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Abstract

As malicious users increasingly employ pho-
netic substitution to evade hate speech detec-
tion, researchers have investigated such strate-
gies. However, two key challenges remain.
First, existing studies have overlooked the Ko-
rean language, despite its vulnerability to pho-
netic perturbations due to its phonographic na-
ture. Second, prior work has primarily focused
on constructing datasets rather than developing
architectural defenses. To address these chal-
lenges, we propose (1) PHonetic-Informed Sub-
stitution for Hangul (PHISH®) that exploits
the phonological characteristics of the Korean
writing system, and (2) Mixed Encoding of
Semantic-pHonetic features (MESH#) that en-
hances the detector’s robustness by incorporat-
ing phonetic information at the architectural
level. Our experimental results demonstrate the
effectiveness of our proposed methods on both
perturbed and unperturbed datasets, suggest-
ing that they not only improve detection per-
formance but also reflect realistic adversarial
behaviors employed by malicious users.

1 Introduction

As offensive text detection systems have been ad-
vanced, malicious users have adopted more so-
phisticated filtering evasion strategies. In partic-
ular, they have been trying to replace characters
or words in hateful texts with alternatives that are
pronounced similarly. Despite requiring substantial
linguistic awareness of target languages, malicious
users frequently adopt phonetic substitution, which
proves to be an effective method of evading detec-
tion (Boucher et al., 2022; Le et al., 2023). There-
fore, researchers have formalized this strategy and
proposed defense methods against it (Cooper et al.,
2023; Le et al., 2022).

However, we identify two key challenges regard-
ing the target language and the proposed defense
strategies. First, existing studies on phonetic substi-
tution attacks have rarely considered Korean. Be-

cause users of phonographic writing systems can
often infer the original word from its phonetically
perturbed form, such attacks may be more effec-
tive in languages like Korean (Kim, 2011). Never-
theless, prior research has largely overlooked pho-
netic perturbations in Korean and instead focused
on language-agnostic strategies, such as inserting
meaningless words (Yu et al., 2024).

Second, most of the currently proposed defense
methods primarily focus on constructing perturbed
datasets, while less focused on augmenting ad-
ditional feature representations. Specifically, pro-
posed defense methods often rely on fine-tuning
methods using datasets specialized for each at-
tack strategy (Lee et al., 2025). However, those
approaches not only incur additional annotation
costs but also raise concerns about overfitting to
particular attack patterns.

To tackle these challenges, we propose (1)
a PHonetic-Informed Substitution for Hangul,
PHISH, and (2) sequntial or direct Mixed Encod-
ing of Semantic-pHonetic features (seq-MESH, dir-
MESH). PHISH substitutes one or two Korean unit
letters per syllable with phonetically similar coun-
terparts using the International Phonetic Alphabet
(IPA) and the Korean standard pronunciation rules.
Unlike prior strategies, PHISH does not use any
characters or special symbols from other languages;
instead, it leverages only the Korean character set.
seq-MESH and dir-MESH aim to enhance the ro-
bustness of detectors against phonetic perturbation
by augmenting phonetic information. Specifically,
our methods adopt cross-attention mechanism to
incorporate semantic and phonetic information.

To examine the effectiveness of both our pro-
posed attack and defense methods, we conducted
experiments on two Korean hate speech datasets:
K-HATERS (Park et al., 2023) and KoLD (Jeong
et al., 2022). Specifically, we quantified perfor-
mance degradation of baseline detectors under our
phonetic substitution attack. Also, we evaluated



detectors equipped with our defense methods on
both the original and perturbed test sets, comparing
their performance to the corresponding base mod-
els. Thus, this paper has following contributions:

* We introduce a phonetic substitution attack
method, PHISH®, which leverages the char-
acteristics of the Korean language and suc-
cessfully misleads prior detectors.

* Also, we propose defense methods, sequential
or direct MESH#, which enhance the robust-
ness of detectors by guiding them to incorpo-
rate semantic and phonetic information.

2 Attack method

Korean malicious users often circumvent filtering
systems by making slight modifications to their
toxic sentences. Specifically, they commonly con-
duct phonetic substitution: replacing offensive let-
ters or words with phonetically similar alternatives.
As Korean is a phonographic language with shal-
low orthographic depth, phonetically substituted
toxic texts remain intelligible to human readers
but can easily confuse detection systems that rely
on semantic representations (Ellis et al., 2004). In
the Korean writing system, Hangul, each character
fundamentally represents a single syllable. Here,
a Hangul syllable character is structured by com-
bining individual components, called jamo, into a
syllable block. Such a syllable block must contain
at least one initial consonant (onset) and a vowel
(nucleus), while a final consonant (coda) may or
may not be present. For example, a Hangul syllable
block ‘7] [kim]” consists of three jamos, onset ‘ 77
[k]’, nucleus ¢ | [i]’, and coda ‘& [m].

