.5

BERTdir-MESH 74.2±0.5 73.1±0.4 -1.1±0.6 71.7±0.5 -2.5±0.7 70.2±0.8 -4.0±0.9
RoBERTadir-MESH 74.4±0.4 72.9±0.5 -1.3±0.6 71.2±0.8 -3.2±0.9 69.9±0.7 -4.5±0.8
KCBERTdir-MESH 76.6±0.4 75.5±0.5 -1.1±0.6 74.2±0.5 -2.4±0.6 73.2±0.6 -3.4±0.7

BERTseq-MESH 78.9±0.4 76.2±0.5 -2.7±0.6 73.0±0.5 -5.9±0.6 70.8±0.4 -8.1±0.6
RoBERTaseq-MESH 74.6±0.6 73.4±0.6 -1.2±0.8 71.4±0.8 -3.2±1.0 70.1±0.9 -4.5±1.1
KCBERTseq-MESH 80.8±0.2 79.2±0.3 -1.6±0.4 77.8±0.3 -3.0±0.3 74.9±0.4 -5.9±0.4

Table 1: Detection performance on K-HATERS dataset with single-jamo attack

Attack Ratio 0% 10% 20% 30%
F1 F1 ∆F1 F1 ∆F1 F1 ∆F1

BERT 75.1±0.5 74.6±0.6 -0.5±0.8 70.6±0.7 -4.5±0.9 66.4±1.5 -8.7±1.6
RoBERTa 72.6±1.6 71.6±1.7 -1.0±2.3 66.6±3.0 -6.0±3.4 60.8±5.8 -11.8±6.0
KCBERT 77.5±0.4 76.7±0.6 -0.8±0.7 75.4±0.7 -2.1±0.8 72.6±1.3 -4.9±1.4

BERTdir-MESH 75.9±0.5 75.0±0.7 -0.9±0.9 73.0±0.6 -2.9±0.8 71.6±0.8 -4.3±0.9
RoBERTadir-MESH 75.9±0.7 75.1±0.6 -0.8±0.9 73.6±0.4 -2.3±0.8 71.3±0.6 -4.6±0.9
KCBERTdir-MESH 77.7±0.5 76.8±0.6 -0.9±0.8 74.9±0.6 -2.8±0.8 73.9±0.6 -3.8±0.8

BERTseq-MESH 79.5±1.0 77.9±0.9 -1.6±1.3 74.8±0.9 -4.7±1.3 73.0±0.9 -0.65±1.3
RoBERTaseq-MESH 75.9±0.5 74.9±0.3 -1.0±0.6 73.3±0.4 -2.6±0.6 71.4±0.5 -4.5±0.7
KCBERTseq-MESH 81.4±0.5 80.3±0.6 -1.1±0.8 78.9±0.7 -2.5±0.9 76.2±0.7 -5.2±0.9

Table 2: Detection performance on KoLD dataset with single-jamo attack

ferent attack settings to validate its effectiveness.368

The experimental result shows that the F1 scores369

of all base models declined approximately as the370

attack ratio increased, regardless of the dataset.371

Specifically, with the 30% attack ratio using single-372

jamo attack, KCBERT’s F1 scores decreased by373

2.8 and 4.9 points on the K-HATERS and KoLD374

datasets, respectively, while BERT and RoBERTa375

showed larger drops ranging from 4.3 to 12.6 points.376

Moreover, since the dual-jamo attack perturbs more377

jamos per syllable than the single-jamo attack, it378

led to greater performance degradation on the per-379

turbed datasets. For instance, with a 20% attack380

ratio, BERT and RoBERTa showed F1 score drops381

on the K-HATERS dataset of 4.2 and 20.1, respec-382

tively. These degradations are significantly larger383

than the 1.9 and 6.8 decrement observed under the384

single-jamo attack with the same attack ratio.385

We suspect this effectiveness stems from the se-386

mantic distortion that PHISH made. Specifically,387

PHISH may increase the likelihood of unknown388

tokens during the tokenization process in detectors, 389

which can lead to the omission of the semantic con- 390

tent of texts. Also, in some cases, the perturbed syl- 391

lables may have been converted into homophones, 392

which could have partially altered the semantic in- 393

terpretation of the sentence. Appendix B details the 394

statistics of unknown tokens of tokenized texts of 395

each detector and provides additional discussion. 396

Second, we compared the performance of de- 397

tectors using seq-MESH or dir-MESH with their 398

corresponding base models on perturbed test sets. 399

While base models struggled to identify perturbed 400

offensive texts, detectors incorporating seq-MESH 401

or dir-MESH consistently outperformed their base 402

counterparts. This trend became more pronounced 403

as the perturbation ratio or attack degree increased. 404

For example, when the KoLD dataset was attacked 405

with a 10% single-jamo perturbation, the perfor- 406

mance gaps between the base BERT (74.6%) and 407

its dir-MESH and seq-MESH variants (75.0 and 408

77.9) were 0.4 and 3.3 F1 points, respectively. Un- 409
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Attack Ratio 0% 10% 20% 30%
F1 F1 ∆F1 F1 ∆F1 F1 ∆F1