Based on this structural property, we propose
a PHonetic-Informed Substitution for Hangul
(PHISH) that perturbs Korean text to mislead de-
tection systems. PHISH replaces a subset of jamos
within each syllable with phonetically similar alter-
natives, using the International Phonetic Alphabet
(IPA) and the Korean standard pronunciation rule.
In particular, PHISH uses two degrees of attack ac-
cording to the number of substituted jamos within a
syllable: single-jamo attack, where only one jamo
is substituted, and dual-jamo attack, where two
jamos are substituted. During the attack, PHISH
employs a look-up table D to match phonetically
similar jamos. Section 2.1 details PHISH algorithm
and Section 2.2 illustrates how we defined the pre-
defined look-up table D.

Algorithm 1 PHISH Algorithm

Imput: Text7 = {To, -+, Tn},
Perturbation ratio r € [0, 1],
Attack mode m € {Single, Dual}

Output: Perturbed text 7

Ip,Zs <+ Vulnerable Search(T)

Shuffle Zp and Zg

ny < Total length of Zp and Zs

ng <0 > # of perturbed syllables

B

while Z—é <randZp # @ do
Pop a target index ¢ from Zp
T; < Syllable Attack(7;, nask)
ng$ng+1

end while

R A

10: while Z—é <randZs # @ do

11: Pop a target index ¢ from Zg

12: Ti < Syllable Attack(7;, natk)
13: ng<nag+1

14: end while

15: return T

2.1 The PHISH algorithm

Algorithm 1 shows the pseudocode of the PHISH.
The algorithm takes three inputs: an input text 7,
which is a sequence of syllables 7;, a perturbation
ratio r, and the degree of attack m. Here, the de-
grees m of ‘single’ and ‘dual’ refer to single and
dual-jamo attacks, respetively.

PHISH consists of two main phases: (1) Index
searching and (2) Substitution. In index searching,
PHISH identifies the target indices to be perturbed
(Line 1) before conducting substitution. Since some
Korean syllables do not allow any perturbation be-
cause their jamos do not have any phonetically sim-
ilar alternatives, the algorithm first identifies the
vulnerable indices of 7 that allow our adversarial
attack. Specifically, if a syllable contains more than
one replaceable jamo, its index is added to Zp; oth-
erwise, if it contains only one, the index is added to
ZIs. To search this index, PHISH calls ‘vulnerable
search’ illustrated in Algorithm 2 (Section 2.1.1).

After determining the target indices, the substitu-
tion phase starts (Lines 5 to 14). In this phase, the
algorithm perturbs syllables corresponding to target
indices one by one until the ratio of attacked sylla-
bles reaches the given ratio r or no more vulnerable
indices are left. For the substitution, PHISH uses



Algorithm 2 Vulnerable Search Algorithm

Algorithm 3 Syllable Attack Algorithm

Input: Look-up table D, Text T
Output: Double-indices list Zp,
Single-indices list Zgs

1: for each syllable sybl in 7 do

2 c+0 > # of substitutable jamos
3 for each jamo j in sybl do

4: if D[j] # @ then © Alternatives exist
5: c+—c+1

6 end if

7 end for

8: if ¢ > 2 then

9: Add the index of sybl into Zp
10: else if c = 1 then
11: Add the index of sybl into Zs
12: end if
13: end for

14: return Zp and Zg

syllable attack algorithm, which is illustrated in
Section 2.1.2. After the substitution phase is done,
PHISH returns the perturbed text 7.

2.1.1 Vulnerable Search Algorithm

Algorithm 2 shows the search algorithm for identi-
fying target indices of a given text 7. When 7T is in-
putted, the algorithm checks whether each syllable
sybl in T allows perturbation. In detail, the algo-
rithm iterates over each syllable in 7, and checks
whether each jamo composing each syllable has al-
ternatives by referring to a predefined look-up table
(Lines 2 to 7). When a syllable has substitutable
jamo, the index of syllable is appended to Zp or
ZIs according to the number of substitutable jamos
(Lines 8 to 12). After the iteration, the algorithm
returns the two indices list, Zp and Zg.

2.1.2 Syllable Attack Algorithm

Algorithm 3 illustrates the process of attack syl-
lables. The algorithm requires a syllable to be at-
tacked and the degree of attack. After deciding the
number of jamos to be substituted (Lines 2 to 3), we
decompose the inputted syllable sybl into a list of
jamos (Line 5). Then, the decomposed list is shuf-
fled to substitute jamos with a random order. After,
the algorithm substitutes each jamo with its pho-
netically similar alternatives by using the look-up
table D until the number of substituted jamos 754
reaches the predefined threshold n44 (Lines 7 to

Input: Look-up table D, Syllable sybl,
Degree of attack m € {Single, Dual}
Output: Perturbed syllable sybl

Initialize # of substitutable jamos ngq as 0
if m = Single then ng, < 1

else if m = Dual then n . < 2

end if

Decompose sybl into a list of jamos 7.
Shuffle list 7.

AN ol >

for each jamo j in J do
if D[j] # & then
: Substitute j with random jamo in D[]
10: Nsttd < Nsprd + 1
11: end if
12: if ng1tqg = Narr then
13: break
14 end if
15: end for
16: Recompose sybl with substituted jamos J
17: return sybl

*

14). After the substitution, the algorithm returns the
perturbed syllable, composed of substituted jamos.

2.2 Look-up Table for Alternatives

Our proposed adversarial attack, PHISH, requires
a predefined look-up table D that maps a jamo to
a set of phonetically similar jamos. As previously
mentioned, a Korean syllable consists of an initial
consonant, a medial vowel, and an optional final
consonant. Thus, we applied different procedures
for each component of syllables when constructing
the look-up table. Appendix A illustrates the table.

To classify initial consonants, we used their base
IPA symbols as the guiding principle. In Korean,
some initial consonants share the same place and
manner of articulation. We grouped initial conso-
nants sharing similar articulatory features or the
base phone. For example, ‘v [p]” and ‘= [p"]’
are variants of the base phone [p]’. While their
differences arise from laryngeal settings, such dis-
tinctions contribute less to phonetic similarity than
their articulation place and manner. Accordingly,
we defined five sets for the initial consonants re-
garding their base phone.

When defining the table for final consonants,
we used the Korean standard pronunciation rule
as the principle. Unlike initial consonants, which
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Figure 1: Architectures of base models and our methods. (a) shows the architecture of base detectors using the
self-attention mechanism; (b) shows the architecture of seq-MESH detectors using stacked self and cross-attention
layers; (c) shows the architecture of dir-MESH detectors using cross-attention instead of self-attention.

are pronounced distinctly from others, some final
consonants are pronounced identically according
to the Korean standard pronunciation rule. As this
phonological property is aligned with the motiva-
tion of PHISH, we directly used this rule to define
the table for final consonants. Following this pro-
cedure, we defined six jamo sets corresponding to
one of the six standard pronunciations.

To classify the medial vowels, we grouped
monophthongs and diphthongs that share the same
base phone. Specifically, there are 11 Korean
diphthongs that are derived from monophthongs
by combining them with glides such as ‘/w/* or
‘/j/> Since diphthongs and their corresponding
base vowels are pronounced in a similar way, we
grouped them into the same substitution sets. Ac-
cordingly, we defined seven sets of vowels.

3 The MESH Defense Methods

We hypothesized that augmenting the phonetic in-
formation can enhance the robustness of detectors
regarding two aspects against phonetic substitu-
tion attacks: (1) providing supplementary features,
and (2) mitigating information loss. First, the aug-
mented phonetic information allows prior detec-
tors, which rely on semantic-level representations,
to leverage alternative linguistic cues during their
detection. Since semantics of perturbed texts can
significantly deviate from that of original text, such
phonetic cues can help to address such deviation.

Second, augmenting phonetic features can miti-
gate the information loss caused by perturbations.
As perturbation increases the likelihood of un-
known tokens during the tokenization process of
detectors, it can severely disrupt the semantic struc-
ture of the text (Yu et al., 2024). This disruption
can interfere with the detectors’ semantic under-
standing of the text. As phonetic information can
provide a hint for reconstructing the unknown word,
we believe that augmenting phonetic information
can recover such information loss.

To combine phonetic information to detectors,
we propose sequential or direct Mixed Encoding of
Semantic-pHonetic features (in short, seq-MESH
or dir-MESH) that use additional or alternative
cross-attention layers. Figure 1 compares prior de-
tectors and our proposed methods. Previously, de-
tectors use self-attention layers to process or cap-
ture the semantic meaning of the input text, as
shown in Figure 1 (a). Meanwhile, seq-MESH and
dir-MESH combine the input text and its phoneme
sequence using cross-attention layers, as shown in
Figure 1 (b) and (c¢). Here, to generate phoneme
sequences, we used a widely adopted open-source

Korean phonemizer!.

3.1 Sequential MESH

While seq-MESH follows the same overall archi-
tecture of previous detectors, it differs by incorpo-

"https://github.com/Kyubyong/g2pK
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rating an additional cross-attention layer in every
encoder block. This additional layer computes at-
tention between the semantics of the input text
and its phoneme sequence. Specifically, we used
the output of the preceding self-attention output
as query; and the embedded phoneme sequence
is used for key and value. As a result, seq-MESH
can fully leverage and incorporate the two different
types of features using two attention layers.

3.2 Direct MESH

Since self-attention layers specialize in capturing
and processing the semantics of the text, they may
propagate the distorted semantics caused by un-
known tokens in perturbed texts. Specifically, this
error propagation of self-attention layers can af-
fect the subsequent layers and mislead the detec-
tors. To address this, we further propose dir-MESH,
which replaces the self-attention layers with cross-
attention layers to incorporate semantic and pho-
netic information directly, while relaxing the pos-
sibility of error propagation. Specifically, we use
the same architecture with seq-MESH except for
self-attention layers.