BERT 73.8±0.2 73.1±0.4 -0.7±0.4 69.6±0.4 -4.2±0.4 66.3±0.7 -7.5±0.7
RoBERTa 65.0±2.0 58.2±4.0 -6.8±4.5 44.9±6.2 -20.1±6.5 31.5±7.6 -33.5±7.9
KCBERT 76.2±0.4 75.1±0.3 -1.1±0.5 72.5±0.2 -3.7±0.4 70.6±0.3 -5.6±0.5

BERTdir-MESH 74.2±0.5 72.6±0.6 -1.6±0.8 69.7±0.6 -4.5±0.8 67.6±1.0 -6.6±1.1
RoBERTadir-MESH 74.4±0.4 72.2±0.7 -2.2±0.8 68.9±0.8 -5.5±0.9 67.3±1.0 -7.1±1.1
KCBERTdir-MESH 76.6±0.4 74.9±0.3 -1.7±0.5 72.4±0.5 -4.2±0.6 71.1±0.6 -5.5±0.7

BERTseq-MESH 78.9±0.4 75.5±0.4 -3.4±0.6 71.9±0.4 -7.0±0.6 69.6±0.8 -9.3±0.9
RoBERTaseq-MESH 74.6±0.6 72.8±0.6 -1.8±0.8 69.7±0.8 -4.9±1.0 67.7±0.9 -6.9±1.1
KCBERTseq-MESH 80.8±0.2 77.7±0.3 -3.1±0.4 73.8±0.4 -7.0±0.4 71.6±0.7 -9.2±0.7

Table 3: Detection performance on K-HATERS dataset with dual-jamo attack

Attack Ratio 0% 10% 20% 30%
F1 F1 ∆F1 F1 ∆F1 F1 ∆F1

BERT 75.1±0.5 73.5±0.7 -1.6±0.9 67.2±1.7 -7.9±1.8 56.6± 3.5 -18.5± 3.5
RoBERTa 72.6±1.6 69.7±2.5 -2.9±3.0 56.5±8.3 -16.1±8.5 41.6±13.6 -31.0±13.7
KCBERT 77.5±0.4 76.2±0.5 -1.3±0.6 74.0±1.0 -3.5±1.1 69.2± 2.5 -8.3± 2.5

BERTdir-MESH 75.9±0.5 74.5±0.9 -1.4±1.0 71.1±1.0 -4.8±1.1 68.9± 1.3 -7.0± 1.4
RoBERTadir-MESH 75.9±0.7 74.3±0.7 -1.6±1.0 70.8±0.7 -5.1±1.0 69.6± 0.9 -6.3± 1.1
KCBERTdir-MESH 77.7±0.5 76.0±0.7 -1.7±0.9 74.1±0.5 -3.6±0.7 72.4± 0.8 -5.3± 0.9

BERTseq-MESH 79.5±1.0 77.6±1.3 -1.9±1.6 73.7±1.4 -5.8±1.7 70.9± 2.3 -8.6± 2.5
RoBERTaseq-MESH 75.9±0.5 74.6±0.4 -1.3±0.6 70.6±0.8 -5.3±0.9 69.3± 0.8 -6.6± 0.9
KCBERTseq-MESH 81.4±0.5 79.6±0.5 -1.8±0.7 76.4±0.7 -0.5±0.9 72.7± 0.7 -8.7± 0.9

Table 4: Detection performance on KoLD dataset with dual-jamo attack

der a stronger 30% dual-jamo attack, these gaps410

increased to 13.3 and 14.3 points: 56.6, 68.9, and411

70.9% for those three models.412

These results indicate that our defense meth-413

ods enhance robustness against phonetic pertur-414

bations since they use complementary information.415

Such complementary information is not only use-416

ful in recovering semantic loss but also improv-417

ing the overall detection performance. Specifically,418

KCBERTseq-MESH outperformed other models in-419

cluding its base model, though KCBERT had al-420

ready been pretrained on online comments and ex-421

hibited strong baseline performance. We believe422

that such further improvement demonstrates com-423

plementary benefits of our methods.424

Lastly, we tested whether our methods real-425

istically capture perturbations observed in real-426

world data. By evaluating their performance on427

original test sets (0% attack), the result showed428

that seq-MESH showed higher performance than429

their corresponding base models. Specifically, on430

KoLD dataset, KCBERTseq-MESH achieved 81.4% 431

F1 score, which is 3.9% higher than its base model. 432

These improvements indicate that our assump- 433

tion of phonetic perturbation is present in the real 434

world. We assumed that malicious users adopt pho- 435

netic substitutions to deceive detectors. And, the 436

improvement of our defense methods on original 437

test sets supports this; the real-world dataset may 438

contain such phonetic substitutions, as our method 439

improves the detection performance. So, we con- 440

clude that our methods seem to align with the strate- 441

gies of real-world malicious users. 442

6 Background 443

6.1 Textual Perturbation Attack 444

As malicious users have been attempting to con- 445

duct more sophisticated filtering evasion methods, 446

such as visual or phonetic substitutions, researchers 447

have attempted to formalize such strategies (Aggar- 448

wal and Zesch, 2022; Puertas and Martinez-Santos, 449
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2021). For example, Aggarwal and Zesch (2022)450