4 Experiment

4.1 Datasets

We used two Korean hate speech datasets for our
experiment: K-HATERS (Park et al., 2023) and
KoLD (Jeong et al., 2022). Both datasets used on-
line comments to crawl hate speech and labeled
them. Specifically, K-HATERS used a Korean on-
line news platform as the source. They labeled
hate speech into various sub-categories, regard-
ing the intensity of hatefulness. Similarly, KoL.D
crawled the same platform and YouTube to con-
struct the dataset. KoLD used labels different from
K-HATERS for offensive samples.

As our study aims to examine the effectiveness
of phonetic methods on hateful speech, we de-
cided to focus on coarse labels: offensive or normal.
Though two datasets provided detailed labels, we
gathered fine-grained offensive labels into a sin-
gle category. Since this gathering process produced
highly imbalanced regarding these two labels, we
downsampled the datasets. Consequently, we used
104,112 samples from K-HATERS and 40,429 sam-
ples from KoLD. These samples are split into train-
ing, validation, and test sets with a ratio of 8:1:1.

After collecting datasets for our experiment,
we collected additional perturbed test sets. Using

PHISH, we derived different test sets with differ-
ent settings, including attack ratios and degrees.
Specifically, we conducted attacks under three per-
turbation ratios (10, 20, and 30%) and two degrees
of attack (single-jamo and dual-jamo). Note that
we did not alter training set; all methods are trained
on the original data without applying PHISH.

4.2 Baselines and MESH variants

For baselines, we used three small language models
that are commonly used in prior Korean hate speech
detection research and adopt the self-attention
mechanism: KLUE-BERT, KLUE-RoBERTa (Park
et al., 2021b), and KCBERT (Lee, 2020). These
three models possess Korean language understand-
ing capabilities. Specifically, KLUE-BERT and
RoBERTa was pretrained on KLUE dataset (Park
et al., 2021b), which is a Korean language under-
standing benchmark. Meanwhile, KCBERT was
primarily trained on web-based data such as news
articles and user comments. So, it tends to exhibit
stronger baseline performance in tasks related to
hate-speech detection compared to the other two.
For implementing detectors equipped with seq-
MESH or dir-MESH, we reused the parameters as
in Rothe et al. (2020). We set initial parameters of
two methods by copying that of the base models,
rather than initializing from scratch. Specifically,
the self-attention weights of the base models were
copied into cross-attention weights of two methods.

4.3 Environment of Experiment

We used a single RTX A6000 for training and eval-
uating the models. We trained each model for five
epochs with a learning rate of 10~° and a batch size
of 32. Then, we chose checkpoints with the highest
F1 score on the validation set. We repeated each
dataset experiment 10 times with different random
seeds to ensure reproducibility.

5 Result and Discussion

In this section, we present our experimental results,
which are shown in Tables 1, 2, 3, and 4. Tables
display the average and standard deviation of F1
scores across the ten experiments. We found three
findings of our methods: (1) degradation of perfor-
mance under PHISH, (2) robustness of seq-MESH
and dir-MESH against the attack scenario, and (3)
the alignment between real-world scenarios and
our attack and defense methods.

First, we quantified the performance degrada-
tion of three base models under PHISH using dif-



Attack Ratio 0% 10% 20% 30%
F1 F1 AF1 F1 AF1 F1 AF1
BERT 73.84£0.2 | 73.6+0.3 -0.2+0.4 | 71.9£0.3 -1.9+04 | 69.5+£0.3 -4.3+04
RoBERTa 65.0+2.0 | 63.5£2.6 -1.54+3.3 | 58.243.3 -6.8+£3.9 | 52.4+£4.6 -12.6£5.0
KCBERT 76.2+0.4 | 75.7+£0.3 -0.5£0.5 | 74.8£0.3 -1.4+0.5 | 73.4+0.3 -2.8+0.5
BERT gir-MESH 742405 | 73.1£04 -1.1£0.6 | 71.7£0.5 -2.5£0.7 | 70.2£0.8 -4.0£0.9
RoBERTagi.mesy  74.4+£0.4 | 72.9+£0.5 -1.3+0.6 | 71.2+£0.8 -3.24+09 | 69.9+0.7 -4.5+0.8
KCBERT4ir.mesy =~ 76.6+£0.4 | 75.5£0.5 -1.1£0.6 | 74.2+0.5 -2.4+0.6 | 73.240.6  -3.440.7
BERTeq-MESH 78.9+04 | 76.2+£0.5 -2.7£0.6 | 73.0£0.5 -59+0.6 | 70.8£0.4 -8.1£0.6
RoBERTageq-mesy  74.6+£0.6 | 73.4+0.6 -1.2+0.8 | 71.4£0.8 -3.2+1.0 | 70.1£0.9 -4.5+1.1
KCBERTgeqvpsy ~ 80.8+0.2 | 79.240.3 -1.64+0.4 | 77.840.3 -3.0+0.3 | 749404 -59+0.4
Table 1: Detection performance on K-HATERS dataset with single-jamo attack
Attack Ratio 0% 10% 20% 30%
F1 F1 AF1 F1 AF1 F1 AF1