summarized 12 obfuscation strategies based on a451

user study and analyzed the impact of these strate-452

gies across diverse datasets using ten detection453

models. Puertas and Martinez-Santos (2021) pro-454

filed hate speech spreaders using the frequencies455

of lexical and phonetic features from their texts.456

Since such adversarial attacks are not univer-457

sally applicable across all languages due to dif-458

ferences in features such as writing systems, it is459

crucial to account for language-specific constraints.460

For example, visual substitution strategies are not461

applicable to the Korean language because Uni-462

code encoding does not support the replacement463

of Hangul jamo with visually-similar non-Hangul464

characters. So, researchers have investigated more465

language-specific adversarial attacks designed ex-466

plicitly for the Korean language system (Park et al.,467

2021a; Perea and Lupker, 2004; Yu et al., 2024).468

For example, to reflect the diverse forms of offen-469

sive language used by real-world users, Park et al.470

(2021a) augments training data by using multiple471

tokenizers. Yu et al. (2024) proposed adversarial472

attack strategies, such as inserting, copying, and de-473

composing, that are commonly adopted by Korean474

malicious users. However, these studies did not ex-475

plore phonetic substitution despite its effectiveness476

and applicability, as we verified in our experiment.477

6.2 Defense Against Textual Perturbations478

To defend against textual perturbations conducted479

by malicious users, researchers have proposed480

strategy-specific datasets (Cooper et al., 2023;481

Lee et al., 2025; Seth et al., 2023; Laboreiro482

and Oliveira, 2014) or model architectural meth-483

ods. Regarding datasets, Laboreiro and Oliveira484

(2014) curated a profanity-annotated dataset from485

Portuguese online comments, identifying 17 ob-486

fuscation strategies including phonetic and sym-487

bolic substitutions. Also, Lee et al. (2025) con-488

structed a phishing email dataset incorporating vi-489

sual perturbations and demonstrated a detection490

method using CharacterBERT (El Boukkouri et al.,491

2020). However, these methods require manually492

crafted datasets to train defense methods. Also, fine-493

tuning on a specific perturbation may cause overfit-494

ting on the perturbation. Meanwhile, our defense495

method took different approach from these studies.496

Specifically, our method do not require any addi-497

tional datasets for phonetic perturbations; rather,498

we showed that training on a real-world training set499

without any phonetic attack is enough to achieve500

good detection performance. 501

Some researchers have aimed to propose defense 502

methods in perspective of detector architecture 503

(Yang and Lin, 2020; Yu et al., 2024; Shekhar and 504

Venkatesan, 2018; Yi et al., 2021). For example, 505

Yu et al. (2024) leveraged layer pooling methods to 506

enhance the robustness of detectors against textual 507

perturbations. Yi et al. (2021) proposed an embed- 508

ding model to address misbehaviors of detectors 509

caused by morphologically similar words. Since 510

these approaches rely solely on input text, they 511

may lack robustness against phonetic perturbations 512

that cause semantic distortion. In contrast, our de- 513

fense address semantic distortion by supplementing 514

the input with phonetic features. Enabling detec- 515

tors to integrate them as additional information, our 516

method demonstrated strong performance gain. 517

7 Conclusion 518

In this paper, we suggested PHISH , a phonetic 519

substitution attack method tailored for the Korean 520

language. Also, we proposed MESH , two de- 521

fense mechanisms designed to enhance robustness 522

against such phonetic perturbations. PHISH ex- 523

ploits the structural and phonographic character- 524

istics of Hangul; the attack method substitutes one 525

or two jamos per syllable with phonetically similar 526

alternatives, using a predefined IPA-based look-up 527

table. Meanwhile, our defense methods incorpo- 528

rate phoneme-level features through cross-attention 529

mechanisms to integrate semantic representations 530

with phonetic information. 531

Experimental results on two Korean hate speech 532

datasets demonstrated the effectiveness of PHISH 533

in degrading the performance of baseline detectors, 534

validating its adversarial potential. Furthermore, 535

detectors equipped with seq-MESH or dir-MESH 536

consistently outperformed their base models across 537

both perturbed and original test sets, suggesting 538

that our defense methods not only improve robust- 539

ness but also can be generalized to real-world data 540

where phonetic substitutions may naturally occur. 541

These findings suggest that phonetic perturba- 542

tion is a practically relevant and realistic threat in 543

Korean text processing, and that integrating pho- 544

netic information into model architectures can miti- 545

gate semantic distortion and thus improve detection 546

performance. We hope our work encourages fur- 547

ther exploration of language-specific perturbation 548

strategies and architectural defenses that go beyond 549

dataset-level solutions. 550
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8 Limitations551

Despite the effectiveness of our methods, this pa-552

per has three limitations. First, PHISH may not be553

universally applicable across all languages. Specif-554

ically, PHISH is designed under the assumption555

that human readers can easily infer the original556

text from its perturbed form. As previously dis-557

cussed, this assumption generally holds in lan-558

guages with shallow orthographic depth, such as559

Korean, but may not hold in languages with deeper560

orthographic systems.561

Second, seq-MESH and dir-MESH are inher-562

ently tied to transformer-based architectures that563

rely on attention mechanisms. This architectural564

dependence limits the applicability of our de-565

fense methods to models without self-attention,566

such as CNNs (Krizhevsky et al., 2012) or tra-567

ditional RNN-based classifiers. In addition, inte-568

grating phoneme-level information through addi-569

tional cross-attention mechanism introduces com-570

putational overhead, which may hinder deployment571

in resource-constrained environments.572

Lastly, the effectiveness of seq-MESH and dir-573

MESH requires an external phonemizer to generate574

phoneme sequences. This means that the accuracy575

of such a phonemizer can affect the performance576

of our defense methods. However, since we used577

the phonemizer without any optimization or refine-578

ment, we believe the reported performance repre-579

sented in our paper could be improved by using a580

more accurate phonemizer.581
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Type Base Jamo set

Onset

/k/ {ㄱ,ㄲ,ㅋ}
/t/ {ㄷ,ㄸ,ㅌ}
/p/ {ㅂ,ㅃ,ㅍ}
/tC/ {ㅈ,ㅉ,ㅊ}
/s/ {ㅅ,ㅆ }

Nucleus

/i/ {ㅣ,ㅢ}
/u/ {ㅜ,ㅠ}
/o/ {ㅗ,ㅛ}
/2/ {ㅓ,ㅝ,ㅕ}
/a/ {ㅏ,ㅘ,ㅑ}
/e/ {ㅔ,ㅞ,ㅖ}
/E/ {ㅐ,ㅙ,ㅒ}

Coda

/k/ {ㄱ,ㄲ,ㅋ,ㄳ,ㄺ}
/n/ {ㄴ,ㄵ,ㄶ }
/t/ {ㅅ,ㅆ,ㄷ,ㅌ,ㅈ,ㅊ,ㅎ}
/l/ {ㄹ,ㄺ,ㄼ,ㄽ,ㄾ,ㅀ}

/m/ {ㅁ,ㄻ}
/p/ {ㅂ,ㅍ,ㄼ,ㅄ,ㄿ}

Table 5: Predefined look-up table

A Look-up table 723

Table 5 illustrates the predefined look-up table for 724

Korean initial consonants (onset), vowels (nucleus), 725

and final consonants (coda). Jamos assigned to the 726

same set can be substituted with others in the same 727

set. Each IPA symbol of the initial consonants (on- 728

set) and vowels (nucleus) indicates the base phone 729

of the corresponding jamo set. Additionally, final 730

consonants (coda) are pronounced as their corre- 731

sponding base phones according to the Korean stan- 732

dard pronunciation rule. 733

B Statistics of Texts 734

Tables 6 and 7 on page 11 present the appearance 735

rates of unknown tokens in both text and phoneme 736

sequences across different detectors after conduct- 737

ing our PHISH attack. In both tables, BERT and 738

RoBERTa show the same statistics since they were 739

pretrained on the same corpus. Notably, KCBERT 740

exhibits a lower rate of unknown tokens in the 741

text than the other two detectors. This gap remains 742

relatively small even when the input text is per- 743

turbed. We speculate that this robustness stems 744

from KCBERT’s pretraining data, which includes 745

comments posted on online news articles, poten- 746

tially containing naturally perturbed texts authored 747

by malicious users. 748
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Model Dataset Attack Text Phoneme
Ratio(%) UNK avg UNK avg

BERT K-HATERS 0 0.4± 1.9 3.5± 5.4
10 5.3± 5.6 5.3± 6.3
20 11.8± 9.3 7.5± 7.7
30 17.9± 12.4 9.8± 9.9

KoLD 0 0.6± 4.0 4.0± 7.8
10 5.6± 7.4 5.7± 8.5
20 13.0± 12.5 8.4± 11.1
30 19.2± 15.5 10.4± 12.5

RoBERTa K-HATERS 0 0.4± 1.9 3.5± 5.4
10 5.3± 5.6 5.3± 6.3
20 11.8± 9.3 7.5± 7.7
30 17.9± 12.4 9.8± 9.9

KoLD 0 0.6± 4.0 4.0± 7.8
10 5.6± 7.4 5.7± 8.5
20 13.0± 12.5 8.4± 11.1
30 19.2± 15.5 10.4± 12.5

KCBERT K-HATERS 0 0.5± 3.3 1.1± 3.5
10 1.9± 4.4 1.2± 3.5
20 3.4± 5.8 1.4± 3.6
30 4.7± 6.5 1.6± 4.0

KoLD 0 0.5± 3.7 1.0± 4.3
10 1.8± 5.2 1.1± 4.4
20 3.4± 6.9 1.4± 4.7
30 4.7± 8.7 1.5± 4.9

Table 6: Statistics of unknown tokens in perturbed texts
using single-jamo attack and their phoneme sequences

These statistics also offer additional insights into749

our experimental results. First, the statistics can750

explain why augmenting phoneme sequences helps751

mitigate semantic loss caused by phonetic pertur-752

bations. When we use a higher attack ratio, the753

number of unknown tokens increases. So, current754

models may suffer semantic loss or distortion due755

to PHISH’s phonetic perturbations. By providing756

phonetic information to the detectors, we could757

mitigate this loss.758

Second, the statistics may explain why KCBERT759

consistently outperforms the other two detectors.760

As KCBERT showed fewer unknown tokens, it761

is highly likely that the model suffers less from762

semantic loss than the other two models. So, it763

could achieve higher performance by incorporat-764

ing semantic and phonetic information, without a765

considerable loss.766

Model Dataset Attack Text Phoneme
Ratio(%) UNK avg UNK avg

BERT K-HATERS 0 0.4± 1.9 3.5± 5.4
10 9.9± 6.9 8.1± 7.2
20 22.9± 11.7 14.7± 10.8
30 34.2± 15.7 20.7± 13.4

KoLD 0 0.6± 4.0 4.0± 7.8
10 10.0± 8.2 8.6± 9.7
20 24.8± 14.8 15.9± 13.8
30 37.1± 18.3 22.5± 16.9

RoBERTa K-HATERS 0 0.4± 1.9 3.5± 5.4
10 9.9± 6.9 8.1± 7.2
20 22.9± 11.7 14.7± 10.8
30 34.2± 15.7 20.7± 13.4

KoLD 0 0.6± 4.0 4.0± 7.8
10 10.0± 8.2 8.6± 9.7
20 24.8± 14.8 15.9± 13.8
30 37.1± 18.3 22.5± 16.9

KCBERT K-HATERS 0 0.5± 3.3 1.1± 3.5
10 6.2± 7.0 1.8± 4.0
20 12.7± 9.9 2.7± 5.1
30 18.5± 12.7 3.5± 5.6

KoLD 0 0.5± 3.7 1.0± 4.3
10 6.3± 7.9 1.9± 5.7
20 14.1± 13.3 3.0± 7.3
30 20.2± 15.8 4.0± 8.6

Table 7: Statistics of unknown tokens in perturbed texts
using dual-jamo attack and their phoneme sequences
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