BERT 75.1+0.5 | 74.6+£0.6 -0.5£0.8 | 70.6+0.7 -4.5+£09 | 66.4£1.5 -8.7£1.6
RoBERTa 72.6£1.6 | 71.6+1.7 -1.0£2.3 | 66.6£3.0 -6.0+3.4 | 60.8£5.8 -11.8£6.0
KCBERT 77.5+£04 | 76.7£0.6 -0.8+£0.7 | 75.4+0.7 -2.1£0.8 | 72.6£1.3 -49+14
BERT 4i--MESH 75.94+0.5 | 75.0+£0.7 -0.9£0.9 | 73.0+0.6 -2.9+0.8 | 71.6£0.8 -4.3+0.9
RoBERTagimesy  75.9+£0.7 | 75.1£0.6 -0.8+09 | 73.6+£0.4 -2.3+0.8 | 71.3+0.6 -4.6+0.9
KCBERTirmpsy ~ 77.740.5 | 76.840.6 -0.9£0.8 | 74.94+0.6 -2.8+0.8 | 73.9+£0.6 -3.8+0.8
BERTeq-MESH 79.5£1.0 | 779409 -1.6£1.3 | 74.8£0.9 -4.7+1.3 | 73.0+£0.9 -0.65+1.3
RoBERTageq-mesn ~ 75.9£0.5 | 74.9£0.3 -1.0£0.6 | 73.3£0.4 -2.6+0.6 | 71.4£0.5 -4.5+0.7
KCBERT eq-mesn~ 81.4+0.5 | 80.3+£0.6 -1.1+0.8 | 78.9+£0.7 -2.5£0.9 | 76.2+0.7 -5.240.9

Table 2: Detection performance on KoLD dataset with single-jamo attack

ferent attack settings to validate its effectiveness.
The experimental result shows that the F1 scores
of all base models declined approximately as the
attack ratio increased, regardless of the dataset.
Specifically, with the 30% attack ratio using single-
jamo attack, KCBERT’s F1 scores decreased by
2.8 and 4.9 points on the K-HATERS and KoLLD
datasets, respectively, while BERT and RoBERTa
showed larger drops ranging from 4.3 to 12.6 points.
Moreover, since the dual-jamo attack perturbs more
jamos per syllable than the single-jamo attack, it
led to greater performance degradation on the per-
turbed datasets. For instance, with a 20% attack
ratio, BERT and RoBERTa showed F1 score drops
on the K-HATERS dataset of 4.2 and 20.1, respec-
tively. These degradations are significantly larger
than the 1.9 and 6.8 decrement observed under the
single-jamo attack with the same attack ratio.

We suspect this effectiveness stems from the se-
mantic distortion that PHISH made. Specifically,
PHISH may increase the likelihood of unknown

tokens during the tokenization process in detectors,
which can lead to the omission of the semantic con-
tent of texts. Also, in some cases, the perturbed syl-
lables may have been converted into homophones,
which could have partially altered the semantic in-
terpretation of the sentence. Appendix B details the
statistics of unknown tokens of tokenized texts of
each detector and provides additional discussion.
Second, we compared the performance of de-
tectors using seq-MESH or dir-MESH with their
corresponding base models on perturbed test sets.
While base models struggled to identify perturbed
offensive texts, detectors incorporating seq-MESH
or dir-MESH consistently outperformed their base
counterparts. This trend became more pronounced
as the perturbation ratio or attack degree increased.
For example, when the KoLLD dataset was attacked
with a 10% single-jamo perturbation, the perfor-
mance gaps between the base BERT (74.6%) and
its dir-MESH and seq-MESH variants (75.0 and
77.9) were 0.4 and 3.3 F1 points, respectively. Un-



Attack Ratio 0% 10% 20% 30%
F1 F1 AF1 F1 AF1 F1 AF1
BERT 73.8£0.2 | 73.1£04 -0.7£04 | 69.6£0.4 -42+0.4 | 66.3+£0.7 -7.5+0.7
RoBERTa 65.0+£2.0 | 58.2+4.0 -6.84+4.5 | 44.94+6.2 -20.1+6.5 | 31.5+£7.6 -33.5+7.9
KCBERT 76.2+0.4 | 75.1+£03 -1.1£0.5 | 72.5£0.2 -3.7£0.4 | 70.6£0.3 -5.6%0.5
BERT gir-MESH 74.2£0.5 | 72.6£0.6 -1.6+0.8 | 69.7£0.6 -4.5+0.8 | 67.6£1.0 -6.6+£1.1
RoBERTagi-mpsy =~ 74.4+0.4 | 72.2+0.7 -2.24+0.8 | 68.9+0.8 -5.54+0.9 | 67.3+1.0 -7.1%1.1
KCBERT4ir.mesy =~ 76.6+£0.4 | 74.9+£0.3 -1.740.5 | 72.4+0.5 -4.2+0.6 | 71.1£0.6 -5.5£0.7
BERTeq-MESH 78.9+04 | 75.5+£04 -3.440.6 | 71.9+:04 -7.04+0.6 | 69.6+0.8 -9.3+0.9
RoBERTageq-mesy  74.6+£0.6 | 72.8+0.6 -1.8+0.8 | 69.7£0.8 -4.9£1.0 | 67.7£0.9 -6.9£1.1
KCBERT cqmesn ~ 80.840.2 | 77,7403 -3.1+£04 | 73.8+0.4 -7.0+0.4 | 71.6+0.7 -9.240.7
Table 3: Detection performance on K-HATERS dataset with dual-jamo attack
Attack Ratio 0% 10% 20% 30%
F1 F1 AF1 F1 AF1 F1 AF1

BERT 75.1+0.5 | 73.5£0.7 -1.64+0.9 | 67.2+1.7 -7.9£1.8 | 56.6+ 3.5 -18.5+ 3.5
RoBERTa 72.6£1.6 | 69.742.5 -2.94£3.0 | 56.5£8.3 -16.1£8.5 | 41.6+13.6 -31.0+13.7
KCBERT 77.5£04 | 76.2+0.5 -1.3+£0.6 | 74.0£1.0 -3.5£1.1 | 69.2+ 2.5 -8.3% 2.5
BERT 4i--MESH 75.9+0.5 | 74.5+£09 -1.44+1.0 | 71.1+£1.0 -4.84+1.1 | 689+ 1.3 -7.0+ 1.4
RoBERTagimesy  75.9+0.7 | 74.3£0.7 -1.6+1.0 | 70.8+£0.7 -5.1£1.0 | 69.6£ 09 -6.3%+ 1.1
KCBERTirmesy ~ 77.740.5 | 76.0+0.7 -1.7£0.9 | 74.1£0.5 -3.6£0.7 | 724+ 0.8 -5.34+ 0.9
BERTeq-MESH 79.5£1.0 | 77.6+1.3 -1.9+1.6 | 73.7£1.4 -58+£1.7 | 709+ 2.3 -8.6+ 2.5
RoBERTageq-mesn ~ 75.9£0.5 | 74.6+£0.4 -1.3£0.6 | 70.60.8 -5.3+0.9 | 69.3+ 0.8 -6.64+ 0.9
KCBERT eq-mesn~ 81.4+0.5 | 79.6+£0.5 -1.8+£0.7 | 76.4+0.7 -0.5+0.9 | 72.7+ 0.7 -8.7+ 0.9

Table 4: Detection performance on KoLD dataset with dual-jamo attack

der a stronger 30% dual-jamo attack, these gaps
increased to 13.3 and 14.3 points: 56.6, 68.9, and
70.9% for those three models.

These results indicate that our defense meth-
ods enhance robustness against phonetic pertur-
bations since they use complementary information.
Such complementary information is not only use-
ful in recovering semantic loss but also improv-
ing the overall detection performance. Specifically,
KCBERTq-MgsH outperformed other models in-
cluding its base model, though KCBERT had al-
ready been pretrained on online comments and ex-
hibited strong baseline performance. We believe
that such further improvement demonstrates com-
plementary benefits of our methods.

Lastly, we tested whether our methods real-
istically capture perturbations observed in real-
world data. By evaluating their performance on
original test sets (0% attack), the result showed
that seq-MESH showed higher performance than
their corresponding base models. Specifically, on

KoLD dataset, KCBERTq.mgsH achieved 81.4%
F1 score, which is 3.9% higher than its base model.

These improvements indicate that our assump-
tion of phonetic perturbation is present in the real
world. We assumed that malicious users adopt pho-
netic substitutions to deceive detectors. And, the
improvement of our defense methods on original
test sets supports this; the real-world dataset may
contain such phonetic substitutions, as our method
improves the detection performance. So, we con-
clude that our methods seem to align with the strate-
gies of real-world malicious users.

6 Background

6.1 Textual Perturbation Attack

As malicious users have been attempting to con-
duct more sophisticated filtering evasion methods,
such as visual or phonetic substitutions, researchers
have attempted to formalize such strategies (Aggar-
wal and Zesch, 2022; Puertas and Martinez-Santos,



2021). For example, Aggarwal and Zesch (2022)
summarized 12 obfuscation strategies based on a
user study and analyzed the impact of these strate-
gies across diverse datasets using ten detection
models. Puertas and Martinez-Santos (2021) pro-
filed hate speech spreaders using the frequencies
of lexical and phonetic features from their texts.
Since such adversarial attacks are not univer-
sally applicable across all languages due to dif-
ferences in features such as writing systems, it is
crucial to account for language-specific constraints.
For example, visual substitution strategies are not
applicable to the Korean language because Uni-
code encoding does not support the replacement
of Hangul jamo with visually-similar non-Hangul
characters. So, researchers have investigated more
language-specific adversarial attacks designed ex-
plicitly for the Korean language system (Park et al.,
2021a; Perea and Lupker, 2004; Yu et al., 2024).
For example, to reflect the diverse forms of offen-
sive language used by real-world users, Park et al.
(2021a) augments training data by using multiple
tokenizers. Yu et al. (2024) proposed adversarial
attack strategies, such as inserting, copying, and de-
composing, that are commonly adopted by Korean
malicious users. However, these studies did not ex-
plore phonetic substitution despite its effectiveness
and applicability, as we verified in our experiment.

6.2 Defense Against Textual Perturbations

To defend against textual perturbations conducted
by malicious users, researchers have proposed
strategy-specific datasets (Cooper et al., 2023;
Lee et al., 2025; Seth et al., 2023; Laboreiro
and Oliveira, 2014) or model architectural meth-
ods. Regarding datasets, Laboreiro and Oliveira
(2014) curated a profanity-annotated dataset from
Portuguese online comments, identifying 17 ob-
fuscation strategies including phonetic and sym-
bolic substitutions. Also, Lee et al. (2025) con-
structed a phishing email dataset incorporating vi-
sual perturbations and demonstrated a detection
method using CharacterBERT (El Boukkouri et al.,
2020). However, these methods require manually
crafted datasets to train defense methods. Also, fine-
tuning on a specific perturbation may cause overfit-
ting on the perturbation. Meanwhile, our defense
method took different approach from these studies.
Specifically, our method do not require any addi-
tional datasets for phonetic perturbations; rather,
we showed that training on a real-world training set
without any phonetic attack is enough to achieve

good detection performance.

Some researchers have aimed to propose defense
methods in perspective of detector architecture
(Yang and Lin, 2020; Yu et al., 2024; Shekhar and
Venkatesan, 2018; Yi et al., 2021). For example,
Yu et al. (2024) leveraged layer pooling methods to
enhance the robustness of detectors against textual
perturbations. Yi et al. (2021) proposed an embed-
ding model to address misbehaviors of detectors
caused by morphologically similar words. Since
these approaches rely solely on input text, they
may lack robustness against phonetic perturbations
that cause semantic distortion. In contrast, our de-
fense address semantic distortion by supplementing
the input with phonetic features. Enabling detec-
tors to integrate them as additional information, our
method demonstrated strong performance gain.

7 Conclusion

In this paper, we suggested PHISH®, a phonetic
substitution attack method tailored for the Korean
language. Also, we proposed MESH#, two de-
fense mechanisms designed to enhance robustness
against such phonetic perturbations. PHISH ex-
ploits the structural and phonographic character-
istics of Hangul; the attack method substitutes one
or two jamos per syllable with phonetically similar
alternatives, using a predefined IPA-based look-up
table. Meanwhile, our defense methods incorpo-
rate phoneme-level features through cross-attention
mechanisms to integrate semantic representations
with phonetic information.

Experimental results on two Korean hate speech
datasets demonstrated the effectiveness of PHISH
in degrading the performance of baseline detectors,
validating its adversarial potential. Furthermore,
detectors equipped with seq-MESH or di-MESH
consistently outperformed their base models across
both perturbed and original test sets, suggesting
that our defense methods not only improve robust-
ness but also can be generalized to real-world data
where phonetic substitutions may naturally occur.

These findings suggest that phonetic perturba-
tion is a practically relevant and realistic threat in
Korean text processing, and that integrating pho-
netic information into model architectures can miti-
gate semantic distortion and thus improve detection
performance. We hope our work encourages fur-
ther exploration of language-specific perturbation
strategies and architectural defenses that go beyond
dataset-level solutions.



8 Limitations

Despite the effectiveness of our methods, this pa-
per has three limitations. First, PHISH may not be
universally applicable across all languages. Specif-
ically, PHISH is designed under the assumption
that human readers can easily infer the original
text from its perturbed form. As previously dis-
cussed, this assumption generally holds in lan-
guages with shallow orthographic depth, such as
Korean, but may not hold in languages with deeper
orthographic systems.

Second, seq-MESH and dir-MESH are inher-
ently tied to transformer-based architectures that
rely on attention mechanisms. This architectural
dependence limits the applicability of our de-
fense methods to models without self-attention,
such as CNNs (Krizhevsky et al., 2012) or tra-
ditional RNN-based classifiers. In addition, inte-
grating phoneme-level information through addi-
tional cross-attention mechanism introduces com-
putational overhead, which may hinder deployment
in resource-constrained environments.

Lastly, the effectiveness of seq-MESH and dir-
MESH requires an external phonemizer to generate
phoneme sequences. This means that the accuracy
of such a phonemizer can affect the performance
of our defense methods. However, since we used
the phonemizer without any optimization or refine-
ment, we believe the reported performance repre-
sented in our paper could be improved by using a
more accurate phonemizer.
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Type Base Jamo set
/k/ {7,m,=3}
/t/ {c,mx, e}
Onset /p/ {w,wm, sz}
Jte/ (=, =, =}
/s]  {~,»}
fi/ 1)
Ju/  {-, )
o/ {a, n}
Nucleus /a/ {d1,d, 4}
Ja/  { =k F}
Je/ {1, 4, 4}
/e {0, A, B}
/k/ {7, m,3, 1, =)
/n/  {v, v )
Coda Jt/ {Ax,»,T,E, X, =, 5}

1/
/m/
/p/

Table 5: Predefined look-up table

{=,=1, e, 21, €, B85 }
{m,en}
{wv,=, =8, WX, =}

A Look-up table

Table 5 illustrates the predefined look-up table for
Korean initial consonants (onset), vowels (nucleus),
and final consonants (coda). Jamos assigned to the
same set can be substituted with others in the same
set. Each IPA symbol of the initial consonants (on-
set) and vowels (nucleus) indicates the base phone
of the corresponding jamo set. Additionally, final
consonants (coda) are pronounced as their corre-
sponding base phones according to the Korean stan-
dard pronunciation rule.

B Statistics of Texts

Tables 6 and 7 on page 11 present the appearance
rates of unknown tokens in both text and phoneme
sequences across different detectors after conduct-
ing our PHISH attack. In both tables, BERT and
RoBERTa show the same statistics since they were
pretrained on the same corpus. Notably, KCBERT
exhibits a lower rate of unknown tokens in the
text than the other two detectors. This gap remains
relatively small even when the input text is per-
turbed. We speculate that this robustness stems
from KCBERTs pretraining data, which includes
comments posted on online news articles, poten-
tially containing naturally perturbed texts authored
by malicious users.
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Model Dataset Attack Text Phoneme
Ratio(%) UNKavg UNK avg

BERT K-HATERS 0 04+ 1.9 3.5+ 5.4
10 53+ 5.6 5.3+ 6.3

20 11.8& 9.3 7.5+ 7.7

30 179+ 124 9.8+ 9.9

KoLD 0 0.6+ 4.0 40+ 7.8

10 5.6+ 7.4 5.7+ 8.5

20 13.0£12.5 84+ 11.1

30 19.2+15.5 104+£125

RoBERTa K-HATERS 0 04+ 1.9 3.5+ 5.4
10 53+ 5.6 5.3+ 6.3

20 11.8& 9.3 7.5+ 7.7

30 1794+ 124 9.8+ 9.9

KoLD 0 0.6+ 4.0 40+ 7.8

10 5.6+ 7.4 5.7+ 8.5

20 13.0£12.5 8.4+ 11.1

30 1924155 104+ 12.5

KCBERT K-HATERS 0 0.5+ 3.3 1.1+ 3.5
10 1.9+ 44 1.2+ 3.5

20 344 5.8 144+ 3.6

30 47+ 6.5 1.6+ 4.0

KoLD 0 0.5+ 3.7 1.0+ 4.3

10 1.8+& 5.2 1.1+ 4.4

20 344+ 6.9 1.4+ 47

30 47+ 8.7 1.5+ 49

Table 6: Statistics of unknown tokens in perturbed texts
using single-jamo attack and their phoneme sequences

These statistics also offer additional insights into
our experimental results. First, the statistics can
explain why augmenting phoneme sequences helps
mitigate semantic loss caused by phonetic pertur-
bations. When we use a higher attack ratio, the
number of unknown tokens increases. So, current
models may suffer semantic loss or distortion due
to PHISH’s phonetic perturbations. By providing
phonetic information to the detectors, we could
mitigate this loss.

Second, the statistics may explain why KCBERT
consistently outperforms the other two detectors.
As KCBERT showed fewer unknown tokens, it
is highly likely that the model suffers less from
semantic loss than the other two models. So, it
could achieve higher performance by incorporat-
ing semantic and phonetic information, without a
considerable loss.
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Model Dataset Attack Text Phoneme
Ratio(%) UNKavg UNK avg

BERT K-HATERS 0 04+ 1.9 3.5+ 54
10 99+ 6.9 8.1+ 7.2

20 2294117 14.7+£10.8

30 3424157 20.7£ 134

KoLD 0 0.6t 4.0 40+ 7.8

10 10.0+ 8.2 8.6+ 9.7

20 248+14.8 1594138

30 37.1£ 183 225+ 16.9

RoBERTa K-HATERS 0 04+ 1.9 3.5+ 54
10 99+ 6.9 8.1+ 7.2

20 229+11.7 14.7+£10.8

30 342+ 157 20.7+£ 134

KoLD 0 0.6+ 4.0 40+ 7.8

10 10.0£ 8.2 8.6+ 9.7

20 248+14.8 1594138

30 37.1£ 183 22.54+16.9

KCBERT K-HATERS 0 0.5+ 33 1.1+ 3.5
10 6.2+ 7.0 1.8+ 4.0

20 12.7+4 9.9 2.7+ 5.1

30 18.54+12.7 3.5+ 5.6

KoLD 0 0.5+ 3.7 1.0+ 43

10 63+ 7.9 1.9+ 5.7

20 14.1+13.3 3.0+ 7.3

30 20.2£15.8 4.0+ 8.6

Table 7: Statistics of unknown tokens in perturbed texts
using dual-jamo attack and their phoneme sequences
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